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Abstract: The permutation flow shop scheduling problem (PFSP) stands as a classic conundrum
within the realm of combinatorial optimization, serving as a prevalent organizational structure in
authentic production settings. Given that conventional scheduling approaches fall short of effectively
addressing the intricate and ever-shifting production landscape of PFSP, this study proposes an
end-to-end deep reinforcement learning methodology with the objective of minimizing the maximum
completion time. To tackle PFSP, we initially model it as a Markov decision process, delineating
pertinent states, actions, and reward functions. A notably innovative facet of our approach involves
leveraging disjunctive graphs to represent PFSP state information. To glean the intrinsic topological
data embedded within the disjunctive graph’s underpinning, we architect a policy network based
on a graph isomorphism network, subsequently trained through proximal policy optimization. Our
devised methodology is compared with six baseline methods on randomly generated instances and
the Taillard benchmark, respectively. The experimental results unequivocally underscore the superi-
ority of our proposed approach in terms of makespan and computation time. Notably, the makespan
can save up to 183.2 h in randomly generated instances and 188.4 h in the Taillard benchmark. The
calculation time can be reduced by up to 18.70 s for randomly generated instances and up to 18.16 s
for the Taillard benchmark.

Keywords: permutation flow shop; scheduling; deep reinforcement learning; disjunctive graph;
policy network

1. Introduction

The Job-Shop Scheduling Problem (JSSP) stands as a renowned combinatorial opti-
mization challenge within the realms of computer science and operations research, finding
widespread application across industries such as manufacturing and transportation [1,2].
Workshop scheduling, through judicious allocation of pending tasks within a designated
timeframe, facilitates optimal resource utilization, thereby aiding enterprises in mitigating
excessive investments in raw materials, energy, and productivity. Moreover, the application
of various algorithms has led to a reduction in the practical application costs associated with
workshop scheduling, garnering substantial attention from scholars [3], engineering profes-
sionals [4], and manufacturers [5]. Notably, permutation flow shop workshops, emblematic
of a prototypical workshop configuration, find extensive prevalence in manufacturing and
large-scale product fabrication. [6–8]. In PFSP, there are n jobs J1, . . . , Jn, each of which
consists of a sequence of m processes. There are m machines M1, . . . , Mm, Qij is the ith
process of Job Ji, and each process Qij can only be performed by Mj. Moreover, the execu-
tion of any process cannot be interrupted nor preempted, and job delivery is not allowed.
That is, the jobs must be executed in the same order on each machine. Furthermore, the
PFSP has been established as an NP-hard conundrum [9], implying its intractability in
yielding optimal solutions within polynomial time. Hence, the pursuit of judicious algorith-
mic design, generating high-quality solutions within acceptable timeframes for practical
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scenarios, assumes significant research import. Presently, the dominant methodologies
for addressing this domain encompass exact algorithms [10], heuristic algorithms [11],
metaheuristic algorithms [12,13], and deep reinforcement learning (DRL) algorithms [14].
Nevertheless, the existing mainstream approaches fall short of striking an optimal balance
between solution quality and computational time. In light of this, we proffer an innovative
end-to-end model based on DRL to effectively tackle this intricate predicament.

The PFSP, renowned as a challenging NP-hard endeavor, has yielded prolific research
outcomes [15–17]. However, as production scales expand, exact algorithms such as inte-
ger programming models and branch-and-bound techniques struggle to provide timely
resolutions for large-scale manufacturing quandaries. Over the past decades of inquiry,
endeavors have been directed towards expeditiously deriving scheduling solutions through
heuristic approaches. In the realm of heuristic methodologies targeting the optimization
of maximum completion time for addressing PFSP, NEH has emerged as a paragon of
efficiency [18,19], commanding the admiration of heuristic-minded scholars. In this context,
Christos Koulamas [20] introduced a facile constructive heuristic algorithm aimed at the
objective of maximum completion time, adeptly generating non-permutative schedules
where advantageous, and demonstrating superior performance to the NEH algorithm
in addressing the flow shop scheduling challenge. Zheng and Wang [21], in a fusion of
the NEH heuristic with genetic algorithms, advanced an effective hybrid heuristic for
the flow shop scheduling issue, substantiating its efficacy through empirical validation.
Nagano et al. [22] introduced an N&M algorithm that penalizes the priority of NEH jobs
based on the lower bound of job waiting times, thus reshuffling the initial sequence. Empir-
ical findings underscore that the N&M algorithm secures superior outcomes to the NEH
algorithm without escalating computational complexity. For the minimization of total
tardiness in the context of flow shop scheduling, Fernandez-Viagas and Framinan [23]
harnessed an NEH-based heuristic to unravel the quandary. Delving into decision problems
contingent on job due dates, they delineated parallels with various associated decision
challenges. Kalczynski et al. [24] propounded novel priority sequencing and coupled it
with an uncomplicated disruption rule, resulting in a methodology that outperforms the
NEH algorithm across all problem scales. In a bid to minimize total flow time in DPFSP,
Pan et al. [25] extended the utility of NEH and LR through the introduction of three heuris-
tic approaches, DNEH, DLR, and DLR-DNEH, effectively broadening the scope of the NEH
application to alternative problem formulations and objectives.

Traditional heuristic methods are confined to addressing smaller-scale flow shop
scheduling quandaries. Subsequently, to enhance computational efficiency and refine out-
comes, numerous scholars have harnessed metaheuristic algorithms for tackling a diverse
array of large-scale scheduling challenges. Leveraging their robust global search capabili-
ties and relatively acceptable solution speeds, metaheuristic algorithms find application
across both static and dynamic problem domains [26–28], emerging as the most prolific
category in contemporary workshop scheduling research. In 2013, Ceberio et al. [29] pro-
posed a hybrid approach consisting of a new estimation of the distribution algorithm and
a variable neighborhood search. Conducted experiments demonstrate that the proposed
hybrid approach obtains new best-known results in 152 cases. In 2015, Sayoti and Essaid
Ri [30] introduced the Gold Ball Algorithm, a metaheuristic approach founded on football-
inspired concepts for resolving flow shop scheduling problems. In 2016, Santucci et al. [31]
proposed a new discrete Differential Evolution algorithm for the Permutation Flowshop
Scheduling Problem with the total flowtime and makespan criteria. The core of the al-
gorithm is a distance-based differential mutation operator defined by means of a new
randomized bubble sort algorithm. In 2017, Dubois-Lacoste et al. [32] proposed the utiliza-
tion of local search techniques to enhance the partial solutions derived from iterated greedy
algorithms, applying this framework to the PFSP while aiming to minimize the maximum
completion time. Empirical findings substantiated the advantageous nature of reoptimizing
partial solutions. In 2018, Baioletti et al. [33] introduced a decomposition-based algebraic
evolutionary algorithm for multi-objective permutation-based problems (MOEA/DEP). In
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order to mitigate the diversity loss during the evolution, MOEA/DEP introduces some
additional components and variants. In 2020, Kaya et al. [34] formulated and compared
five distinct methods for generating initial populations, employing a hybrid firefly-particle
swarm optimization algorithm to evaluate the effects of various initial populations in tack-
ling intricate flow shop scheduling dilemmas. In 2022, Li et al. [35] introduced an improved
simulated annealing algorithm grounded in solution space pruning to address large-scale
PFSP, concurrently presenting a hybrid release strategy based on the Palmer algorithm.

Given the fixed structure of heuristic and metaheuristic algorithms, the search per-
formance encounters certain limitations. Many researchers have endeavored to harness
machine learning algorithms for solving scheduling predicaments, owing to their potent
learning capabilities that autonomously seek optimal solutions. DRL, a subset of machine
learning, showcases robustness by eschewing the need for prior knowledge or fixed mod-
els. It attains experiential knowledge through interactions with the environment, thereby
autonomously acquiring adept solutions, rendering the pursuit of optimal solutions more
intellectually adept. Scholars, commencing in 2018, have embarked on infusing DRL into
the arena of workshop scheduling. Pan et al. [36] employed a DRL paradigm rooted in
policy gradients (PG), utilizing classical pointer networks as actors and multi-head atten-
tion networks as critics, underpinned by immediate rewards corresponding to completion
times. Ingimundardottir et al. [37] introduced an imitation learning algorithm to acquire
scheduling rules. However, due to the elevated time complexity inherent in workshop
scheduling dilemmas, obtaining a multitude of optimal solutions for training purposes
on large-scale problems proves impractical, thus constraining the method’s applicability.
Lin [38] proposed a Deep Q-Networks (DQN)-based algorithm for addressing workshop
scheduling, with the action space represented as a set of priority dispatching rules. At
each state, the agent selects a rule. Yang et al. [39] established a mathematical model for
dynamic PFSP utilizing DRL, extracting five distinct features as the state space and deploy-
ing the A2C algorithm to train a network in selecting appropriate heuristic rules. This, in
essence, achieves a metaheuristic approach. Han and Yang [40] delved into the extraction
of processing state information using convolutional neural networks and employed D3QN
to train Q-values for diverse heuristic rules across distinct states. Despite the substantial
achievements attained through the application of DRL to workshop scheduling, research
specifically addressing PFSP using DRL methodologies remains comparatively limited.

Following substantial interactions with the environment, DRL models achieve the
capability for iterative decision-making, accompanied by commendable generalization
prowess. In comparison with heuristic and metaheuristic algorithms, the beauty of DRL
lies in its capacity to resolve problems of all magnitudes through a single training itera-
tion, obviating the need for recurrent training necessitated by varying problem scales [41].
Presently, DRL algorithms have progressively ascended as the mainstream approach to tack-
ling combinatorial optimization quandaries. Indicative of this shift, certain investigations
applying DRL to combinatorial optimization underscore the surpassing of metaheuristic
algorithmic outcomes in certain domains [42]. However, existing endeavors employing
DRL for resolving the PFSP remain beset by certain concerns. Foremost, it is very important
to define the permutation flow shop scheduling system as the state in the Markov decision
process (MDP). Nonetheless, prevalent approaches predominantly adopt mathematical
models for state representation, inadvertently omitting a comprehensive and rational encap-
sulation of the scheduling environment’s entirety. Furthermore, the efficacy of information
extraction from current states directly influences the training process of learning algorithms.
Regrettably, the conventional feedforward neural networks, extensively favored in extant
research, prove inadequate in efficiently extracting state information. In addition, existing
research largely relies on DQN to train policy networks [43]. However, it is noteworthy
that DQN does not inherently optimize policies, thereby potentially introducing instability
or protracted convergence periods into the training dynamics.

To address the aforementioned quandaries, we present an end-to-end DRL approach
to solve the PFSP. In pursuit of a more comprehensive portrayal of PFSP scheduling states,
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we ingeniously employ disjunctive graphs to represent the intricate tapestry of the PFSP
scheduling landscape. To harness the wealth of information implicit in the underlying
topological structure of these disjunctive graphs, we craft a policy network based on graph
isomorphism network (GIN) for embedding and training it using the proximal policy
optimization (PPO). In this construct, the policy network initially leverages a graph encoder
to embed the multifaceted information contained in the disjunctive graph. Thereafter, an
action selection network furnishes the agent with the optimal action through a probability
distribution over available actions. We subjected our methodology to rigorous compari-
son with six baseline methods. Empirical findings consistently underscore the superior
performance of our model in terms of both completion time and computational efficiency.
Furthermore, even when confronting larger-scale instances, our model elegantly demon-
strates robust generalization capabilities. This endeavor yields a manifold contribution,
encapsulated as follows:

(1). A MDP model has been established for PFSP, elaborating in detail the construction of
state space, action space, and reward scheme. Furthermore, an innovative application of
disjunctive graphs encapsulates the state intricacies inherent in the scheduling domain.

(2). To more effectively extract information embedded within the graphical state structures,
a policy network grounded in GIN has been introduced. Internally, this policy network
employs a graph encoder to articulate the state representation, subsequently guiding
decision-making based on the encoded state. The efficacy of this network has been
validated through the resolution of diverse-scale instances.

(3). A novel end-to-end DRL paradigm has been advanced to address PFSP, surmounting
the historical limitations in terms of generalization capacity. This model transcends
prior constraints, enabling the resolution of problems of arbitrary dimensions after a
single training iteration.

The remaining sections of the study are presented as follows: Section 2 provides a
mathematical exposition of the PFSP and an introduction to the techniques employed.
In Section 3, our research methodology is expounded, encompassing the establishment
of the MDP model and the formulation of the policy network. Section 4 delineates the
experimental protocol and engages in a comprehensive discourse on the findings. Lastly,
Section 5 furnishes our conclusions, highlights the study’s limitations, and illuminates
avenues for future exploration.

2. Problem Background
2.1. The Description of PFSP

This study delves into the PFSP, wherein a set of n jobs J = {J1, J2, . . . , Jn} undergo
processing across m machines M = {M1, M2, . . . , Mm} through a sequence of processes
{Oi1, Oi2, . . . , Oim}. The essence of this study revolves around orchestrating an optimal
arrangement where all jobs are processed on each machine in a uniform sequence. As-
suming that the jobs are processed in the order of machines 1 to m, let the job processing
sequence be denoted by π = {π1, π2, . . . , πn}. Our focus, in this discourse, centers on
the minimization of the maximal processing time, serving as the bedrock of our scheduling
objective. Within this context, the ensuing assumptions are set forth:

(1). A job can be processed on only one machine at any given moment;
(2). Jobs are independent and arrive at time zero without any disturbances during production;
(3). Once a job is initiated on a machine, it proceeds without interruption;
(4). Setup and transportation times between processes are encompassed within the pro-

cessing duration;
(5). Each job is processed exactly once on each machine;
(6). The processing durations for all jobs on all machines are known in advance.
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2.2. Disjunctive Graph

The disjunctive graph [44] consists of three components: vertices, connecting arcs, and
disjunctive arcs. In order to provide a more comprehensive and coherent representation
of the scheduling state for the permutation flow shop, we introduce the disjunctive graph
to depict the scheduling process of the permutation flow shop. The disjunctive graph
G = (O, C, D) stores data in the form of a graph structure, where O represents the
set of nodes, with each node denoting a production process. C is a set of directed edges
represented by solid lines, referred to as connecting arcs. The direction of each edge signifies
the sequential constraint between processes of the same job. D represents a set of undirected
edges depicted by dashed lines, known as disjunctive arcs, connecting nodes that need
to be processed on the same machine. Once we establish the direction of each disjunctive
arc, which indicates the processing order on each machine, we obtain a solution. S and T,
respectively, denote the start and end of the schedule. Figure 1 illustrates an example of
representing the scheduling state of the permutation flow shop using a disjunctive graph.
In Figure 1a, we give the disjunctive graph representation for a workshop scheduling
problem with three machines and three jobs. In Figure 1b, we depict a feasible solution
for the disjunctive graph representation of the problem. Notably, in Figure 1a, undirected
dashed lines connect processes of different jobs, while edges of different colors represent
distinct machines. Among them, each column of the disjunctive graph represents different
machining processes between the same job, and each row represents the same machine. In
Figure 1b, a solution has been determined, resulting in directed edges throughout the graph.
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Figure 1. Disjunctive graph representation of 3 × 3 scheduling instance and its solution.

To elucidate the scheduling procedure of PFSP more lucidly, a permutation flow shop
with six jobs and five machines is shown in Figure 2, for example, as can be seen from
the Gantt chart, when the input jobs sequence π = (2, 4, 5, 3, 1, 6), the makespan of this
instance is the smallest, which is 638.
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3. Methods

In this section, we shall elucidate the fundamental principles of our approach. First, we
establish an MDP model based on the PFSP, elaborating in detail the methods for defining
states, actions, state transitions, rewards, and policy. Subsequently, we devise an innovative
strategy representation technique founded upon graph neural networks, encompassing the
construction of both a graph encoder and an action selection network. Last, we present
the training framework for our algorithm and provide a detailed exposition of the specific
training regimen.

3.1. MDP Model

State: the PFSP is characterized by uniform processing procedures for all jobs, ensuring
a consistent order of job processing on each machine. Upon selecting a job, the system can
ascertain its completion time on each machine. We define a state as the disjunctive graph
representing the scheduling system at each moment. Specifically, the initial state s0 of each
solution, iteration is denoted as in Figure 1a from Section Two. This graph encompasses
both directed and undirected edges, with distinct-color nodes in each column representing
process steps for the same job. Directed edges between nodes denote sequential constraints
between process steps, while dashed lines connecting nodes in the same row signify
undirected edges. These undirected edges link process nodes of the same color, signifying
the need for processing on a shared machine. As the agent makes sequential selections
from the candidate set of jobs and as the processing of certain steps of the preceding job
concludes, the direction of the disjunctive arc between the two job nodes can be determined.
Through successive decisions by the agent, the disjunctive graph progressively evolves from
a mixed graph into a directed acyclic graph, illustrated in Figure 1b. This transformation
signifies that with changing scheduling dynamics at each decision step, the disjunctive
graph can offer distinct state compositions for the scheduling environment of PFSP. In turn,
shifts in the scheduling environment will consequently yield varying disjunctive graphs.

Action: the effectiveness of action design directly influences the algorithm’s efficiency.
Each action yields optimization benefits within distinct production environments, necessi-
tating multifaceted considerations to minimize idle time between machines and enhance
machine utilization. at is the action taken by the agent in step t to select which job to enter
the permutation flow shop. Due to priority constraints, only one job can be scheduled at a
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given moment. Hence, the agent’s action at at step t corresponds to the remaining number
of jobs in the state st. However, as job processing concludes, at progressively diminishes un-
til it reaches zero upon the completion of all jobs. Additionally, it is noteworthy that when
selecting an action in the state st, the PFSP state transitions from st to st+1, consequently
generating a novel disjunctive graph.

State Transition: owing to the constant change in the PFSP environment, the scheduling
environment advances from the state st to the next decision step st+1, wherein the job under
consideration transitions from Ji to Ji+1. Designating the temporal inception of the initial
state s0 as t0 = 0, the initiation of a state transition transpires upon the completion of
the initial machine task. In the event that the time of transition is t in the state st, the
reward acquired upon the environment’s transition to state st+1 subsequent to the agent’s
execution of action at+1 is denoted as rt+1.

Reward: the reward function is used to evaluate the agent’s behavior and guide the
agent to choose the appropriate behavior for different states and optimize the policy. This
article’s objective resides in the minimization of the PFSP makespan. According to the
characteristics of the problem constraint and scheduling model, the earlier the processing
time of each job on the first machine, the more compact the arrangement of the jobs and the
shorter the completion time. However, the reward function that only gives feedback at the
end of each round of scheduling makes it difficult for agents to understand how each action
affects the global results. To surmount this challenge, we have devised a reward function
that mitigates such limitations, as shown in Equation (1). The function first calculates the
difference between the partial solutions between two consecutive steps t and t + 1.

r(at, st) = I(st)− I(st+1) (1)

I(st) characterizes the solution quality in terms of the makespan. We define it as I(st) =
maxij

{
Ct
(
Oij, st

)}
, where Ct

(
Oij, st

)
is the completion time until the machine j finishes the

job i at step t. Obviously, I(sT) corresponds to the makespan of the terminal state sT , where
sT is the state when the schedule is completed, and all disjunctive arcs have directions at
this time. Through iterative calculations, the cumulative reward R(at, st) = I(s0)− I(sT).
Since I(s0) remains constant, the maximization of cumulative reward is related to the
minimization of the makespan.

Policy: Upon completion of model training, the policy network yields a probability
distribution for candidate jobs at each decision point. The agent selects the job with
the highest probability at each decision step and feeds it into the network to derive the
probability distribution for the next candidate job.

3.2. Policy Network Based on GIN

In the pursuit of solving PFSP using the MDP framework established in the preceding
section, we employ the state representation method of disjunctive graphs as the input for
the policy network. These disjunctive graphs encompass both the node features of the
states and the structural information of the graphs. To more effectively extract structural
features, a policy founded on graph networks is necessary to extract state information.
This study introduces the recently proposed GIN [45] as an encoder, presenting a policy
network rooted in GIN. The encoder first encodes the original disjunctive graph into an
implicit vector containing state information, upon which the policy network bases its
decision-making process.

3.2.1. Policy Network

Graph encoder: we employ an encoder based on GIN for encoding. When tackling
PFSP, the disjunctive graph encapsulates pertinent information such as task precedence
constraints and processing times for each job on various machines. The representation
of the state within the disjunctive graph exhibits dynamic fluctuations. GIN, a variant of
GNN, possesses robust isomorphism verification and inference capabilities, rendering it
well-suited for dynamic graphs. Embedding these pertinent details through GIN facilitates
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efficient scheduling for PFSP. To enhance generalization capabilities and minimize the
frequency of policy network training, we deploy a GIN to encode and express st. GIN
extracts the feature embedding of each node in a disjunctive graph in an iterative and
nonlinear way. For a disjunctive graph G = (O, C, D) representing the real scheduling state,
at each time step t, each node o ∈ O undergoes encoding via L layers of GIN, denoted as
h(l)o,t , as defined in Equation (2). Here, MLP(l)

θl
corresponds to the l-th layer of a multi-layer

perceptron (MLP), θl represents the layer’s parameters, MLP(l)
θl

is used to iterate l and

normalize the batch; ϕ(l) denotes the learning parameters, which is an arbitrary parameter
that can be learned, and δ(o) signifies the neighborhood set of o.

h(l)o,t = MLP(l)
θl
((1 + ϕ(l))× h(l−1)

o,t + ∑
p∈δ(o)

h(l−1)
o,t ) (2)

After undergoing l iterations of update, obtain the global representation of the entire
disjunctive graph using the mean pooling function, as illustrated by Equation (3). After
coding by the encoder, we can parameterize the policy π( at|st ) into a graph neural network
πθ( at|st ) with trainable parameters θ, which makes our model able to deal with unknown
scale instances.

hG =
1

|O|∑o∈O h(l−1)
o,t

(3)

Action selection network: the encoder typically comprises neural networks. Con-
sidering model complexity, we employ an MLP as the action selection network. After
encoding, the disjunctive graph yields a representation hG of the state. Subsequently, the
action selection network maps the state representation hG to a probability distribution
over actions, employing the softmax function for output. In each decision step, the agent
sequentially selects the optimal action based on the order of probabilities.

3.2.2. Training Framework

Next, we elucidate the training framework for our algorithm. Due to the high variance
exhibited by randomly generated training data, the training process becomes notably
unstable. Furthermore, given the sensitivity of DRL to hyperparameter tuning, we employ
the PPO algorithm [46] to mitigate the aforementioned challenges and train our model.
Benefiting from the actor–critic (AC) architecture, PPO adeptly addresses continuous
control problems. It stands as a typical same-track strategy algorithm, signifying that the
policy improved in each round aligns with the policy utilized for sampling.

PPO is rooted in the AC framework, encompassing two networks: the actor, denoted
by the policy network πθ( at|st ) than described above, and the critic, a value function
network. Notably, both networks share a GIN. The agent selects actions from the policy
network’s output, while the value function network evaluates actions. The actor component
utilizes a policy function πθ(st|at) to delineate the relationship between states and actions.
Meanwhile, the critic component employs the parameterωwithin the action-state value
function Qπθ

(st, at) to guide the direction of policy updates, thereby crafting the Qπθ
(st, at)

function to appraise the execution of action at given input state features st. Qπθ
(st, at) is

mainly used to calculate the dominance function together with the state value function.
The equation of Qπθ

(st, at) is Equation (4).

Qπθ
(st, at) = E[Ut|St = st, At = at] (4)

where Qπθ
(st, at) represents the long-term expected discount reward received after execut-

ing the action at at state st. E(.) represents the expected value and Ut represents the future
return value from step t. The calculation equation of Ut is Equation (5).

Ut = rt + γrt+1 + γ2rt+2 + · · · (5)
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where γ is the discount factor ∈ (0, 1).
The two networks undergo parameter updates via alternating gradient descent. A

comprehensive account of the PPO algorithm’s intricate training process is provided in
Algorithm 1.

Algorithm 1 PPO-Based Training Algorithm

Input: discounting factor γ; clipping ratio ε; update epoch L; number of training steps E; critic
network v∅; actor-network πθ , behavior actor-network πθold

, where θ = θold; entropy loss
coefficient fe; value function loss coefficient fv; policy loss coefficient fp.

1 Initialize πθ , πθold
, and v∅;

2 for e = 1 to E
3 Pick N independent scheduling instances from distribution D;
4 for n = 1 to N
5 for t = 1 to . . .
6 sample an,t based on πθold (an,t|Sn,t);
7 Receive reward rn,t and next state Sn,t+1;
8 Compute the advantage function Ân,t and probability ratio rn,t(θ).
9 Ân,t = ∑t

0 Ytrn,t −V∅(Sn, t);
10 rn,t(θ)=

πθ(an,t |Sn,t)
πθold (an,t |Sn,t )

11 while sn,t is terminal do
12 break;
13 end while
14 end for
15 Compute the policy loss LPPO

n (θ), the value function loss Lcritic
n (∅) and the entropy

loss LS
n(θ).

16 LPPO
n (θ) = ∑t

0 min
(
rn,t(θ)Ân,t, clip(rn,t(θ), 1− ε, 1 + ε)Ân,t

)
;

17 Lcritic
n (∅) = ∑t

0
(
v∅(sn,t)− Ân,t

)2;
18 LS

n(θ) = ∑t
0 S(πθ(an,t|sn,t)

)
, where S(·) is entropy;

19 Total Losses: Ln(θ,∅) = fpLPPO
n (θ)− fvLcritic

n (∅) + feLS
n(θ);

20 end for
21 for l = 1 to L
22 Update θ, ∅ with cumulative loss by Adam optimizer:

23 θ, ∅← Adam
(

∑N
n=1 Ln(θ,∅)

)
24 end for
25 θold ← θ

26 end for
27 Output: Trained parameter set of θ.

Figure 3 illustrates the training framework of our model, showcasing the process by
which the DRL approach proposed in this study addresses the scheduling challenges of
PFSP. This reinforcement learning paradigm consists of an agent responsible for determin-
ing the order of job inputs and an environment, which captures the current state of PFSP
using disjunctive graphs. Initially, the environment feeds the disjunctive graph, encom-
passing the machining status of various machines, into the graph encoder. This encoder
transforms the original disjunctive graph into an implicit vector carrying state information.
Subsequently, an action selection network based on an MLP generates a probability distri-
bution over potential actions. The agent’s decision-making process involves selecting the
optimal action based on the probabilities. This determines the job to be inputted into the
current pipeline state. The environment confers rewards to the agent based on the decisions
made, iterating through this process until scheduling for all pending jobs is completed.
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4. Numerical Experiment

These data samples employed for model training are randomly generated, with a total
count of 10,000. Among these, the number of machines is set at five. The total job count for
each individual sample adheres to a uniform distribution within the range of [5, 100], while
the processing times follow a uniform distribution within the interval [0, 100]. To ascertain
the efficacy of our proposed methodology, we conducted tests on both randomly generated
instances and the Taillard benchmark dataset [47]. Comparative analyses were performed
against heuristic algorithms SPT and NEH, along with metaheuristic algorithms Ant
Colony Optimization (ACO) and Genetic Algorithms (GA). Additionally, we contrasted the
experimental outcomes against DRL algorithms Dueling Double Deep Q Network (D3QN)
and PPO, which do not employ disjunctive graph-based state representations. Among
them, D3QN is a variant of the Dueling DQN algorithm, which incorporates the idea of the
Double DQN algorithm on the basis of the Dueling DQN algorithm.

4.1. Experimental and Parameter Settings

We conducted an extensive series of experiments using the methodology we proposed
to solve the PFSP in order to validate its efficiency and effectiveness. All experiments were
implemented in Python 3.8, running on a computer equipped with an AMD Ryzen 7 5800
H CPU clocked at 3.20 GHz and an NVIDIA RTX 3050 Ti GPU. Appropriate parameter
configurations are crucial for the successful training of the model. Each MLP within the
GIN architecture comprises two hidden layers, with each layer having a dimension of 64.
Similarly, the MLP within the action selection network contains two hidden layers, each
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with a dimension of 32. The remaining hyperparameters during the training process are
detailed in Table 1.

Table 1. Hyperparameter configuration.

Hyperparameter Value

Learning rate 10−4

Learning rate decay factor 0.98
Learning rate decay step 3000
The clipping parameter 0.2

The policy loss coefficient 2
Optimizer Adam
Batch size 128

4.2. Performance Metrics

For the optimization problem of the PFSP studied in this article, we employ two metrics
to assess the quality of both baseline methods and our proposed approach. These metrics
encompass makespan and computational time. Makespan signifies the maximum comple-
tion time expended for resolving this scheduling quandary. In addition to comparing the
magnitudes of makespan across various algorithms, we also employ the Relative Percentage
Deviation (RPD) [48] to gauge the algorithms’ performance in terms of makespan, as de-
noted by Equation (6). Herein, Cbest

max represents the currently best makespan for this problem,
while Cmax corresponds to the makespan computed by the current algorithm for this issue.
It is worth noting that algorithms with lower RPD values exhibit superior performance
compared with those with higher RPD values. In the practical realm of factory production,
the time taken to obtain solutions for problems also assumes importance. Swift discovery
of resolutions to production issues accelerates the process of restoring production to full
capacity. This, in turn, aids in more effectively meeting production objectives and customer
demands. Hence, we also consider the model’s computational time as one of the metrics
for evaluating model performance.

RPD =
Cmax − Cbest

max
Cbest

max
× 100 (6)

4.3. Computational Results of Randomly Generated Instances

We commence by subjecting our model to testing on randomly generated instances,
ranging in size from 6 × 6 to 100 × 20. Eight examples with different scales are tested, and
the processing times of the jobs on a single machine adhere to a uniform distribution within
the interval [0, 100]. We tested different algorithms on these same randomly generated
data at the same scale and compared the performance of each algorithm. We compare
the test outcomes against those of SPT, NEH, ACO, GA, D3QN, and PPO algorithms,
the latter of which does not employ a disjunctive graph representation of states. The
makespan yielded by each algorithm is presented in Table 2, measured in hours (h). The
bold typeface highlights the optimal results for each instance. As Table 2 elucidates, our
model attains a lower makespan compared to all baseline methods. For instance, when
faced with a problem of dimensions 100 × 20, our proposed model reduces makespan by
183.2 h, 59.7 h, 69.2 h, 58.3 h, 39.8 h, and 28.4 h, respectively, compared the six baseline
methods. In a broader perspective, DRL algorithms D3QN and PPO outperform heuristic
and metaheuristic approaches. The heuristic algorithm NEH holds a competitive stance
against metaheuristic algorithms such as ACO and GA, while the performance of SPT,
another heuristic algorithm, performs poorly.
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Table 2. The makespan of each algorithm on randomly generated instances (h).

Size
Heuristic Metaheuristic Reinforcement Learning

Ours
SPT NEH ACO GA D3QN PPO

10 × 10 1086.5 1085.4 1086.2 1085.5 1085.5 1085.2 1083.6
15 × 15 1692 1667.2 1665.8 1667.2 1657.3 1655 1646.3
20 × 20 2301.9 2243.9 2247 2251.6 2217.4 2215.1 2201.7
50 × 5 2921.8 2865.1 2862.5 2867.2 2834.5 2831.7 2816.4
50 × 10 3254.5 3193.7 3192.2 3195.1 3169.2 3162.5 3144.2
50 × 20 3988.2 3891.5 3889.3 3894 3875.4 3861.7 3839.4
100 × 5 5513 5419.6 5417.9 5418.5 5400.7 5385.6 5361.6

100 × 20 6772.3 6648.8 6658.3 6647.4 6628.9 6617.5 6589.1

Furthermore, it is noteworthy that as the scale of the problem expands, the disparity
between the baseline methods and the model presented in this study intensifies. For
instance, in the case of the D3QN algorithm, the makespan gap grows from 1.9 h to 39.8 h.
This underscores the superior generalization prowess of our model when confronted with
larger-scale instances in comparison to the baseline approaches.

In order to encompass the disparities in makespan achieved by the model from multiple
perspectives, we employ the RPD in Table 3 to gauge the performance of each algorithm
in terms of makespan across various instance scales. Given that the approach proposed
in this study yields a makespan smaller than that of the baseline methods for every test
instance, the RPD of our model is uniformly zero across all instances, signifying that it
consistently outperforms the baseline methods in this regard. For instance, in the case of
an instance size of 100 × 5, the disparities in RPD between the six baseline methods and
our model are as follows: 2.8238, 1.0818, 1.0501, 1.0613, 0.7293, and 0.4476, respectively.
Overall, the RPD of DRL algorithms is comparatively lower than that of heuristic and
metaheuristic algorithms. Among DRL algorithms, the PPO algorithm, which does not
employ disjunctive graph representations for states, exhibits a marginal advantage over
the D3QN algorithm. Metaheuristic algorithms, on the whole, surpass heuristic algorithms,
with NEH closely approaching the RPD values of metaheuristic algorithms.

Table 3. The RPD of each algorithm on randomly generated instances.

Size
Heuristic Metaheuristic Reinforcement Learning

Ours
SPT NEH ACO GA D3QN PPO

10 × 10 0.2676 0.1661 0.2399 0.1753 0.1753 0.1477 0
15 × 15 2.7759 1.2695 1.1845 1.2695 0.6682 0.5285 0
20 × 20 4.5510 1.9167 2.0575 2.2664 0.7131 0.6086 0
50 × 5 3.7424 1.7292 1.6368 1.8037 0.6427 0.5432 0
50 × 10 3.5080 1.5743 1.5266 1.6189 0.7951 0.5820 0
50 × 20 3.8756 1.3570 1.2997 1.4221 0.9376 0.5808 0
100 × 5 2.8238 1.0818 1.0501 1.0613 0.7293 0.4476 0

100 × 20 2.7803 0.9060 1.0502 0.8848 0.6040 0.4310 0

The performance of the scheduling model is not solely contingent upon the quality
of solution generation; the swiftness of solution generation also stands as a significant
metric. Table 4 presents the computational times for both baseline methods and the method
proposed in this study, and the unit of data in the table is seconds (s). It is evident from the
table that SPT achieves nearly instantaneous resolution for all problems. Apart from the
SPT algorithm, the D3QN algorithm exhibits the fastest computational speed for problem
sizes ranging from 10 × 10 to 50 × 5, surpassing our model in this regard. However,
as the instance scales continue to escalate, our model demonstrates faster computational
speed, further accentuated by the growing discrepancy in computational times between
the baseline methods and our proposed approach. For instance, in the case of the PPO
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algorithm, which does not incorporate disjunctive graphs, the disparity in computational
times increases from 0.04 s to 5.24 s. Benefiting from the characteristics of DRL algorithms,
which can handle instances of all scales after a single training session, the computational
time of DRL algorithms is superior to that of heuristic and metaheuristic algorithms.
However, heuristic scheduling algorithms outpace metaheuristic algorithms in terms of
computational efficiency.

Table 4. The computation time of each algorithm on randomly generated instances (s).

Size
Heuristic Metaheuristic Reinforcement Learning

Ours
SPT NEH ACO GA D3QN PPO

10 × 10 0 1.86 5.49 3.84 0.77 0.81 0.77
15 × 15 0 2.37 6.02 4.27 1.19 1.44 1.28
20 × 20 0 2.59 8.37 5.88 1.35 1.64 1.44
50 × 5 0 2.61 10.15 6.35 1.41 1.68 1.46
50 × 10 0 4.85 13.64 7.75 2.75 2.99 2.39
50 × 20 0 6.97 18.71 9.11 4.49 5.33 3.42
100 × 5 0 7.84 19.21 9.68 5.51 6.25 3.79

100 × 20 0 13.05 25.17 16.27 10.53 11.71 6.47

4.4. Computational Results of Benchmark Instances

In this section, we juxtapose our model against six baseline methods, SPT, NEH, ACO,
GA, D3QN, and PPO, without disjunctive graph state representation on the esteemed
Taillard benchmark. We conduct comparative experiments on ten distinct instances from
the Taillard benchmark, spanning dimensions of 20× 5 to 200× 10. To ensure the reliability
of experimental outcomes, we employ the same trained model across these trials. Table 5
presents the experimental findings for our model and the six baseline methods.

Table 5. The makespan of each algorithm on Taillard benchmark (h).

Problem Instance Size
Heuristic Metaheuristic Reinforcement Learning

Ours
SPT NEH ACO GA D3QN PPO

Ta010 20 × 5 1149.4 1108 1108 1108 1108 1108 1108
Ta020 20 × 10 1695.3 1665.9 1662.5 1661.2 1658.7 1646.5 1639.8
Ta030 20 × 20 2313.7 2270.3 2269.2 2265.4 2263.6 2251 2242.2
Ta040 50 × 5 2957.1 2893.6 2887.5 2884.4 2882.5 2869.2 2858.6
Ta050 50 × 10 3261.3 3190.6 3182.1 3179.5 3181 3165.6 3153.1
Ta060 50 × 20 3996.5 3920.1 3917.6 3914.1 3908.7 3892.5 3879.4
Ta070 100 × 5 5531.8 5443.5 5441.6 5437 5435.3 5418.6 5402
Ta080 100 × 10 6093.2 5982.3 5982.1 5979.4 5972.6 5959.1 5937.5
Ta090 100 × 20 6785.4 6670.8 6679.2 6673.5 6661.2 6654.1 6624.3
Ta100 200 × 10 10,975.6 10,835 10,847.6 10,839.8 10,828 10,820.5 10,787.2

While NEH, ACO, GA, D3QN, PPO, and our model exhibit identical results for
an instance of size 20 × 5, the disparity between the baseline methods and our model
becomes more pronounced as instance dimensions expand. For instance, in the case
of the PPO algorithm without disjunctive graph usage, the discrepancy between it and
our proposed model escalates from 0 to 33.3 h as the instance scale increases. When
compared to heuristic and metaheuristic algorithms, DRL algorithms still demonstrate
competitive performance, adept at adaptive problem-solving across varying scheduling
contexts. Metaheuristic algorithms, on the whole, outperform heuristic algorithms, with
NEH showcasing performance akin to metaheuristic counterparts.

Table 6 presents the RPD values of our model and various baseline algorithms on
different scale instances from the esteemed Taillard benchmark, with the optimal results
highlighted in bold. For an instance size of 20 × 5, all algorithms except SPT exhibit an
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RPD value of zero, signifying that, in this instance, all algorithms other than SPT achieve
outcomes identical to the benchmark’s optimal results. As the instances grow larger, our
model attains smaller RPD values compared to the baseline methods. For instance, when
faced with an instance size of 200 × 10, the disparities in RPD between the six baseline
methods and our model are as follows: 1.7563, 0.4456, 0.5631, 0.4904, 0.3803, and 0.3104,
respectively. Across instances of the same scale, DRL algorithms consistently manifest lower
RPD values compared to the other two categories of algorithms. Among DRL algorithms,
the RPD value of the PPO algorithm without disjunctive graphs slightly surpasses that of
D3QN. In contrast, the NEH RPD value closely approximates those of the metaheuristic
algorithms ACO and GA, with SPT exhibiting the least favorable performance.

Table 6. The RPD of each algorithm on the Taillard benchmark.

Problem Instance Size
Heuristic Metaheuristic Reinforcement Learning

Ours
SPT NEH ACO GA D3QN PPO

Ta010 20 × 5 3.7365 0 0 0 0 0 0
Ta020 20 × 10 6.5556 4.7077 4.4940 4.4123 4.2552 3.4884 3.0673
Ta030 20 × 20 6.2305 4.2378 4.1873 4.0129 3.9302 3.3517 2.9477
Ta040 50 × 5 6.2940 4.0115 3.7922 3.6808 3.6125 3.1344 2.7534
Ta050 50 × 10 4.7303 2.4599 2.1869 2.1034 2.1516 1.6570 1.2556
Ta060 50 × 20 5.4207 3.4054 3.3395 3.2472 3.1047 2.6774 2.3318
Ta070 100 × 5 3.8251 2.1678 2.1321 2.0458 2.0139 1.7005 1.3889
Ta080 100 × 10 3.9795 2.0870 2.0836 2.0375 1.9215 1.6911 1.3225
Ta090 100 × 20 3.6889 1.9377 2.0660 1.9789 1.7910 1.6825 1.2271
Ta100 200 × 10 2.3175 1.0068 1.1243 1.0516 0.9415 0.8716 0.5612

Similarly, we have also conducted a comparison of the computational times for each
algorithm on the Taillard benchmark, as depicted in Table 7. The SPT algorithm continues
to showcase near-instantaneous computational prowess. Apart from SPT, D3QN exhibits
swifter computational abilities for smaller instances ranging from 20 × 5 to 50 × 5, as
compared to the model proposed in this paper. However, as instance dimensions escalate
from 50 × 10 to 200 × 10, our model demonstrates heightened computational speed.
Furthermore, with an increase in instance size, the gap in computational time between
D3QN and our model expands from 0.2 s to 4.96 s. DRL algorithms persist in manifesting
quicker computational speeds than heuristic and metaheuristic methods, whereas the
computational time of metaheuristic algorithms is longer than that of heuristic algorithms.

Table 7. The computation time of each algorithm on Taillard benchmark (s).

Problem Instance Size
Heuristic Metaheuristic Reinforcement Learning

Ours
SPT NEH ACO GA D3QN PPO

Ta010 20 × 5 0 1.71 5.28 3.79 0.71 0.79 0.75
Ta020 20 × 10 0 2.15 5.85 4.31 1.14 1.36 1.24
Ta030 20 × 20 0 2.47 8.79 5.86 1.3 1.51 1.41
Ta040 50 × 5 0 2.59 9.36 6.29 1.37 1.59 1.43
Ta050 50 × 10 0 4.18 14.25 7.73 2.62 2.97 2.42
Ta060 50 × 20 0 6.74 17.53 9.02 4.61 5.36 3.45
Ta070 100 × 5 0 7.31 18.02 9.63 5.45 6.28 3.74
Ta080 100 × 10 0 10.86 21.03 12.94 7.64 9.3 4.49
Ta090 100 × 20 0 12.97 24.49 15.65 10.6 11.67 6.62
Ta100 200 × 10 0 24.79 36.31 30.13 23.11 25.05 18.15

4.5. Discussion

The SPT algorithm demonstrates instantaneous computational prowess both on ran-
domly generated instances and the Taillard benchmark yet falls short in generating solu-
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tions of satisfactory quality. In contrast, the approach proposed in this study, while slightly
slower in computation compared to SPT, proves quicker than other baseline methods. This
trade-off remains acceptable in practical production contexts, further amplified by the
superior solution quality generated by our proposed method in comparison to all base-
line approaches. Furthermore, as the problem-solving dimensions expand, the disparity
in makespan and computational time between the baseline methods and our proposed
model also grows, underscoring the heightened robustness of our method over baseline
approaches in both test scenarios. These experiments verify the smoothness of our model in
solving PFSF problems and further prove that the correlation between the MDP model and
PFSF is effective. Consequently, a comprehensive evaluation indicates the superiority of our
model over all heuristic scheduling rules, metaheuristic algorithms, and DRL algorithms.

Benefiting from the inherent self-learning capacity of DRL algorithms and their ability
to handle instances of varying scales following a single training session, these algorithms
outshine heuristic and metaheuristic methods. Notably, the model proposed in this paper
exhibits superior performance in both makespan and computational time compared to the
PPO algorithm that abstains from disjunctive graph state representation. Our model’s
prowess in addressing PFSP can be attributed to two factors: First, the disjunctive graph-
based state representation method provides a more comprehensive depiction of scheduling
states, proving efficacious even when dealing with intricate and sizable PFSP instances.
Second, the strategy network founded on GIN more effectively absorbs the underlying
information of graph structures. Additionally, the encoding process within the graph
encoder primarily relies on matrix parallel computation, enhancing the computational
efficiency of the model.

5. Conclusions and Future Work

In this study, we propose a novel end-to-end DRL framework to address the PFSP.
Our initial step involves constructing an MDP model for PFSP, meticulously elaborating on
the definitions of states, actions, and rewards. Notably, we innovatively portray the PFSP
environment using disjunctive graphs. To capture the underlying topological structure of
disjunctive graphs, we engineer a strategy network rooted in GIN. This network adeptly
extracts rich representational information from node embeddings. Training of this network
is executed via the PPO algorithm. In assessing the performance of the proposed model, we
employ makespan and computational time as evaluative benchmarks. Experimental valida-
tion takes place on both randomly generated instances and the Taillard public benchmark.
Outcomes affirm our model’s superiority over heuristic, metaheuristic, and DRL-based
baseline approaches. Moreover, the model’s seamless extensibility to larger problem in-
stances without necessitating retraining underscores its commendable scalability. Given
the rapid expansion of the manufacturing industry, characterized by heightened product
complexity and demand, optimizing production line efficiency through advanced methods
assumes paramount significance. Our model, empowered by its robust generalization
capacity, can effectively confront this challenge, making it a formidable tool for enhancing
production efficiency amid evolving industrial landscapes.

Although we have validated the efficacy of the method proposed in this study in
outperforming baseline approaches, there remains some disparity between the obtained
results and the standard outcomes for each instance in the Taillard benchmark test. Moving
forward, we shall continue enhancing our model and subject it to testing on more and
larger benchmark data sets. To strike a balance between computation time and result
quality, we have employed a simple Multi-layer Perceptron (MLP) as the action selection
network. However, the inclusion of more intricate modules within the action selection
network will undoubtedly contribute to the amplification of the model’s performance. In
the future, we will further delve into the exploration of the action selection network, aiming
to advance result quality while maintaining an acceptable level of computational efficiency.
Additionally, this study primarily delves into the realm of single-objective optimization,
with the objective of minimizing makespan. Yet, practical production scenarios often entail
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the consideration of multiple objectives, such as the energy consumption of equipment.
In our subsequent endeavors, we will conduct a more profound analysis of the PFSP
and undertake refinements to our model, thereby addressing the broader spectrum of
multi-objective optimization challenges prevalent in real-world production settings.
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