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Abstract: The teaching–learning-based optimization (TLBO) algorithm, which has gained popu-
larity among scholars for addressing practical issues, suffers from several drawbacks including
slow convergence speed, susceptibility to local optima, and suboptimal performance. To overcome
these limitations, this paper presents a novel algorithm called the teaching–learning optimization
algorithm, based on the cadre–mass relationship with the tutor mechanism (TLOCTO). Building
upon the original teaching foundation, this algorithm incorporates the characteristics of class cadre
settings and extracurricular learning institutions. It proposes a new learner strategy, cadre–mass
relationship strategy, and tutor mechanism. The experimental results on 23 test functions and CEC-
2020 benchmark functions demonstrate that the enhanced algorithm exhibits strong competitiveness
in terms of convergence speed, solution accuracy, and robustness. Additionally, the superiority of
the proposed algorithm over other popular optimizers is confirmed through the Wilcoxon signed
rank-sum test. Furthermore, the algorithm’s practical applicability is demonstrated by successfully
applying it to three complex engineering design problems.

Keywords: metaheuristic; new learner strategy; cadre–masses relationship strategy; tutor mechanism;
complex engineering design problems

1. Introduction

Optimization algorithms are a class of mathematical techniques employed to seek the
optimal solution for a problem, with the primary focus on either maximizing or minimizing
an objective function [1]. Traditional optimization methods encounter various challenges
as the scale and complexity increase, such as high costs, low efficiency, long execution
times, and a tendency to become trapped in local optima [2]. However, metaheuristic
optimization algorithms draw inspiration from natural phenomena and the fundamental
characteristics of biological systems, endowing them with the capability to solve a wide
range of real-world problems [3]. These metaheuristic algorithms possess numerous
advantages, including efficient operation, adaptable flexibility, robust stability, exceptional
self-organization capabilities, straightforward implementation, potent parallelism, and
seamless integration with other algorithms [4]. A myriad of metaheuristic algorithms have
been developed to address diverse optimization problems. These algorithms leverage two
essential attributes—exploration and exploitation—to effectively navigate the problem
spaces and unveil optimal solutions [5].

Nature-inspired algorithms, also known as methods for simulating biological or phys-
ical phenomena to tackle optimization problems, play a crucial role in the field. These
approaches can be broadly classified into three main types: evolutionary-based, physical-
based, and population-based [6]. Evolutionary algorithms, such as genetic algorithms
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(GA) [7] and differential evolution (DE) [8], draw inspiration from the principles of evolu-
tion in biology. GA emulates natural selection, crossover, mutation, and other biological
processes to generate novel solutions, retain superior individuals, and progressively ex-
plore the optimal solution. Similarly, DE treats each individual as a vector within an
n-dimensional space, utilizing operations like mutation, crossover, and selection to itera-
tively search for the optimal solution. In practical applications, evolutionary algorithms can
be used for various optimization problems, such as combinatorial optimization, nonlinear
programming, and function optimization.

Physics-based algorithms are a class of optimization algorithms that leverage simula-
tions of physical phenomena to address problems. These algorithms incorporate various
physics models, including partial differential equations, kinetic equations, and probability
distributions. An illustrative example is simulated annealing (SA) [9], which emulates
the annealing process of materials by gradually reducing the temperature and making
decisions regarding accepting or rejecting new states based on changes in energy. This
approach enables a comprehensive exploration of optimal solutions. Another notable
algorithm is particle swarm optimization (PSO) [10], which views the problem as a group
of particles, with each particle representing a potential solution. Through iterative updates
utilizing velocity and position mechanisms, PSO aims to discover the global optimum.
The efficacy of these algorithms has been demonstrated across diverse domains, such as
combinatorial optimization, image processing, and machine learning.

Population-based algorithms belong to a category of bionic algorithms that address
optimization problems by simulating the cooperative behaviors observed in natural groups.
These algorithms facilitate interactions and collaboration among multiple agents. For
instance, the green anaconda optimization (GAO) algorithm [11] is derived from the
natural mating and hunting behaviors of male anacondas, specifically their ability to locate
female anacondas. Similarly, the egret swarm optimization algorithm (ESOA) [12] takes
inspiration from the hunting strategies employed by two egret species—the great egret
and the snow egret. The ESOA encompasses three crucial components: a sit-and-wait
strategy, an aggressive strategy, and discriminant conditions. Notably, this population-
based algorithm has extensive applications across various fields, such as engineering design,
bioinformatics, finance, etc.

Similar advantages are shared among these algorithms, which possess the capability
to address multiple objective functions and nonlinear constraints without the requirement
of resolving the derivative or function continuity of the problem, thereby rendering them
applicable to a diverse range of optimization problems.

Teaching–learning-based optimization (TLBO) [13] is a technique that draws inspira-
tion from teaching methods employed in the education process, and simulates the influence
of teachers on students. This algorithm, despite having fewer parameters, demonstrates ex-
cellent performance across various optimization problems. TLBO, along with its enhanced
versions, has shown effectiveness in addressing continuous optimization problems [14],
combinatorial problems [15], and real-world engineering problems [16]. However, through
our rigorous literature survey, we have identified areas where the results presented in
earlier studies can be improved in terms of accuracy, robustness, and convergence of the so-
lutions. For example, the LNTLBO algorithm [17], an improved version of TLBO, integrates
a logarithmic spiral strategy and a triangular mutation rule to enhance the learning process.
By incorporating the logarithmic spiral strategy during the teacher stage, students can
actively seek guidance from their teachers, thereby accelerating convergence speed. More-
over, the adoption of a new triangular mutation learning mechanism further improves the
learners’ exploration and exploitation abilities. Another approach, the artificial bee colony
and teaching–learning-based optimization (ABC-TLBO) algorithm [18], revamps the search
strategy of both employed and onlooker bees. It builds upon the basic ABC framework
and incorporates TLBO in the observer bee stage to enhance the algorithm’s exploitation
capabilities. To improve the quality of the solutions, a chaotic teaching–learning-based
optimization (chaotic TLBO) algorithm [19] is proposed, which adopts different chaos
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mechanisms and introduces a local search method. These additions aim to improve the
overall quality of the solution. In conclusion, there is a significant demand for the improve-
ment of the TLBO algorithm, as it holds tremendous potential to enhance performance and
provide more satisfactory solutions for complex problems.

In this paper, a new optimization method TLOCTO (teaching–learning optimization
algorithm based on the cadre–mass relationship with tutor mechanism) is proposed
as an innovation point for a cadre–mass relationship strategy and a tutor mechanism,
improving the teacher phase and learner phase based on the TLBO algorithm. Among
them, the teacher phase and new learner phase are mainly designed for global explo-
ration. To maximize the global search, the cadre–mass relationship strategy and the tutor
mechanism are mainly applied to the algorithm exploration phase to solve the TLBO
algorithm’s premature convergence and tendency to fall into local optimum, The two
mechanisms are explored and exploited based on the global optimization performed
in the teacher phase and new learner phase, which help to achieve a proper balance
between exploration and exploitation of solutions, and to ultimately find the solution
with the optimal quality.

The remainder of this paper is organized as follows. Section 2 provides a brief overview
of related work. The mathematical model of the proposed algorithm is presented in
Section 3. Section 4 presents simulations, experiments, and an analysis of the results.
Mechanical engineering design problems are described in Section 5. Finally, Section 6
concludes the paper and outlines future research directions.

2. Related Work

The basic TLBO algorithm mainly consists of two roles: teachers and students. Teach-
ers are professionals who engage in teaching and imparting knowledge and skills. They
work in schools or other educational institutions using various teaching methods to convey
knowledge and skills and guide students’ growth and development. Teachers need not
only solidly subject knowledge but also good pedagogical skills and communication skills
to effectively teach students. Students are individuals who receive education in schools
or other educational institutions. They acquire new knowledge and improve their com-
prehensive abilities by learning from teachers, high-achieving peers, and each other in
various ways.

2.1. Teacher Phase

In the teacher phase, the teaching process is simulated to find the solution with the
best objective function value in the class. Using Equation (1), a new potential solution is
generated.

Tnew
j = Xi

j + rand×
(

Xbest
j − TF × Xavg

j

)
(1)

where Tnew
j and Xi

j represent the positions of the individual after and before learning; Tnew
j

denotes the teacher’s position, which corresponds to the best individual in the population;
Xavg

j signifies the average level of search agents in the population; TF is a teaching factor

that determines the change in the value of Xavg
j ; and rand represents a random number

between 0 and 1. The value of TF can be either 1 or 2, randomly determined according to
the probability given by Equation (1), as TF = round

(
1 + randj(0, 1){2− 1} .

2.2. Learner Phase

Besides gaining knowledge from the teacher, learners can also enhance their under-
standing through interaction. During mutual learning, a learner can acquire knowledge
from a randomly chosen peer with a higher grade. The learner strategy can be expressed
as follows:
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Si
j =

 Xi
j + rand×

(
Xrand

j − Xi
j

)
, f
(

Xi
j

)
< f

(
Xrand

j

)
Xi

j + rand×
(

Xi
j − Xrand

j

)
, otherwise

(2)

where Si
j is the position of the student and Xrand

j is the position of a learner randomly
selected from the class.

3. The Proposed TLOCTO

In this section, the inspiration for the proposed method is first discussed. Then, the
mathematical model is provided.

3.1. Inspiration

The teaching and learning algorithm’s development concept stems from the teaching
procedure, and this article will introduce an improved teaching and learning algorithm—a
teaching–learning optimization algorithm based on the cadre–mass relationship with the
tutor mechanism (TLOCTO), mainly inspired by conventional teaching methods such as
teacher instruction, learning from excellent students, setting class leaders, and extracur-
ricular tutoring. In the remaining sections of Section 3, the proposed teaching and learn-
ing behaviors will be mathematically modeled to develop an optimizer with satisfactory
search performance.

3.2. New Learner Strategy

During the learner phase, a member learns from random solutions in the class to
generate potential new members. Students have various preferences for learning modes,
such as formal communication, group discussions, or presentations, and can learn from
both teachers and classmates. They also have the flexibility to adjust their learning mode
according to their specific situation. Therefore, this paper introduces a new learning
mode, which is described in Equation (3), to enhance the diversity of students’ learning
methods.

Snew
j =

 Xi
j + rand×

[(
1− t

T
)
× Xrand

j +
( t

T
)
× Tnew

j − Xi
j

]
, f
(

Xrand
j

)
< f

(
Xi

j

)
,

Xi
j + rand×

[(
1− t

T
)
× Xrand

j +
( t

T
)
× Tnew

j − Xrand
j

]
, otherwise

(3)

where Snew
j is the position of the student and Xrand

j is the position of a learner randomly
selected from the class. t and T are the current and maximum number of iterations.

In this scenario, the learning mode initially emphasizes random learning to achieve
population diversity and global search. As time goes on, students increasingly rely on
communication with teachers to accomplish local exploration.

3.3. Assistance Phase

The stage in question is bifurcated into two distinct strategies: the cadre–mass relation-
ship strategy and the tutor mechanism, both of which have been primarily devised to facili-
tate regional exploration. Nevertheless, an overabundance of mechanisms can potentially
undermine the efficacy of selective development. Hence, in this scheme, two mechanisms
are used to further solve the initial position obtained previously, and the strategy with
smaller results is finally selected as the solution for the optimal position.

3.3.1. Cadre–Mass Relationship Strategy

If learners learn from everyone around them, which is an inclusive approach to
learning, it will inevitably exert an impact on their learning efficiency, and this impact can
be either positive or negative depending on the quality and relevance of the information
they receive. Therefore, in the class, teachers will generally set students with good academic
performance, strong learning ability, and high learning efficiency as class cadres to play
exemplary roles. Class cadres serve as a bridge between students and teachers, and their
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cooperation with teachers can allow the teaching to receive good results. Student cadres
are the core of student groups. They are charismatic, influential, and cohesive, which can
unite students to become outstanding. The process can be described by Equation (4).

SCadres
j = v× Tnew

j − rand× H1 × Snew
j − H2 × Levy(D) + rand× H1 (4)

where SCadres
j is represents the student cadres, the current solution of iteration j. v repre-

sents the quality function used to balance the search strategy, which can be calculated by
Equation (5). H1 represents the influencing factors in the search for class cadres, which is
defined by Equation (6). H2 is a decreasing value from ε to 0, indicating that knowledge
acquisition increases along with multiple links, such as teaching by teachers, learning
led by class leaders, and discussion among students. This efficiency can be defined by
Equation (7).

v =
H1

t(1−T)2 (5)

H1 = µ× rand− 1 (6)

H2 = ε×
(

1− t
T

)
(7)

Levy(D) is the Levy selection distribution function [20], defined by Equation (8).

Levy(D) = s× τ ×ω

|v|
1
ϕ

(8)

where µ and ε are a number randomly selected between [1, 10], s is 0.01, and τ and ν are
randomly selected numbers in the range of [0, 1]. ω is defined by Equation (9).

ω =
Γ(1 + κ)× sin

(
πκ
2
)

Γ
(

1+κ
2

)
× κ × 2(

κ−1
2 )

(9)

where the κ value is 1.5.

3.3.2. Tutor Mechanism

The tutor mechanism is a new mechanism for students to utilize to look for teachers
in other teaching institutions in order to improve their knowledge. Applying this principle
to this algorithm can expand the original search space and discover agents with better
performance outside the original population. This will greatly increase the likelihood of an
optimal solution, enriching population diversity and enhancing intelligence capabilities. In
each generation, let Si

j ∈
[
Ll

G, Lu
G

]
be a point in a D-dimensional space, where the bound

vectors Ll
G = [Ll

1, Ll
2, . . . , Ll

D]T and Lu
G = [Lu

1 , Lu
2 , Lu

3 , . . . , Lu
D]T are updated as: Ll

j = Min
([

Snew
1j , Snew

2j , Snew
3j , . . . , Snew

nj

])
Lu

j = Max
([

Snew
1j , Snew

2j , Snew
3j , . . . , Snew

nj

]) (10)

where j = 1, 2, 3, . . . , D. Defining STu
j =

[
STu

1 , STu
2 , STu

3 , . . . , STu
N

]T
as a tutor mechanism indi-

vidual at the current generation j, it can be defined by the tutor mechanism as Equation (11).

STu
j = Snew

j + yα
n+1 ×

(
yβ

n+1 ×
(

Lu
j + L1

j − Snew
j

)
− Snew

j

)
(11)
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where yα
n+1 and yβ

n+1 are defined by Equation (12).

yn+1 = mod
(

δ× yn(1− yn × cos(arccos(yn)))× 104, 1
)

(12)

where yn ∈ [0, 1], δ is the control parameter and δ ∈ [0, +∞). From the above formula, it
can be concluded that the result of yn+1 ∈ (0, 1).

This article presents the TLOCTO algorithm, outlined in Algorithm 1, and Figure 1
illustrates the flow chart of TLOCTO. The algorithm comprises six steps, which are summa-
rized as follows:

Population and parameters are initialized. The maximum number of iterations (Tmax)
is set to 500 and the total particle size (N) to 30, then all agents are randomly initialized.
Fitness values are calculated, then evaluated for each agent based on the objective function.
The positions are then updated. In the teacher phase, learner phase, cadre–mass mechanism,
and tutor mechanism, the solution is continuously optimized by updating the position of
each agent. For the boundary check, it must be ensured that each agent’s position remains
within the boundaries of the search space. The global best solution, the current best solution,
and its fitness value in each iteration are updated. For the termination criterion, the above
steps are repeated until the termination condition is met and the output represents the
global best solution and its fitness value.

Algorithm 1: The framework of the TLOCTO algorithm

1: Initialize the solution’s positions of population N randomly;
2: Set the maximum number of iterations (Tmax) and other parameters;
3: For t = 1 to Tmax do;
4: Calculate the average of the population;
5: Select the teacher;
6: Calculate the fitness function for the given solutions using Equation (1);
7: Find the best solution position and fitness value so far;
8: For i = 1 to N do;
9: Update the individual position using Equation (2);
10: Update the individual position using Equation (3);
11: Compare and select the one that generates the smaller value as the update position;
12: For i = 1 to N do;
13: Update the individual position using Equation (4);
14: Update the individual position using Equation (11);
15: Calculate the fitness values Fitness (SCadres

j ) and Fitness (STu
j );

16: If Fitness (SCadres
j ) < Fitness (STu

j ), then
17: Obtain the best position and the best fitness value of the current iteration using Equation (4);
18: else;
19: Obtain the best position and the best fitness value of the current iteration using Equation (11);
20: end if;
21: end for;
22: end for;
23: Return the best solution.

3.4. Computational Complexity Analysis

The computational complexity of the TLOCTO algorithm primarily depends on three
factors: the initialization process, the evaluation of the fitness function, and the updating
of the solutions. The complexity of the initialization process is O(N), where N represents
the size of the population. The fitness function depends on the problem, so we will not
discuss it here. Finally, the complexity of updating the position is indicated by O(T × N) +
O(T × N × D), where T represents the number of iterations and D represents the number
of parameters (dimensions) in the problem. Therefore, the computational complexity of the
proposed TLOCTO is O(N × (T × D + 1)).
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4. Experimental Results and Detailed Analyses

In this section, we use two types of benchmark functions to investigate the effectiveness
of the TLOCTO algorithm. After the qualitative evaluation of the TLOCTO algorithm
through standard benchmark functions (the details of these functions can be found in
Appendix A) [21], the algorithm was then subjected to testing to assess its efficacy in terms
of solving numerical problems. Moreover, the performance of the TLOCTO algorithm in
tackling intricate numerical problems was evaluated using the CEC2020 test functions [22].
The TLOCTO was compared to several renowned optimizers, including the artificial bee
colony (ABC) [23], genetic algorithm (GA) [7], particle swarm optimization (PSO) [10],
grey wolf optimizer (GWO) [24], coati optimization algorithm (COA) [25], and dung beetle
optimizer (DBO) [26]. Moreover, TLOCTO was also compared to teaching–learning-based
optimization (TLBO) [13]. It is worth noting that these algorithms not only cover recently
proposed technologies such as the GWO, DBO, and COA algorithms, but also include
classical optimization methods such as the ABC, GA, PSO, and TLBO algorithms. To ensure
a fair experimental comparison, the comparison algorithms were executed under identical
test conditions. The numerical experiments were conducted using MATLAB 2021b on a
computer equipped with an AMD Ryzen 53550H CPU @2.10 GHz and 16 G RAM, running
on a 64-bit Windows 10 operating system. Among them, the Wilcoxon rank-sum test [27]
was designed with reference to the setting of PlatEMO [28]. The population size was set
to N = 30, the maximum number of iterations to T = 500, and 30 independent runs were
performed. Additionally, the parameter settings of other counterparts referred to their
own settings. It is important to note that the tabular data in this paper are presented in
scientific notation.

4.1. Qualitative Evaluation

In this section, a qualitative analysis of the TLOCTO algorithm is described, focusing
on its convergence behavior, exploration, exploitation, and population diversity. This
paper aims to evaluate the performance and characteristics of TLOCTO from a qualitative
perspective.

4.1.1. Convergence Behavior Analysis

The benchmark test functions verified TLOCTO’s convergence behavior and an-
alyze the experimental results, as shown in Figure 2. Six functions were chosen for
analysis, forming a five-column image. In the first column, the two-dimensional shape
of the benchmark function was displayed, helping us to understand the complexity of
the problem. The second column showed black points as search agents and a red dot as
the global optimum. These agents concentrated near the optimal solution, but were dis-
tributed across the search space, demonstrating TLOCTO’s effective exploration ability.
The third column presented the average change in fitness values among search agents,
starting high and decreasing rapidly, indicating the algorithm’s potential to discover
the best value. The fourth column showed the search agent’s trajectory, transitioning
from fluctuation to stability. This signified the shift from global exploration to local
exploitation and facilitated the process of reaching the global optimal value. Lastly, the
fifth column illustrated the convergence curve of the TLOCTO algorithm. In unimodal
functions, the curve is smooth and continuously declining, indicating the algorithm’s
ability to find the optimal solution. For multimodal functions, the convergence curve de-
scends in steps, indicating the algorithm’s capability to consistently escape local optima
and reach the global optimum.
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4.1.2. Population Diversity Analysis

Population diversity is significant for the performance of metaheuristic algorithms,
and was analyzed by conducting experiments on the suite of classical benchmark functions
to compare the population size differences between TLBO and TLOCTO. The computation
of population diversity was carried out using a moment of inertia IC, demonstrated in
Equation (13), while cd, represented in Equation (14), indicated the dispersion of the
population from its mass center c in each iteration, where the parameter xid denoted the
value of the dth dimension of the ith search agent at iteration [29].

IC(t) =

√√√√ N

∑
i=1

D

∑
d=1

(xid(t)− cd(t))
2 (13)

cd(t) =
1
D

N

∑
i=1

xid(t) (14)

The experimental results are presented in Figure 3, indicating that TLOCTO exhibited
a higher level of population diversity compared to TLBO throughout all iterations. This
significant discovery suggests that TLOCTO can comprehensively explore the search space
and effectively avoid premature convergence and stagnation in local solutions. As a result,
it can be inferred that TLOCTO possesses a higher potential to attain the global optimal
solution.
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4.1.3. Exploration and Exploitation Analysis

By dividing the search process into two stages, namely, exploration and exploita-
tion [30], the metaheuristic algorithm displays its essential characteristic. Balancing these
two stages can effectively enhance the algorithm’s efficiency. To achieve this objective,
we utilized Equation (15) and Equation (16) to determine the percentages of exploration
and exploitation, respectively. Additionally, the dimension-wise diversity measurement
was calculated using Equation (17), denoted as Div(t). It should be noted that Divmax,
representing the maximum diversity in the entire iteration process, was also taken into
consideration [29].

Exploration(%) =
Div(t)

Div
× 100 (15)

Exploitation(%) =
|Div(t)−Divmax|

Divmax
× 100 (16)

Div(t) =
1
D

D

∑
d=1

1
N

N

∑
i=1
|median(xd(t))− xid(t)| (17)

Dimensional diversity measurement was used in [30] to evaluate the balance of each
scheme, and it was concluded that the optimal balance for most functions was over 90%
exploitation and less than 10% exploration out of 42 function tests. By observing Figure 4,
it becomes apparent that the TLOCTO algorithm displayed exceptional outcomes, surpass-
ing 90% exploitation in all of these assessment functions. Such an observation suggests
that the TLOCTO algorithm has effectively attained a desirable equilibrium between the
processes of exploration and exploitation within the search domain, thereby resulting in
an optimal performance. Specifically, the methodology employed in the TLOCTO algo-
rithm incorporates a dynamic balance between the exploratory and exploitative aspects,
which subsequently yields remarkable benefits in terms of circumventing local optima and
precluding premature convergence.
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4.2. Performance Indicators

This paper utilizes two statistical tools, specifically the mean value and the standard
deviation [31]. The mathematical formulations for these tools are presented as follows:

AVG = 1
P

P
∑

i=1
fi

STD =

√
1

P−1

P
∑

i=1
( fi −M)2

(18)

where P is the number of optimization experiments, AVG stands for average, and fi
represents the optimal value in each independent run.

Furthermore, the Wilcoxon signed rank-sum test [27] was used, with a significance
level of α = 0.05, to assess the disparity between TLOCTO and its rivals in this study.
Specifically, the outcomes of capturing the minimum fitness function value for each of the
30 independent runs were acquired. Subsequently, the individual probability p-value asso-
ciated with the TLOCTO algorithm and each competitor was separately computed using
MATLAB. Ultimately, the decision regarding significant distinctions between algorithms
relied on comparing the p-value against the significance level α. The symbols applied to
the Wilcoxon signed rank-sum test were described as “+”, “−”, and “=”, respectively, to
indicate that the comparison algorithms showed significantly superior, inferior, and no
significant differences compared with TLOCTO’s algorithm.

4.3. TLOCTO’s Performance on the Benchmark Test Functions

This section shows and analyzes the test results of the TLOCTO algorithm and its
comparison algorithms on the benchmark test functions.

4.3.1. Comparison Using the Benchmark Test Functions

Functions F1-F7 exhibited a unimodal nature, featuring a solitary global optimum,
which facilitated the evaluation of exploitation capability in the meta-heuristic algorithms
under examination. The comprehensive analysis presented in Table 1 indicates that, except
for F5 and F7, the TLOCTO algorithm consistently surpassed all other compared algorithms
when considering the standard values associated with unimodal functions. This consistent
superiority establishes the TLOCTO algorithm as the most potent and proficient optimizer
among the seven tested unimodal functions, thereby providing compelling evidence of its
exceptional exploitation ability.

Table 1. Experimental results of 8 algorithms on the benchmark test functions.

Problem Metric TLOCTO ABC GWO PSO GA COA DBO TLBO

F1 AVG
STD

0.0000 × 100

0.00 × 100
8.3930 × 100

6.86 × 100
8.6133 × 10−38

1.40 × 10−37
2.6801 × 100

1.0384 × 100
1.1609 × 100

4.16 × 10−2
0.0000 × 100

0.00 × 100
6.0286 × 104

6.84 × 103
3.3163 × 10−78

1.10 × 10−77

F2 AVG
STD

0.0000 × 100

0.00 × 100
8.9866 × 10−1

4.11 × 10−1
1.5131 × 10−22

1.53 × 10−22
4.0965 × 100

1.0268 × 100
5.8101 × 10−1

1.24 × 10−2
1.2046× 10−184

0.00 × 100
4.3274 × 106

1.97 × 107
6.1081 × 10−40

5.10 × 10−40

F3 AVG
STD

0.0000 × 100

0.00 × 100
2.8314 × 104

8.30 × 103
1.6118 × 10−1

6.14 × 10−1
1.8046 × 102

5.52 × 101
1.6834 × 100

6.02 × 10−1
0.0000 × 100

0.00 × 100
1.5840 × 100

6.36 × 100
3.5098 × 10−17

1.06 × 10−16

F4 AVG
STD

0.0000 × 100

0.00 × 100
8.6368 × 101

4.76 × 100
2.4439 × 10−9

4.91 × 10−9
2.0328 × 100

2.45 × 10−1
2.0040 × 10−1

0.00 × 100
1.2709× 10−181

0.00 × 100
8.5609 × 101

4.36 × 100
3.5091 × 10−33

3.01 × 10−33

F5 AVG
STD

1.8890 × 10−4

4.30 × 10−4
4.0777 × 103

5.00 × 103
2.8415 × 101

7.62 × 10−1
9.3311 × 102

5.27 × 102
4.2570 × 102

7.91 × 102
0.0000 × 100

0.00 × 100
2.5716 × 101

1.78 × 10−1
2.6539 × 101

4.3 × 10−1

F6 AVG
STD

0.0000 × 100

0.00 × 100
1.4700 × 101

1.12 × 101
6.6667 × 10−2

2.54 × 10−1
2.2603 × 100

1.03 × 100
3.3333 × 10−2

1.83 × 10−1
0.0000 × 100

0.00 × 100
0.0000 × 100

0.00 × 100
9.7384 × 10−3

4.1 × 10−1

F7 AVG
STD

3.6988 × 10−2

3.12 × 10−2
2.9306 × 10−1

9.01 × 10−2
9.1929 × 10−2

5.26 × 10−2
1.7808 × 101

1.78 × 101
4.8093 × 10−2

1.50 × 10−2
4.8764 × 10−5

3.76 × 10−5
6.0628 × 10−2

5.11 × 10−2
1.1936 × 10−3

4.26 × 10−4

F8 AVG
STD

−1.1790 × 104

9.13 × 102
−9.1626× 103

6.99 × 102
−1.5991 × 103

3.64 × 102
−6.1198× 103

1.44 × 103
−1.1152× 104

3.29 × 102
−1.2569× 103

5.85 × 10−2
−8.5886 × 103

2.12 × 103
−7.4077 × 103

1.02 × 103

F9 AVG
STD

0.0000 × 100

0.00 × 100
1.6257 × 102

6.13 × 101
0.0000 × 100

0.00 × 100
1.7389 × 102

3.71 × 101
2.0327 × 100

1.21 × 100
0.0000 × 100

0.00 × 100
2.9850 × 10−1

1.63 × 100
1.6721 × 101

6.23 × 100

F10 AVG
STD

8.8818 × 10−16

0.00 × 100
2.6192 × 100

5.65 × 10−1
7.9936 × 10−15

1.32 × 10−15
2.6744 × 100

5.02 × 10−1
1.7871 × 10−1

4.16 × 10−2
8.8818× 10−16

0.00 × 100
8.8818 × 10−16

0.00 × 100
6.9278 × 10−15

1.66 × 10−5
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Table 1. Cont.

Problem Metric TLOCTO ABC GWO PSO GA COA DBO TLBO

F11 AVG
STD

0.0000 × 100

0.00 × 100
1.0966 × 100

9.41 × 10−2
0.0000 × 100

0.00 × 100
1.1093 × 10−1

3.73 × 10−2
4.5412 × 10−1

1.20 × 10−1
0.0000 × 100

0.00 × 100
0.0000 × 100

0.00 × 100
3.0152 × 10−6

1.65 × 10−5

F12 AVG
STD

7.2295 × 10−7

1.13 × 10−6
4.0123 × 102

3.29 × 102
3.1208 × 100

1.51 × 10−1
4.4793 × 10−2

5.51 × 10−2
4.1303 × 10−2

3.04 × 10−2
1.5705 × 10−32

5.57 × 10−48
2.4235 × 100

6.86 × 10−1
8.6770 × 10−5

3.01 × 10−4

F13 AVG
STD

1.8164 × 10−7

2.62 × 10−7
1.6327 × 103

3.62 × 103
2.1180 × 100

2.40 × 10−1
6.3050 × 10−1

2.37 × 10−1
2.3183 × 10−2

8.76 × 10−3
1.3498 × 10−32

5.57 × 10−48
6.0204 × 10−1

4.36 × 10−1
1.9071 × 10−1

1.48 × 10−1

F14 AVG
STD

2.0458 × 100

2.50 × 100
1.6202 × 100

1.42 × 100
1.2198 × 101

1.86 × 100
3.0027 × 100

2.51 × 100
9.9800 × 10−1

2.15 × 10−11
9.9800 × 10−1

8.67 × 10−11
1.5218 × 100

1.87 × 100
9.9800 × 10−1

0.00 × 100

F15 AVG
STD

3.0979 × 10−4

8.72 × 10−6
1.4522 × 10−3

3.58 × 10−3
7.3193 × 10−3

8.39 × 10−3
9.2132 × 10−4

2.69 × 10−4
4.5409 × 10−3

7.62 × 10−3
4.4093 × 10−4

1.20 × 10−4
7.7156 × 10−4

2.74 × 10−4
3.5310 × 10−4

0.00 × 100

F16 AVG
STD

−1.0316 × 100

6.65 × 10−16
−1.0316× 100

5.53 × 10−16
−1.0235 × 100

7.84 × 10−3
−1.0316× 100

4.88 × 10−16
−1.0316× 100

4.94 × 10−7
−1.0316× 100

1.23 × 10−4
−1.0316 × 100

4.44 × 10−16
−1.0316 × 100

6.71 × 10−15

F17 AVG
STD

3.9789 × 10−1

0.00 × 100
3.9789 × 10−1

0.00 × 100
8.1189 × 10−1

4.91 × 10−9
3.9789 × 10−1

0.00 × 100
3.9789 × 10−1

8.38 × 10−7
3.9831 × 10−1

8.62 × 10−4
3.9789 × 10−1

3.24 × 10−16
3.9789 × 10−1

0.00 × 100

F18 AVG
STD

3.0000 × 100

1.28 × 10−15
3.0000 × 100

4.24 × 10−15
3.2919 × 100

4.89 × 10−1
3.0000 × 100

6.24 × 10−14
3.0000 × 100

4.84 × 10−6
3.0459 × 100

6.34 × 10−2
3.0000 × 100

1.85 × 10−14
3.0000 × 100

1.39 × 10−15

F19 AVG
STD

−3.8628 × 100

2.71 × 10−15
−3.8628× 100

2.46 × 10−15
−3.5047 × 100

3.57 × 10−1
−3.8628× 100

1.92 × 10−15
−3.8628× 100

1.74 × 10−7
−3.8002× 100

7.97 × 10−2
−3.8615 × 100

2.99 × 10−3
−3.8628 × 100

2.71 × 10−15

F20 AVG
STD

−3.3146 × 100

2.79 × 10−2
−3.2744× 100

5.92 × 10−2
−2.4044 × 100

2.82 × 10−1
−3.2586× 100

6.03 × 10−3
−3.2744× 100

5.92 × 10−2
−2.6194× 100

3.88 × 10−1
−3.2998 × 100

5.17 × 10−2
−3.3100 × 100

3.62 × 10−2

F21 AVG
STD

−1.0153 × 101

7.01 × 10−15
−6.8147× 100

3.68 × 100
−2.4730 × 100

1.12 × 100
−7.056 × 100

3.269 × 100
−6.1443× 100

3.45 × 100
−1.0153 × 101

7.07 × 10−5
−6.2541 × 100

2.19 × 100
−1.0153 × 101

2.92 × 10−14

F22 AVG
STD

−1.0403 × 101

1.32 × 10−15
−7.6146× 100

3.54 × 100
−1.3810 × 100

1.01 × 100
−8.3590× 100

3.01 × 100
−7.5984× 100

3.31 × 100
−1.0403 × 101

4.24 × 10−4
−7.5244 × 100

2.77 × 100
−1.0183 × 101

1.22 × 100

F23 AVG
STD

−1.0536 × 101

1.89 × 10−15
−8.5397× 100

3.38 × 100
−1.3328 × 100

9.82 × 10−1
−9.7550× 100

2.17 × 100
−6.0831× 100

3.76 × 100
−1.0536 × 101

8.51 × 10−5
−8.0278 × 100

2.73 × 100
−1.0536 × 101

3.75 × 10−3

(+/−/=) ~ ~ 0/18/5 0/20/3 0/23/0 1/21/1 4/12/7 0/16/7 1/22/0

Multimodal functions, as opposed to unimodal functions, possess multiple local
optima that increase exponentially with the problem size, which is determined by the
number of design variables. Consequently, these test problems hold great value in assessing
the exploration capability of an optimization algorithm. According to the data presented
in Table 1, TLOCTO surpassed other optimizers in terms of both average values and
standard deviations across 13 out of 16 test functions, specifically multimodal and fixed-
dimension multimodal functions F8-F23. Furthermore, the TLOCTO algorithm closely
approximated the specified standard values in nearly all functions, with the exception of
F12-F14, showcasing its exceptional accuracy and stability. The outstanding performance of
TLOCTO on these multimodal functions unequivocally validates its remarkable ability to
navigate through and avoid local optima. This ability can be attributed to the utilization of
a cadre–mass relationship strategy and tutor mechanism within the algorithm, effectively
guiding it towards the global optimum.

Based on the Wilcoxon signed rank-sum test results shown in Table 1 (last line),
TLOCTO outperformed GA, GWO, PSO, and TLBO with more than 20 significantly better
results (“+”). Additionally, it surpassed COA, DBO, and ABC with 12, 16, and 18 superior
results, respectively. In essence, the average goodness percentage of TLOCTO across the
23 benchmark functions was 81.99% (( ∑7

i=1 +i

)
/(23× 7) × 100%). Overall, the results

indicate that the cadre–mass relationship strategy and tutor mechanism strategy effectively
enhance TLBO’s optimization capability.

4.3.2. Analysis of Convergence Behavior

TLOCTO’s search agents were observed to extensively explore promising regions of
the design space and exploit the most optimal solution. In the initial stages of optimization,
the search agents underwent abrupt changes before gradually converging. This ensured
the convergence of a population-based algorithm to a point in the search space. Figure 5
presents the convergence curves for TLOCTO and comparative algorithms on some of
the 23 standard benchmark functions. These curves reflect the convergence rate, which
intuitively measures the improvement in exploration and exploitation. The results imply
that TLOCTO competes well with other state-of-the-art meta-heuristic algorithms and
exhibits superior convergence accuracy, as is consistent with Table 1.
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4.4. TLOCTO’s Performance on CEC 2020 Test Functions

The TLOCTO algorithm’s superior performance on simple optimization problems was
demonstrated by the mentioned benchmark experiments. Moving on to the next evaluation,
we introduce CEC 2020 [22], which presented a challenging test suite aimed at assessing the
performance of complex optimization problems. This test suite included a variety of hybrid
and composition functions that enabled further evaluation of the TLOCTO algorithm.
The benchmark functions, as displayed in Table 2, were categorized into four groups:
unimodal function (F1), multimodal shifted and rotated functions (F2-F4), hybrid functions
(F5-F7), and composition functions (F8-F10). To assess the TLOCTO algorithm and other
comparison algorithms, we utilized the AVG, STD, and Wilcoxon signed rank-sum test
according to the experimental setup rules outlined in Section 4. The test results for these
algorithms in CEC2020 are presented in Tables 3 and 4 for problem dimension D, equal
to 5 and 10, respectively. For each function, the smallest average value is highlighted in
bold font.
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Table 2. Descriptions of the benchmark functions from CEC 2020.

Function Name Range fmin

F1 (CEC_01) Shifted and rotated bent cigar function [−100, 100]Dim 100
F2 (CEC_02) Shifted and rotated schwefel’s function [−100, 100]Dim 1100
F3 (CEC_03) Shifted and rotated lunacek bi-rastrigin function [−100, 100]Dim 700
F4 (CEC_04) Expanded rosenbrock’s plus griewangk’s function [−100, 100]Dim 1900
F5 (CEC_05) Hybrid function 1 (N = 3) [−100, 100]Dim 1700
F6 (CEC_06) Hybrid function 1 (N = 4) [−100, 100]Dim 1600
F7 (CEC_07) Hybrid function 1 (N = 5) [−100, 100]Dim 2100
F8 (CEC_08) Composition function 1 (N = 3) [−100, 100]Dim 2200
F9 (CEC_09) Composition function 1 (N = 4) [−100, 100]Dim 2400
F10 (CEC_10) Composition function 1 (N = 5) [−100, 100]Dim 2500

Table 3. Comparison results of algorithms on CEC 2020 (5D).

Problem Metric TLOCTO ABC GWO PSO GA COA DBO TLBO

F1 AVG
STD

3.9393 × 102

3.16 × 102
3.9926 × 103

4.21 × 103
1.0928 × 108

8.11 × 107
1.1321 × 108

1.88 × 108
4.2118 × 103

4.17 × 103
9.5389 × 108

6.45 × 108
3.0308 × 103

3.67 × 103
3.0856 × 105

2.95 × 105

F2 AVG
STD

1.1942 × 103

6.82 × 101
1.2459 × 103

1.37 × 102
1.8413 × 103

2.24 × 102
1.5817 × 103

1.66 × 102
1.2611 × 103

1.37 × 102
2.1665 × 103

2.07 × 102
1.3873 × 103

1.49 × 102
1.3663 × 103

1.11 × 102

F3 AVG
STD

7.0722 × 102

1.44 × 100
7.0849 × 102

3.20 × 100
7.3054 × 102

6.96 × 100
7.1652 × 102

6.43 × 100
7.0796 × 102

2.22 × 100
7.5890 × 102

7.34 × 100
7.1223 × 102

3.56 × 100
7.1670 × 102

4.33 × 100

F4 AVG
STD

1.9002 × 103

1.02 × 10−1
1.9006 × 103

3.04 × 10−1
1.9083 × 103

3.92 × 100
3.1673 × 103

5.93 × 103
1.9003 × 103

1.92 × 10−1
1.3707 × 104

1.38 × 104
1.9013 × 103

1.15 × 100
1.9008 × 103

3.40 × 10−1

F5 AVG
STD

1.7051 × 103

7.07 × 100
1.7364 × 103

4.72 × 101
6.5142 × 105

6.29 × 105
7.8483 × 103

6.66 × 103
1.7394 × 103

5.00 × 101
3.3860 × 106

3.96 × 106
2.0135 × 103

7.92 × 102
1.8101 × 103

4.17 × 101

F6 AVG
STD

1.6008 × 103

4.29 × 10−1
1.6025 × 103

7.38 × 100
1.6927 × 103

8.03 × 101
1.6455 × 103

5.27 × 101
1.6115 × 103

3.07 × 101
1.8093 × 103

1.04 × 102
1.6055 × 103

1.19 × 101
1.6067 × 103

6.44 × 100

F7 AVG
STD

2.1002 × 103

3.13 × 10−1
2.1004 × 103

3.01 × 10−1
2.1816 × 103

7.25 × 101
2.1225 × 103

2.68 × 101
2.1034 × 103

1.02 × 101
2.2411 × 103

8.05 × 101
2.1017 × 103

6.02 × 100
2.1008 × 103

1.96 × 10−1

F8 AVG
STD

2.2461 × 103

5.25 × 101
2.2390 × 103

4.70 × 101
2.3204 × 103

3.27 × 101
2.2856 × 103

6.46 × 101
2.2748 × 103

5.00 × 101
2.4921 × 103

1.53 × 102
2.2433 × 103

4.45 × 101
2.2358 × 103

2.72 × 101

F9 AVG
STD

2.5181 × 103

5.58 × 101
2.5520 × 103

8.72 × 101
2.7130 × 103

8.62 × 101
2.6786 × 103

9.23 × 101
2.5883 × 103

1.13 × 102
2.7258 × 103

6.49 × 101
2.5000 × 103

2.65 × 10−4
2.5357 × 103

6.33 × 100

F10 AVG
STD

2.8391 × 103

3.78 × 101
2.8458 × 103

8.65 × 100
2.8575 × 103

7.03 × 100
2.8736 × 103

2.68 × 101
2.8394 × 103

2.14 × 101
2.9488 × 103

5.51 × 101
2.8500 × 103

2.01 × 101
2.8247 × 103

1.18 × 101

(+/−/=) ~ ~ 0/7/3 0/10/0 0/10/0 0/8/2 0/10/0 1/7/2 2/7/1

Table 4. Comparison results of algorithms on CEC 2020 (10D).

Problem Metric TLOCTO ABC GWO PSO GA COA DBO TLBO

F1 AVG
STD

2.6402 × 103

2.96 × 103
3.9681 × 103

3.59 × 103
2.0448 × 109

6.82 × 108
6.0622 × 109

3.51 × 109
1.7744 × 104

1.73 × 104

1.5653 ×
1010

6.10 × 109

1.2644 × 106

4.50 × 106
1.9777 × 108

9.19 × 107

F2 AVG
STD

1.5719 × 103

2.81 × 102
2.4585 × 103

6.75 × 102
3.0011 × 103

3.01 × 102
2.2721 × 103

3.37 × 102
1.5736 × 103

2.25 × 102
3.6023 × 103

3.34 × 102
2.0814 × 103

3.09 × 102
2.4658 × 103

2.50 × 102

F3 AVG
STD

7.2975 × 102

7.97 × 100
7.4313 × 102

2.08 × 101
8.0923 × 102

1.42 × 101
7.8781 × 102

3.24 × 101
7.2642 × 102

7.30 × 100
9.0337 × 102

2.78 × 101
7.5004 × 102

1.86 × 101
8.0925 × 102

2.81 × 101

F4 AVG
STD

1.9018 × 103

8.77 × 10−1
1.9031 × 103

1.67 × 100
2.2790 × 103

4.16 × 102
7.2218 × 104

8.19 × 104
1.9023 × 103

1.03 × 100
5.2207 × 105

4.34 × 105
1.9053 × 103

2.68 × 100
1.9102 × 103

8.24 × 100

F5 AVG
STD

2.7587 × 103

9.63 × 102
3.0432 × 105

4.52 × 105
6.2118 × 105

1.33 × 105
7.9091 × 105

8.38 × 105
4.5979 × 105

5.39 × 105
7.3010 × 106

7.23 × 106
1.9503 × 104

2.02 × 104
1.1536 × 104

5.47 × 103

F6 AVG
STD

1.6706 × 103

7.49 × 101
1.7373 × 103

1.10 × 102
2.0147 × 103

9.65 × 101
2.1041 × 103

1.70 × 102
1.7671 × 103

1.27 × 102
2.8130 × 103

2.95 × 102
1.8091 × 103

1.29 × 102
1.7854 × 103

7.64 × 101

F7 AVG
STD

2.4853 × 103

1.66 × 102
1.1205 × 104

9.80 × 103
3.0861 × 106

4.62 × 106
6.6925 × 105

1.30 × 106
1.4839 × 105

3.55 × 105
4.0225 × 106

5.47 × 106
7.8715 × 103

9.06 × 103
4.9133 × 103

1.50 × 103

F8 AVG
STD

2.3051 × 103

1.88 × 101
2.3073 × 103

1.48 × 101
2.4639 × 103

5.96 × 101
2.7308 × 103

3.94 × 102
2.3100 × 103

8.25 × 10−3
3.6911 × 103

5.98 × 102
2.3115 × 103

2.22 × 100
2.4274 × 103

1.59 × 102

F9 AVG
STD

2.7129 × 103

8.25 × 101
2.7553 × 103

1.70 × 101
2.8194 × 103

1.20 × 101
2.8307 × 103

1.02 × 102
2.7581 × 103

1.50 × 101
2.9661 × 103

1.08 × 102
2.7751 × 103

3.88 × 101
2.7689 × 103

4.82 × 101

F10 AVG
STD

2.9279 × 103

2.32 × 101
2.9359 × 103

2.07 × 101
3.0253 × 103

4.66 × 101
3.1485 × 103

1.31 × 102
2.9399 × 103

2.73 × 101
3.9653 × 103

3.73 × 102
2.9379 × 103

6.66 × 101
2.9490 × 103

1.21 × 101

(+/−/=) ~ ~ 0/7/3 0/10/0 0/9/1 1/6/3 0/10/0 0/10/0 0/10/0
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4.4.1. Analysis of CEC 2020 Test Function

According to the data presented in Table 3, it can be observed that the TLOCTO
algorithm exhibited remarkable performance when dealing with the five-dimensional
testing problem. Notably, among the 10 CEC 2020 test functions, the TLOCTO algorithm
yielded the minimum fitness value outcomes for seven of them, encompassing single-
peaked function (F1), multi-modal shift and rotation functions (F2-F4), and hybrid functions
(F5-F7). This implies that TLOCTO possesses a more considerable advantage than other
algorithms in terms of resolving non-compound functions. Furthermore, based on the
information provided in Table 3 (last row), it can be deduced that TLOCTO surpassed
various algorithms, such as ABC, GWO, PSO, GA, COA, DBO, and TLBO in 7, 10, 10, 8, 10,
7, and 7 cases, respectively, out of 10 functions. Additionally, its average excellence rate
amounted to 84.29% ((∑7

i=1 +i)/(10× 7)× 100%). Consequently, the TLOCTO algorithm
attained superior outcomes compared to other algorithms.

TLOCTO outperformed other methods when solving 10-dimensional problems, as
shown by its high success rates in Table 4. Wilcoxon rank-sum tests revealed TLOCTO’s
superiority over rivals like ABC, GWO, PSO, COA, DBO, and TLBO on over 7 func-
tions, with an 88.57% optimization rate on 10 functions. Additionally, Table 4 indicates
that TLOCTO achieved the highest ranking in nine test functions, making it a highly
promising solution for CEC 2020 10-dimensional problems. Overall, our comprehensive
analysis of these results confirmed TLOCTO’s exceptional performance when compared
to other algorithms.

4.4.2. Analysis of Convergence Behavior

Figures 6 and 7 display the convergence plots of TLOCTO and other comparison
algorithms on the CEC 2020 (5D and 10D) test functions, respectively. The vertical axis of
these plots indicates the function’s best fitness value, while the horizontal axis represents
the number of function evaluations. Upon analyzing these plots, it becomes evident that
TLOCTO demonstrated a faster descent rate and superior optimization ability across
all test functions. This can be attributed to TLOCTO’s incorporation of the teaching
and learning stage strategy, cadre–mass relationship strategy, and tutor mechanism
strategy. These strategies enable TLOCTO to strike a better balance between global
exploration and local exploitation capabilities. By utilizing the curriculum teaching
strategy in conjunction with the teacher phase and learner phase, the TLOCTO algorithm
attains powerful search capabilities. These capabilities are further enhanced by the
integration of both the cadre–mass mechanism and tutor mechanism, which facilitate
local exploration and ensures the algorithm’s stability, robustness, and high convergence
accuracy. The aforementioned mechanisms are evidenced in the test plots through
the consistent descent and rapid convergence of the red line segments. The results
demonstrate that the proposed TLOCTO algorithm excelled in terms of convergence
and global optimization capabilities. Furthermore, the superiority and robustness of
TLOCTO are further confirmed.

4.4.3. Analysis of Scalability

Based on the above experimental results, it has been demonstrated that the TLOCTO
algorithm exhibits a remarkable performance in terms of competitiveness. In order to fur-
ther illustrate the superiority of the TLOCTO algorithm, this section compares it with two
other types of algorithms on the CEC2020 test function suite (Dim = 20). An autonomous
teaching–learning-based optimization algorithm (ATLBO) [32], an improved teaching–
learning-based optimization algorithm (ITLBO) [33], a teaching–learning-studying-based
optimization algorithm (TLSBO) [34], and an improved TLBO with a logarithmic spiral
and triangular mutation (LNTLBO) [17] are all new variants of the TLBO algorithm.
Additionally, the self-adaptive spherical search algorithm (SASS) [35] is the champion
algorithm in the CEC2020 test function suite competition [36]. Based on the results
presented in Table 5, it can be concluded that TLOCTO demonstrated an outstand-
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ing performance in terms of its capabilities and achieved most of the optimal results.
This highlights the significant research value of TLOCTO. Furthermore, as observed in
Figure 8, TLOCTO consistently maintained the best convergence speed and exhibited
excellent stability. Therefore, considering the range of tested functions, TLOCTO can be
regarded as a reliable choice.
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Table 5. Comparison results of algorithms on CEC 2020 (20D).

Problem Metric TLOCTO ATLBO ITLBO TLSBO LNTLBO SASS

F1 Ave 1.5872 × 105 1.5285 × 106 4.2403 × 103 1.7599 × 103 8.3267 × 109 1.6100 × 103

Std 3.79 × 105 3.25 × 106 3.95 × 103 2.24 × 103 2.71 × 109 2.26 × 103

F2 Ave 3.2654 × 103 4.7114 × 103 5.1045 × 103 5.3031 × 103 4.4598 × 103 5.4914 × 103

Std 1.52 × 102 6.72 × 102 4.15 × 102 2.20 × 102 5.89 × 102 2.63 × 102

F3 Ave 8.6336 × 102 8.5826 × 102 8.4488 × 102 8.2675 × 102 1.0341 × 103 8.2943 × 102

Std 4.33 × 101 3.80 × 101 2.88 × 101 3.89 × 101 6.54 × 101 8.71 × 100

F4 Ave 1.9353 × 103 1.9204 × 103 1.9163 × 103 1.9117 × 103 1.7668 × 104 1.9088 × 103

Std 1.85 × 101 9.98 × 100 6.88 × 100 3.14 × 100 1.45 × 104 1.40 × 100

F5 Ave 4.4176 × 104 7.2356 × 104 1.3859 × 105 1.7059 × 105 1.6930 × 105 4.7068 × 104

Std 3.71 × 104 5.66 × 104 1.01 × 105 1.29 × 105 2.16 × 105 4.50 × 104

F6 Ave 1.6291 × 103 1.7099 × 103 1.8043 × 103 1.9356 × 103 1.7243 × 103 2.2605 × 103

Std 2.31 × 10−13 1.16 × 10−12 1.16 × 10−12 1.16 × 10−12 1.16 × 10−12 1.85 × 10−12

F7 Ave 1.6466 × 104 2.0766 × 104 5.2183 × 104 2.7900 × 104 8.8333 × 104 2.1520 × 104

Std 9.40 × 103 1.51 × 104 4.76 × 104 1.71 × 104 1.47 × 105 1.30 × 104

F8 Ave 2.3061 × 103 2.3098 × 103 2.4348 × 103 2.3072 × 103 3.8601 × 103 2.3069 × 103

Std 3.74 × 100 9.77 × 100 7.25 × 102 1.30 × 100 8.36 × 102 9.61 × 101

F9 Ave 2.8775 × 103 2.8706 × 103 2.8565 × 103 2.8418 × 103 3.0211 × 103 2.8633 × 103

Std 3.13 × 101 2.41 × 101 2.78 × 101 1.52 × 101 5.75 × 101 4.19 × 101

F10 Ave 2.9981 × 103 3.0151 × 103 2.9992 × 103 3.0768 × 103 3.4933 × 103 3.0328 × 103

Std 3.10 × 101 4.33 × 101 3.31 × 101 3.28 × 101 2.77 × 102 3.87 × 101

(+/−/=) ~ ~ 0/6/4 1/6/3 1/5/4 0/7/3 1/5/4
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5. Mechanical Engineering Application Problems

Most real-world engineering optimization problems are non-linear, with complex
constraints [37]. Hence, this section tests the optimization performance of the TLOCTO
algorithm, developed for practical applications, by using three renowned mechanical
engineering problems. These problems feature multiple equality and inequality constraints,
which assess the capability of TLOCTO in terms of optimizing real-world and constrained
problems from a constraint handling perspective.

When solving engineering design constraint optimization problems with varying
levels of complexity, the death penalty functions [38] can be used to handle solutions not
meeting the constraint conditions, and the formula is as follows:

F(x) = F(x) + z

z =
m
∑

i=1

(
λ · (g(i))2 · H(i)

) (19)

where z is a penalty term, m presents the number of constraints in the problem, l is the
penalty constant, and H(i) is used to identify whether the ith constraint condition is met.

Furthermore, all of the algorithm parameters were set to the same values as in the
above experiments, and the population size and maximum iteration numbers for all prob-
lems were 30 and 500, respectively. The following sections provide detailed descriptions of
the three engineering problems and present all comparative results of these algorithms.

5.1. Planetary Gear Train Design Optimization Problem

The main goal of this problem was to minimize the maximum errors in the gear
ratio [39] utilized in automobiles. To achieve this, the total number of gear teeth is computed
for an automatic planetary transmission system. it is shown in Table A4. In which included
total 9-decision variables, first 6-decision variables based on the number of teeth in the
gears (N1, N2, N3, N4, N5 and N6), namely 1-6 marked in the figure, which can only take
integers values, and rest of 3-discrete variables as modules of the gears (m1 and m2) and
number of planet gears (P).

The implementation results of TLOCTO and competitor algorithms in terms of achiev-
ing the optimal solution for the planetary gear train design optimization problem are
reported in Table 6. In addition, Table 7 provides the corresponding constraint values of
these algorithms for this problem.
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According to the analysis of reference [40], the planetary gear train design optimization
problem is one of the most difficult problems in mechanical engineering. As can be seen
from Table 6, in solving such problems, the TLOCTO algorithm not only performed the best
out of all comparison algorithms, but also obtained the solution closest to the optimal value
of the planetary wheel design problem. Therefore, we can say that the TLOCTO algorithm
not only has an excellent ability to solve complex mechanical engineering problems, but
also gives full play to its high efficiency and accuracy.

Table 6. Comparison results for the planetary gear train design optimization problem.

Algorithm Best Mean Worst Std N1 N2 N3 N4 N5 N6 p m1 m2

TLOCTO 0.52325 0.53592 0.53706 0.00364 32 18 15 19 15 69 4 2 2
TLBO 0.53706 0.53877 0.55667 0.00494 22 14 15 17 15 62 3 2 2
DBO 0.54846 1.8 × 1020 0.77667 3.66 × 1020 26 14 14 19 14 69 3 1.75 1.75
COA 0.55706 7.00 × 1019 0.86074 1.44 × 1020 17 14 20 17 14 62 3 1.75 1.75
GWO 0.52967 0.55229 0.71000 0.03423 47 24 15 21 14 76 3 2 2
PSO 0.52624 0.54632 0.80573 0.04942 26 17 22 24 14 87 3 2.75 1.75
ABC 0.59312 0.93813 1.76841 0.28424 56 26 19 28 28 103 3 2 1.75

Table 7. The constraint values of the planetary gear train design optimization problem.

Algorithm
Constraints

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

TLOCTO −77 −80 −118 −4 −14.8553 −20.6838 −6.54163 −1165.89 −15 −15
TLBO −91 −116 −122 −18 −14.6769 −23.2032 −10.2128 −1698.90 −91 −116
DBO −77 −108 −122 −26 −18.141 −31.1314 −12.0788 −3597.35 −17 −17
COA −91 −126 −126 −18 −10.3468 −13.8731 −10.3468 −377.447 −91 −126
GWO −63 −26 −118 −16 −34.9878 −35.3275 −13.8109 −4988.21 −63 −26
PSO −41 −34 −112 −4 −17.7391 −31.7917 −16.4090 −4383.19 −41 −34

ABC −9 0 −48 0 −42.5141 −51.2461 −17.9974 −7422.03 −9 0

5.2. Robot Gripper Problem

For this problem [41], we utilized the difference between the minimum and maximum
force generated by the robot gripper as the objective function. This problem comprised
seven design variables and six nonlinear design constraints associated with the robot.
Mathematically, the robot gripper was a single-degree-of-freedom planning closed-loop
mechanism, and the schematic diagram of this problem was simplified to a mechanism
composed of three connecting rods and four joints, as shown in Table A5, where Ymin
represents the minimal gripping object dimension (50 mm), YG signifies the gripper ends’
maximum displacement range (150 mm), Ymax denotes the maximal gripping object dimen-
sion (100 mm), Zmax indicates the maximum gripper actuator displacement (100 mm), and
P represents the gripper’s actuating force (100 N).

The implementation results of TLOCTO and the competitor algorithms in achieving
the optimal solution for the robot gripper problem are reported in Table 8. In addition,
Table 9 provides the corresponding constraint values of these algorithms for this problem.

As can be seen from Table 8, when solving the robot fixture problem, among them,
the best value solved by the TLOCTO algorithm was closest to the best value provided by
the literature, which indicates that TLOCTO can solve complex mechanical engineering
problems. It is worth noting that the values in the table can reflect that neither the newly
proposed COA and DBO algorithms, nor the excellent PSO and ABC algorithms proposed
earlier, could solve the robot fixture problem well. This intuitively proves the superiority
of the TLOCTO algorithm’s performance and its professional ability to solve the complex
problems of robot fixtures.
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Table 8. Comparison results for the robot gripper problem.

Algorithm Best Mean Worst Std a b c e f l δ

TLOCTO 2.77479 3.09241 3.31269 0.15419 149.2512 132.6060 200.0000 16.4597 149.9069 104.6298 2.4493
TLBO 3.01791 3.59001 5.98043 0.59922 143.5842 133.7948 200.0000 9.58430 149.9702 106.9715 2.4607
DBO 3.31432 5.82827 9.34913 1.43645 150.0000 149.4977 198.8000 0.0306 17.01180 124.6755 1.7178
COA 3.79460 2.94× 1022 3.56 × 1023 7.68× 1022 147.8050 139.9458 153.5251 7.4652 147.8050 115.7780 2.6540
GWO 3.32379 3.77367 4.54004 0.30097 150.0000 140.7627 176.0328 8.7721 149.1059 118.9015 2.5634
PSO 3.44092 4.16993 9.54223 1.07760 150.0000 111.7020 199.5793 37.1027 144.0012 129.4336 2.7289
ABC 4.39851 8.21286 13.19273 2.44974 147.5731 138.0619 197.6639 6.5379 148.0575 160.0094 2.6131

Table 9. The constraint values of the robot gripper problem.

Algorithm
Constraints

g1 g2 g3 g4 g5 g6 g7

TLOCTO −32.4842 −17.5158 −45.1971 −4.8029 −68225.1644 −70.6672 −4.6299
TLBO −43.0799 −6.9201 −31.3405 −18.6595 −65404.3490 −103.5279 −6.9716
DBO −49.1101 −0.8899 −43.5540 −6.4460 −74154.8911 −750.1439 −24.6756
COA −6.3163 −43.6837 −20.6581 −29.3419 −69340.2484 −359.3810 −15.7781
GWO −21.0329 −28.9671 −26.2605 −23.7395 −70328.4313 −488.4525 −18.9016
PSO −40.5933 −9.4067 −34.8365 −15.1635 −50358.2696 −1134.8062 −29.4337
ABC −45.0324 −4.9676 −34.9849 −15.0151 −55941.6010 −4430.9795 −60.0095

5.3. Speed Reducer Design Problem

In this case, the purpose was to minimize the weight of the speed reducer [42]. Seven
variables were considered, including face width (x1), a module of teeth (x2), a discrete
design variable on behalf of the teeth in the pinion (x3), the length of the first shaft between
bearings (x4), the length of the second shaft between bearings (x5), the diameter of the
first shaft (x6), and the diameter of the second shaft (x7). The resulting optimization
problem is shown in Table A6. The implementation results of TLOCTO and its competitor
algorithms in terms of achieving the optimal solution for the speed reducer design problem
are reported in Table 10. In addition, Table 11 gives the corresponding constraint values of
these algorithms for this problem.

Table 10. Comparison results for the speed reducer design problem.

Algorithm Best Mean Worst Std x1 x2 x3 x4 x5 x6 x7

TLOCTO 2994.424 2994.424 2994.424 1.85 × 10−12 3.50000 0.70000 17.0000 7.30000 7.71532 3.35054 5.28665
TLBO 2994.424 2994.492 2994.870 0.096 3.50000 0.700002 17.0000 7.30006 7.71532 3.35054 5.28666
DBO 3032.779 3406.531 5735.099 782.939 3.50264 0.70000 17.0000 7.30000 7.77305 3.35332 5.28696
COA 3060.413 4.57 × 1017 1.31 × 1019 2.38 × 1018 3.50022 0.70000 17.0000 7.30000 7.89676 3.35155 5.28631
GWO 3003.825 3011.045 3018.471 3.854 3.50122 0.70002 17.0001 7.77206 7.82642 3.35226 5.28846
PSO 3007.437 3160.023 3363.736 120.986 3.50000 0.70001 17.0000 7.30000 8.30215 3.35054 5.28686
ABC 2549.639 2597.282 2635.205 20.995 5.99485 0.70402 14.4866 7.30748 7.90121 3.49492 5.29177

As shown in Table 10, the TLOCTO algorithm achieved good results regarding the
design of the reducer. It is worth noting that the optimal value of the TLBO algorithm
also reached the standard value, but the performance of the average value and standard
deviation was still worse than that of the TLOCTO algorithm. The reason for this is that,
when compared to the issues established in the preceding two sections, the speed reducer
design problem appeared to be comparatively uncomplicated, thereby demonstrating that
the TLBO algorithm possesses some outstanding performance attributes. However, this
further illustrates that the TLOCTO algorithm exhibits stronger robustness and accuracy.
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Table 11. The constraint values of the speed reducer design problem.

Algorithm
Constraints

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

TLOCTO −2.16 × 100 −9.81 × 101 −1.93 × 100 −1.83 × 101 −9.35 × 10−4 −2.15 × 10−3 −2.81 × 101 0.00 × 100 −7.00 × 100 −3.74 × 10−1 −5.00 × 10−6

TLBO −2.16 × 100 −9.81 × 101 −1.93 × 100 −1.83 × 101 −1.01 × 10−3 −2.67 × 10−3 −2.81 × 101 −1.43 × 10−5 −7.00 × 100 −3.74 × 10−1 −6.00 × 10−6

DBO −2.18 × 100 −9.85 × 101 −1.94 × 100 −1.79 × 101 −2.73 × 100 −1.38 × 10−1 −2.81 × 101 −3.77 × 10−3 −7.00 × 100 −3.70 × 10−1 −5.74 × 10−2

COA −2.16 × 100 −9.82 × 101 −1.93 × 100 −1.69 × 101 −9.93 × 10−1 −1.96 × 10−1 −2.81 × 101 −3.14 × 10−4 −7.00 × 100 −3.73 × 10−1 −1.82 × 10−1

GWO −2.17 × 100 −9.83 × 101 −1.27 × 100 −1.75 × 101 −7.98 × 10−1 −8.52 × 10−1 −2.81 × 101 −1.60 × 10−3 −7.00 × 100 −8.44 × 10−1 −1.09 × 10−1

PSO −2.16 × 100 −9.81 × 101 −1.93 × 100 −1.43 × 101 −7.43 × 10−4 −9.41 × 10−5 −2.81 × 101 −7.14 × 10−5 −7.00 × 100 −3.74 × 10−1 −5.87 × 10−1

ABC −1.60 × 101 −2.26 × 102 −1.97 × 100 −1.43 × 101 −1.29 × 102 −2.19 × 100 −2.98 × 101 −3.52 × 100 −3.48 × 100 −1.65 × 10−1 −1.80 × 10−1

6. Conclusions and Future Works

This study proposes a teaching–learning optimization algorithm based on the cadre–mass
relationship strategy with the tutor mechanism (TLOCTO), which is an efficient optimizer for
complex optimization problems. It significantly enhances the exploration and repair reply
exploitation capabilities of algorithms by combining innovative strategies such as the new
learner strategy, the cadre–mass relationship strategy, and the tutor mechanism. Among these,
the cadre–mass strategy plays a crucial role in the TLOCTO algorithm by effectively improving
the algorithm’s global exploration capability. Additionally, the TLOCTO algorithm introduces
the tutor mechanism, effectively addressing the problem of falling into the local optima that
plagued the original algorithm. Through the coordination of these mechanisms, the TLOCTO
algorithm demonstrated outstanding performance. Moreover, for 53 different test functions, it
provided high-quality solutions, showcasing its adaptability and robustness when applied to
complex optimization problems. Specifically, a comparative analysis was conducted between
the TLOCTO algorithm and seven other optimization algorithms on 23 benchmark test functions
and CEC2020 test functions (Dim = 5, 10), demonstrating its remarkable search performance in
terms of convergence speed, solution accuracy, and stability. Furthermore, even when compared
to the new variant of TLBO and the champion algorithm of the CEC2020 test suite function,
TLOCTO still demonstrated strong competitiveness and superior performance on the CEC2020
(D = 20) test function. Furthermore, the TLOCTO algorithm successfully solved three mechanical
engineering design problems, confirming its superiority over other optimizers.

The implementation of TLOCTO opens up numerous possibilities for future research.
One avenue is to develop a variant of TLOCTO specifically tailored for multi-objective opti-
mization problems and to execute it accordingly. Additionally, we plan to utilize TLOCTO
in order to address various practical issues, such as bionic robotics, task assignment for
multiple agents, data clustering, and feature selection, among others.
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Appendix A

The set of benchmark test functions implemented in the experiments is described
in Tables A1–A3, and the benchmark test functions are classified in unimodal Table A1,
multimodal Table A2, and fixed-dimension multimodal Table A3.
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Table A1. Unimodal benchmark functions.

Function Dimensions Range fmin

f1(x) =
n
∑

i=1
x2

i
30/50/100 [−100, 100] 0

f2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30/50/100 [−10, 10] 0

f3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
30/50/100 [−100, 100] 0

f4(x) = maxi{|xi|, 1 6 i 6 n} 30/50/100 [−100, 100] 0

f5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

30/50/100 [−30, 30] 0

f6(x) =
n
∑

i=1
([xi + 0.5])2 30/50/100 [−100, 100] 0

f7(x) =
n
∑

i=1
ix4

i + random[0, 1) 30/50/100 [−1.28, −1.28] 0

Table A2. Multimodal benchmark functions.

Function Dimensions Range fmin

F8(x) =
n
∑

i=1
−xisin

(√
|xi |
)

30/50/100 [−500, 500] −418.9829 × d

F9(x) =
n
∑

i=1

[
x2

i − 10cos(2πxi) + 10
] 30/50/100 [−5.12, 5.12] 0

F10(x) = −20exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e 30/50/100 [−32, 32] 0

F11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30/50/100 [−600, 600] 0

F12(x) = π
n

{
10sin(πy1) +

n−1
∑

i=1
(yi − 1)2

[
1 + 10sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4) 30/50/100 [−50, 50] 0

F13(x) = 0.1

sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+(xn − 1)2[1 + sin2(2πxn)

]
+

n
∑

i=1
u(xi , 5, 100, 4)

30/50/100 [−50, 50] 0

Table A3. Fixed-dimension multimodal benchmark functions.

Function Dimensions Range fmin

F14(x) =

(
1

500 +
25
∑

j=1

1
j+∑2

i=1(xi−aij)
6

)−1
2 [−65.536, 65.536] 0.998

F15(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.0003

F16(x) = 4x2
1 − 2 · 1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10 2 [−5, 5] 0.398

F18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] 2 [−2, 2] 3

F19(x) = −
4
∑

i=1
ciexp

(
−

3
∑

j=1
aij

(
xj − pij

)2
)

3 [0, 1] −3.86

F20(x) = −
4
∑

i=1
ciexp

(
−

6
∑

j=1
aij

(
xj − pij

)2
)

[0, 1] −3.32

F21(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.1532

F22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.4028

F23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5364
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Table A4. Planetary gear train design optimization problem.

Objective Functions Constraints Diagram

Minimize:
f (x) = max | ik − i0k |, k = {1, 2, . . . , R}
where i1 = N6

N4
, i01 = 3.11, i0R = −3.11,

i2 =
N6(N1 N3+N2 N4)

N1 N3(N6−N4)
, IR = − N2 N6

N1 N3
, i02 = 1.84,

x = (N1, N2, N3, N4, N5, N6, p, m1, m2)
With bounds: p = (3, 4, 5),
m1 = (1.75, 2.0, 2.25, 2.5, 2.75, 3.0),
m2 = (1.75, 2.0, 2.25, 2.5, 2.75, 3.0), 17 ≤ N1 ≤ 96,
14 ≤ N2 ≤ 54, 14 ≤ N3 ≤ 51, 17 ≤ N4 ≤ 46, 14 ≤ N5 ≤ 51,
48 ≤ N6 ≤ 124, Ni = integer.

Subject to:
g1(x) = m3(N6 + 2.5)− Dmax ≤ 0,
g2(x) = m1(N1 + N2) + m1(N2 + 2)− Dmax ≤ 0,
g3(x) = m3(N4 + N5) + m3(N5 + 2)− Dmax ≤ 0,
g4(x) = |m1(N1 + N2)−m3(N6 − N3)| −m1 −m3 ≤ 0,
g5(x) = −(N1 + N2) sin(π/p) + N2 + 2 + δ22 ≤ 0,

g6(x) = −(N6 − N3) sin
(

π
p

)
+ N3 + 2 + δ33 ≤ 0,

g7(x) = −(N4 + N5) sin(π/p) + N5 + 2 + δ55 ≤ 0,
g8(x) = (N3 + N5 + 2 + δ35)

2 − (N6 − N3)
2 −

(N4 + N5)
2+2(N6 − N3)(N4 + N5) cos

(
2π
p − β

)
≤ 0,

g9(x) = N4 − N6 + 2N5 + 2δ56 + 4 ≤ 0,
g10(x) = 2N3 − N6 + N4 + 2δ34 + 4 ≤ 0, h1(x) = N6−N4

p = integer.

where, β =
cos−1((N4+N5)

2+(N6−N3)
2−(N3+N5)

2)
2(N6−N3)(N4+N5)

,
δ22 = δ33 = δ55 = δ35 = δ56 = 0.5, Dmax = 220.
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Table A5. Robot gripper problem.

Objective Functions Constraints Diagram

Minimize:
f (x) = −minzFk(x, z) + maxzFk(x, z)
With bounds:
0 ≤ e ≤ 50, 100 ≤ c ≤ 200, 10 ≤ f , a, b ≤ 150,
1 ≤ δ ≤ 3.14, 100 ≤ l ≤ 300.

Subject to:
g1(x) = −Ymin + y(x, Zmax) ≤ 0, g2(x) = −y(x, Zmax) ≤ 0,
g3(x) = Ymax − y(x, 0) ≤ 0, g4(x) = y(x, 0)−YG ≤ 0,
g5(x) = l2 + e2 − (a + b)2 ≤ 0,
g6(x) = b2 − (a− e)2 − (l − Zmax)

2 ≤ 0,
g7(x) = Zmax − l ≤ 0.

Where, α = cos−1
(

a2+g2−b2

2ag

)
+ φ,

g =
√

e2 + (z− l)2, φ = tan−1
(

e
l−z

)
,

β = cos−1
(

b2+g2−a2

2bg

)
− φ, y(x, z) = 2( f + e + c sin(β + δ)),

Fk =
Pb sin(α+β)

2c cos(α) .
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0.7854 1.508

f x x x

x x x x

x x x x x x x

= − +

+ +

+ + − +

  

With bounds:
1

2.6 3.6,x   
2

0.7 0.8,x 

3
17 28,x 

4
8.3,x 

5
7.3 ,x

6
2.9 3.9,x   

7
5 5.5.x   

Subject to: 
2

1 1 2 3
( ) 27 0,g x x x x= − +  2 2

2 1 2 3
( ) 397.5 0,g x x x x= − + 

4 3

3 2 6 3 4
( ) 1.93 0,g x x x x x−= − +  4 3

4 2 7 3 5
( ) 1.93 0,g x x x x x−= − +    

𝑔5(𝑥̅) = 10𝑥6
−3√16.91 × 106 + (745𝑥4𝑥2

−1𝑥3
−1)2 − 1100 ≤ 0, 

𝑔6(𝑥̅) = 10𝑥7
−3√157.5 × 106 + (745𝑥5𝑥2

−1𝑥3
−1)2 − 850 ≤ 0, 

7 2 3
( ) 40 0,g x x x= −  1

8 1 2
( ) 5 0,g x x x−= − +   

1

9 1 2
( ) 12 0,g x x x−= − 

10 6 4
( ) 1.5 1.9 0,g x x x= − + 

11 7 5
( ) 1.1 1.9 0.g x x x= − +    

 
Speed reducer design problem [45]. 

Force distribution and geometrical variables of the gripper mechanism [44].

Table A6. Speed reducer design problem.

Objective Functions Constraints Diagram

Minimize:
f (x) =

(
14.9334x3 − 43.0934 + 3.3333x2

3
)

∗0.7854x2
2x1 + 7.477

(
x3

7 + x3
6
)

+0.7854
(

x5x2
7 + x4x2

6
)
− 1.508x1

(
x2

7 + x2
6
)

With bounds:2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,
x4 ≤ 8.3, 7.3 ≤ x5, 2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5.

Subject to:
g1(x) = −x1x2

2x3 + 27 ≤ 0, g2(x) = −x1x2
2x2

3 + 397.5 ≤ 0,
g3(x) = −x2x4

6x3x−3
4 + 1.93 ≤ 0,

g4(x) = −x2x4
7x3x−3

5 + 1.93 ≤ 0,

g5(x) = 10x−3
6

√
16.91× 106 +

(
745x4x−1

2 x−1
3

)2
− 1100 ≤ 0,

g6(x) = 10x−3
7

√
157.5× 106 +

(
745x5x−1

2 x−1
3

)2
− 850 ≤ 0,

g7(x) = x2x3 − 40 ≤ 0, g8(x) = −x1x−1
2 + 5 ≤ 0,

g9(x) = x1x−1
2 − 12 ≤ 0, g10(x) = 1.5x6 − x4 + 1.9 ≤ 0,

g11(x) = 1.1x7 − x5 + 1.9 ≤ 0.
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