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Abstract: Depth estimation is an ill-posed problem; objects of different shapes or dimensions, even
if at different distances, may project to the same image on the retina. Our brain uses several cues
for depth estimation, including monocular cues such as motion parallax and binocular cues such
as diplopia. However, it remains unclear how the computations required for depth estimation are
implemented in biologically plausible ways. State-of-the-art approaches to depth estimation based on
deep neural networks implicitly describe the brain as a hierarchical feature detector. Instead, in this
paper we propose an alternative approach that casts depth estimation as a problem of active inference.
We show that depth can be inferred by inverting a hierarchical generative model that simultaneously
predicts the eyes’ projections from a 2D belief over an object. Model inversion consists of a series of
biologically plausible homogeneous transformations based on Predictive Coding principles. Under
the plausible assumption of a nonuniform fovea resolution, depth estimation favors an active vision
strategy that fixates the object with the eyes, rendering the depth belief more accurate. This strategy
is not realized by first fixating on a target and then estimating the depth; instead, it combines the two
processes through action–perception cycles, with a similar mechanism of the saccades during object
recognition. The proposed approach requires only local (top-down and bottom-up) message passing,
which can be implemented in biologically plausible neural circuits.

Keywords: active inference; depth perception; active vision; predictive coding; action-perception cycles

1. Introduction

Depth estimation is a complex process involving continuous activation of every level
of the visual cortex and even higher-level regions. Disparity-sensitive cells of a different
kind can be found early in the visual cortex [1,2], and it seems that the resulting signals
travel through the dorsal and ventral pathways for different purposes; parietal regions
(in particular, the anterior and lateral intraparietal regions) make major contributions to
depth estimation for visually-guided actions in hand and eye movements [3,4], while the
inferotemporal cortex supports the creation of 3D shapes based on the relative disparity
between objects [2,5]. The brain can rely on several cues to estimate the depth of objects,
the most important ones being (i) binocular disparity, which allows the visual cortex to
have access to two different perspectives of the same environment; (ii) the motion parallax
effect, which happens when objects at a greater distance move slower than nearby objects;
and (iii) the angular difference between the eyes when fixating on the same object (vergence).
However, the exact contributions of these mechanisms to the overall process of depth
estimation, and critically where and how the information processing of these signals occurs,
remains unclear.

Traditionally, the visual cortex has been associated with a feature detector: as the
sensory signals climb the hierarchy, more complex features are detected by increasing
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cortical levels, such that high-level representations of objects are constructed from lines
and contours. This view has inspired the development of Convolutional Neural Networks,
which have led to remarkable results in object recognition tasks [6]. Despite its success, this
bottom-up approach is not able to capture several top-down mechanisms that affect our
everyday perception of the external world, as in the case of visual illusions [7]. In recent
years, a different perspective has emerged based on Predictive Coding theories that views
these illusions not just as unexpected phenomena but as expressions of the main mechanism
through which our brain is able to efficiently predict and act over the environment [8,9].
Under this view, the biases we perceive are actually hints to better minimize the errors
between our sensations and our predictions [10]. Furthermore, vision is increasingly
considered to be an active process that constantly tries to reduce the uncertainty of what
will happen next.

In this article, we apply this predictive and inferential view of perception to depth
estimation. Specifically, we advance an Active Inference model that is able to estimate the
depth of an object based on two projected images through a process of prediction error
minimization and active oculomotor behavior. In our model, depth estimation does not
consist of a bottom-up process that detects disparities in the images of the two eyes, but
of an inference of top-down projective predictions from a high-level representation of the
object. In other words, the estimation of the object’s depth naturally arises by inverting
a visual generative model wherein the resulting prediction errors flow up the cortical
hierarchy, which contrasts with the direct processes occurring in neural networks.

2. Materials and Methods

The theory of Active Inference assumes that an agent is endowed with a generative
model that makes predictions over sensory observations [10–13], as shown in Figure 1.
The discrepancy between predictions and observations generates a prediction error that
is minimized in order to deal with a dynamical environment and to anticipate what will
happen next. This generative model hinges on three components encoded in generalized
coordinates of increasing temporal orders (e.g., position, velocity, acceleration, etc.): hidden
states x̃,hidden causes ṽ, and sensory signals s̃. These components are expressed through a
nonlinear system that defines the prediction of sensory signals and the evolution of hidden
states and causes across time:

s̃ = g̃(x̃) + ws

Dx̃ = f̃ (x̃, ṽ) + wx
(1)

In this context, D denotes a differential operator that shifts all temporal orders by one,
such as Dx̃ = [x′, x′′, x′′′, . . . ]. Furthermore, ws and wx stand as noise terms drawn from a
Gaussian distribution. The considered joint probability is divided into distinct distributions:

p(s̃, x̃, ṽ) = p(s̃|x̃)p(x̃|ṽ)p(ṽ) (2)

Typically, each distribution is approximated with Gaussian functions:

p(s̃|x̃) = N (g̃(x̃), π̃−1
s )

p(x̃|ṽ) = N ( f̃ (x̃, ṽ), π̃−1
x )

p(ṽ|η) = N (η, π̃−1
v )

(3)

where η is a prior, while the distributions are expressed in terms of precisions (or inverse
variances) π̃s, π̃x, and π̃v.
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Figure 1. Information processing in neural networks (left) and Predictive Coding (right). In a neural
network, the visual observation sv travels through the cortical hierarchy in a bottom-up way, detecting
increasingly more complex features x(i,j) and eventually estimating the depth of an object d. The
descending projections are considered here as feedback signals that convey backpropagation errors.
In contrast, in a Predictive Coding Network the depth d is a high-level belief generating a visual
prediction that is compared with the observation. This process leads to a cascade of prediction errors
ε(i,j) associated with each intermediate prediction x(i,j) that are minimized throughout the hierarchy,
eventually inferring the correct belief (for details, see the Section 2).

Following a variational inference method [14], these distributions are inferred via
approximate posteriors q(x̃) and q(ṽ). Under appropriate assumptions, minimizing the
Variational Free Energy (VFE) F , defined as the disparity between the KL divergence of
real and approximate posteriors and the log evidence

F = E
q(x̃)

[
ln

q(x̃)
p(x̃, ỹ)

]
= E

q(x̃)

[
ln

q(x̃)
p(x̃|ỹ)

]
− ln p(ỹ), (4)

leads to the minimization of prediction errors. The belief updates µ̃ and ν̃ concerning
hidden states and hidden causes, respectively, expanded as follows:

˙̃µ−Dµ̃ = −∂µF = ∂g̃Tπ̃s ε̃s + ∂µ f̃ Tπ̃µ ε̃µ −DTπ̃µ ε̃µ

˙̃ν−Dν̃ = −∂νF = ∂ν f̃ Tπ̃µ ε̃µ − π̃ν ε̃v
(5)

where, ε̃s, ε̃µ, and ε̃ν denote the prediction errors of the sensory signals, dynamics, and priors.

ε̃s = s̃− g̃(µ̃)

ε̃µ = Dµ̃− f̃ (µ̃, ν̃)

ε̃ν = ν̃− η

(6)

A simple Active Inference scheme can handle various tasks, yet the effectiveness of the
theory stems from a hierarchical structure that enables the brain to grasp the hierarchical
associations between sensory observations and their causes [15]. Specifically, the model
delineated above can be expanded by linking each hidden cause with another generative
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model; as a result, the prior becomes the prediction from the layer above, while the
observation becomes the likelihood of the layer below.

ε̃
(j)
µ = Dµ̃

(j)
µ − f̃ (j)(µ̃(j), ν̃(j))

ε̃
(j)
ν = µ̃

(j+1)
ν − g̃(j)(µ̃(j))

(7)

In contrast, the execution of action is accomplished by minimizing the proprioceptive
component of the VFE concerning the motor control signals a:

ȧ = −∂aFp = −∂a s̃pπ̃p ε̃p (8)

where ∂asp stands for the partial derivative of proprioceptive observations regarding the
motor control signals, π̃p are the precisions of the proprioceptive generative model, and ε̃p
are the generalized proprioceptive prediction errors:

ε̃p = s̃p − g̃p(µ̃). (9)

In summary, in Active Inference, goal-directed behavior is generally possible by first
biasing the belief over the hidden states through a specific cause. This cause acts as a
prior that encodes the agent’s belief about the state of affairs of the world. In this context,
action follows because the hidden states generate a proprioceptive prediction error that is
suppressed through a reflex arc [16]. For instance, supposing that the agent has to rotate
the arm by a few degrees, the belief over the arm angle is subject to two opposing forces

µ̇ = πpεp −πvεv, (10)

one from above (pulling it toward its expectation) and one from below (pulling it toward
what it is currently perceiving). The tradeoff between the two forces is expressed in
terms of the precisions πp and πv, which encode the agent’s level of confidence about
the particular prediction errors. By appropriately tuning the precision parameters, it is
possible to smoothly push the belief towards a desired state, eventually driving the real
arm through Equation (8).

3. Results
3.1. Homogeneous Transformations as Hierarchical Active Inference

Classical Predictive Coding models are passive in the sense that the model cannot
select its visual stimuli [8]. On the other hand, our Active Inference model can actively
control “eyes” in order to sample those preferred stimuli that reduce prediction errors.

State-of-the-art implementations of oculomotor behavior in Active Inference rely on
a latent state (or belief) over the eye angle, and attractors are usually defined directly in
the polar domain [17,18]. While having interesting implications for simulating saccadic
and smooth pursuit eye movements, such models do not consider the fact that eyes fixate
on the target from two different perspectives. A similar limitation can be found in models
of reaching, in which the 3D position of the object to be reached is directly provided as a
visual observation [19,20]. Furthermore, because there is only a single level specified in
polar coordinates, if one wants to fixate or reach a target defined in Cartesian coordinates,
a relatively complex dynamics function has to be defined at that level.

Using a hierarchical kinematic model—based on Active Inference—that includes both
intrinsic (e.g., joint angles and limb lengths) and extrinsic (e.g., Cartesian positions) coor-
dinates affords efficient control of a simulated body [21]. The extrinsic configuration of
the motor plant is computed hierarchically, as shown in Figure 2. For the relatively simple
kinematic control tasks targeted in [21], these computations only required two simple
transformations between reference frames, namely, translations and rotations. However, a
hierarchical kinematic model can be easily extended to more complex tasks that require
different transformations.
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Figure 2. (A) An example of a portion of a kinematic plant. (B) Factor graph of a single level j of

the hierarchical kinematic model composed of intrinsic µ
(j)
i and extrinsic µ

(j)
e beliefs. These beliefs

generate proprioceptive and visual predictions p(j)
p and p(j)

v through generative models gp and gv,

respectively. Furthermore, the beliefs predict trajectories (here, only the velocities µ′
(j)
i and µ′(j)

e )

through the dynamics functions f (j)
i and f (j)

e . Note that the extrinsic belief of level j− 1 acts as a
prior for layer j through a kinematic generative model ge. See [21] for more details.

In robotics, transformations between reference frames are usually realized through
the multiplication of a linear transformation matrix. These operations can be decomposed
into simpler steps where homogeneous coordinates are multiplied one at a time through
the chain rule, allowing for more efficient computations. Specifically, if the x and y axes
represent a Cartesian plane, a homogeneous representation augments the latter with
an additional dimension called the projective space. In this new system, multiplying the
point coordinates by the same factor ensures that the mapping remains unaltered, i.e.,
(px, py, 1) ≡ (pz px, pz py, pz).

Affine transformations preserve parallel lines, and take the following form:

T =

t11 t12 t13
t21 t22 t23
0 0 1

 (11)

where the last row ensures that every point always maps to the same plane. Following the
chain rule, a point in the plane p0 can be rotated and translated by multiplication of the
corresponding transformations:

p f =

p f
x

p f
y

1

 =

cθ −sθ 0
sθ cθ 0
0 0 1

 ·
1 0 lx

0 1 ly
0 0 1

 · p0 =

cθ(p0
x + lx)− sθ(p0

y + ly)
sθ(p0

x + lx) + cθ(p0
y + ly)

1

 (12)

where sθ and cθ are the sine and cosine of the rotation θ and lx and ly are the coordinates of
the translation.

By appropriately changing the values of the matrix, additional affine transformations
such as shearing or scaling can be obtained. Critically, if the last row is modified it is
possible to realize perspective projections:

p f =

p f
x

p f
y

1

 =

 1 0 0
0 1 0
zx zy 1

p0 =

 p0
x

p0
y

zx p0
x + zy p0

y + 1

 (13)
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such that the new point is no longer mapped on the same plane pz = 1. Thus, to map it
back to the Cartesian plane, we can divide the x and y coordinates by the last element:

 p0
x

p0
y

zx p0
x + zy p0

y + 1

 ≡


p0
x

zx p0
x+zy p0

y+1
p0

y

zx p0
x+zy p0

y+1

1

. (14)

This special transformation is critical for computer vision, as it allows points to be
projected on an image plane or the depth of an object to be estimated. If we have a 3D point
a = (ax, ay, az, 1) expressed in homogeneous coordinates, we can obtain the corresponding
2D point p projected in the camera plane by first performing a roto-translation similar to
Equation (12) through a matrix that encodes the location and orientation of the camera (i.e.,
the extrinsic parameters):

r =


rx
ry
rz
1

 =

[
RT −RTt
0T 1

]
w (15)

and then scaling and converting the point to 2D through the so-called camera matrix:

p′ =

 f 0 0
0 f 0
0 0 1

r =

 f rx
f ry
rz

. (16)

The projection is then performed by multiplying the depth coordinate z by the focal
length f , which represents the distance of the image plane from the origin. As before,
because the homogeneous representation is up to a scale factor, in order to transform
the point p′ into the Cartesian space we can divide the camera coordinates by the depth
coordinate p′z, as shown in Figure 3,

Figure 3. Projection of a 3D point in the camera plane (only two dimensions are shown). The y
coordinates of the real point ry and projected point py are related by the ratio between the focal length
f and the real point depth rz.

px =
f rx

rz
py =

f ry

rz
(17)

Keeping the above in mind, we can generalize the deep kinematic model of [21] by assuming
that each level sequentially applies a series of homogeneous transformations. Specifically,
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the first belief, called µ
(i)
t , contains information about a particular transformation (e.g., by

which angle to rotate or by which length to translate a point).
This belief then generates a homogeneous transformation relative to that Degree of

Freedom (DoF), which is multiplied by a second belief expressed in a particular reference
frame, as exemplified in Figure 4.

Figure 4. Representation of the hierarchical relationships of a generalized model with homogeneous
transformations. The belief over a reference frame µr of level i is passed to a function gt encoding a
homogeneous transformation along with a belief over a particular transform µt (e.g., the angle for
rotation or length for translation), generating the reference frame of level i + 1.

µ
(i+1)
r = g(i)t (µ

(i)
t , µ

(i)
r ) = T(i)(µ

(i)
t ) · µ(i)

r (18)

The above equation leads to simple gradient computations through the generated prediction
error ε

(i+1)
r , which is needed to iteratively update the two beliefs:

∂g(i)t

∂µ
(i)
r

T

ε
(i+1)
r = T(i)T

· ε(i+1)
r

∂g(i)t

∂µ
(i)
t

T

ε
(i+1)
r =

∂T(i)

∂µ
(i)
t

� [ε
(i+1)
r · µ(i)

r
T
]

(19)

where � is the element-wise product.

3.2. A Hierarchical Generative Model for Binocular Depth Estimation

In this section, we explain how depth estimation arises by inverting the projective pre-
dictions of the two eyes using a hierarchical generative model. For simplicity, we consider
an agent interacting with a 2D world, where the depth is the x coordinate. Nonetheless,
the same approach could be used to estimate the depth of a 3D object. We construct the
generative model hierarchically, starting from a belief µa = (µa,x, µa,y, 1) about the absolute
2D position of an object encoded in homogeneous coordinates, where µa,x is the depth
belief. Then, two parallel pathways generate specular predictions p(i)

r that receive the eye
angles encoded in a common vergence-accommodation belief µθ = (θa, θv) and transform
the absolute coordinates of the object into the two reference frames relative to the eyes:

p(i)
r = g(i)a (µa, µθ) = T(i)(µθ) · µa (20)
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where T(i)(µθ) is the homogeneous transformation corresponding to the extrinsic parame-
ters of the camera:

T(i)(µθ) =

 c(i)θ s(i)θ −l(i)s(i)θ

−s(i)θ c(i)θ −l(i)c(i)θ
0 0 1

 (21)

where l(i) is the distance between an eye and the origin (i.e., the middle of the eyes) and
the absolute eye angles are as shown below.

θ(0) = θa − θv θ(1) = θa + θv (22)

Each of these beliefs generates a prediction over a point projected to the corresponding
camera plane.

p(i)
c = gr(µ

(i)
r ) =

[
1 0 0
0 f 0

]
· µ

(i)
r

µ
(i)
r,x

(23)

Figure 5 provides a neural-level illustration of the model, with the two branches
originating from the two beliefs at the top. Note that while the eye angles belief µθ

generates separate predictions for the two eyes, proprioceptive predictions directly encode
angles in the vergence-accommodation system, which is used for action execution [10].

Figure 5. Neural-level implementation of a hierarchical generative model to estimate the depth of a
point through Active Inference. The small squares indicate inhibitory connections. Unlike a neural

network, depth is estimated by first generating two predictions p(i)
r of the point relative to each eye

from a point in the absolute coordinates µa and vergence-accommodation angles µθ . This new belief

is in turn used to compute a projection p(i)
c and finally a visual prediction p(i)

v . The predictions are
then compared with the visual observations, generating prediction errors throughout the hierarchy
and eventually driving the beliefs at the top toward the correct values. Note that eye movements
are directly triggered to suppress the proprioceptive prediction error εp. Intentional eye movements
(e.g., for target fixation) can instead be achieved by setting a prior in the dynamics function fc of the
belief over the projected point µc (note that for better readability the figure only shows the dynamics
function fc.
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The absolute point belief (encoded in generalized coordinates up to the second level)
is updated as follows:

˙̃µa =

[
µ′a + ∑i ∂agT

a ε
(i)
r + ∂ f T

a εµ,a
−εµ,a

]
ε̇
(i)
r = µ

(i)
r − g(i)a (µa, µθ)− ε

(i)
r /π

(i)
r

ε̇µ,a = µ′a − fa(µa)− εµ,a/γa

(24)

where π
(i)
r and ε

(i)
r are the precisions and prediction errors of the beliefs below and fa, γa,

and εµ,a are the function, precision, and prediction error of the dynamics of the same belief.

Thus, this belief is subject to different prediction errors ε
(i)
r coming from the two eyes;

the depth of the point is estimated by averaging these two pathways. Furthermore, an
attractor can be defined in the dynamics function fa if one wishes to control the object
encoded in absolute coordinates, e.g., for reaching or grasping tasks.

Similarly, the belief update equation for µθ is as follows:

˙̃µθ =

[
µ′θ + ∑i ∂θ gT

a ε
(i)
r + ∂gT

p εp + ∂ f T
θ εµ,θ

−εµ,θ

]
ε̇p = sp − gp(µθ)− εp/πp

ε̇µ,θ = µ′θ − fθ(µθ)− εµ,θ/γθ

(25)

where πp, εp, sp, and gp are the proprioceptive precision, prediction error, observation, and
likelihood function (which in the following simulations is an identity mapping), while fθ ,
γθ , and εµ,θ are the function, precision, and prediction error of the belief dynamics.

This belief, in addition to being affected by the proprioceptive contribution, is subject
to the same prediction errors ε

(i)
r in the same way as the absolute belief. In this way, the

overall free energy can be minimized through two different pathways: (i) by changing the
belief about the absolute location of the object (including the depth), or (ii) by modifying
the angle of fixation of the eyes. As is shown in the next section, the possibility of using
these pathways may create stability issues during goal-directed movements.

In such a case, an attractor can be specified in the dynamics function fθ in order to
explicitly control the dynamics of the eyes, e.g., by not fixating on a point on the camera
plane and instead rotating the eyes along a particular direction or by a particular angle.

Finally, the belief update equation for the projected point µ
(i)
c is as follows:

˙̃µc =

[
µ′c − ε

(i)
c + ∂gT

v ε
(i)
v + ∂ f (i)c

T
ε
(i)
µ,c

−ε
(i)
µ,c

]
ε̇
(i)
c = µ

(i)
c − gr(µ

(i)
r )− ε

(i)
c /π

(i)
c

ε̇
(i)
v = s(i)v − gv(µ

(i)
c )− ε

(i)
v /π

(i)
v

ε̇
(i)
µ,c = µ

(i)
c
′ − f (i)c (µ

(i)
c )− ε

(i)
µ,c/γ

(i)
c

(26)

where π
(i)
c and ε

(i)
c are the precisions and prediction errors of the beliefs below, π

(i)
v , ε

(i)
v ,

s(i)v , and gv are the visual precision, prediction error, observation, and likelihood function,
and fc, γc, and εµ,c are the function, precision, and prediction errors of the belief dynamics.
Note that in the following simulations we approximate gv by a simple identity mapping,
meaning that s(i)v conveys a Cartesian position.

Unlike the belief over the eye angles µθ , which is only biased by the likelihoods of the
levels below, this belief is subject to both a prior encoded in ε

(i)
c and a visual likelihood

from ε
(i)
v .
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3.3. Active Vision and Target Fixation with Action–Perception Cycles

The model advanced here is not only able to infer the depth of a point, it can fixate it
using active vision. This is possible by specifying an appropriate attractor in the dynamics
function of the last belief µ

(i)
c , or in other words, by setting an “intention” in both eyes [22]

such that the projected position is at the center of the camera planes.

e(i)c = µ
(i)
c − (1, 0)

µ
(i)
c
′ = f (i)c (µ

(i)
c ) = λe(i)c

(27)

In short, f (i)c returns a velocity encoding the difference e(i)c between the current belief
and the center of the camera plane—expressed in homogeneous coordinates—multiplied
by an attractor gain λ. Thus, the agent thinks that the projected point will be pulled toward
the center with a velocity proportional to e(i)c . The generated prediction errors then travel
back through the hierarchy, affecting both the absolute and eye angle beliefs. Because what
we want in this case is to modify the latter pathway (directly generating proprioceptive
predictions for movement), the former pathway can be problematic. In fact, if µa already
encodes the correct depth of the object, fixation occurs very rapidly; however, if this is
not the case, then the prediction errors ε

(i)
r are free to flow through all the open pathways,

driving the beliefs in different directions and causing the free energy minimization process
to become stuck with an incorrect depth coordinate and eye angles [23].

This abnormal behavior can be avoided by decomposing the task into cyclical phases
of action and perception [24]. During an action phase, the absolute belief is kept fixed,
meaning that the relative prediction errors ε

(i)
r can only flow towards the belief over the eye

angles, which results in the eyes moving according to the depth belief. During a perception
phase, action is blocked (either by setting the attractor gain or the proprioceptive precision
to zero), while ε

(i)
r is free to flow in any direction; this has the result of pushing the depth

belief toward the correct value signaled through the sensory observations. In this way,
depth estimation is achieved through multiple action and perception cycles until the overall
free energy is minimized.

Figure 6 shows a sequence of time frames of a depth estimation task in which the
(perceptual) process of depth estimation and the (active) process of target fixation cyclically
alternate in different phases every 100 time steps. As can be seen from the visualization of
the point projections, the distance between the real and estimated target positions slowly
decreases while both positions approach the center of the camera planes, affording efficient
depth estimation.

Figure 6. Sequence of time frames of a depth estimation task with simultaneous target fixation. The
agent uses alternating action–perception phases to avoid becoming stuck during the minimization
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process. Each frame is composed of three images: a third-view perspective of the overall task (top)
and a first-view perspective consisting of the projection of the target to the respective camera planes
of each eye (bottom left and bottom right). In the top panel, the eyes are represented by blue circles
and the real and estimated target positions are shown in red and orange. The fixation trajectory
(when vergence occurs) is represented in cyan. The thin blue lines are the fixation angles of the eyes.
In the bottom panel, the real and estimated target positions are shown in red and orange. The abscissa
and ordinate respectively represent the target depth and its projection.

3.4. Model Comparison

We tested the model introduced in Sections 3.2 and 3.3 in a depth estimation task that
consists of inferring the 2D position of the object shown in Figure 6. We compared three
different versions of the model. In the first version, the eyes are kept in a fixed position
with the eyes parallel to one another (infer parallel). In the second and third versions, while
the model can actively control the eye angles, the initial values are set at the correct target
position (infer vergence) or at a random location (active vision, as displayed in Figure 6).

Furthermore, the fovea of the simulated “eye” can have either a uniform or a nonuni-
form resolution; in the latter condition, the object is represented with greater accuracy when
it is near the point of fixation. This reflects the fact that the biological fovea has far more
receptors at the center than in the peripheral vision, which has previously been modeled
with an exponential link [25]. Specifically, the variability Σv of the Gaussian error in the
visual observations in our implementation (i.e., in the generative process) exponentially
increases with the distance d between the point of fixation and the real target position:

Σv = ed/k (28)

where k is a scaling factor which was equal to 1.5 in our simulations. In the uniform
condition, the visual noise was set to zero.

Figure 7 shows the results of the simulations, including the accuracy (the number
of trials in which the agent successfully predicts the 2D position of the target, left panel),
mean error (distance between the real and estimated target position at the end of every
trial, middle panel), and estimation time (number of steps needed to correctly estimate
the target, right panel). The number of time steps for each phase was set to 100, as before.
The figure shows that depth estimation with parallel eyes (infer parallel) in the nonuniform
condition results in very low accuracy, especially when the target position is far from the
fixation point. This is to be expected, as in this condition the fovea has low resolution at
the periphery. If the angle of the eyes is instead set to fixate on the target (infer vergence),
the accuracy is much higher and few fluctuations occur. Finally, the active vision model
that simultaneously implements depth estimation and target fixation achieves a level of
performance that is almost on par with the model where the fixation is initialized at the
correct position. Indeed, the only appreciable difference between the last two conditions is
the slightly greater number of time steps in the active vision condition.

This pattern of results shows three main things. First, the hierarchical Active Inference
model is able to solve the depth estimation problem, as evident from its perfect accuracy in
the task. Second, the model is able to infer depth as well as to simultaneously select the best
way to sample its preferred stimuli, i.e., by fixating on the target. This is possible because
during a trial (as exemplified graphically in Figure 6) the active vision model obtains
increasingly more accurate estimates of the depth as the point of fixation approaches the
target. Note that this pattern of results emerges because of the nonuniform resolution of the
fovea. In fact, if the foveal resolution is assumed to be uniform (such as in camera models
of artificial agents), the best accuracy is achieved by keeping the eyes parallel (Figure 7,
infer parallel condition). In this case, fixating on the target does not help depth estimation,
and indeed hinders and slows it down, which is probably caused by the increased effort
that the agent needs to make in order to infer the reference frames of the eyes when they
are rotated in different directions. This has the consequence of further increasing the time
needed for the active vision model to estimate the depth.
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Figure 7. Simulation results. Performance of the depth estimation task with nonuniform (top) and
uniform (bottom) foveal resolution during inference with the eyes parallel and fixed (infer parallel),
inference with the eyes fixating on the target (infer vergence), and simultaneous inference and target
fixation (active vision). The accuracy (left panel) measures the number of trials in which the agent
successfully predicts the 2D position of the target, the mean error (middle panel) measures the
distance between the real and estimated target positions at the end of every trial, and the time (right
panel) measures the number of steps needed to correctly estimate the target.

Intuitively, the better performance in the uniform condition is due to the lack of noise
in the visual input. Although a more realistic scenario would consider noise in this case,
it is reasonable to assume that it would have a much smaller amplitude due to a uniform
distribution. Considering only the nonuniform sensory distribution, the better performance
in the infer vergence condition relative to active vision could be due to the fact that in the
former case the agent starts the inference process from a state of fixation on the correct
3D position. Thus, an active vision strategy in the infer vergence condition only needs to
estimate the object’s depth. In comparing these two scenarios, it can be noted that active
vision performs almost optimally, similar to the infer vergence condition when the eye angles
are set to the correct values for object fixation. However, the latter condition rarely occurs in
a realistic setting, and a more meaningful depth estimation comparison would be between
active vision and the more general case in which the agent is fixating another object or not
fixated on anything in particular, which we approximate with the infer parallel simulation.

4. Discussion

We have advanced a hierarchical Active Inference model for depth estimation and
target fixation operating in the state space of the projected camera planes. Our results
show that depth estimation can be solved by inference, that is, by inverting a hierarchical
generative model that predicts the projection of the eyes from a 2D belief over an object.
Furthermore, our results show that active vision dynamics makes the inference particularly
effective and that fixating the target drastically improves task accuracy (see Figure 7).
Crucially, the proposed model can be implemented in biologically plausible neural circuits
for Predictive Coding [8–10], which only require local (top-down and bottom-up) message
passing. From a technical perspective, our model shows that inference can be iteratively
realized in any homogeneous transformation by combining generative models at different
levels, each of which computes a specific transformation, which could be, for instance, a
roto-translation for kinematic inference [21] or a projection for computer vision.
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This proposal has several elements of novelty compared to previous approaches to
depth estimation. First, by focusing on inference and local message passing, our proposal
departs from the trend of viewing cortical processing from a purely bottom-up perspective.
The latter is common in neural network approaches, which start from the image of an object
and gradually detect more and more complex features, eventually estimating its depth.
Moreover, our proposal is distinct from a direct approach that generates the depth of an
object from a top-down perspective, e.g., using vergence cues. The role of vergence has long
been considered key in facilitating binocular fusion [5] and maximizing coding efficiency
in a single environmental representation [26]; however, recent studies have dramatically
reduced the importance of this mechanism in depth estimation. Binocular fusion might not
be strictly necessary for this task [27], as90% performance of depth estimation is attributed
to diplopia [28] and it has never actually been tested as an absolute distance cue without
eliminating all possible confounders [28]. Moreover, when fixating a target there is always
a disparity of vertical fixation in monocular images, with no line precisely intersecting to
form a vergence angle [29]; it has been demonstrated that vergence does not correspond to
the exact distance of the object being gazed at [30]. In keeping with this body of evidence,
the vergence belief does not play a critical role in depth estimation in our model, only
operating along with a high-level belief over the 2D position of the object in order to
predict the projections for the two eyes. These projections are compared with the visual
observations, and the resulting prediction errors that flow back through the hierarchy then
drive the update of both beliefs (i.e., about the eye angles and the 2D object position). This
change occurs in two possible ways: (i) to the estimated depth of the object or (ii) to the
vergence-accommodation angles of the eyes, ultimately realizing a specific movement. In
sum, depth estimation is not purely a top-down process; rather, it is realized through the
inversion of a generative projective model and by averaging the information obtained
through the two parallel pathways of the eyes. In conclusion, our model supports the
direct (from disparity to both vergence and depth) rather than the indirect (from disparity
to vergence and then to depth) hypothesis of depth estimation [27]. This account is in line
with the fact that small changes in vergence (delta theta) are a consequence of, and not a
direct hint about, depth estimation [28], as well as that reflex-like vergence mechanisms
serve only to eliminate small vergence errors, not to actively transfer the gaze to new depth
planes [31].

An interesting consequence of this architecture is that, in contrast to standard neural
networks, it permits the imposition of priors over the depth belief in order to drive and
speed up the inferential process. Such priors may come through different sensory modalities
or other visual cues, e.g., motion parallax or perspective, which we have not considered
here. This is in line with the finding that vergence alone is unable to predict depth with
ambiguous cues [5], suggesting that depth belief is constantly influenced by top-down
mechanisms and higher-level cues, and does not simply arise directly from perception.
In addition to depth priors, using an Active Inference model has the advantage that, if
one wishes to fixate on a target, simple attractors can be defined at either the eye angle
beliefs or the last projection level, each in their own domain. For example, requiring that
the agent should perceive a projection of an object at the center of the camera plane results
in the generation of a prediction error that ultimately moves the eyes towards that object,
emphasizing the importance of active sensing strategies to enhance inference [32,33].

However, the fact that there are two open pathways through which the prediction
errors of the projections can flow, i.e., the eye angles and the absolute beliefs, may be prob-
lematic in certain cases, e.g., during simultaneous depth estimation and target fixation. It is
natural to think that depth estimation follows target fixation. In fact, top-down processing
to verge on a target is generally not necessary; when an image is presented to a camera, the
latter might move into this projected space directly, resulting in a simpler control [34,35].
Then, depth can be computed directly from vergence cues. However, our model assumes
that the eye angles generate the projections by first performing a roto-translation in the 2D
space using the estimated depth, allowing further mechanisms for more efficient inference.
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Under this assumption, target fixation in the projected space is possible through a top-down
process that is constantly biased by the high-level belief. Nonetheless, a direct vergence
control (not considered here) could be implemented by additional connections between the
belief over the 2D or projected points and the angle beliefs.

With these considerations, it would appear plausible that the two processes of depth
estimation and target fixation might run in parallel. However, when this is the case
the prediction errors of the projections drive the two high-level beliefs independently
towards a direction that minimizes the free energy, leading the agent to become stuck in an
intermediate configuration with incorrect object depth and eye angles. One way to solve
this issue that we have pursued here consists of decomposing the task into cyclical phases
of action and perception [23,24]. During an action phase, the 2D belief is fixed and the
agent can fixate on the predicted projections, while during a perception phase the agent can
infer the 2D position of an object but is not allowed to move its sight. This implies that the
prediction errors of the projections alternately flow in different directions (2D position and
eye angles) one step at a time, which results in (i) the object being pulled toward the center
of the camera planes and (ii) the estimated 2D position converging toward the correct
one, as shown in Figure 6. Action–perception cycles have been studied in discrete time
models of Active Inference; for example, cycles of saccades and visual sampling allow an
agent to reduce the uncertainty over the environment, e.g., by rapidly oscillating between
different points for recognizing an object [36,37]. Here, we show that action–perception
cycles are useful in continuous time models, such as the one used here, to ensure effective
minimization of the free energy as well as when an agent is required to reach an object
with the end-effector while inferring the lengths of its limbs [23]. In summary, the two
processes of recognizing a face and estimating an object’s depth can both be viewed as a
process of actively accumulating sensory evidence at different timescales. From a brain-
centric perspective, action–perception cycles have often been associated with hippocampal
theta rhythms and cortical oscillations, which might indicate segmentation of continuous
experiences into discrete elements [24,38]. From a more technical perspective, the cyclical
scheme that we propose for action–perception cycles, which consists of keeping one aspect
of the optimization objective fixed when updating the other, is commonly used in various
optimization algorithms such as expectation maximization [39]; a similar approach is used
for learning and inference in Predictive Coding Networks [40,41].

Our results show that active vision improves depth estimation. However, if vergence
does not provide a useful cue for depth, then how is this possible? The answer lies in the
nonuniform resolution of the fovea, which has far more receptors at the center of fixation
than in the peripheral vision. It is supposed that this nonlinear resolution allows sensory
processing resources to be gathered around the most relevant sources of information [42].
Under this assumption, the best performance is achieved when both eyes are fixated on the
object, as shown in Figure 7. As noted in [43], when stereo cameras have a nonsymmetrical
vergence angle, the error is at a minimum when the projections of a point fall at the center
of the camera planes. Hence, vergence can effectively play a key role in depth estimation
while providing a unified representation of the environment. This can be appreciated by
considering that the infer vergence and active vision models are more accurate than the infer
parallel model in the nonuniform resolution condition. With a uniform resolution, the error
is larger when the eyes converge to the target, because the focal angle of the pixels in the
center is larger than in the periphery [43]. In addition to the increased error, the estimation
seems to be further slowed down by the inference of the different reference frames due to
vergence. Taken together, the consequence is that in the uniform resolution scenario the best
estimation is achieved with fixed parallel eyes (see Figure 7), while active vision does not
bring any advantage to the task. Because maintaining parallel eyes in the uniform condition
results in a slightly higher accuracy, such simulations may be useful in understanding
those cases in which verging on a target would improve model performance. This might be
helpful for future studies in bio-inspired robotics, especially when extending the proposed
model to implement high-level mechanisms, such as higher-level priors that result from
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the integration of cues from different sensory modalities or attentional mechanisms that
unify the visual sensations into a single experience.

The model presented in this study has a number limitations that could be addressed
in future studies. Notably, we used a fixed focal length f during all the simulations. In a
more realistic setting, the focal length might be considered as another DoF of the agent, and
might be changed through the suppression of proprioceptive prediction errors in order to
speed up the inferential process for objects at different distances. Furthermore, although
the presented simulations only estimate the depth of a 2D point, it could potentially be
extended to deal with 3D objects and account for vertical binocular disparity [44]. This
would involve augmenting all the latent states with the new dimension and performing a
sequence of two rotations as intermediate levels before the eye projections are predicted.
Then, the vergence-accommodation belief would be extended with a new DoF, allowing
the agent to fixate on 3D objects. In addition, future studies might investigate how the
scaling factor in Equation (28) of the nonuniform resolution could, along with more realistic
nonuniform transformations, affect performance and help to model human data (e.g., [25]).
It could be useful to adopt an off-center fovea on one of the two retinas and analyze the
agent’s behavior to then bring the two foveas onto the target. Finally, another interesting
direction for future research would be to combine the architecture proposed here with
a more sophisticated Active Inference kinematics model [21], for example embodying a
humanoid robot with multiple DoFs [45–49]. In contrast to state-of-the-art models that
provide the agent either with the 3D environment directly as a visual observation [20] or
with a latent space reconstructed from a Variational Autoencoder [50], this would allow the
3D position of an object to be inferred through the projections of the eyes, then used for
subsequent tasks such as reaching and grasping.
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