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Abstract: We introduce two new search strategies to further improve the performance of vegetation
evolution (VEGE) for solving continuous optimization problems. Specifically, the first strategy, named
the dynamic maturity strategy, allows individuals with better fitness to have a higher probability
of generating more seed individuals. Here, all individuals will first become allocated to generate
a fixed number of seeds, and then the remaining number of allocatable seeds will be distributed
competitively according to their fitness. Since VEGE performs poorly in getting rid of local optima, we
propose the diverse mutation strategy as the second search operator with several different mutation
methods to increase the diversity of seed individuals. In other words, each generated seed individual
will randomly choose one of the methods to mutate with a lower probability. To evaluate the
performances of the two proposed strategies, we run our proposal (VEGE + two strategies), VEGE,
and another seven advanced evolutionary algorithms (EAs) on the CEC2013 benchmark functions
and seven popular engineering problems. Finally, we analyze the respective contributions of these
two strategies to VEGE. The experimental and statistical results confirmed that our proposal can
significantly accelerate convergence and improve the convergence accuracy of the conventional VEGE
in most optimization problems.

Keywords: evolutionary computation; diverse mutation strategies; dynamic maturity strategy;
vegetation evolution

1. Introduction

Since evolutionary computation (EC) does not depend on the characteristics of opti-
mization problems and has the advantages of parallelism and robustness, these algorithms
have been successfully applied to various real-world applications, such as drug design [1-3],
Twitter bot detection [4-6], anomaly detection [7,8], and engineering [9-11]. With their
popularity in the field of optimization, numerous new EC algorithms have been proposed.
For example, invasive weed optimization (IWO) [12] was inspired by the strong survival
capacity of colonizing weeds to imitate the robustness, adaptation, and randomness of colo-
nizing weeds. The remora optimization algorithm (ROA) simulates the parasitic behavior of
remora to continuously optimize the current population [13], beluga whale optimization
(BWO) simulates three phases of beluga whales (i.e., exploration, exploitation, and whale
fall) to find the global optimum [14], and plant competition optimization (PCO) [15] assumes
each feasible solution during optimization as a plant and competes with its neighbors to
realize optimization.

As one of the newest EC algorithms, vegetation evolution (VEGE) repeatedly simulates
the behavior of plants in different periods to balance exploration and exploitation from
a fresh perspective [16]. Due to the superior performance of the conventional VEGE
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compared with some classic EC algorithms, e.g., differential evolution (DE) [17], particle
swarm optimization (PSO) [18], and the enhanced fireworks algorithm (EFWA) [19], it
has attracted widespread attention and several improved versions have been proposed.
For example, Yu et al. introduced different mutation strategies into the growth period
and maturity period to increase population diversity [20] and proposed multiple different
generation strategies to increase the global search ability [21]. Additionally, they also
analyzed the effects of various operations and parameter settings on the performance
of the conventional VEGE [22]. Although many pieces in the literature have shown the
effectiveness of VEGE, there is still much room for improvement.

The main objective of this paper is to introduce two new search strategies to further
improve the search efficiency of VEGE and propose an improved VEGE to better balance
search efficiency and population diversity. More specifically, the first strategy, i.e., the
dynamic maturity strategy, appropriately introduces competition among individuals to
generate more potential seed individuals. In this strategy, we consider the concept of the
proximate optimal principle (POP), which suggests that well-performing solutions have
similar structures. Therefore, we dynamically allocate computational resources to plants in
the seeding operator, where the better individuals can generate more seeds and vice versa.
In the second strategy, i.e., the diverse mutation strategy, we observe the relatively weak
capacity of VEGE for getting rid of local optima, and the ensemble of the mutation module
can improve the ability to escape from trapped local areas. In the numerical experiments,
the 30-D and 50-D CEC2013 benchmark functions are employed to evaluate the overall
optimization performance of our proposed improved VEGE, and seven engineering prob-
lems are adopted to investigate the capacity of our proposal in real-world scenarios. Seven
advanced EAs and the conventional VEGE are the competitor algorithms. In addition, we
also investigate contributions of the two strategies to performance improvement and their
application scenarios. Finally, we provide some open topics for free discussion.

The remainder of this paper is organized as follows. We briefly introduce the optimiza-
tion framework of the conventional VEGE in Section 2 and give a detailed description of
two proposed strategies in Section 3. The parameter settings of the analysis experiment are
given in Section 4. We then analyze the effectiveness of the two proposed strategies as well
as their strengths and weaknesses in Section 5. Finally, we conclude our work in Section 6.

2. Vegetation Evolution

Since the genetic algorithm (GA) [23,24] has sparked a wave of research in the EC com-
munity, many well-known EC algorithms have been proposed one after another. Initially,
practitioners borrowed biological evolution or the intelligent behavior of animal groups to
design new EC algorithms. Then, many natural phenomena as well as human culture have
also become sources of inspiration and developed various novel EC algorithms. However,
only a few of these derive inspiration from plants to propose new algorithms, such as the
flower pollination algorithm [25] and dandelion optimizer [26]. Fortunately, there has also
recently been attention to developing new algorithms inspired by the behavior of different
plants. As one of the latest members of this branch, the conventional VEGE simulates
the common life cycle of plants derived from observations of different plants rather than
simulating the behavior of a particular plant to find the global optimum.

Similarly to most heuristic evolutionary algorithms, the conventional VEGE is also
population-based and iteratively improves the accuracy of individuals (candidate solutions)
to converge to the global optimum. Here, a real plant is modeled as an individual, and each
individual sequentially goes through two distinct life periods: growth and maturity. Among
these, the growing individuals are responsible for local search, while the mature individuals
are responsible for global search. Thus, the unique contribution of the conventional VEGE
is to interactively switch between two different search capabilities to balance exploitation
and exploration well. A visual demonstration of the the conventional VEGE is shown
in Figure 1.
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Figure 1. The optimization process of the conventional VEGE, and (a—d) demonstrate initialization,
growth period, maturity period, and selection, respectively. The dashed arrows indicate the growth
vector of individuals, and all red dots indicate generated seed individuals.

The general optimization process of the conventional VEGE can be summarized simply
as follows. Usually, random initialization is used to generate an initial population consisting
of multiple individuals. Equation (1) represents the process of random initialization.

X3 X1 X1z vt X

X3 Xo1 X2t Xom
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where LB; and UB; are the lower and upper bounds of the j" dimension; 1 and m are the
population size and the dimensionality of the optimization problem, respectively; and 71 is
a random number in (0, 1). These randomly initialized individuals first enter the growth
period, and each individual generates only one offspring individual via Equation (2).

XM =X+ GROGD @)

where GR is a vector to denote the growth radius of plants in every dimension, and GD
in (—1, 1) represents the growth direction of plants in every dimension. If the generated
offspring individual is better than its parent individual, it will replace the parent individual,
otherwise, the parent individual is directly copied to the next generation. After going
through a number of growths, i.e., reaching a predefined maximum number of growths,
all individuals enter the maturity period. Then, each individual will generate multiple
seed individuals by the DE/cur/1-like mutation strategy [17] in Equation (3). Note that
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this operation will only be performed once, and the individuals that survive to the next
generation will enter the growth period again.

Xseed = Xi + MS © (Xrl - XrZ) (3)

where MS is the moving scale and is set as a random vector in (—2, 2) to simulate the uncer-
tamty from real environments such as the wind, water flow, and animal behaviors. X,; and
X, are two mutually different individuals from X;. Subsequently, all current individuals
and seed individuals are mixed to select the best n (n: population size) individuals to enter
the next generation according to their fitness ranking. Finally, these selected individuals
will start a new cycle, that is, go through two different periods again until a termination
condition is satisfied.

3. Our Proposal: VEGE with Dynamic Maturity Strategy and Diverse
Mutation Strategy

The conventional VEGE extracts and simulates some common characteristics of the
plant life cycle to gradually update the population, where each individual is treated equally
and allocated the same resources, such as the same number of growths and seeds. Actually,
the real plant ecosystem is much more complex than observed, and differences exist
between different species and even between different individuals of the same species.
Here, we introduce two new search strategies, i.e., the dynamic maturity and diverse
mutation strategies, into the conventional VEGE to simulate the survival mode of real
plants more realistically. To better understand the procedures of our proposal, the flowchart
is visualized in Figure 2.

Growth period: exploitation phase

Initialize the population i Implement exp}mtatlve BN e
and parameters search operator in Eq. (2)

: '

Growth period

Start

terminated
S S
. Mutate seeds by Generate seeds Allocate the seeds ‘
Populat date <+— . .
opuia ‘1“ update Algorithm 2 by Eq. (3) by Algorithm 1
Maturity period
terminated
1 : Maturity period: exploration phase
Optimization ... SO
terminated
l Yes
End

Figure 2. The flowchart of our proposal.

3.1. Dynamic Maturity Strategy

Due to different living environments, plants need cooperation to ensure the continua-
tion of species, and they also often face competition for survival resources, such as space
and nutrients. The diversity of individuals enables them to adapt to changing environments
and not be eliminated by nature. However, the conventional VEGE divides all resources
equally, and each individual generates exactly the same number of seed individuals. Based
on the competitive relationship that exists in nature, we introduce the competitive relation-
ship into the conventional VEGE to reasonably allocate the number of seed individuals
generated by each individual.
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Suppose the total number of seed individuals that can be generated in each generation
is SI. We employ the proposed dynamic maturity strategy to assign the number of seed
individuals for each individual in the maturity period. First, each individual will generate
the same number of k seed individuals, and then the remaining (SI — k x n) seed individu-
als will be allocated in a competitive manner based on the fitness of all individuals. Here,
we use Equation (4) to determine the probability of each individual being selected and use
a roulette wheel to allocate the remaining seed resources. Finally, individuals with better
fitness have a higher probability of generating more seed individuals.

exp(})

pi - SOftmaX(l) - < 1.
j=1exp(7)

4
f @)

where p; is the probability that the i-th individual is selected, and f; is the fitness of the i-th
individual. Algorithm 1 describes the pseudocode of this strategy.

Algorithm 1 Dynamic maturity strategy

1: Obtain the current population X and the fitness value f.
: Initialize the seeding resources SR = [k, k, ..., k] for each plant.
: Calculate the probability p for each plant by Equation (4).
: Calculate the cumulative probability CP.
fori=0,...,(SI—kxmn)do
Generate a random value 7 in (0, 1).
forj=1,...,ndo
if CPj_1 <r < CP; then
SR]',l — SR]‘,1 +1.
end if
end for
: end for
Output the allocated seeding resources SR.

O PN TP

_ =
@ NP2

Since we are taking the minimization problem as an example, the probability is
calculated by taking the inverse of fitness. For maximization problems, fitness can be
used directly.

3.2. Diverse Mutation Strategy

While mutation is an important method for increasing population diversity, the con-
ventional VEGE did not introduce any mutation strategy when it was originally designed.
Later, some practitioners realized this defect and adopted different mutation methods to
simulate external mutation and internal mutation for individuals in growth and maturity
periods, respectively [20]. However, there are various ways of mutation in nature since the
complexity of the ecosystem is far beyond our imagination. Thus, we introduce multiple
different mutation methods only for seed individuals to provide more diversified potential
individuals. In other words, each newly generated seed individual will randomly select
one of the following three methods with a uniform probability. Note that these mutations
are performed on the seed individuals before their evaluation.

*  The genes of a seed individual add a Gaussian noise with a 10% probability. Here,
the Gaussian noise is generated by multiplying a standard Gaussian noise by 0.05 x
(search upper bound—search lower bound).

*  The seed individual mutates with its parent by a crossover operator with equal proba-
bility.

*  The genes of a seed individual are replaced with a random value in the global space
with a probability of 1%.

Algorithm 2 describes the procedure of this diverse mutation strategy.
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Algorithm 2 Diverse mutation strategy

1: fori=0,...,SIdo

2:  Generate a random value 7 in (0, 1).
3:  ifr <1/3 then
4 forj=0,...,Ddo
5: Generate a random value 6 in (0, 1).
6: if 0 < 0.1 then
7 Generate a random value ¢, which follows the normal distribution N(0,1).
8 Xseed,j = Xseea,j +0.05 x ¢ x (UBj — LB}). % Mutation strategy 1
9: end if
10: end for
11: elseif1/3 <r < 2/3 then
12: forj=0,...,Ddo
13: Generate a random value 6 in (0, 1).
14: if 6 < 0.5 then
15: Xseed,j = Aseed,j-
16: else
17: Xseed,j = Xparent j- % Mutation strategy 2
18: end if
19: end for
20: else
21: Generate a random value 6 in (0, 1).
22: if 6 < 0.01 then
23 Generate a random value ¢ in (0, 1).
24: Xseedj = LBj + ¢ x (UBj — LB)). % Mutation strategy 3
25: end if
26:  end if
27: end for

28: Output seeds after diverse mutation strategies.

So far, the two proposed strategies have been explained, and they are both improve-

ments for the maturity period. Algorithm 3 gives the general framework of the conventional
VEGE combined with the two proposed strategies.

Algorithm 3 The general framework of the conventional VEGE combined with the two
proposed strategies. Steps 8 and 10 are our proposed new strategies, respectively.

1

: Initialize the population randomly.
: Evaluate the fitness of all initial individuals.
: if all individuals are in the growth period then

fori=1,...,ndo
Perform the growth operation for i-th individual using the method of the conven-
tional VEGE.

end for

else

Determine the number of seed individuals for each individual by Algorithm 1.

All individuals generate seed individuals in turn.

Use the proposed diverse mutation strategy in Algorithm 2 for generated seed
individuals.

Evaluate all seed individuals after undergoing mutation.

Mix the current population and all seed individuals to select the next generation.

: end if
: Output the found global optimum.
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4. Experimental Evaluations

Three subsections are involved: benchmark functions, competitor algorithms and the
parameter setting, and experimental results.

4.1. Benchmark Functions

Since the 28 benchmark functions from the CEC2013 test suite [27] have most of the
common features, we run (the conventional VEGE + two strategies), the conventional
VEGE, DE, PSO, DE with self-adaptive populations (DE-SAP), phasor PSO (PPSO), social
ski-driver optimization (SSDO), RIME, and snow ablation optimization (SAO) on two
different dimensions of these functions to analyze the effectiveness of our proposed two
strategies. Table 1 gives a detailed summary of the CEC2013 benchmark functions including
the multimodal, asymmetry, non-separable variables, and the global optimum value.

Table 1. Summary of the CEC2013 suite: Uni. = unimodal function, Multi. = multimodal function,
Comp. = composition function. Search space for each function is [-100, 1001P.

Fun. Description Feature Optimum
fi Sphere Function —1400
f2 Rotated High Conditioned Elliptic Function —1300
f3 Rotated Bent Cigar Function Uni. —1200
fa Rotated Discus Function —1100
fs Different Powers Function —1000
f6 Rotated Rosenbrock’s Function —900
f7 Rotated Schaffers F7 Function —800
fs Rotated Ackley’s Function —700
fo Rotated Weierstrass Function —600
f10 Rotated Griewank’s Function —500
f11 Rastrigin’s Function —400
fi2 Rotated Rastrigin’s Function —300
fi3 Non-Continuous Rotated Rastrigin’s Function Multi. —200
fia Schwefel’s Function —100
fis Rotated Schwefel’s Function 100
f16 Rotated Katsuura Function 200
fi7 Lunacek Bi-Rastrigin Function 300
fis Rotated Lunacek Bi-Rastrigin Function 400
f19 Expanded Griewank’s plus Rosenbrock’s Function 500
f20 Expanded Scaffer’s F6 Function 600
fa1 Composition Function 1 (n = 5, Rotated) 700
f Composition Function 2 (n = 3, Unrotated) 800
f2 Composition Function 3 (n = 3, Rotated) 900
foa Composition Function 4 (n = 3, Rotated) Com 1000
fo5 Composition Function 5 (n = 3, Rotated) P 1100
f2 Composition Function 6 (n = 5, Rotated) 1200
fo7 Composition Function 7 (n = 5, Rotated) 1300
f2s Composition Function 8 (n = 5, Rotated) 1400

Search space: [—100, 100]P

Moreover, we investigate the robustness of our proposal in real-world applications.
Seven popular engineering optimization problems are employed as test functions, which
are listed in Table 2 and were provided by the ENOPPY library [28].

Given that the original versions of all techniques cannot solve the constrained opti-
mization problems, we equip all EAs with the static penalty function [29], which is defined
by Equation (5)
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F(R;) = f(R;) +w % ¥ (max(0, gi(R:)) )

i=1
where F(-) is the fitness function, while f(-) and g;(+) are the objective function and constraint
function, respectively. w is a constant set to 107 by default in the ENOPPY library.

Table 2. Summary of seven engineering optimization problems: Dim. = dimension size.

Name Abbr. Dim. The Number of Constraints

Welded Beam Problem WBP 4 7
Compression Spring Problem csp 4 4
Speed Reducer Problem SRD 7 11
Three Bar Truss Problem TBTD 2 3
Cantilever Beam Problem CBD 5 1
Tubular Column Problem TCD 2 6
Corrugated Bulkhead Problem CBHD 4 6

4.2. Competitor Algorithms and Parameter Settings

To ensure the fairness of the comparison, we use the number of fitness evaluations to
terminate the comparative experiments, and the maximum number is set to 1000 x dimension
for the CEC2013 28 benchmark functions and 20,000 for engineering problems. In addition,
each dimension of each function is run 30 times independently to avoid randomness. Table 3
shows the parameter settings of eight EC algorithms, and the parameter configuration
of the two VEGE algorithms is kept exactly the same. In addition, all parameters of the
competitor algorithms follow the recommended setting from the corresponding paper,
respectively, and the compared DE, PSO, DE-SAP, PPSO, and SSDO are provided by the
MEALPY library [30].

Table 3. The parameter settings of eight comparison algorithms.

EAs Parameters Value
Population size 100
DE (1995) [17] Scaling factor F 1
Crossover rate Cr 0.9
Mutation strategy DE/cur-to-rand /1 /bin
Population size 100
Inertia factor w 1
PSO (1995) [18] Coefficients ¢1 and ¢» 2.05
Max. and min. speed 2,-2
Population size 100
DE-SAP (2006) [31] Encoding method w absolute encoding (Abs)
PPSO (2019) [32] Population size 100
SSDO (2020) [33] Population size 100
Population size 10
Growth cycle GC 6
Growth radius GR 2
VEGE (2022) [16] Growth direction GD a random number in [—1,1]
Total # of seed individuals 60
Moving scaling MS a random number in [—2,2]
Population size 100
RIME (2023) [34] pgrameter w 5
SAO (2023) [35] Population size 100
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4.3. Experimental Results

Tables 4 and 5 give the experimental and statistical results of the numerical experiments
on the 30-D and 50-D CEC2013 benchmark functions. We applied the Kruskal-Wallis test
and Holm’s multiple comparison test to check whether there is a significant difference
between these at the termination of the competitor algorithms. +, ~, and — are applied to
represent that our proposal is significantly better, with no significance, and significantly
worse with the compared method, and the best value is in bold. Due to the limitation of
space, the optimization convergence curves of the representative functions are provided in
Figures 3 and 4. Table 6 provides the detailed optimization results on seven engineering
problems, and the convergence curves of the engineering problems are presented in Figure 5.
Tables 7 and 8 summarize the ablation experimental results to investigate the respective
contributions of our proposed two strategies to performance improvement. For the sake of
simplicity, VEGE + dynamic maturity strategy is referred to as VEGE-i, VEGE + diverse
mutation strategy is referred to as VEGE-ii, and VEGE + two strategies is referred to as
the Proposal.
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Table 4. Experimental and statistical results on 30-D CEC2013 benchmark functions. fij—f5: unimodal functions; fs—fso: basic multimodal functions; f;1—fos:
composition functions (Proposal: VEGE + two proposed strategies).

Func. DE PSO DE-SAP PPSO SSDO RIME SAO VEGE Proposal
[ mean 2.44x10* + 2.98x10* + 6.71x10* + —2.71x10% + 4.62x10* + —1.38x10% + 9.49%10% + —1.40x10% + —1.40x10°3
std 2.97x10% 1.14x10* 8.84x10° 6.02 %102 3.06%x103 6.43x10° 4.06%103 8.37x10~1 1.63x107!
f, mean 2.79%108 + 3.82x108 + 1.25x10° + 5.84x107 + 6.36x108 + 2.62x107 + 1.04x108 4+ 5.43x100 ~ 5.35x10°
std 8.22x107 2.54x108 4.14x108 2.56x107 1.25%x108 1.15%x107 491x107 2.36x10° 2.50x10°
f, mmean 9.14x1010 4 2.19x10%* + 3.97x10Y7 4 497x1010 4 7.34x10% 4+ 1.27x10% 4+ 8.36x1010 4 2.98x107 + 5.73x10°
std 1.12x 1010 8.96x10 1.64x10'8 2.91x10%0 1.11x 10 1.52x108 5.66x1010 4.89x107 9.05x10°
f, mean 1.57x10° + 1.95x10° 4+ 1.18x10° + 7.54x10% + 6.27x10% + 3.29%x10% + 5.73%x10% + 1.54x10* ~ 1.39x10*
std 1.85x10* 6.80x10% 2.32x10% 1.61x10* 2.21x103 1.03x10* 6.35%x10% 6.52x103 5.15x10%
s mean 6.44x10° + 5.19%x10% + 7.78x10% + 6.52x102 + 4.23x10* + —8.18%10? + 7.37%x10% + —9.97x10% + —9.99x102
std 1.23x10° 1.79x10% 2.44x10% 1.91x10° 8.02x10° 5.99x 101 4.18x10° 4.32x10° 2.07x107!
f, mean 1.12x10% + 426x10°% + 1.35x10* + —6.05%x10% + 7.16x10% + —8.19%x10? + —2.77%x10% + —8.32x10% ~ —8.40%10?
std 4.32x10? 3.41x10° 4.60x103 1.20%x 102 1.04x10° 2.88x 101 2.39x102 3.04x 101 3.62x10!
I3 megn 2.10%10° 4+ 3.38x10° 6+ 1.83x108 8+ 3.58x10° 6+ 4.37%107 7+ 1.08x10° N 2.14x10° 5+ 3.42%10° 7+ 1.40><10i
st 1.32x10 4.68x10 1.85%10 5.59%10 2.89%10 1.66x10 1.74x10 1.24x10 4.08x10
f; Tean —6.79%x10% ~ —6.79%10% ~ —6.79%10% ~ —6.79%10% ~ —6.79%10% ~~ —6.79%10% ~ —6.79%10% ~ —6.79%10? ~ —6.79x10%
std 6.05x102 4.48x102 5.20x102 7.12x1072 6.03x1072 6.93x1072 8.65x1072 444x%102 4.68x1072
f, mmean —5.59%x10% + —5.62x10% + —5.57x10% + —5.61x10% + —5.58x10% + —5.75x10% — —5.70x10% ~ —5.68x10% ~ —5.71x10%
std 1.44x10° 3.92x10° 1.30x10° 2.58x10° 1.01x10° 5.03x10° 3.17x10° 3.98x10° 4.13x10°
fip  Mean 2.74%10% + 4.82x10° + 9.35%x10° + —1.02x10! + 6.07x10° + —4.46x10? + 1.07x10% 4+ —4.96x10% + —4.97x10%
std 5.09x102 2.05x10° 1.89x10° 2.76x10% 6.06x102 2.19x 10! 4.90x102 6.48x1071 6.01x1071
fi;  mean 1.04x10% + 3.71x10% + 6.69%x102 + 5.85x10! + 3.94x102 + —2.88x10% + —4.05x10 + 1.03x10% + —3.84x10?
std 3.34x 101 1.66x 102 1.60% 102 9.32x 10" 4.50%10* 1.77x10! 7.24%10! 1.03x 102 4.27x10°
fip, ean 2.65%10% + 4.39%x10% + 7.95%x102 + 1.89x10% + 447x10% + —1.55x10% — 6.56x 10! ~ 1.54x10% + 5.69% 10!
std 4.69x 101 1.67x 102 1.27 %102 1.09x 102 3.80x10* 3.68x 101 7.28x 101 1.10x 102 9.84x 10"
fiz  Tean 3.21x10% + 5.17x10% + 7.94x102 + 3.62x10% + 5.03x102 + 1.06x 10! — 1.66x10% ~ 3.70x10% + 1.91x 102
std 3.82x10! 1.60x 102 1.62x 102 9.39%x 10! 4.31x10% 2.59% 10! 6.33x 101 1.24x 102 7.60x10!
fig MR 6.03x10% + 8.31x10% + 8.35%x10° + 5.18x10° + 8.37x10° + 2.42x10° + 5.32x10% + 459%10° + 2.49%10?
std 3.85x 102 2.80% 102 2.86x10% 8.16x 102 2.19% 102 421x10% 7.98 %102 4.93%x10% 1.66 x 102
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Table 4. Cont.

Func. DE PSO DE-SAP PPSO SSDO RIME SAO VEGE Proposal
fi5  mean 8.11x10% + 8.57x10% + 8.46x10°% + 6.32x10% + 7.82x10% + 5.08x10% + 5.80x10% + 452x10% ~ 4.20%103
std 3.64x10% 4.61x10? 3.11x102 8.14x102 2.94x102 6.66x10% 5.23x102 4.96 %102 5.88 x 102

fig  Mean 2.03x10% + 2.03%x10% + 2.03x102 + 2.02x102 + 2.03%x102 + 2.02x102 + 2.01x10% ~ 2.02x10% + 2.01x10?
std 3.23x10°1 3.48x1071 3.15x10°1 5.98x101 3.54x10°1 5.34x10~1 3.59x10° 1 448x10°1 3.57x10~1

f; mean 1.75x103% 4+ 1.50x103 + 1.63x10°% 4+ 1.00x10°% + 1.18x103 + 5.03%x10% + 7.43x10% 4+ 1.15x103 4+ 3.54 x 102
std 1.68x 102 2.41x10% 2.53x 102 1.01x 102 3.80x 10! 2.76x 101 8.99x 10! 1.94x 102 5.91x10°

fig ean 1.71x10% + 2.04x10° + 3.31x10° + 1.70x10% + 2.60%x10% + 6.28x10% — 1.23x10% 4+ 1.92x10% + 7.08x102
std 1.23x102 4.13x%10? 3.50x 102 2.82x10% 1.07 x 102 3.70x10* 1.94x 102 3.64 %102 8.71x 10!

frg  Mean 1.13%x10° + 2.93%x10° + 2.95%x10° + 2.72x103 + 6.88x10° + 5.19x10% ~ 8.66x10° + 5.32x102 + 5.19%x10?
std 5.39x10% 3.10%10° 1.44x10° 5.16x103 2.20%10° 3.79x10° 1.19x10% 5.45%x 109 6.41x10°

fp Tean 6.14x10% ~ 6.15x10% + 6.15x10% + 6.15%x10% + 6.15x10% + 6.13x10% — 6.15x10% + 6.15x10% + 6.14x10%
std 1.94x107! 4.84x101 2.26x107 1.81x101 1.95x10~4 7.51x107! 4.62x1071 1.96x1071 7.55x107!

fop Mean 410x10% + 3.71x10% + 450%x10° + 2.05%x10° + 3.20%10° + 1.67x10°% — 2.59%10% + 1.83x10% + 1.69x10°
std 1.88x 102 6.52 %102 5.64 %102 1.24x10? 8.10x10! 2.63 %102 1.85x 102 2.45%x10% 2.69 %102

fp, mean 7.31x10°% + 9.77x10% + 9.86x10° + 6.56x10% + 1.01x10* + 3.78x10% + 7.44x10% 4+ 6.26x10% + 1.21x103
std 3.42 %102 5.71 %102 4.61x10% 8.86 %102 2.56 %102 4.96x10% 9.26 %102 7.09x 102 1.40 x 102

fpy mean 9.06x10% + 9.52x10° + 9.69%x10° + 7.59x10% + 9.62x10° + 6.14x103 ~ 7.86x10% 4+ 5.86x10% ~ 5.85x 103
std 3.24 %102 3.09x 102 3.76x10% 7.65x102 2.87 %102 9.04 %102 1.11x103 6.87 %102 7.33 %102

fp, mean 1.31x10% + 1.31x10% 4+ 1.36x10% + 1.32x10% + 1.36x10% + 1.26x10° — 1.29x10% 4+ 1.30x10% + 1.28x103
std 3.56x10° 8.40x10° 1.77x10! 7.86 %109 1.35x 101 1.02x 101 1.28 x 10! 1.34x 10! 1.12x10!

fps mean 1.41x10% + 1.42x10% + 1.45x10% + 1.43%x10% + 1.47x10% + 1.38x10° — 1.42x10% 4+ 1.43%x10% + 1.40x10°
std 6.05x10° 8.92x10° 9.25x10° 1.34x10! 1.52x10! 8.43x10Y 1.31x10! 1.42x10! 1.62x 10!

fpe  MEAN 1.52x10°% ~ 1.58x103 + 1.61x103% 4+ 1.59x10% 4+ 1.60x103 + 1.52x10°% ~ 1.56x103 + 1.53x10° ~ 1.51x103
std 7.56x10! 4.77 %101 3.51x 10! 5.02x 10! 3.29%x 101 7.11x10! 5.99x 10! 8.66x10! 8.33x10!

f,y, mean 2.71x10° + 2.72x10° + 3.11x10° + 2.75%10° + 3.21x10% + 2.26x10° — 2.55x10% + 2.67x10° + 2.43%10°
std 2.90x 101 8.05x 10" 1.33x 102 7.33x 10! 1.20x 102 1.00x 102 9.49x 10" 1.12x 102 8.71x10!

fpg Tean 491x10° + 6.10x10% + 7.41x10% + 5.04x103 + 5.70x10% + 2.32x10°% — 445%10° + 4.93%x10° + 3.64x103
std 2.10x10? 7.46x 102 6.90x 102 5.27x10% 1.83x 102 4.34x10? 3.91x102 4.48%10? 1.22x103

+/~=/—: +/~=/—: +/~/—: +/~/—: +/~=/—: +/~/—: +/~=/—: +/~/—:
25/3/0 27/1/0 27/1/0 27/1/0 27/1/0 13/4/11 23/5/0 20/8/0
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Table 5. Experimental and statistical results on 50-D CEC2013 benchmark functions.

Func. DE PSO DE-SAP PPSO SSDO RIME SAO VEGE Proposal

f, mean 7.75%10% + 6.46x10% + 9.55x10% + 1.34x10% + 7.03%x10% + —1.28x10% + 2.36x10% + —1.39x10% 4+ —1.40x103
std 7.23%103 1.47x10% 1.11x10* 9.91x10? 3.31x103 2.69x10! 5.14x103 2.03x10° 1.07x10°

f, mean 1.11x10° + 1.63x10° + 3.68x10° 4+ 1.47x108 + 1.83x10% + 7.47x107 + 2.06x10% 4+ 9.29x10° — 1.15x107
std 1.34x108 8.33x 108 8.69x 108 4.46x107 3.93x108 1.95x107 6.91x107 2.54x10° 2.89x10°

f, mean 2.92x10M + 9.75x 1014 + 5.17x10%7 + 6.95x1010 + 429%101 + 3.33%x10° + 1.19x 101 + 221x108 + 7.26x107
std 2.16x10%0 3.15x 1015 1.79% 1018 2.88x10%0 4.17x10%3 4.83x10° 4.18x1010 4.31x108 1.70x 108

f, mean 2.76x10° 4+ 2.95x10° + 1.85%10° + 1.20%x10° + 8.59x10* + 6.49x10* + 8.72x10* + 1.06x10%* — 1.47x10%
std 2.24x10% 9.53x10% 5.35x10% 1.95x10* 3.71x103 1.35x10% 6.38x103 4.20x103 4.77x103

fs mean 419x10* + 1.06x10% + 9.11x10* + 1.51x10° + 3.70x10* + —4.03%x10% + 9.54x10° 4+ —9.95%x102% + —9.98x 102
std 496x10° 6.02x10% 3.08 x10% 1.90x10° 6.90x103 1.34x102 3.43x103 1.36x10° 6.83x1071

fo mean 6.88x10°% + 5.05x10% + 1.28x10%* + —4.65%x10% + 6.72x10% + —7.86x10% ~ 4.62x10% + —8.04x10% ~ —8.11x 102
std 9.37x10? 2.49x103 3.80x103 1.17x10% 5.61x10? 5.00x10! 4.09x10% 4.49%x10! 4.28x10!

f, mean 8.19x10° + 2.86x107 + 3.61x108 + 497x100 + 1.02x107 + 4.38x10° ~ 5.85x10° ~ 3.95x100 + 4.69x10°
std 7.36x10% 4.76x107 3.59x 108 7.04x10° 3.79x10° 6.13x10% 2.37x10° 8.69x10° 8.88x10%

f mmean —6.79%x10?% ~ —6.79%x10% ~ —6.79%x10% ~ —6.79%x10? ~ —6.79%x10?% ~ —6.79%x10% ~ —6.79%x10% ~ —6.79%x10% ~ —6.79% 102
std 3.54x102 3.53x102 4.84x1072 6.62x102 3.84x102 5.28 x 102 5.53x102 4.25%x1072 3.67x1072

f, mmean —5.24x10% 4+ —5.30%10% 4+ —5.22x10% + —5.28%x10% + —523%x10% 4+ —5.47x10% — —5.40%x10% + —5.38x10% + —5.43 %102
std 1.23x10° 4.42x10° 1.91x10° 3.59x10° 1.33%x10° 5.63x10° 3.54x10° 4.62%10° 5.21x10°

frp mean 8.37x10% 4+ 9.74x10% + 1.67x10* + 5.27x10% + 1.00x10* + —2.63x10% + 2.51x10% + —4.88x10% ~ —4.89x102
std 1.32x10% 2.64x10° 2.67x103 3.40x 102 6.53x 102 7.04x 10! 7.06x 102 1.88x 100 2.29x10°

fy mean 9.78x10% 4+ 9.69x10% + 1.08x10% + 4.05x10% + 7.17%x10% + —7.11x10" + 2.72x10% + 5.33x10% + —3.66x102
std 7.25x101 2.36x10? 2.16x10? 1.12x 102 4.65x10! 4.88x10! 7.64x101 1.51x 102 7.80x10°

f, mean 1.10x10% + 9.74x10% + 1.31x10% + 5.70x10% + 8.89x10% + 8.24x10! — 3.89x10% ~ 5.69%x10% 4+ 4.08x102
std 1.07 x 102 2.32x102 1.68x 102 1.08x 102 4.11x10! 6.73x10! 9.51x10! 1.55x 102 1.30% 102

fiz mean 1.18x10% + 1.02x10% + 1.31x10% + 7.92%102 + 8.97x10% 4+ 2.89x10% — 5.05x10% — 7.81x10% + 5.80x 102
std 1.08x102 1.87x102 1.61x102 8.04x10! 3.70x 10! 7.01x 10" 8.49x10! 1.59x 102 1.35%10?

fig Mean 1.12x10* + 1.53x10%* + 1.49%x10* + 1.02x10* + 1.52x10% + 6.11x10% + 1.08x10* + 8.28x10° + 3.27x 102
std 4.80x10? 7.13x102 5.68x 102 1.24x103 4.71x102 7.76 x 102 1.21x103 9.40x10? 1.62x10?
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Table 5. Cont.

Func. DE PSO DE-SAP PPSO SSDO RIME SAO VEGE Proposal
fi5  mean 1.50x10% + 1.56x10% + 1.58x10%* + 1.27x10* + 1.51x10% + 1.08x10% + 1.23x10%* + 8.77x10% ~ 8.67x103
std 3.75x10? 4.18x10? 3.84 %102 1.39x10° 5.10x 102 1.10x103 9.49x 10?2 7.62%10? 8.16x 102

fig mean 2.04x10% 4+ 2.04x10% 4+ 2.04x10% + 2.03x10% + 2.04x10% 4+ 2.03x10% 4+ 2.02x10% ~ 2.03%x10% + 2.02x102
std 3.34x107! 3.08x107! 5.68x101 7.99x10°1 2.64x1071 6.25x101 4.24x107! 5.45x10~1 6.19x10°1

f, mean 436x10% + 2.69%x10% + 2.34x10° + 1.60x10% + 1.69x10% + 8.28x10% + 1.19x10% + 2.12x10% + 4.09%102
std 4.57 %102 5.31x10? 2.83x102 1.54x102 2.83x10! 6.32x10! 1.05% 102 3.14x 102 9.50%10°

fig  mean 3.99x10°% + 4.00x10% + 4.75x10% + 3.02x10° + 3.78x10% + 9.54x10% ~ 2.00x10% + 3.45%x10° + 1.02x103
std 2.33%x10? 6.43 %102 4.75% 102 2.93x10? 1.14x10% 8.31x 10! 2.36x102 5.13x 102 1.25x102

fio TMean 2.71x10° + 6.27x10° + 2.07x10° + 4.33x10% + 3.27x10° + 5.56x10% 4+ 1.59x10* + 5.68x10% + 5.39%10?
std 8.77x10° 7.00%x10° 1.62x10° 3.63x10° 5.09x10* 9.34x10° 1.08x10* 1.10x10? 6.63x10°

fp mean 6.24x10% ~ 6.25%x102 + 6.25%x10% + 6.25x10% + 6.25x10% 4+ 6.24x10% ~ 6.24x 102 ~ 6.24x 102 ~ 6.24 %102
std 2.35%x107! 2.20x1071 1.91x10~° 7.82x102 6.78 %1072 6.35x1071 3.66x1071 3.66x1071 546x1071

fy ean 7.93x10% + 6.90x10° + 6.36x10% + 1.78x10° + 458x10° + 1.36x10% + 3.48x10° 4+ 1.19x10° + 1.14x103
std 5.48 %102 1.43x103 8.57 %102 3.50x 102 9.06x10! 4.11x10? 2.71x10? 2.17x10? 3.17x10°

fp eI 1.29%x10* + 1.73x10* + 1.72x10* + 1.30x10* + 1.75x10* + 7.88x10% + 1.43x10* + 1.12x10* + 1.31x103
std 5.04x 102 6.23 %102 4.88%102 1.41x10° 3.98x10? 9.87x10? 1.43%x10° 1.17x10° 1.33x10?

fp Mean 1.61x10* + 1.67x10* + 1.73%x10%* + 1.48x10%* + 1.71x10* + 1.23x10%* + 1.50x10* + 1.11x10% ~ 1.09%x10*
std 3.57x10? 7.21x10% 4.83%102 1.21x10° 4.20%10? 1.17x103 1.42x103 1.06x10° 9.74x 102

f,, mean 1.40%x103 + 1.41x10% + 1.67x10% + 1.44%10° + 1.62x103 + 1.33x10° — 1.41x10% + 1.41x10° + 1.36x103
std 5.83x10° 1.68x 101 1.38 %102 3.20x10! 7.81x101 1.57x 10! 2.44x10! 1.29x 101 1.47x 101

fps mean 1.51x10% ~ 1.52x10% + 1.59x10% + 1.54x10° + 1.62x10% + 1.46x10° — 1.53%x10% + 1.58x10% + 1.50%103
std 8.24x10° 1.63x10* 2.61x10! 1.66x 101 2.50x10! 1.44x10! 1.93x10* 2.38x10! 1.84x 101

g Mmean 1.69x10° + 1.68x10% + 1.74x10° + 1.70x10% + 1.73x10% + 1.62x10° — 1.64x10° + 1.67x10% + 1.64x10°
std 5.49x10° 1.17x10! 4.18x10! 1.41x 101 7.34x10° 4.17x10! 6.64x10! 1.30x 101 1.10x 101

fpy ean 3.63x10% + 3.64x10% + 4.77x10% + 3.82x10° + 452x10% 4+ 2.86x10% — 3.47x10% + 3.57x10% + 3.25x10°
std 5.36x10! 1.31x102 5.24 %102 2.13x10? 1.93x102 1.35x 102 1.77x102 2.51x102 1.28x102

fpg €D 9.18x10° + 1.27x10* + 1.33x10%* + 9.65x10° + 9.95x10° + 3.21x10° ~ 7.66x10% + 8.88x10° + 4.93x10°
std 4.78 %102 1.74x103 1.57x103 9.01x10? 3.26x102 9.33x10? 5.01x 102 1.16x103 2.08x10°

+/=/—: +/~/—: +/~=/—: +/=/—: +/=/—: +/~=/—: +/=/—v +/x=/—:
25/3/0 27/1/0 27/1/0 27/1/0 27/1/0 15/6/7 22/5/1 20/6/2




Biomimetics 2023, 8, 454 14 of 23
Table 6. Experimental and statistical results on seven engineering problems.
Func. DE PSO DE-SAP PPSO SSDO RIME SAO VEGE Proposal

mean  2.0480x10° + 2.0480x10° + 2.3833x10°0 + 2.2624x100 + 1.4229%10° + 1.9252x10° + 1.9104x10° + 1.7238x 100 + 1.6916 x 10°

WEBP std 2.0936 %1071 2.0936 %1071 3.4810x1071 5.3722x1071 7.6623x10° 2.2225%1071 2.5516x10~1 3.1670x 1072 43967 %1072
worst 2.5772x10° 2.5772x10° 3.1889x10° 3.8419x10° 4.2686x10° 2.8182x10° 2.8941x10° 1.8171x10° 1.9271x10°

best 1.7887x 109 1.7887 %100 1.8893 x 100 1.7229 %100 2.6867 %100 1.7036 x10° 1.6829 x10° 1.6848 x10° 1.6826 x 10°

mean  6.0775x107%3 + 6.0775x1073 + 6.5158x1073 +  6.0990x1073 ~ 6.0818x1073 + 6.0785x1073 + 6.1013x1073 +  6.0871x1073 + 6.0761x1073

CSP std 1.5168x10~° 1.5168x107° 5.2997x10~* 1.2300x 1074 5.9274x107° 4.0493x107° 1.2203x1074 1.2788x107° 1.3320x 1078
worst  6.0811x1073 6.0811x1073 8.5403x1073 6.7614x1073 6.0986x1073 6.0978x1073 6.7582 %1073 6.1218x1073 6.0762x1073

best 6.0761x1073 6.0761x1073 6.0777x1073 6.0761x1073 6.0763x1073 6.0762x1073 6.0761x 1073 6.0761x1073 6.0761x 1073

mean  3.0695x103 + 3.0695x103 + 3.2475x103 + 3.0741x10% + 1.2766x10° + 2.9963x103 + 2.9990x 103 + 3.0450x 103 + 2.9869 % 103

SRD std 5.3510% 10! 5.3510x 10" 4.3277 %10 9.4483x 10! 1.7862x10° 7.0867 x10° 9.1124x10° 2.7661x 10! 1.0080x 1073
worst 3.2223%103 3.2223%103 3.3639%103 3.3639%103 6.1677 x 100 3.0180x 103 3.0377x103 3.1019x103 2.9869 x 103

best 3.0298 x 103 3.0298 x 103 3.1683x103 2.9879%103 3.2053% 103 2.9876x103 2.9886 %103 3.0000x 103 2.9869 %103

mean  2.6419x10?% + 2.6419x102% + 2.6864x102% + 2.6413x102% + 2.6999x 102 + 2.6413x102% + 2.6423x102% + 2.6390x 102 ~ 2.6390 %102

TBID  std 1.8476x 101 1.8476x 101 2.0998 x 10° 3.8377x107! 5.0347 x 10° 3.8677x10~! 1.1078 x10° 2.4545x107° 222171073
worst 2.6475x10? 2.6475x102 2.7107 x 102 2.6522 %102 2.8284 %102 2.6553x 102 2.6985x 102 2.6390x 102 2.6391x 102

best 2.6395x 10?2 2.6395x 10?2 2.6419%102 2.6390 %102 2.6400% 102 2.6390 %102 2.6390 %102 2.6390 %102 2.6390 %102

mean  2.7914x10° + 2.7914x 100 + 4.0830%x10° + 2.8157x100 + 2.5804x10°0 + 1.3574x 100 + 1.3415x100 + 1.3432x100 + 1.3402x10°

CBD std 5.7027 x 1071 5.7027 x10~1 1.8919x10° 1.1259% 109 6.3506x 1071 1.5191x1072 1.7858x1073 1.8963x1073 4.4879x10~4
worst 4.2211x10° 4.2211x10° 8.3554 %100 5.5371x10° 3.8432 %100 1.4100x10° 1.3480x10° 1.3474 %100 1.3423x10°

best 2.1447x10° 2.1447 x10° 1.5797 x10° 1.4229x10° 1.3684x10° 1.3409x10° 1.3401x10° 1.3405x10° 1.3400 x 10°

mean  3.0542x10! + 3.0542x 10! + 3.0904x 10! + 3.0254x 10! + 3.1549x 10! + 3.0328 x10! + 3.0153x10! + 3.0150x 10! =~ 3.0152x 10!

TCD std 2.3954 %1071 2.3954x1071 4.4253%1071 3.8837x1071 6.3834 %1071 2.0913x1071 1.0563x 1072 5.3976x107* 1.1610x1072
worst 3.1181x10! 3.1181x 10! 3.2113x10! 3.2213x10! 3.2711x10! 3.0857x 10! 3.0208x 10! 3.0153x 10! 3.0214x 10!

best 3.0192x 10! 3.0192x 10! 3.0287 % 10! 3.0150% 10! 3.0289% 10! 3.0151x10! 3.0150% 10! 3.0150x 10! 3.0150x 10!

mean  7.8378x10° 4+ 7.8378x10° + 8.5143x10°0 + 7.2506x10° + 1.0699x 10! + 6.8542x 100 + 6.9393x10°0 + 6.8762x100 + 6.8430%10°

CBHD  std 7.1741x1071 7.1741x1071 6.6499x 1071 4.0215x10~! 1.2514x10° 7.7909x 1073 1.5303x 10! 4.5820x10~2 3.0522x1078
worst 1.0352x 101 1.0352x 101 1.0069 x 101 8.4715x 100 1.3665x 101 6.8709 %100 7.5109 %100 7.0912 %100 6.8430x10°

best 7.0410x10° 7.0410x10° 7.7228 x10° 6.8774x10° 8.2201x10° 6.8444 x10° 6.8431x10° 6.8451 %100 6.8430%10°

+/~/—:7/0/0 +/=/—:7/0/0 +/~/—:7/0/0 +/~/—:6/1/0 +/~/—:17/0/0 +/~/—:7/0/0 +/~/—:7/0/0 +/~/—:5/2/0
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Table 7. Ablation experimental results on 30-D CEC2013 benchmark functions.
F VEGE VEGE-i VEGE-ii Proposal
une mean std mean std mean std mean std
fi —1.40x103 + 8.37x107! —1.40x103 + 6.88x10~1 ~1.40x10° ~ 1.32x10"! —~1.40x103 1.63x1071
f 5.43%100 ~ 2.36x10° 4.84x100 ~ 2.22x10° 4.90x10° ~ 1.92x10° 5.35x 100 2.50%100
f3 2.98x107 + 4.89x107 6.16x107 + 1.89x10° 4.43x10° ~ 8.65x10° 5.73x10° 9.05x10°
fa 1.54x10* ~ 6.52x103 1.47x10* =~ 6.42x103 1.44x10% ~ 6.29%x103 1.39x10* 5.15x10°
fs —9.97x102 + 4.32x10° —9.97x102 + 2.62x10° —9.99%102 ~ 2.55x10~ —9.99102 2.07x10!
fe —8.32x10% =~ 3.04x10! —8.36x10% = 3.15x 10! —8.39x10% ~ 2.99x10! —8.40x102 3.62x10!
f7 3.42x10° + 1.24x107 2.45x10° + 8.68x10° 1.40x10° ~ 2.95x10* 1.40x10° 4.08x10*
fs —6.79%x10? ~ 4.44x1072 —6.79x10% ~ 4.98x1072 —6.79x10% ~ 6.07x1072 —6.79x102 4.68x1072
fo —5.68x10% ~ 3.98x10° —5.67x102 + 3.50x10° —5.73x10% ~ 3.57x10° —5.71x102 4.13x10°
fio —4.96x10% ~ 6.48x107! —4.96x10% + 7.67x1071 —4.97x10% ~ 9.79x107 ! —4.97x102 6.01x107!
fi 1.03x10% + 1.03x 102 6.81x10! + 1.12x102 —3.83x10% & 5.52x10° —3.84x102 4.27x10°
fiz 1.54x102 + 1.10x102 1.95%102 + 8.51x10! 3.07x10! ~ 1.06x 102 5.69%10! 9.84x10!
f13 3.70x10% 4+ 1.24x10? 3.91x10% + 9.34x10? 1.98x102 ~ 8.52x10! 1.91x102 7.60x 10"
fia 459%103 + 4.93x10? 452x103 + 5.85x10? 2.39x102 ~ 1.21x102 2.49x102 1.66x10?
fis 452x10% ~ 4.96x10? 455%10% ~ 5.89x 102 4.23%10% ~ 5.42x10% 4.20%103 5.88x 102
f16 2.02x10% + 448x10°! 2.02x10% + 4.48x107! 2.01x10% ~ 6.01x10°! 2.01x102 3.57x10°!
fiz 1.15x10% + 1.94x102 1.22x10% + 1.42x10? 3.51x10% ~ 5.10x10° 3.54x10? 5.91x10°
fis 1.92x10% + 3.64x10% 1.93x10% + 3.67x102 7.10x10% ~ 8.06x10! 7.08 x 102 8.71x10*
fro 5.32x102 + 5.45x10° 5.33x 102 + 4.19x10° 5.19x10% ~ 4.93x10° 5.19x 102 6.41x10°
f20 6.15x10% + 1.96x10~! 6.14x10% = 1.30x107! 6.14x10% ~ 6.85x107! 6.14x 102 7.55x107!
f 1.83x10% + 2.45%10? 1.75x10% + 2.96x10? 1.75x10% ~ 2.16x10? 1.69x 103 2.69x10?
fa2 6.26x103 + 7.09%x102 6.30x10% + 7.92x10? 1.21x10% ~ 1.82x10? 1.21x103 1.40x10?
f23 5.86x10° ~ 6.87x10? 6.03x10% ~ 6.28x10? 5.70x10° ~ 6.43x10? 5.85%103 7.33x10?
fou 1.30x10% + 1.34x10! 1.30x10% + 1.22x10! 1.28x10% ~ 9.28x10° 1.28 %103 1.12x10!
fs 1.43x103 + 1.42x10! 1.44x103 + 1.72x10! 1.40x 103 ~ 1.29x10! 1.40x103 1.62x10!
fas 1.53x10% + 8.66x10! 1.54x103 + 8.37x10! 1.52x103 ~ 8.05x10! 1.51x103 8.33x10!
fa7 2.67x10% + 1.12x102 2.74x10% + 1.55x 102 2.43x10% & 1.24x102 2.43x10° 8.71x 10!
fos 493x103 + 4.48 %102 472x103 + 6.73x102 3.57x10° ~ 1.03x10° 3.64x103 1.22x103
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Figure 3. Convergence curves of competitor algorithms on 30-D CEC2013 representative benchmark
functions (f; and f3: unimodal functions; f7, fi1, fi7, and foo: multimodal functions; f> and fy:
composite functions).
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Figure 4. Convergence curves of competitor algorithms on 50-D CEC2013 representative benchmark

functions.
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Figure 5. Convergence curves of competitor algorithms on seven engineering optimization problems.
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Table 8. Ablation experimental results on 50-D CEC2013 benchmark functions.
F VEGE VEGE-i VEGE-ii Proposal
une mean std mean std mean std mean std
A —139x10° +  2.03x100  —139x103+ 1.79x10° —1.40x10°~ 8.74x107!  —1.40x103 1.07x10°
f2 9.29%10° — 2.54%100 8.94x10° — 2.44x10° 1.02x107 ~ 2.72x100 1.15%107 2.89%x10°
f3 2.21x108 + 4.31x108 2.83x108 + 9.82x108 7.89x107 ~ 1.36x108 7.26 %107 1.70x 108
fa 1.06x10% — 4.20x103 1.08x10% — 3.81x10° 1.52x10% ~ 6.96x103 1.47x10% 4.77 %103
fs  —995x10%2+ 136x10° —995x102+ 1.13x10° —9.98x102~ 5.06x10"!  —998x10>  6.83x107!
fe —8.04x102~  449x10' —8.15x102~ 3.37x10' —8.09x102~  3.48x10! —8.11x102 4.28%10?
f7 3.95x106 + 8.69x10° 1.45%10° + 1.38x10° 5.28x10° ~ 2.43%10° 4.69%10° 8.88x10*
fs  —679x10?~ 425x1072 —679x102~ 346x1072 —679x102~ 417x1072  —6.79x102  3.67x1072
fo  —538x102+  4.62x10° —538x10% + 4.32x10° —545x102~  4.91x10° —543x102  5.21x10°
fio  —488x10%2~ 1.88x10° _—488x10%2~ 2.23x10° —490x102~  2.42x10° —4.89x102 2.29x10°
i 5.33%10% + 1.51%10? 4.72x10% + 1.39x102 —3.65x102~  8.90x10° —3.66x102 7.80%10°
f12 5.69x 102 + 1.55%10? 5.84x10% + 1.58x 102 3.41x10% ~ 9.74x10! 4.08 %102 1.30% 102
fi3 781x102 +  159x10%2  761x10%2 4+  148x10>  585x102~  1.52x10? 5.80x 102 1.35x10?
fis 828x10°+  940x10>  831x10°+  8.13x10*>  3.21x102~  1.68x10° 3.27x102 1.62x10?
fis 8.77x10% ~ 7.62 %102 8.90x10% ~ 1.04x103 8.49x10° ~ 1.06x103 8.67x10° 8.16 x 102
f16 2.03x102 ~  545x1071  2.03x102~  4.64x1071  2,02x102~  5.70x10°! 2.02x10? 6.19x107!
fiz 212x10° 4+ 3.14x10°  206x10° +  277x10°  4.08x10%~  9.63x10° 4.09%102 9.50x10°
fis  345x10® 4+  5.13x10%2  332x10%+  4.18x10>  1.10x103~  1.41x10? 1.02x103 1.25x10?
f19 5.68x10% + 1.10x 10! 5.71x10% + 1.00x 10! 5.41x10% ~ 6.26x10° 5.39x 102 6.63x10°
f20 6.24x10%2 ~  3.66x1071  6$24x102~ 283x107'  624x10?~  5.92x107! 6.24x10? 5.46x1071
fn 1.19x10% +  217x10>  1.15x10®+  1.31x10°  1.13x103~  3.75x10° 1.14x10° 3.17x10°
f 112x10* +  1.17x10°  1.10x10*+  123x10°  132x10°~  1.77x10? 1.31x10° 1.33x10?
f23 1.11x10% ~ 1.06x103 1.12x10* ~ 9.20% 102 1.07x10* ~ 1.12x103 1.09%x10% 9.74%102
foa 1.41x10% + 1.29 %101 1.42%10% + 2.55x10! 1.36x10° ~ 1.79x10! 1.36x103 1.47 %101
fas 158x10% +  238x10'  158x10% 4+  292x10'  151x103~  2.02x10! 1.50x 103 1.84x10!
fa6 1.67x10% + 1.30x 10! 1.67x10% + 1.45x 10! 1.64x10% ~ 4.53x10! 1.64x10° 1.10x 10!
fr 357x103 4+  251x10*  3.60x10° +  249x10°  325x10°~  1.59x10? 3.25x 103 1.28 x 102
fas 8.88%10% + 1.16x103 8.96x10% + 1.81x103 4.65x10% =~ 1.83%103 4.93%103 2.08x103

+/~/—:19/7/2

+/~/—:19/7/2

+/~/—:0/28/0

5. Discussion

We first want to discuss the new benefits of the two strategies. The first strategy, i.e.,
the dynamic maturity strategy, takes both fixed allocation and dynamic allocation into
account so as to allocate the limited number of seed individuals more reasonably. When
k is set to 0, the number of seed individuals that can be generated by each individual is
dynamically allocated according to the fitness of individuals. When k is set to %, the seed
individuals are assigned in the same way as the conventional VEGE. Thus, the allocation
method of the conventional VEGE can be seen as a special case of the proposed strategy.
We can also adjust the value of k to assign different proportions to the two allocation
methods, which means that the strategy can flexibly handle various optimization problems
with different characteristics. Moreover, the strategy can give the better individuals more
opportunities to search space while ensuring that the poorer individuals will not lose the
opportunity to continue searching.

The second strategy, i.e., the diverse mutation strategy, provides a variety of different
mutations to increase the diversity of the population, and each mutation method modifies
the genes of seed individuals with different probabilities. Moreover, the seed individuals
generated from the same individual have the opportunity to perform different mutation
methods, which can explore more diversified local areas. Especially when the population
stagnates, it is helpful to escape from trapped local areas. Since these mutation operations
are performed before the fitness evaluation, the second strategy does not add additional
fitness consumption. Meanwhile, the CPU consumption resulting from both proposed
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strategies is also negligible, but the performance improvement is indeed significant. Thus,
they can be attributed to low cost and high return.

Next, we want to discuss the potential of the proposed two strategies and provide some
open topics. Not limited to the conventional VEGE, our proposal can be easily combined
with other improved versions of the VEGE. Since the two strategies are separable, we can
also use either of them to combine with VEGE. Thus, a topic worthy of further research
is to dynamically select the combination of strategies according to the characteristics of
the optimization problem. We simply used three different mutation methods to simulate
the mutation patterns of real plants, which is far from enough because the real situation
is more diverse and complex. Thus, how to add more diverse mutation methods is also
one of our future topics. Since the distribution of individuals is constantly changing with
the convergence of the population, the probabilities of different mutation methods being
executed should also be different. Therefore, how to efficiently use mutations to guide the
convergence of the algorithm is also a promising topic. Although we have only given a few
topics, there are still many other interesting topics and hope to give some inspiration to
the latecomers.

Subsequently, we apply the Kruskal-Wallis test and Holm’s multiple comparison test to
check for significant differences among the compared algorithms on the CEC2013 benchmark
functions. The results of the statistical tests show that our two proposed strategies can further
improve the performance of the conventional VEGE on most optimization problems, and
the deterioration situation is rare and only happens in 50-D f, and f;, which fully proves
the effectiveness of our two proposed strategies. Moreover, from the experimental and
statistical results compared with optimization algorithms in Tables 4 and 5, our proposal is
quite competitive with these state-of-the-art optimization algorithms, and this conclusion
can be also observed from the convergence curve of the optimization processes. Due to the
population size in VEGE, our proposal being variable, and the initial population size of
our proposal being 10 while the other compared algorithms are set to 100, the beginning of
the convergence curve in VEGE and our proposal is worse than that of other algorithms,
but the excellent exploration and exploitation ability drives our proposal to outperform the
compared algorithms rapidly, and the final optimum found by our proposal is also superior,
which shows the domination of our proposal over the competitor algorithms in practice.

However, in some multimodal functions, our proposed VEGE with two strategies
is significantly inferior to RIME (e.g., 30-D f; and fg), and we attempt to explain this
degeneration by the No Free Lunch Theory (NFL) [36]. The NFL states that any pair of
black-box optimization algorithms has an identical averaging performance in all possible
problems, and, if an algorithm performs well on a certain category of problems, it must
degenerate on the rest of the problems since it is the only way to achieve identical averaging
performance. Although the improvement from VEGE to our proposal can be observed,
the original skeleton limits the performance of VEGE in these functions, and we will
further analyze the reasons for the failure and give corresponding countermeasures in our
future work.

In addition, the ablation experiment results in Tables 7 and 8 show that the second
strategy brings a greater performance improvement than the first strategy on many func-
tions, and the difference between the combination of the two and the second strategy alone
is not obvious. This also supports our previous topic, that is, how to reasonably select
search strategies is one of the important means by which to improve performance.

Finally, we apply our proposal to simulate the optimization of engineering problems.
In real-world applications, another performance indicator that we are concerned about
is the robustness of the algorithm. Because evaluation of a real-world problem may be
computationally expensive, we hope that the optima found by each trial run will be
acceptable and close. Under the identical limitation of fitness evaluations, our proposal can
outperform the compared methods significantly, and the mean, the std, the best, and the
worst support the robustness of our proposal adequately, which practically proves that our
proposal has great potential to deal with real-world optimization problems.
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6. Conclusions

We introduce two new strategies into the conventional VEGE to further improve
performance. The first strategy uses the competitive relationship to rationally allocate
resources and expects to generate potential individuals, while the second strategy provides
a variety of mutation methods to increase diversity and the ability to escape from local
areas. The experimental results confirmed that both of the proposed strategies are effective,
and the performance gains become more pronounced as the dimensionality increases.

We will continue to analyze the ecosystem of real plants and use new findings to contin-
uously improve the performance of the conventional VEGE. In future research, we will focus
on extending VEGE to various complex optimization tasks such as multi-objective prob-
lems [37,38], multimodal problems [39,40], large-scale global optimization problems [41,42],
expensive optimization problems [43,44], and feature selection tasks [45,46]. Furthermore,
we will also try to apply these improved algorithms to various real-world optimization
problems [47,48].
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