
Citation: Lin, Y.; Heidari, A.A.;

Wang, S.; Chen, H.; Zhang, Y. An

Enhanced Hunger Games Search

Optimization with Application

to Constrained Engineering

Optimization Problems. Biomimetics

2023, 8, 441. https://doi.org/10.3390/

biomimetics8050441

Academic Editor: Yongquan Zhou

Received: 10 July 2023

Revised: 7 September 2023

Accepted: 12 September 2023

Published: 20 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

An Enhanced Hunger Games Search Optimization with
Application to Constrained Engineering Optimization Problems
Yaoyao Lin 1 , Ali Asghar Heidari 1 , Shuihua Wang 2, Huiling Chen 1,* and Yudong Zhang 2,*

1 Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China;
rainie1209@163.com (Y.L.); as_heidari@ut.ac.ir (A.A.H.)

2 School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
shuihuawang@ieee.org

* Correspondence: chenhuiling.jlu@gmail.com (H.C.); yudongzhang@ieee.org (Y.Z.)

Abstract: The Hunger Games Search (HGS) is an innovative optimizer that operates without rely‑
ing on gradients and utilizes a population‑based approach. It draws inspiration from the collabo‑
rative foraging activities observed in social animals in their natural habitats. However, despite its
notable strengths, HGS is subject to limitations, including inadequate diversity, premature conver‑
gence, and susceptibility to local optima. To overcome these challenges, this study introduces two
adjusted strategies to enhance the original HGS algorithm. The first adaptive strategy combines
the Logarithmic Spiral (LS) technique with Opposition‑based Learning (OBL), resulting in the LS‑
OBL approach. This strategy plays a pivotal role in reducing the search space and maintaining
population diversity within HGS, effectively augmenting the algorithm’s exploration capabilities.
The second adaptive strategy, the dynamic Rosenbrock Method (RM), contributes to HGS by adjust‑
ing the search direction and step size. This adjustment enables HGS to escape from suboptimal so‑
lutions and enhances its convergence accuracy. Combined, these two strategies form the improved
algorithm proposed in this study, referred to as RLHGS. To assess the efficacy of the introduced
strategies, specific experiments are designed to evaluate the impact of LS‑OBL and RM on enhancing
HGS performance. The experimental results unequivocally demonstrate that integrating these two
strategies significantly enhances the capabilities of HGS. Furthermore, RLHGS is compared against
eight state‑of‑the‑art algorithms using 23 well‑established benchmark functions and the CEC2020
test suite. The experimental results consistently indicate that RLHGS outperforms the other algo‑
rithms, securing the top rank in both test suites. This compelling evidence substantiates the superior
functionality and performance of RLHGS compared to its counterparts. Moreover, RLHGS is ap‑
plied to address four constrained real‑world engineering optimization problems. The final results
underscore the effectiveness of RLHGS in tackling such problems, further supporting its value as an
efficient optimization method.

Keywords: Hunger Games Search; swarm intelligence; logarithmic spiral; Rosenbrock Method;
benchmark; engineering optimization problems

1. Introduction
Over the past few years, there have been remarkable advancements in optimization

algorithms fueled by the rapid expansion of the engineering and artificial intelligence sec‑
tors [1,2]. These algorithms have broadened their capabilities to address intricate prob‑
lem areas that conventional methods struggle with [3–5], including single‑objective, multi‑
objective, and many‑objective optimization problems [6,7]. They achieve this by utilizing
evolutionary algorithms, swarm intelligence, and machine learning techniques. Integrat‑
ing these algorithms with engineering and artificial intelligence has paved the way for hy‑
brid approaches that harness the strengths of both disciplines. These advancements of‑
fer immense potential to tackle real‑world challenges across diverse industries, enhance
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decision‑making processes, optimize resource allocation, and improve overall system per‑
formance by delivering top‑notch solutions for previously unsolvable problems [8,9].

Meta‑heuristic Algorithms (MAs) have emerged as a crucial element in the field of ar‑
tificial intelligence (AI), attracting substantial scholarly interest in the last two decades.
This attention is primarily driven by their remarkable efficacy in addressing diverse prac‑
tical problems, such as those encountered in economics management [10], power load
forecasting [11], and data reduction problems [12–15], etc. The real‑world optimization
problemsmentioned above generally share two common characteristics: high nonlinearity
and inter‑relation of decision variables during the solving process [16,17]. However, these
characteristics inevitably give rise to large problem spaces, which make the optimization
process prone to failure [18,19]. Therefore, it is crucial to consider factors such as time,
risk, efficiency, and quality during the optimization process [20]. The emergence of Meta‑
heuristic Algorithms (MAs) has provided valuable inspiration to researchers in related
fields. MAs offer reliability, robustness, and effective approaches for overcoming local
optima by mimicking various phenomena to seek optimal solutions [21]. However, those
metaphors do not change mathematics, and each optimizer’s core model will change its
performance. The majority of Meta‑heuristic Algorithms (MAs) derive their inspiration
from natural phenomena and can be comprehensively classified into four distinct cate‑
gories: evolutionary‑based algorithms, swarm intelligence‑based algorithms, human
behavior‑based algorithms, and physics‑based algorithms. Evolutionary algorithms are
meticulously devised based on the observable principles of evolution in nature. Swarm In‑
telligence (SI) algorithms draw inspiration from evolutionary theory and collective behav‑
ior, centering on the intricate behaviors displayed by systems comprising uncomplicated
agents. Human behavior‑based algorithms encompass diverse facets of human behavior,
encompassing teaching, social interactions, learning, emotions, andmanagement. Physics‑
based algorithms find inspiration in the laws of physics andmathematics. Table 1 provides
some examples of related algorithm types.

Table 1. Review of several classic optimization algorithms.

Type MAs Published Brief Introduction

Evolutionary‑
based

Genetic Algorithm
(GA) [22] 1975 It is derived from biological, genetic, and evolutionary mechanisms and

an adaptive probabilistic optimization algorithm.
Differential Evolution (DE)

[23] 1995 It can be considered based on the theory of biological evolution, which
imitates the process of cooperation and competition among individuals.

Biogeography‑Based
Optimization (BBO) [24] 2008 It is based on the geographical distribution of biological organisms.

Swarm
intelligence‑

based

Particle Swarm
Optimization (PSO) [25] 1995 It is inspired by the collective behavior of social organisms, particularly

the flocking and swarming behavior observed in birds, fish, and insects.
Grey Wolf Optimization

(GWO) [26] 2014 Its inspiration is from observing the leadership level and hunting
behaviors within grey wolves in nature.

Harris Hawk Optimization
(HHO) [27] 2019 It draws upon the natural behavior of wolf pack hunting.

Slime Mould Algorithm
(SMA) [28] 2020 Its principle is based on the oscillation mode of slime moulds in nature.

Human
behavior‑based

Teaching‑Learning‑Based
Optimization (TLBO) [29] 2011 It is inspired by the idea of how teachers guide students toward better

learning outcomes.
Social‑Based Algorithm

(SBA) [30] 2013 It is in the light of the evolutionary algorithm and socio‑political process
based Imperialist Competitive Algorithm (ICA) [31].

Physics‑based

Simulated Annealing (SA)
[32] 1983 It is proposed based on the principle of solid‑state high‑temperature

annealing.
Gravitational Search
Algorithm (GSA) [33] 2009 It can trace back to the law of gravity and mass interactions.

Multi‑Verse Optimizer
(MVO) [34] 2015 It is according to three cosmology concepts: white hole, black hole, and

wormhole.
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Table 1. Cont.

Type MAs Published Brief Introduction

RUNge Kutta Optimizer
(RUN) [35] 2021 It combines elements of the classical Runge‑Kutta numerical integration

method with optimization techniques.
weIghted meaN oF vectOrs

(INFO) [36] 2022 It stems from the weight mean method, which is an enhanced optimizer
in solving optimization problems.

Numerical optimization refers to finding the maximum or minimum objective value
of a givenproblemwithin adefined search space. Population‑basedandderivative‑free Swarm
Intelligence (SI) optimization algorithms are widely regarded as effective solvers for complex
numerical problems [37]. These algorithms utilize iterative methods to continually update in‑
dividuals within a population, enhancing their adaptability to the environment and yielding
acceptable optimal solutions within a reasonable timeframe. The study of SI optimization
algorithms has received considerable attention in recent decades. Moreover, due to their
superior performance, SI optimization algorithms also have been used to deal with multi‑
objective problems [38–40], constrained optimization problems [41–44], image segmenta‑
tion [45–48], medical disease diagnosis [49–53], parameter estimation of solar photovoltaic
models [54–58], intelligent traffic management [59], etc. Although not all the solutions
obtained by these SI algorithms are optimal, what can be guaranteed is that high‑quality
solutions can be acquired in a reasonable time.

Hunger Games Search (HGS) [60] is a novel algorithm proposed in 2021, designed
based on natural animals’ foraging behavior. Once raised, HGS has received extensive
attention from scholars. AbuShanab et al. [61] used the HGS optimizer to optimize a ran‑
dom vector functional link (RVFL) model, which successfully finds the optimal internal
parameters of RVFL that boost themodel accuracy. Nguyen et al. [62] combinedHGSwith
Artificial NeuralNetwork (ANN) namedHGS‑ANN for predicting ground vibration inten‑
sity problems. The experiment’s result verifies that HGS‑ANN performs better than other
same‑type models. Like other SI algorithms, exploration and exploitation are two funda‑
mental phases in HGS. The major work of the exploration phase is to search for a solution
location, and the evaluation of promising solutions is completed within the exploitation
stage. Through comparative research, it can be found that there are certain deficiencies
in the performance of HGS in these two stages, which leads to premature and makes HGS
prone to getting stuck at local optimal factors. To overcome thementioned drawbacks, sev‑
eral authors enhancedHGSwith efficient strategies. Xu et al. [63] improvedHGS by includ‑
ing the quantum rotation gate approach and the Nelder‑Mead simplex process, which dis‑
covered the locality of the best result in the feature space. For HGS is easily trapped in a lo‑
cal location and steadily converges speedwhile solving intricate problems. Ma et al. [64] in‑
troduced chaotic mappings, greedy selection, and vertical crossover strategy into the stan‑
dard HGS. The introduced strategies were conducive to accelerating convergence veloc‑
ity and enhancing search capability. A. Fathy et al. [65] introduced a non‑homogeneous
mutation operator to HGS, which proved effective in identifying the optimal settings for
a Fractional‑Order Proportional Integral Derivative (FOPID) based Load Frequency Con‑
troller (LFC). Emam et al. [66] modified the base HGS with a Local Escaping procedure
with Brownianmotion, to mitigate performance shortcomings. A. M. Nassef et al. [67] pro‑
posed a variant of HGS with a binary tau‑based crossover plan. Zhang et al. [68] revealed
improved HGS (IHGS) with cube mapping and refracted opposition‑based learning poli‑
cies. Besides, to recognize most important genes and handle the high‑dimensional genetic
data, Z. Chen et al. [69] invented a novel wrapper gene selection with artificial bee bare‑
bone Hunger Games Search (ABHGS). This variant combines HGS with an idea based on
artificial bee mo‑tions and a gaussian bare‑bone idea.

However, based on the No Free Lunch (NFL) [70] theory, no such algorithm can
universally solve all types of problems. In light of this, a new variant of the HGS al‑
gorithm is proposed in this study after identifying the limitations of the original HGS.
To enhance the capability of exploration and exploitation, two adapted strategies are in‑
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corporated: the adapted Logarithmic Spiral strategy [71] (LS‑OBL) and the adapted Rosen‑
brock Method (RM) [71]. The LS‑OBL strategy is key in reducing the search space and
maintaining solution diversity. By incorporating LS‑OBL intoHGS, the algorithmbecomes
more efficient in exploring different regions of the problem space and increasing the vari‑
ety of solutions. On the other hand, the adapted RM strategy aids in overcoming local
optima. It assists HGS in bypassing suboptimal solutions and improves its ability to con‑
verge toward better solutions.

The main contributions of this paper can be summarized as follows:
1. The introduced strategy enhance the exploration and exploitation process of ordinary

HGS algorithms when solving optimization problems.
2. To evaluate the efficacy of the proposed approach, RLHGS is compared with eight

other state‑of‑the‑art algorithms on 23 classical benchmark functions and 10 bench‑
mark functions fromCEC2020. And the comparative evaluation of these experiments
demonstrates the superiority of RLHGS in terms of optimization performance.

3. The proposed RLHGS algorithm addresses four constrained real‑world problems,
showcasing its practical applicability and effectiveness in tackling complex engineer‑
ing challenges.

4. The experiment results of RLHGS indicate excellent accuracy and reliable perfor‑
mance.
The other part of this paper is organized as follows: Section 2 describes the stan‑

dard HGS algorithm and the embedded strategies used in this study. Section 3 elaborates
on the structure of the proposed RLHGS algorithm and displays its flowchart.
Section 4 clarifies the experiment setting. Section 5 conducts a qualitative analysis and
three experiments to demonstrate the improvement achieved by the embedded strategies,
compare the performance of RLHGS with eight competing algorithms, and showcase its
ability to handle practical engineering applications. Section 6 provides the conclusion and
discusses the prospect of future work.

2. Preliminaries
2.1. Description of Hunger Games Search

Hunger serves as one of the most immediate homeostatic motivations in the lives
of animals, influencing their behavioral decisions and actions. This fundamental motiva‑
tion can even surpass and impact other competing drive states, such as thirst, feelings
of insecurity, or fear of predators [72]. According to the literature [73], a conclusion can be
drawn that with the increase in hunger, animal food cravings also increase. It is observed
that hunger increases food craving in animals. In situations where there are limited food
sources, a logical game emerges among hungry animals, where participants strive to se‑
cure victory and gain access to food sources for better chances of survival [74]. Building
upon these premises, Hunger Games Search (HGS) was proposed.

2.1.1. Approach Food
In nature, animals often engage in cooperative foraging behaviors, although this is not

always the case [75]. There are instanceswhere individuals choose to act alone. Based on stud‑
ies on animal predatory behavior, Equation (1) introduces three position‑updatingmodes that
simulate the behavior of animals when they are in close proximity to food sources.

−−−−−→
X(t + 1) =



Game1 :
−−→
X(t)·(1 + randn(1)), r1 < l

Game2 :
−→
W1 ·

→
Xb +

→
R·

−→
W2 ·

∣∣∣∣∣→Xb −
−−→
X(t)

∣∣∣∣∣, r1 > l, r2 > E

Game3 :
−→
W1 ·

→
Xb −

→
R·

−→
W2 ·

∣∣∣∣∣→Xb −
−−→
X(t)

∣∣∣∣∣, r1 > l, r2 < E

(1)
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In the above formula, t means current iterations and
→

X(t) represents the position
of each individual;

→
Xb indicates the position of the best one in the current iteration; randn(1)

is a value that can satisfy normal distribution;
→

W1 and
→

W2 are indicators of hunger weight;
r1 and r2 are two random values within the range of [0, 1]; l is a significant control parame‑
ter of the HGS, which can influence its overall performance. E is a variation control for all
positions, the mathematical formula of it is as follows:

E = sech(|F(i)− BF|) (2)

where F(i) records individual’s fitness value; BF means the best fitness acquired from the cur‑
rent iteration. What’s more, the specific expression of hyperbolic function sech in this study
is as follows:

sech(x) = 2
ex+e−x (3)

The formulas of
→
R and relative parameters are as follows:

R = 2 × shrink × rand − shrink (4)

shrink = 2 ×
(
1 − t

T
)

(5)

where rand represents a random value limited within [0, 1]; T is the maximum value
of iterations.

2.1.2. Hunger Role
The starvation characteristic of individuals is the core content of the HGS algorithm.

This subsection plans to present the mathematical model of this characteristic.

−−−→
W1(i) =

{
hungey(i)· N

Sum_hungry × r4, r3 < l
1, r3 > l

(6)

−−−→
W2(i) = (1 − exp(−|hungry(i)|−Sum_hungry))× r5 × 2 (7)

Equations (6) and (7) showhow theweight value is calculated. In the formulas, hungry
indicates the hunger condition of individuals, and Sum_hungry stands for the sum value
of hungry; N is the total amount of individuals; r3, r4 and r5 are random numbers which
are limited in [0, 1]. The detailed expression of hungry(i) is as follows:

hungry(i) =
{

0, AllFitness(i) == BF
hungry(i) + H, AllFitness(i) ! = BF

(8)

where the AllFitness stores all individual’s fitness value generated in iterations and the
AllFitness(i) indicates the fitness of each independent individual in the current iteration.
Notably, when the best fitness is found, the corresponding hungry(i) value would be as‑
signed to 0, if not, the new hungry value H would be supplied based on the actual hungry
value. Equation (9) showed as follows denotes the consists of H:

H =

{
LH × (1 + r), TH < LH

TH, TH ≥ LH
(9)

TH = F(i)−BF
WF−BF × r6 × 2 × (UB − LB) (10)

where the sensation of hunger [76] H in Equation (9) is restricted to a lower bound LH
which represents the lower limits of hunger. The setting of LH in this study is equal to 100,
consisting with the settings in the literature [69,77]. BF and WF in Equation (10) means
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the best fitness value and the worst fitness value acquired from the current iteration, re‑
spectively; F(i) stands for the fitness of each individual; F(i) − BF denotes the thresh‑
old of food consumption necessary for an individual to attain a state of complete satia‑
tion; WF − BF denotes the maximal foraging ability of an individual in the current iter‑
ation; F(i)−BF

WF−BF stands for the hunger ratio; r6 is a random value limited within [0, 1]; UB
and LB are the meanings of upper limits and lower limits of the dimensions, respectively.
What’s more, in Equation (10), Algorithm 1. displays the pseudo‑code of the HGS algorithm.

Algorithm 1: Pseudo‑code of HGS.

Initialize the parameters N, T, l, D, Sum_hungry
Initialize the population Xi (i = 1, 2, . . . , n)
While (t ≤ T
 Calculate the initial fitness of all populations
 Update BF, WF, and Xb
 Calculate hungry by using Equation (8)
 CalculateW1 andW2 by using Equations (6) and (7), respectively
 For i = 1 to N
    If (rand < 0.3)
     Update the position of the current search agent by using Equation (1)
    Else
     Calculate E by using Equation (2)
     Update R using Equation (4)
     Update the position of the current search agent by Equation (1)
   End if
 End For
 t = t + 1
End While
Return BF and Xb

2.2. The Adapted Logarithmic Spiral Strategy
Logarithmic Spiral (LS) [78] strategy, an effective search method in the exploration

phase, is inspired by the spiral phenomena existing in nature [79]. Observing the famous
Whale Optimization Algorithm (WOA) and Moth Flame Optimization (MFO) algorithm,
the application of LS strategy can be found, which both use Equation (11) to mimic loga‑
rithmic spiral trajectory in their algorithm logic.

−−−−−→
X(t + 1) =

∣∣∣∣∣−→Xb −
−−→
X(t)

∣∣∣∣∣× ebr7 × cos(2πr7) +
−→
Xb (11)

In Equation (11),
→
Xb stands for the best solution location obtained from the current

iteration;
→
Xt and

→
Xt+1 means the position vector of t‑th and (t + 1)‑th iteration, respectively;

b is a constant value used to define the logarithmic spiral shape and the value of b is set
to 1; r7 is a random value range from [−1, 1].

An adapted LS strategy was proposed in the literature [71] to achieve a wider and
more plausible range of exploration. This novel method combines the original LS strat‑
egy with Opposition‑based Learning (OBL) [80], named LS‑OBL strategy. The idea of this
modified strategy is to incorporate the LS spatial trajectory between iteration‑based and
opposite‑based solutions to boost the algorithm’s optimal efficiency.

The implementation of the LS‑OBL strategy is mainly divided into three parts.

Firstly, the OBL algorithm generates an opposite solution
→

Xop based on the
−→
Xb that the orig‑

inal HGS algorithm got in the current iteration. The mathematical model of this part is
as follows:

→
Xop = rand × (UB + LB)−

−→
Xb

(12)

where
−→
Xop is the opposite position vector of

→
Xb.
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Then, the dynamic logarithmic spiral space between
→
Xb and

−→
Xop is formed in each

iteration. The relative mathematical model is mentioned in Equation (13).

→
X(t + 1) =

∣∣∣∣→Xb −
−→
Xop

∣∣∣∣× ebr7 × cos(2πr7) +
→
Xb (13)

Lastly, the search agent achieves random exploration throughout the whole logarith‑
mic spiral space according to the parameter of s which is defined in Equation (14).

s = 2 × rand(0, 1)− 1 (14)

where rand(0, 1)means a random number generated from (0, 1).

2.3. The Adapted Rosenbrock Method Strategy
RosenbrockMethod (RM) [81] strategy is a reliable local searchmethodproposedbyRosen‑

brock. For the poor performance of the basic RM strategy on multimodal problems [82], an en‑
hanced variant based on the RM strategy was proposed by Li et al. [71] in 2021, which makes
targeted improvement in the basic RM’s initial step size σi(i = 1, 2, . . . , n) and termination con‑
ditions. Different from the σi in tradition RM as a constant value, the σi in adapted RM strategy
can realize the dynamic change with iterations. The detailed description of σi is as follows:

δi =
2

√√√√√√√
∑n

k=1

(
→

Xki−
→
Xi

)
n

+ ε1, i = 1, 2, . . . d (15)

→
Xi =

∑n
k=1

→
Xki

n
(16)

where n represents the total amount of candidate individuals and d represents the dimen‑
sion of the population.

→
Xki stands for the vector of the k‑th individual in the i‑th dimension,

and
→
Xi stands for average candidate individual in the i‑th dimension which is explained

in Equation (16). ε1 is a constant equal to 1.0e−150 for preventing the algorithm’s initial
value from being 0.

What’s more, the two‑loop termination condition in the original RM strategy is changed,
which increases the participation of ε1, ε2, k1, and k2. Specifically, ε1 and ε2 are two pa‑
rameters controlling internal and external loops, respectively. The parameter setting of ε1
is mentioned before and the ε2 is set to 1.0e−4, which values are consistent with the settings
in the literature [82]. While the function of k1 and k2 play the role of loop counter. Algorithm
2 presents the pseudo‑code of the improved RM strategy.
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Algorithm 2: Pseudo‑code of the adapted RM strategy.

Input the search agents position Xi (i = 1, 2, . . . , n), population position X, D.
Initialize the orthonormal basis di (i = 1, 2, . . . , n), the value of step size adjustment α and β,
the ending instruction ε1, ε2, N, k2 = 0.
Initialize the step size δi (i = 1, 2, . . . , n) by using Equation (14), set Xk = Xi .
While((δmin ≥ ε1) or (k2 < 2N ))
Set X = Xk , k1 = 0, Z = X
 While (k1 < N )
  For i= 1 to N
   Y = X + diδi
   If ( f (Y) < f (X) )
     X = Y
    δi = aδi (α > 1)
    Else
    δi = βδi (−1 < β < 0)
    End If
   End for
   If

([
abs( f (Z)− f (X))

abs( f (X))+ε1

]
< ε2

)
   k2 = k2 + 1
   Else
   k2 = 0
   End If
   k1 = k1 + 1
   End While
   If ( f (X) < f (Xk) )
   Xk = X
   Update the orthonormal basis di .
   End If
End While
Return Xb

3. Description of Proposed RLHGS
3.1. Motivation for This Work

Conventional swarm intelligence algorithms often suffer from issues such as premature
convergence, slow convergence, and easy trapping in local optima. The design of the combina‑
tion or hybrid algorithms can mitigate these problems to a certain extent. Maintaining the di‑
versity of the population for simulation purposes and extending the flexibility of the algorithm
to speed up the convergence velocity, hybridizing specific optimization strategies can make
a good balance between the two phases of exploration and exploitation.

There is no denying that Hunger Games Search (HGS) is a good population‑based op‑
timizer. However, when dealing with challenging optimization problems, the classic HGS
sometimes shows premature convergence and stagnation shortcomings. Therefore, finding
approaches that enhance solution diversity and exploitation capabilities is crucial. This study
incorporates two effective strategies into HGS: adaptations based on the Logarithmic Spiral
(LS‑OBL) and Rosenbrock Method (RM). On the one hand, LS‑OBL is an exploration method
that is based on the idea of Logarithmic Spiral and Opposition‑based Learning. Furthermore,
the idea behind this strategy is to generate a batch of new solutions through the OBL strat‑
egy and then construct a logarithmic spiral spatial trajectory between the current solu‑
tion and the OBL‑based solution. LS‑OBL effectively alleviates the defects of the classic
HGS in exploration by properly narrowing space and increasing the solution’s diversity.
On the other hand, the adapted RMmethod is employed to optimize the exploitation pro‑
cess.By adjusting the search direction and step size, RM helps the search agent avoid getting
trapped into local optima, ensuring stronger convergence towards global optimal results.

3.2. Flowchart and Pseudo‑Code of RLHGS
The flowchart and pseudo‑code are shown in Figure 1 and Algorithm 3, respectively.

Notably, the execution of the RM strategy is conditional. For the high computational time
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of RM, the execution of RM is limited by a parameter prob, which plays the role of balancing
RM performance and time consumption. The description of this parameter is as follows:

probi =
Pno
N × rand(0, 1) i = 1, 2, . . . n (17)

where N means the size of the population; Pno means the population number that is weaker
than the optimal solution in the current iteration, rand is a random number obtained from
(0, 1). When the probi is higher than 0.8, the RM strategy will be invoked to search for the
best further, or the exploitation strategy of standard HGS is performed.
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Algorithm 3: Pseudo‑code of RLHGS.

Initialize the parameters N, T, l, D, Sum_hungry
Initialize the population Xi (i = 1, 2, . . . , n)
While (t ≤ T )
 Calculate the initial fitness of all populations
 Update BF, WF, and Xb
 Calculate hungry by using Equation (8)
 Calculate W1 and W2 by using Equations (6) and (7), respectively
 For i= 1 to N
   If (rand < 0.3)
     Update the position of the current search agent by using the adapted LS‑OBL strategy
   Else
     Calculate E by using Equation (2)
     Update R using Equation (4)
     Update the position of the current search agent by Equation (1)
       If (prob > 0.8)
     Update the position of the current search agent by using the adapted RM strategy
   End If
   End If
  End For
  t= t + 1
End While
Return BF and Xb
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3.3. Computational Complexity Analysis
Computational complexity is a measure of the time and resources required by an algo‑

rithm to execute. In the original HGS, the computational complexitymainly depends on these
aspects: population initialization, fitness value calculation, sorting, and population updat‑
ing. In these processes, N, D, and T represent the scale of population, the scale of dimen‑
sion, and the maximum number of iterations respectively. Specifically, in the initial stage,
the computational complexity of population initialization is O(N), whereas the computa‑
tional complexity of fitness value calculation is O(T × N). In the worst case, the compu‑
tational complexity of sorting is O(T × N × logN). The population updating includes
hunger updating, weight updating, and location updating, with computational complex‑
ity O(T × N), O(T × N × D), and O(T × N × D), respectively. Thus, the computational
complexity of the originalHGS isO(N × (1 + T × N × (2 + logN + 2 × D))). The adapted
algorithm RLHGS is also compounded from the above aspects, but owing to the addition
of LS‑OBL and RM operators, they differ in the process of updating population positions.
However, due to the random operations of RM strategy, it is hard to assess the exact com‑
putational complexity of RLHGS. Hence, evaluating the algorithm’s computational cost
necessitates taking into account the running time of the code. This study evaluates the ac‑
tual computational cost of RLHGS and other comparative algorithms by recording their
average time cost on 23 classic benchmark test suites. The average running cost compari‑
son is listed in Section 5.3.1, and their units is seconds.

4. Designs for Experiments
4.1. Details of Benchmark Functions

To mitigate the impact of randomness in algorithms, it is necessary to employ ap‑
propriate and comprehensive test functions and case studies. This ensures that superior
results are not merely coincidental but consistently achieved. Thus, a sufficient evaluation
is conducted using 23 classic benchmarks [83] and CEC 2020 benchmark test suite [84].
These benchmarks serve as crucial tools for testing algorithm performance. Twenty‑three
classical benchmark test suites consist of unimodal, multimodal, and fixed‑dimensional
multi‑modal functions. Specifically, F1–F13 represent high‑dimensional problems, includ‑
ing unimodal functions (F1–F5), a step functionwith oneminimumvalue (F6), a noisy quar‑
tic function (F7), and multimodal functions with multiple local optima (F8–F13).
Besides, F14–F23 are low‑dimensional functions with only a few local minima, which en‑
ables the assessment of the algorithm’s effectiveness in searching for near‑global optima.
Detailed information about these benchmark functions can be found in Table 2.
What’s more, to ascertain the RLHGS’s efficacy, it is also tested on the CEC2020 bench‑
mark test suite, which includes one unimodal function, three multimodal functions, three
hybrid functions, and three composition functions. Table 3 provides further details about
the CEC2020 benchmark functions. Notably, both in Tables 2 and 3, D means the dimen‑
sions of functions, R means the domain of functions, and fmin means the optimum solution
of the functions. Figure 2 presents 3‑D map of some 23 classic benchmarks functions.

Table 2. 23 classic benchmark functions.

Function D R fmin

F1(x) =
n
∑

i=1
x2

i 30 [−100, 100] 0

F2(x) =
n
∑

i=1
|xi |+ ∏n

i=1|xi | 30 [−10, 10] 0

F3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2

30 [−100, 100] 0

F4(x) = maxi{|xi |, 1 ≤ i ≤ n} 30 [−100, 100] 0

sF5(x) =
n−1
∑

i=1

[
100
(
xi+1 − x2

i

)2
+ (xi − 1)2

]
30 [−30, 30] 0
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Table 2. Cont.

Function D R fmin

F6(x) =
n
∑

i=1
([xi + 0.5])2

30 [−100, 100] 0

F7(x) =
n
∑

i=1
ix4

i + random[0, 1] 30 [−1.28, 1.28] 0

F8(x) =
n
∑

i=1
−xisin

(√
|xi |
)

30 [−500, 500] −418.9829 × 30

F9(x) =
n
∑

i=1

[
x2

i − 10cos(2πxi) + 10
]

30 [−5.12, 5.12] 0

F10(x) = −20exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e 30 [−32, 32] 0

F11(x) = 1
4000

n
∑

i=1
x2

i − ∏n
i=1 cos

(
xi√

i

)
+ 1 30 [−600, 600] 0

F12(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4)yi =

1 + xi+1
4 u(xi , a, k, m) =

k(xi − a )m xi > a
0 −a < xi < a

k(−xi − a )m xi < −a

30 [−50, 50] 0

F13(x) = 0.1
{

sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+

n
∑

i=1
u(xi , 5100, 4) 30 [−50, 50] 0

F14(x) =

(
1

500 +
25
∑

j=1

1

j+∑2
i=1

(
xi−aij

)6

)−1

2 [−65, 65] 1

F15(x) =
11
∑

i=1

[
ai −

x1(b2
i −bi x2)

b2
i +bi x3+x4

]2

4 [−5, 5] 0.00030

F16(x) = 4x2
1 − 2.1x2

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1 − 1

8π

)
cos x1 + 10 2 [−5, 5] 0.398

F18(x) =
[
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
×[

30 + (2x1 − 3x2)
2 ×

(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)] 2 [−2, 2] 3

F19(x) = −
4
∑

i=1
ciexp

(
−

3
∑

j=1
aij
(
xj − pij

]
)

2

)
3 [1, 3] −3.86

F20(x) = −
4
∑

i=1
ciexp

(
−

6
∑

j=1
aij
(
xj − pij

]
)

2

)
6 [0, 1] −3.32

F21(x) = −
5
∑

i=1

[
(X − ai)(X − ai)

T + ci

]−1

4 [0, 10] −10.1532

F22(x) = −
7
∑

i=1

[
(X − ai)(X − ai)

T + ci

]−1

4 [0, 10] −10.4028

F23(x) = −
10
∑

i=1

[
(X − ai)(X − ai)

T + ci

]−1

4 [0, 10] −10.5363

Table 3. CEC2020 benchmark functions.

No. Function fmin

F1 Shifted and Rotated Bent Cigar Function 100
F2 Shifted and Rotated Schwefel’s Function 1100
F3 Shifted and Rotated Lunacek bi‑Rastrigin Function 700
F4 Expanded Rosenbrock’s plus Criewangk’s Function 1900
F5 Hybrid Function 1 (N = 3) 1700
F6 Hybrid Function 2 (N = 4) 1600
F7 Hybrid Function 3 (N = 5) 2100
F8 Composition Function 1 (N = 3) 2200
F9 Composition Function 2 (N = 4) 2400
F10 Composition Function 3 (N = 5) 2500
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4.2. Configuration of Experiment Environment
In this study, two kinds of experiments on benchmark test suites are conducted, one

aims to demonstrate the effectiveness of the added strategies and the other is focused
on showcasing the superiority of RLHGS through a comparison with other powerful al‑
gorithms. To maintain fair comparisons, we have adhered to the suggested principles out‑
lined in previous AI studies [85–87], which emphasize the importance of employing uni‑
form conditions during the assessment of different methodologies [88,89]. Hence, the pop‑
ulation size of these two experiments is set to 30, and the function evaluation for D = 30.
The maximum iteration T is 300,000. To minimize the random error, all involved algo‑
rithms are run 30 times independently on all benchmark functions.

Besides, including the constrained real‑world engineering experiment, all experiments
are accomplished on a PC with Win11, a 64‑bit operating system. The CPU is Intel (R) Core
(TM) i5‑9400, the main frequency is 2.90 GHz, the memory is 8.00 GB, and the software is
MATLAB R2018b.

4.3. Statistical Analysis Methods
Evaluating the progress made by a new proposed algorithm compared to existing tech‑

niques is a specific challenge in experimental investigations. In recent years, researchers
have recognized the importance of statistical analysis in assessing the performance of novel
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algorithms. In this study, the effectiveness of RLHGS is evaluated through several evalua‑
tion criteria.

Firstly, the average value (Avg) and standard deviation (Std) of the optimal function
value are used to evaluate the performance of algorithms. Among them, Avg is applied
to evaluate the global search ability and the quality of the solution, while Std is devoted
to evaluating the robustness of the algorithm. The ranking of each algorithm based on Avg
is provided to reflect their performance on each function. In addition, the evaluation cri‑
teria of the Friedman test and Wilcoxon rank test also be used. In 1937, Milton Friedman
first developed the concept of the Friedman test [90], which was later used to assess sev‑
eral different algorithms’ performance on different kinds of test functions. After its effec‑
tiveness is proven in various literature, the Friedman test has been regarded as an avail‑
able method for model performance evaluation. Wilcoxon signed‑rank test [91] was first
proposed by a U.S. statistician named Frank Wilcoxon. As a hypothesis‑testing method,
the Wilcoxon rank test has been widely used to verify the algorithm’s statistical consis‑
tency after it was put forward. The principle of this method is to judge which algorithm
is better by comparing the significant differences between two samples. Moreover, it can
give a judgment if one algorithm is superior to another by calculating the p‑value. No‑
tably, the standard value of p‑value is set to 0.05. The sign “+/−/=” in the table is utilized
to indicate if the compared algorithm’s execution is better than, worse than, or comparable
to that of RLHGS in terms of statistical manner.

5. Result and Discussion
5.1. Qualitative Analysis

Exploration and exploitation are two crucial processes in SI algorithms. The explo‑
ration process primarily occurs in the early stages of algorithm execution, with the main
aim of conducting a comprehensive search across the feasible domain space to identify
potential regions and optimal solutions. During this phase, the algorithmwould place sig‑
nificant emphasis on global search, which expands the search scope and diversifies search
strategies to discover new areas that may contain better solutions. Exploration presents
an opportunity to venture into uncharted territories and acts as a foundation for the sub‑
sequent exploitation process. The goal of the exploitation is to delve into known solu‑
tion spaces and enhance the quality of candidate solutions through thorough searches.
This stage focuses more on specific areas that are considered to have a higher probability
of obtaining better solutions. By using more refined search strategies and utilizing prior
knowledge, the exploitation phase can perform local optimizations around the current so‑
lution to obtain higher‑quality solutions. Its major focus revolves around enhancing opti‑
mization performance to achieve swift convergence towards the optimal or approximate
optimal solution.

To evaluate the exploration and exploitation processes of RLHGS, this subsection con‑
ducts a qualitative analysis. Figure 3 presents the qualitative results of RLHGS on several
functions from the CEC2020 benchmark test suite, encompassing three types: unimodal
function (F1 ), multimodal functions (F2 and F3), and composite function (F8). In Figure 3,
column (a) presents the 3‑D position distribution, showcasing the nature of four functions.
Column (b) illustrates the 2‑D spatial distribution of search history trajectories, providing
insights into the position and dispersion of the population throughout the iteration process.
The red dot in the image represents the global optimal value. Upon observing the graphs
in this column, it becomes apparent that the population’s search trajectory almost revolves
around the red dot. This observation suggests that the search range of RLHGS is both rea‑
sonable and effective. Column (c) showcases the motion trajectory of the first individual
in the first dimension. It exhibits fluctuations during the initial stage of the search but
ultimately converges towards the optimal value in later stages. This behavior can be at‑
tributed to the algorithm’s continuous pursuit of higher‑quality solutions during the ex‑
ploration phase, underscoring RLHGS’s adaptability and exceptional exploration capabil‑
ity. However, although the graphs in columns (b) and (c) indicate a trend for individuals
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of RLHGS to explore promising areas throughout the search space and ultimately utilize
the best solution, the convergence curve has not been observed or proved. Column (d)
records the convergence curves of RLHGS, revealing the trend of changes in the optimal
fitness value and verifying the capability of RLHGS in obtaining a near‑optimal solution
throughout the whole iteration.
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However, when the processes of exploration and exploitation are not balanced, the op‑
timization performancemay notmeet expectations. For instance, if the algorithm only pos‑
sesses strong exploratory capabilities, it may yield high‑quality solutions but at a slower
convergence speed. On the other hand, if the algorithm leans towards exploitation, the con‑
vergence speed may improve, yet there is a higher risk of getting trapped in local optima.
Hence, achieving a delicate balance between the exploration and exploitation stages be‑
comes crucial for enhancing algorithm performance.

To further examine the impact of LS‑OBL and RM on the exploration and exploitation
process. This study conducts a balance analysis and comprehensive discussions of these
two processes of RLHGS and HGS. The relative results are shown in Figure 4.
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Notably, the % EPL and % EPT indicators in column (a) represent the proportions of algo‑
rithmic exploration and exploitation processes throughout the entire execution, which are
calculated by Equations (18)–(20). In equations, Div refers to individual diversity, Divmax
indicates maximum individual diversity, Divj represents the j‑th dimensional diversity
of an individual, and n denotes the total number of individuals in the population. D rep‑
resents the function’s dimension, Xij represents the j‑th dimension of the i‑th individual,
and medium (Xj) signifies the median value of the j‑th dimension across all individuals.

%EPL = Div
Divmax

× 100% (18)

%EPT = |Div−Divmax |
Divmax

× 100% (19)

Divj =
1
n

n
∑

i=1

∣∣median
(
xj
)
− xij

∣∣ (20)

Div = 1
dim

dim
∑

j=1
Divj (21)

As shown in Figure 4, columns (a) and (b) illustrate the exploration and exploitation
stage balance diagrams throughout the execution process, showcasing trend curves repre‑
senting the exploration and exploitation stages. Except for the change curve of two pro‑
cesses, an incremental–decremental curve is added to reflect the algorithm’s level of ex‑
ploration. If the global search outweighs local development during algorithm execution,
the curve exhibits an upward trend. Conversely, if local development dominates, the curve
demonstrates a downward trend. In detail, upon analyzing the graphs in columns (a)
and (b), it becomes apparent that the exploration and exploitation process in RLHGS has
shown significant improvement compared to HGS. On the F1 function, % EPL increased
from 8.1273% to 16.7709%, indicating an improvement of 8.6517%. On the F2 function, %
EPL increased from 8.6423% to 24.202%, representing a boost of 15.5597%. On the F3 func‑
tion, % EPL rose from 3.1199% to 15.4554%, an increase of 12.3355%. Similarly, on the F8
function, % EPL surged from 6.125% to 22.7202%, marking an increase of 16.5952%. These nu‑
merical changes in % EPL and% EPT and the convergence curve separately generated by RL‑
HGS and HGS in column (c) demonstrate that the inclusion of LS‑OBL and RM algorithms
has introduced a certain degree of balance between the exploration and exploitation stages.

5.2. Inspection of Improvement Effect
Even if the aforementioned results provide evidence and validation of RLHGS’s high

performance, more specific information needs to be obtained to confidently confirm whether
the added mechanism effectively promotes the performance of the HGS. In this experiment,
there are four algorithms participating in the comparison. Table 4 lists an intuitive descrip‑
tion of compared algorithms, where ‘1’ indicates that strategy is embedded, and ‘0’ indicates
not to be adopted. All the algorithms are used to handle ten classical benchmark functions
from CEC2020.

Table 4. Design of RLHGS, RHGS, LHGS and HGS.

Algorithm LS‑OBL Strategy Adapted RM Strategy

RLHGS 1 1
RHGS 0 1
LHGS 1 0
HGS 0 0
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Table 5 presents the average value (Avg) and standard deviation (Std) of the optimal
function value of RLHGS, RHGS, LHGS, and HGS. Upon observing ranking in Table 5,
it is evident that RLHGS obtains the highest number of optimal values. Also, RLHGS
exhibits a remarkable probability of approximately 80% in achieving the best performance
across 10 test functions. Specifically, the outstanding performance of RLHGS is mainly
reflected in the unimodal function (F1), multimodal functions (F2–F4), hybrid functions
(F5–F7), and composition function (F8). Though slightly behind RHGS and HGS in F9 and
F10, RLHGS still ranked first and obtained the lowest average value of the Friedman test
shown in Table 6. Such a result not only indicates that RLHGS has good global search
ability and higher quality solutions but also indicates that the robustness of the algorithm
is better than compared algorithms. What’s more, it can be noticed that the original HGS
is only in third place, which lags behind RLHGS in the ranking, directly verifying that
embedded strategies have a good effect on promoting the optimization capability of HGS.
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Table 5. Experiment results of RLHGS, RHGS, LHGS, and HGS on CEC2020.

F1 F2 F3

Avg Std Rank Avg Std Rank Avg Std Rank

RLHGS 1.1721 × 102 3.8415 × 101 1 1.7057 × 103 2.1073 × 102 1 7.3244 × 102 1.0536 × 101 1
RHGS 9.1127 × 109 1.3465 × 1010 4 4.2311 × 103 6.1760 × 102 4 1.2333 × 103 1.6875 × 102 4
LHGS 1.1411 × 107 2.5083 × 107 2 3.6214 × 103 5.0565 × 102 2 8.7070 × 102 5.5928 × 101 2
HGS 1.2428 × 107 3.4529 × 107 3 3.6354 × 103 4.8399 × 102 3 8.9153 × 102 4.6783 × 101 3

F4 F5 F6

Avg Std Rank Avg Std Rank Avg Std Rank

RLHGS 1.8836 × 103 8.9986 × 101 1 7.4880 × 104 4.3342 × 104 1 2.0053 × 103 1.5192 × 102 1
RHGS 2.2603 × 103 1.5553 × 102 4 2.0131 × 106 7.3692 × 106 4 2.9175 × 103 3.4464 × 102 4
LHGS 2.1305 × 103 1.9996 × 102 2 2.9555 × 105 2.0583 × 105 2 2.7490 × 103 2.8624 × 102 3
HGS 2.1426 × 103 1.5782 × 102 3 3.7466 × 105 2.8119 × 105 3 2.6231 × 103 2.8102 × 102 2

F7 F8 F9

Avg Std Rank Avg Std Rank Avg Std Rank

RLHGS 4.8111 × 104 3.1322 × 104 1 2.2069 × 103 2.2097 × 100 1 3.1351 × 103 3.5632 × 102 3
RHGS 1.4287 × 105 1.2640 × 105 2 2.3809 × 103 2.9696 × 101 4 2.6000 × 103 7.2642 × 10−13 1
LHGS 1.8992 × 105 1.3637 × 105 3 2.3053 × 103 3.2974 × 101 2 3.1590 × 103 4.0319 × 102 4
HGS 2.2062 × 105 1.7583 × 105 4 2.3246 × 103 3.3913 × 101 3 2.6000 × 103 0.0000 × 100 1

F10

Avg Std Rank +/−/=

RLHGS 2.8647 × 103 7.4926 × 101 4 ~
RHGS 2.7000 × 103 4.3058 × 10−13 1 8/2/0
LHGS 2.7797 × 103 1.3715 × 102 3 8/1/1
HGS 2.7000 × 103 0.0000 × 100 1 8/2/0

Table 6. The result of the Friedman test.

RLHGS RHGS LHGS HGS

Average rank 1.5 3.2 2.5 2.6
Overall rank 1 4 2 3

Amore intuitive comparison result can be observed from Figure 5. Looking at the con‑
vergence curves of F1, F2, F4, and F6, it can be concluded that neither the LS‑OBL strategy
nor the adapted RM strategy alone can effectively improve the HGS method sometimes,
but when these two are simultaneously introduced, the improvement would be obvious.
What’s more, the excellent performance of RLHGS can also be seen from the convergence
curves of F3, F5, F7 and F8. The Wilcoxon signed‑rank results in Table 7 also support
the above conclusion.

In summary, the LS‑OBL and adaptedRMstrategieswork synergistically to overcome
the limitations of the original algorithm, improving its overall performance in solving com‑
plex optimization problems.

Table 7. Wilcoxon signed‑rank results of RLHGS, RHGS, LHGS, and HGS on CEC 2020.

RHGS LHGS HGS

F1 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6
F2 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6
F3 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6
F4 2.3534 × 10−6 3.7243 × 10−5 5.2165 × 10−6
F5 1.6046 × 10−4 1.9729 × 10−5 2.3534 × 10−6
F6 1.9209 × 10−6 1.7344 × 10−6 3.5152 × 10−6
F7 3.3173 × 10−4 9.3157 × 10−6 7.6909 × 10−6
F8 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6
F9 4.6072 × 10−5 1.5140 × 10−1 5.9493 × 10−5
F10 1.2290 × 10−5 2.0297 × 10−3 1.2290 × 10−5
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5.3. Comparison with Eight Superior Algorithms
This subsection mainly introduces the experiment of RLHGS with eight state‑of‑the‑

art algorithms. Table 8 shows the parameter configuration of the algorithms involved
in comparison and the brief introductions of these algorithms are as follows:
• CS [92]: Cuckoo search algorithm, a powerful algorithm that was presented by Gan‑

domi et al. in 2013, the internal logic of the algorithm is based on the brood parasitism
of cuckoo species.
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• MFO [93]: Moth‑flame optimization algorithm was a novel nature‑inspired heuristic
paradigm proposed by Mirjalili in 2015. The inspiration for designing this algorithm
origins from the navigation method of moths in nature called transverse orientation.

• HHO [27]: Harris Hawks optimization algorithm was first proposed by Heidari et al.
in 2019, simulating Harris hawks’ hunting behavior.

• SSA [94]: Salp Swarm Algorithm is a bio‑inspired optimization algorithm that was
developed by Mirjalili et al. in 2017. The idea is based on the swarming mechanism
of salps.

• JADE [95]: An adaptive differential evolution algorithm, designed by Zhang et al.
in 2009, implemented with a new mutation strategy IdquoDE/current‑to‑best duo
with optional external archive and adaptively updating control parameters into nor‑
mal differential evolution algorithm.

• ALCPSO [96]: An enhanced version of particle swarm optimization raised by
Chen et al. in 2013, combined with an aging leader and challenger mechanism.

• SCGWO [97]: A variant of the grey wolf optimization algorithm innovated by
Hu et al. in 2021, introduced the improved spread and chaotic local search strategies
to the standard grey wolf optimization.

• RDWOA [98]: An improved meta‑heuristic algorithm based on the original whale
optimization algorithm developed in 2019, which is equipped with a random spare
strategy and double adaptive weight.

Table 8. The parameter setting of the algorithms involved in the comparison.

Algorithm Parameter Value

RLHGS

l 0.03
LH 100
α 50
β −0.5

HGS
l 0.03

LH 100

CS
N_iter 0

pa 0.25

MFO
b 1
t [−2, 1]

HHO beta 1.5

SSA
c2 [0, 1]
c3 [0, 1]

JADE

c 0.1
p 0.05

CRm 0.5
Fm 0.5

ALCPSO

w 0.4
c1 2
c2 2

li f espan 60
T 2

pro 1/D

SCGWO
a [2, 0]
q 2

RDWOA

a1 [2, 0]
a2 [−2, −1]
b 1
s 0

5.3.1. Benchmark Function Set I: 23 Classic Test Functions
To validate the feasibility of RLHGS, RLHGS with CS, MFO, HHO, SSA, JADE, AL‑

CPSO, SCGWO, and RDWOA are arranged to handle 23 classical numerical optimization
problems in this subsection. The comparison results are presented in Table 9.
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According to the Avg and Std, it can be found that RLHGS achieves the highest number
of optimal values across various functions, including F1, F2, F9, F12, F13, F14, F16, F17,
F19, F20, F21, F22 and F23. In contrast, other algorithms such as CS, MFO, SSA, JADE,
and ALCPSO perform well only on fixed‑dimensional multimodal functions, while HHO,
SCGWO, and RDWOA show proficiency mainly in unimodal and multimodal functions.
Only RLHGS consistently achieves ideal values across all function types, which indicates
its versatility and robustness. Furthermore, Table 10 and Figure 6 provide the Friedman
mean level and overall rank of all compared algorithms. Comparing these results, it is
clear that RLHGS attains the highest rank, further solidifying its position as a powerful
stochastic optimization algorithm. The Wilcoxon signed‑rank results of RLHGS and other
eight superior algorithms on 23 benchmark functions are shown in Table 11. In the ta‑
ble, the p‑value which is less than 0.05, indicating a significant difference between RLHGS
and the compared algorithm, with RLHGS performing better than the compared algo‑
rithm.Table 12 lists the average running time of RLHGS and other eight superior algorithms
on 23 benchmark functions. Although the results are not the shortest time consuming, it can
be seen that the algorithm has a relatively reasonable time cost on most functions.

Figure 7 portrays the convergence curves of this experiment. Look at Figure 7, when
dealing with test functions F1 and F2, RLHGS obtains the optimum result with the fastest
optimization speed. Moreover, when dealing with multimodal functions like F12 and F13,
RLHGS is farmore than other compared algorithms in searching for global or near‑optimal
solutions, which can be intuitively seen from the convergence curves that the algorithm
does not immediately fall into local optima like other competing algorithms, also proving
RLHGS can jump out of local optima. What’s more, for most test functions, the perfor‑
mance of the RLHGS ismuch better than other comparedmethods in the early search stage.
Meanwhile, the final values obtained at the late search stage are faster ormuch closer to the
optimal value.

Table 9. Experiment results of RLHGS and other eight superior algorithms on 23 classic bench‑
mark functions.

F1 F2 F3

Avg Std Rank Avg Std Rank Avg Std Rank

RLHGS 0.0000 × 100 0.0000 × 100 1 0.0000 × 100 0.0000 × 100 1 4.8140 × 10−1 2.6367 × 100 4
CS 1.0136 × 10−6 7.1003 × 10−7 8 1.0000 × 1010 0.0000 × 100 9 2.7749 × 103 3.6176 × 102 7
MFO 1.9684 × 104 1.1885 × 104 9 1.4177 × 102 3.8959 × 101 8 1.2467 × 105 7.6037 × 104 9
HHO 0.0000 × 100 0.0000 × 100 1 0.0000 × 100 0.0000 × 100 1 0.0000 × 100 0.0000 × 100 1
SSA 7.0715 × 10−8 6.9886 × 10−9 7 6.0408 × 100 2.7973 × 100 7 1.8429 × 103 5.7033 × 102 6
JADE 3.7971 × 10−54 2.0335 × 10−53 5 7.8126 × 10−21 4.2783 × 10−20 5 5.1594 × 10−1 1.7506 × 100 7

ALCPSO 5.5275 × 10−8 3.0275 × 10−7 6 2.8912 × 10−1 3.9540 × 10−1 6 4.3973 × 104 4.9839 × 104 8
SCGWO 0.0000 × 100 0.0000 × 100 1 1.6093 × 10−306 0.0000 × 100 4 0.0000 × 100 0.0000 × 100 1
RDWOA 0.0000 × 100 0.0000 × 100 1 0.0000 × 100 0.0000 × 100 1 0.0000 × 100 0.0000 × 100 1

F4 F5 F6

Avg Std Rank Avg Std Rank Avg Std Rank

RLHGS 1.3092 × 100 3.6868 × 100 4 4.9487 × 101 3.4040 × 101 3 4.6288 × 10−11 1.3740 × 10−10 2
CS 2.1938 × 101 2.6548 × 100 5 2.8015 × 102 8.1279 × 101 8 9.4781 × 10−7 7.5517 × 10−7 4
MFO 9.3119 × 101 2.7711 × 100 9 3.2477 × 107 4.4852 × 107 9 2.2485 × 104 1.4372 × 104 9
HHO 0.0000 × 100 0.0000 × 100 1 2.9834 × 10−4 4.0764 × 10−4 2 2.4328 × 10−6 3.4989 × 10−6 5
SSA 2.3199 × 101 3.5560 × 100 6 1.5513 × 102 1.0766 × 102 6 6.9376 × 10−8 6.2853 × 10−9 3
JADE 3.0183 × 101 2.5466 × 100 7 6.2184 × 101 4.8003 × 101 4 4.1087 × 10−32 2.7731 × 10−32 1

ALCPSO 4.6584 × 101 5.0435 × 100 8 1.7682 × 102 5.6304 × 101 7 2.5553 × 10−5 1.3996 × 10−4 8
SCGWO 0.0000 × 100 0.0000 × 100 1 6.7320 × 10−5 2.1095 × 10−4 1 4.6217 × 10−6 6.9114 × 10−6 6
RDWOA 0.0000 × 100 0.0000 × 100 1 9.0644 × 101 4.7346 × 10−1 5 2.1185 × 10−5 1.1602 × 10−4 7

F7 F8 F9

Avg Std Rank Avg Std Rank Avg Std Rank

RLHGS 8.4687 × 10−2 1.1647 × 10−1 5 −3.7931 × 104 7.4989 × 103 5 0.0000 × 100 0.0000 × 100 1
CS 4.2060 × 10−1 9.4582 × 10−2 7 −2.6888 × 104 8.2358 × 102 7 2.0495 × 102 3.0866 × 101 6
MFO 1.6836 × 102 1.2589 × 102 9 −2.4513 × 104 2.3311 × 103 9 6.5040 × 102 9.4359 × 101 9
HHO 1.3552 × 10−5 1.2912 × 10−5 1 −4.1898 × 104 1.5437 × 10−2 2 0.0000 × 100 0.0000 × 100 1
SSA 1.4539 × 10−1 3.3744 × 10−2 6 −2.4613 × 104 1.5061 × 103 8 2.1037 × 102 4.3408 × 101 7
JADE 7.7322 × 10−2 2.2043 × 10−2 4 −4.0706 × 104 3.5996 × 102 4 1.3266 × 10−1 3.4400 × 10−1 5
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Table 9. Cont.

ALCPSO 9.5572 × 10−1 4.4139 × 10−1 8 −3.2131 × 104 1.4817 × 103 6 3.5699 × 102 5.1277 × 101 8
SCGWO 1.6531 × 10−5 1.7151 × 10−5 2 −4.1898 × 104 7.3117 × 10−6 1 0.0000 × 100 0.0000 × 100 1
RDWOA 1.6720 × 10−5 1.9081 × 10−5 3 −4.1681 × 104 1.1514 × 103 3 0.0000 × 100 0.0000 × 100 1

F10 F11 F12

Avg Std Rank Avg Std Rank Avg Std Rank

RLHGS 1.5987 × 10−15 3.8918 × 10−15 4 1.1433 × 102 4.1889 × 102 8 8.6139 × 10−14 2.7494 × 10−13 1
CS 3.6675 × 100 6.8688 × 10−1 8 1.4035 × 10−3 3.7653 × 10−3 4 2.6560 × 100 8.6266 × 10−1 7
MFO 1.9796 × 101 3.0301 × 10−1 9 1.4780 × 102 1.5074 × 102 9 1.1987 × 108 1.6068 × 108 9
HHO 8.8818 × 10−16 0.0000 × 100 1 0.0000 × 100 0.0000 × 100 1 1.4939 × 10−8 2.4035 × 10−8 4
SSA 3.5158 × 100 8.7325 × 10−1 7 2.9551 × 10−3 5.9380 × 10−3 5 1.1052 × 101 2.8571 × 100 8
JADE 3.0915 × 100 7.0554 × 10−1 6 6.6576 × 10−2 2.2311 × 10−1 6 4.9293 × 10−1 8.7992 × 10−1 5

ALCPSO 3.0853 × 100 1.0339 × 100 5 1.4067 × 10−1 1.9612 × 10−1 7 1.1087 × 100 1.4219 × 100 6
SCGWO 8.8818 × 10−16 0.0000 × 100 1 0.0000 × 100 0.0000 × 100 1 3.5795 × 10−9 6.2373 × 10−9 3
RDWOA 8.8818 × 10−16 0.0000 × 100 1 0.0000 × 100 0.0000 × 100 1 3.7469 × 10−10 1.1328 × 10−10 2

F13 F14 F15

Avg Std Rank Avg Std Rank Avg Std Rank

RLHGS 3.7509 × 10−11 1.8833 × 10−10 1 9.9800 × 10−1 0.0000 × 100 1 3.3801 × 10−4 1.6718 × 10−4 5
CS 8.1878 × 101 1.7632 × 101 7 9.9800 × 10−1 0.0000 × 100 1 3.0749 × 10−4 1.5595 × 10−19 1
MFO 1.9189 × 108 3.1803 × 108 9 1.7906 × 100 1.2289 × 100 9 1.1968 × 10−3 1.4423 × 10−3 9
HHO 1.3671 × 10−6 1.7078 × 10−6 3 9.9800 × 10−1 2.5569 × 10−12 8 3.1053 × 10−4 2.9635 × 10−6 4
SSA 1.2276 × 102 2.8909 × 101 8 9.9800 × 10−1 1.8895 × 10−16 1 7.0929 × 10−4 4.3532 × 10−4 7
JADE 1.1451 × 100 1.8571 × 100 5 9.9800 × 10−1 0.0000 × 100 1 1.0676 × 10−3 3.6550 × 10−3 8

ALCPSO 3.6431 × 100 6.1741 × 100 6 9.9800 × 10−1 1.0100 × 10−16 1 3.6853 × 10−4 2.3232 × 10−4 6
SCGWO 3.0464 × 10−7 6.2419 × 10−7 2 9.9800 × 10−1 1.3287 × 10−13 6 3.1019 × 10−4 2.6873 × 10−6 3
RDWOA 8.2257 × 10−3 1.1120 × 10−2 4 9.9800 × 10−1 6.2046 × 10−12 7 3.0749 × 10−4 4.6780 × 10−16 2

F16 F17 F18

Avg Std Rank Avg Std Rank Avg Std Rank

RLHGS −1.0316 × 100 6.7752 × 10−16 1 3.9789 × 10−1 0.0000 × 100 1 3.0000 × 100 2.0099 × 10−15 2
CS −1.0316 × 100 6.7752 × 10−16 1 3.9789 × 10−1 0.0000 × 100 1 3.0000 × 100 6.9974 × 10−16 1
MFO −1.0316 × 100 6.7752 × 10−16 1 3.9789 × 10−1 0.0000 × 100 1 3.0000 × 100 1.6941 × 10−15 4
HHO −1.0316 × 100 2.8301 × 10−15 7 3.9789 × 10−1 2.8584 × 10−11 7 3.0000 × 100 2.1313 × 10−12 8
SSA −1.0316 × 100 5.4546 × 10−16 6 3.9789 × 10−1 6.1435 × 10−16 6 3.0000 × 100 1.3515 × 10−14 7
JADE −1.0316 × 100 6.7752 × 10−16 1 3.9789 × 10−1 0.0000 × 100 1 3.0000 × 100 1.9039 × 10−15 2

ALCPSO −1.0316 × 100 5.9752 × 10−16 1 3.9789 × 10−1 0.0000 × 100 1 3.0000 × 100 1.8011 × 10−15 6
SCGWO −1.0316 × 100 1.9287 × 10−6 9 3.9796 × 10−1 8.3481 × 10−5 9 3.0000 × 100 3.7102 × 10−6 9
RDWOA −1.0316 × 100 6.2844 × 10−10 8 3.9789 × 10−1 2.8285 × 10−6 8 3.0000 × 100 2.0813 × 10−15 5

F19 F20 F21

Avg Std Rank Avg Std Rank Avg Std Rank

RLHGS −3.8628 × 100 2.7101 × 10−15 1 −3.3220 × 100 1.3424 × 10−15 1 −1.0153 × 101 7.2269 × 10−15 1
CS −3.8628 × 100 2.7101 × 10−15 1 −3.3220 × 100 1.2506 × 10−15 1 −1.0153 × 101 7.2269 × 10−15 1
MFO −3.8628 × 100 2.7101 × 10−15 1 −3.2319 × 100 7.0470 × 10−2 7 −7.7258 × 100 3.1212 × 100 8
HHO −3.8628 × 100 1.5442 × 10−5 7 −3.2245 × 100 7.8815 × 10−2 8 −5.2251 × 100 9.3075 × 10−1 9
SSA −3.8628 × 100 1.5668 × 10−15 6 −3.2190 × 100 4.1107 × 10−2 9 −9.3111 × 100 1.9151 × 100 5
JADE −3.8628 × 100 2.7101 × 10−15 1 −3.2903 × 100 5.3475 × 10−2 3 −8.8937 × 100 2.3590 × 100 6

ALCPSO −3.8628 × 100 2.5243 × 10−15 1 −3.2744 × 100 5.9241 × 10−2 6 −8.7207 × 100 2.4518 × 100 7
SCGWO −3.8606 × 100 3.6749 × 10−3 9 −3.2902 × 100 1.1989 × 10−1 4 −1.0153 × 101 1.8808 × 10−7 4
RDWOA −3.8625 × 100 1.4390 × 10−3 8 −3.2840 × 100 6.0187 × 10−2 8 −1.0153 × 101 4.5944 × 10−15 1

F22 F23

Avg Std Rank Avg Std Rank +/−/=

RLHGS −1.0403 × 101 1.7140 × 10−15 1 −1.0536 × 101 1.6820 × 10−15 1 ~
CS −1.0403 × 101 1.8067 × 10−15 1 −1.0536 × 101 1.7455 × 10−15 1 12/3/8
MFO −8.5564 × 100 3.1683 × 100 8 −7.4807 × 100 3.6232 × 100 8 20/0/3
HHO −5.4420 × 100 1.3483 × 100 9 −5.4890 × 100 1.3720 × 100 9 12/6/5
SSA −1.0227 × 101 9.6292 × 10−1 5 −1.0358 × 101 9.7874 × 10−1 5 19/2/2
JADE −9.7180 × 100 2.1204 × 100 6 −9.7872 × 100 2.2938 × 100 7 10/2/11

ALCPSO −9.6985 × 100 1.8230 × 100 7 −1.0326 × 101 9.9088 × 10−1 6 15/1/7
SCGWO −1.0403 × 101 9.5393 × 10−8 4 −1.0536 × 101 1.6328 × 10−7 4 12/6/5
RDWOA −1.0403 × 101 7.6950 × 10−6 3 −1.0536 × 101 1.3526 × 10−5 3 7/5/11

Table 10. Friedman test results on 23 classic benchmark functions.

RLHGS CS MFO HHO SSA JADE ALCPSO SCGWO RDWOA

Average rank 2.39 4.22 7.48 4.35 5.91 4.26 5.70 3.74 3.52
Overall rank 1 4 9 6 8 5 7 3 2
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Table 11. Wilcoxon signed‑rank results on 23 benchmark functions.

CS MFO HHO SSA JADE ALCPSO SCGWO RDWOA

F1 1.7344 × 10−6 1.7333 × 10−6 1.0000 × 100 1.7333 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100 1.0000 × 100
F2 4.3205 × 10−8 1.7344 × 10−6 1.0000 × 100 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.2500 × 10−1 1.0000 × 100
F3 1.7344 × 10−6 1.7344 × 10−6 3.9063 × 10−3 1.7344 × 10−6 3.1123 × 10−5 1.7344 × 10−6 3.9063 × 10−3 3.9063 × 10−3
F4 1.7344 × 10−6 1.7344 × 10−6 3.7896 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 3.7896 × 10−6 3.7896 × 10−6
F5 1.7344 × 10−6 1.7344 × 10−6 1.9209 × 10−6 1.9209 × 10−6 3.0861 × 10−1 1.7344 × 10−6 1.7344 × 10−6 9.3157 × 10−6
F6 1.7344 × 10−6 1.7333 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7333 × 10−6 3.7243 × 10−5 1.7344 × 10−6 1.7344 × 10−6
F7 2.3534 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.2453 × 10−2 4.5281 × 10−1 1.7344 × 10−6 1.7344 × 10−6 1.9209 × 10−6
F8 3.1123 × 10−5 1.9729 × 10−5 4.4919 × 10−2 3.1123 × 10−5 1.0201 × 10−1 1.0570 × 10−4 5.7064 × 10−4 6.0350 × 10−3
F9 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100 1.7344 × 10−6 7.8125 × 10−3 1.7344 × 10−6 1.0000 × 100 1.0000 × 100
F10 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100 1.0000 × 100
F11 4.9498 × 10−2 3.5876 × 10−4 6.2500 × 10−2 4.0702 × 10−2 3.6811 × 10−2 1.4793 × 10−2 6.2500 × 10−2 6.2500 × 10−2
F12 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.1499 × 10−4 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6
F13 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 2.0589 × 10−1 1.9209 × 10−6 1.9209 × 10−6 1.7344 × 10−6
F14 1.0000 × 100 4.8828 × 10−4 1.7344 × 10−6 1.0000 × 100 1.0000 × 100 1.0000 × 100 1.7213 × 10−6 1.5625 × 10−2
F15 8.4303 × 10−6 1.7257 × 10−6 3.1123 × 10−5 1.0246 × 10−5 2.2513 × 10−2 1.7372 × 10−1 3.1123 × 10−5 3.1123 × 10−5
F16 1.0000 × 100 1.0000 × 100 4.8828 × 10−4 2.2090 × 10−5 1.0000 × 100 1.0000 × 100 1.7344 × 10−6 1.0000 × 100
F17 1.0000 × 100 1.0000 × 100 4.0100 × 10−5 1.2500 × 10−1 1.0000 × 100 1.0000 × 100 1.7344 × 10−6 4.8828 × 10−4
F18 5.7330 × 10−7 1.6244 × 10−4 1.6837 × 10−6 1.5871 × 10−6 3.4375 × 10−1 6.1035 × 10−5 1.7344 × 10−6 1.4307 × 10−1
F19 1.0000 × 100 1.0000 × 100 1.7344 × 10−6 1.2207 × 10−4 1.0000 × 100 1.0000 × 100 1.7344 × 10−6 1.2500 × 10−1
F20 1.0000 × 100 4.3895 × 10−5 1.7344 × 10−6 1.7322 × 10−6 7.8125 × 10−3 4.8828 × 10−4 1.7344 × 10−6 9.7656 × 10−4
F21 1.0000 × 100 4.8828 × 10−4 1.7344 × 10−6 1.7333 × 10−6 1.5625 × 10−2 7.8125 × 10−3 1.7344 × 10−6 5.0000 × 10−1
F22 1.0000 × 100 7.8125 × 10−3 1.7344 × 10−6 1.7344 × 10−6 2.5000 × 10−1 6.2500 × 10−2 1.7344 × 10−6 1.2500 × 10−1
F23 1.0000 × 100 2.4414 × 10−4 1.7344 × 10−6 1.7322 × 10−6 2.5000 × 10−1 2.5000 × 10−1 1.7344 × 10−6 1.2500 × 10−1

Table 12. Execution time of RLHGS and other eight superior algorithms on 23 benchmark functions.

RLHGS CS MFO HHO SSA JADE ALCPSO SCGWO RDWOA

F1 8.4691 × 102 2.0354 × 100 1.4498 × 100 1.4526 × 100 1.2668 × 100 1.6710 × 101 8.3820 × 10−1 1.9997 × 100 1.0154 × 100
F2 3.0396 × 102 2.0626 × 100 1.5539 × 100 1.2214 × 100 1.1745 × 100 1.6865 × 101 7.9440 × 10−1 1.1329 × 101 8.6280 × 10−1
F3 2.0991 × 103 4.2184 × 100 3.6022 × 100 3.8757 × 100 3.6416 × 100 1.6792 × 101 2.9570 × 100 4.5626 × 100 3.4932 × 100
F4 7.0378 × 100 1.9587 × 100 1.4081 × 100 1.1868 × 100 1.1103 × 100 1.6182 × 101 7.3280 × 10−1 1.9553 × 100 9.5240 × 10−1
F5 4.4681 × 100 2.2221 × 100 1.6676 × 100 1.5862 × 100 1.4441 × 100 1.2135 × 101 1.0096 × 100 2.1779 × 100 1.0915 × 100
F6 9.6883 × 100 1.9612 × 100 1.3927 × 100 1.2491 × 100 1.1359 × 100 1.3613 × 101 7.6700 × 10−1 1.8489 × 100 7.8840 × 10−1
F7 8.3248 × 100 3.1648 × 100 2.6076 × 100 2.4620 × 100 2.4082 × 100 1.3690 × 101 1.9893 × 100 3.1472 × 100 2.0583 × 100
F8 1.5842 × 101 2.4678 × 100 1.6926 × 100 1.6836 × 100 1.4959 × 100 1.2785 × 101 1.0662 × 100 2.2461 × 100 1.1192 × 100
F9 9.9402 × 100 2.1947 × 100 1.6374 × 100 1.4256 × 100 1.3468 × 100 1.3356 × 101 9.2490 × 10−1 1.9687 × 100 8.8810 × 10−1
F10 1.9390 × 103 2.1445 × 100 1.5712 × 100 1.4695 × 100 1.3655 × 100 1.3987 × 101 1.0166 × 100 1.9999 × 100 8.9220 × 10−1
F11 2.0717 × 101 2.2916 × 100 1.9069 × 100 1.6695 × 100 1.6033 × 100 1.4202 × 101 1.2030 × 100 2.2250 × 100 1.1195 × 100
F12 9.4747 × 101 5.3738 × 100 4.9777 × 100 5.0041 × 100 4.8790 × 100 1.3993 × 101 4.3605 × 100 5.5637 × 100 4.4780 × 100
F13 9.8841 × 101 5.3597 × 100 4.8539 × 100 4.9606 × 100 4.9572 × 100 1.4223 × 101 4.2401 × 100 5.5618 × 100 4.4716 × 100
F14 1.5509 × 101 7.4750 × 100 7.0009 × 100 7.9889 × 100 7.4952 × 100 1.5530 × 101 7.0055 × 100 7.4837 × 100 7.2453 × 100

F15 1.0824 × 100 1.3539 × 100 7.2870 × 10−1 9.9650 × 10−1 7.6850 ×
10−1 1.4078 × 101 5.9570 × 10−1 7.4800 × 10−1 5.1670 × 10−1

F16 9.1510 ×
10−1 1.2614 × 100 6.7380 × 10−1 9.9940 × 10−1 7.5030 ×

10−1 1.4111 × 101 5.6660 × 10−1 6.8380 × 10−1 4.9330 × 10−1

F17 7.1150 ×
10−1 1.2121 × 100 6.0240 × 10−1 9.1370 × 10−1 1.0718 × 100 1.4722 × 101 4.7700 × 10−1 6.1810 × 10−1 4.1870 × 10−1

F18 6.8490 ×
10−1 1.1509 × 100 5.5690 × 10−1 8.8080 × 10−1 6.1910 ×

10−1 1.4674 × 101 4.6230 × 10−1 5.6180 × 10−1 3.8660 × 10−1

F19 1.4690 × 100 1.3812 × 100 7.9660 × 10−1 1.1445 × 100 8.4850 ×
10−1 1.4617 × 101 6.9460 × 10−1 8.3090 × 10−1 6.0620 × 10−1

F20 2.2828 × 100 1.4905 × 100 8.9780 × 10−1 1.1964 × 100 8.6360 ×
10−1 1.4959 × 101 7.2180 × 10−1 9.7150 × 10−1 6.4140 × 10−1

F21 2.2604 × 100 1.6074 × 100 1.0257 × 100 1.4272 × 100 1.1057 × 100 1.4296 × 101 9.0980 × 10−1 1.0835 × 100 8.2640 × 10−1
F22 3.3694 × 100 1.7528 × 100 1.1738 × 100 1.5229 × 100 1.2353 × 100 1.4679 × 101 1.0392 × 100 1.2358 × 100 9.6330 × 10−1
F23 3.9384 × 100 1.9808 × 100 1.3808 × 100 1.6951 × 100 1.4924 × 100 1.4746 × 101 1.2949 × 100 1.4418 × 100 1.1654 × 100

5.3.2. Benchmark Function Set II: CEC2020 Test Functions
The evaluation configurations of this experiment are consistent with those in

Section 5.3.1. Analyzing the comparison results revealed in Table 13, RLHGS outperforms
all compared methods, which achieves five optimal values in ten test functions and no
other algorithm exceeds it. In detail, it can be observed that RLHGS outperforms all of the
competitors onmulti‑modal functions (F2–F3), hybrid function (F6), and composition func‑
tion (F8), this result strongly reflects that RLHGS has advantage of exploration and local
optima avoidance. Meanwhile, according to the statistical standard, it can be obtained that
the function quantity of RLHGS superior to CS,MFO,ALCPSO,HHO, JADE, SCGWO, RD‑
WOA, and SSA is 10, 10, 9, 7, 7, 7, 7, and 6, respectively, showing RLHGS is a competitive
algorithm. Table 14 shows the result of the Friedman test result, where RLHGS secures
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the first position with a rank of 2.3, followed by JADE, SSA, HHO, RDWOA, and others.
More intuitive ranking can be obtained from Figure 8. Table 15 shows the p‑value results
of theWilcoxon signed‑rank test. Upon observation, it is clear that RLHGS exhibits signifi‑
cant differences compared to other algorithms and exceeds them in terms of performance.
Figure 9 shows four convergence curves of nine methods in this experiment, which are
F2, F3, F4, and F6. The information that can be obtained from this figure is that RLHGS
successfully exceeds other strong opponents and reaches a better solution.

Table 13. Experiment results of RLHGS and other eight superior algorithms on CEC2020.

F1 F2 F3

Avg Std Rank Avg Std Rank Avg Std Rank

RLHGS 2.8842 × 104 3.1972 × 104 2 8.4538 × 103 6.5144 × 102 1 1.0688 × 103 3.3354 × 101 1
CS 1.0000 × 1010 0.0000 × 100 7 2.0238 × 104 4.8058 × 102 7 2.5278 × 103 1.8830 × 102 5
MFO 1.5398 × 1011 5.0361 × 1010 9 1.7701 × 104 2.1140 × 103 5 5.2734 × 103 1.2197 × 103 9
HHO 4.2402 × 108 5.1004 × 107 5 1.9801 × 104 1.6613 × 103 6 4.2440 × 103 2.2379 × 102 8
SSA 3.3528 × 104 3.0298 × 104 3 1.6415 × 104 1.7661 × 103 4 1.8667 × 103 1.7702 × 102 3
JADE 3.5454 × 103 6.0412 × 103 1 1.2316 × 104 6.0211 × 102 2 1.3513 × 103 1.0439 × 102 2

ALCPSO 7.0851 × 105 2.5719 × 106 4 1.5905 × 104 1.8514 × 103 3 2.0011 × 103 2.5319 × 102 4
SCGWO 5.2861 × 1010 9.9659 × 109 8 2.4465 × 104 2.7615 × 103 9 2.9184 × 103 2.4402 × 102 6
RDWOA 2.5547 × 109 2.4393 × 109 6 2.0553 × 104 2.6338 × 103 8 3.4061 × 103 2.5938 × 102 7

F4 F5 F6

Avg Std Rank Avg Std Rank Avg Std Rank

RLHGS 3.1514 × 103 3.3690 × 102 1 1.9036 × 106 7.1206 × 105 2 3.6308 × 103 3.5935 × 102 1
CS 4.9160 × 103 1.8578 × 102 4 5.6825 × 106 1.1166 × 106 4 7.0747 × 103 2.9911 × 102 5
MFO 5.9846 × 103 6.5043 × 102 7 4.8669 × 107 4.5316 × 107 8 9.3841 × 103 1.9076 × 103 8
HHO 6.1115 × 103 6.6172 × 102 8 1.8198 × 107 5.6157 × 106 6 8.7679 × 103 9.6870 × 102 7
SSA 4.9150 × 103 4.9846 × 102 3 1.9370 × 106 6.8365 × 105 3 6.6963 × 103 8.9749 × 102 4
JADE 3.9526 × 103 3.3609 × 102 2 1.0424 × 105 7.2950 × 104 1 4.8052 × 103 3.6056 × 102 2

ALCPSO 5.1273 × 103 5.7647 × 102 5 2.0526 × 107 1.3196 × 107 7 5.9489 × 103 6.3801 × 102 3
SCGWO 5.6881 × 103 8.3109 × 102 6 8.5044 × 107 3.3393 × 107 9 1.0681 × 104 9.6922 × 102 9
RDWOA 6.2967 × 103 8.4208 × 102 9 1.7386 × 107 1.0132 × 107 5 8.6443 × 103 1.0865 × 103 6

F7 F8 F9

Avg Std Rank Avg Std Rank Avg Std Rank

RLHGS 1.3633 × 106 7.1889 × 105 2 2.3500 × 103 2.0959 × 10−12 4 2.6883 × 103 4.8347 × 102 5
CS 2.8415 × 106 5.9766 × 105 4 2.3500 × 103 7.6080 × 10−9 7 3.5166 × 103 1.1805 × 103 7
MFO 2.8668 × 107 3.3622 × 107 9 2.3539 × 103 2.6837 × 100 9 6.2667 × 103 1.7959 × 102 9
HHO 8.5364 × 106 2.7549 × 106 7 2.3500 × 103 1.8501 × 10−12 1 2.6000 × 103 0.0000 × 100 1
SSA 1.7033 × 106 7.0658 × 105 3 2.3500 × 103 5.2391 × 10−10 6 2.6006 × 103 1.8723 × 100 4
JADE 3.4821 × 104 1.4681 × 104 1 2.3500 × 103 2.5461 × 10−11 5 2.7754 × 103 6.7185 × 102 6

ALCPSO 6.4144 × 106 5.2462 × 106 5 2.3500 × 103 9.2761 × 10−07 8 5.9265 × 103 7.2027 × 102 8
SCGWO 2.5290 × 107 1.0245 × 107 8 2.3500 × 103 1.8501 × 10−12 1 2.6000 × 103 0.0000 × 100 1
RDWOA 6.7465 × 106 3.3014 × 106 6 2.3500 × 103 1.8501 × 10−12 1 2.6000 × 103 0.0000 × 100 1

F10

Avg Std Rank +/−/=

RLHGS 3.0507 × 103 1.6231 × 102 4 ~
CS 3.3320 × 103 4.8669 × 101 6 10/0/0
MFO 1.1700 × 104 5.5656 × 103 9 10/0/0
HHO 2.7000 × 103 0.0000 × 100 1 7/1/2
SSA 3.3086 × 103 7.1568 × 101 5 6/1/3
JADE 3.3464 × 103 7.4316 × 101 7 7/3/0

ALCPSO 3.4605 × 103 1.3361 × 102 8 9/0/1
SCGWO 2.7000 × 103 0.0000 × 100 1 7/1/2
RDWOA 2.7000 × 103 0.0000 × 100 1 7/1/2

Table 14. Friedman test results on CEC2020.

RLHGS CS MFO HHO SSA JADE ALCPSO SCGWO RDWOA

Average rank 2.3 5.6 8.2 5.0 3.8 2.9 5.5 5.8 5.0
Overall rank 1 7 9 4 3 2 6 8 4
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Table 15. Wilcoxon signed‑rank results on CEC2020.

CS MFO HHO SSA JADE ALCPSO SCGWO RDWOA

F1 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 5.3044 × 10−1 2.5967 × 10−5 2.6230 × 10−1 1.7344 × 10−6 1.7344 × 10−6
F2 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6
F3 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6
F4 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 3.8822 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6
F5 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 7.9710 × 10−1 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6
F6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6
F7 3.1817 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.2044 × 10−1 1.7344 × 10−6 2.3534 × 10−6 1.7344 × 10−6 1.7344 × 10−6
F8 1.7344 × 10−6 1.7344 × 10−6 6.2500 × 10−2 1.7344 × 10−6 2.6114 × 10−7 1.1123 × 10−6 6.2500 × 10−2 6.2500 × 10−2
F9 1.9729 × 10−5 1.7344 × 10−6 1.0000 × 100 3.1123 × 10−5 2.6770 × 10−5 1.7344 × 10−6 1.0000 × 100 1.0000 × 100
F10 1.7344 × 10−6 1.7344 × 10−6 1.2290 × 10−5 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.2290 × 10−5 1.2290 × 10−5

Although the results and analyses in Sections 5.3.1 and 5.3.2 verify that RLHGS has ca‑
pability of determining the global optimal of the test functions to a certain degree, there still
has some differences between actual problems and standard function problems. For exam‑
ple, the global optimal value for commonly used test functions is provided,
whereas the global optimal value for actual problems remains unknown. What’s more,
some equality and inequality constraints are also attached to practical problems.
Therefore, in addition to the performance on the benchmark function, it is necessary to test
the performance of the function in practical problems. In the next subsection, RLHGS is
applied to solve four practical problems.

5.4. Four Real‑World Constrained Benchmark Problems
In this subsection, the proposed RLHGS is used to settle four classical constrained bench‑

mark problems, they are tension/compression spring design, welded beam design, pressure
vessel design problem, and three‑bar truss design. Due to their constraints being based on the
different conditions, thus find amethod that can effectively solve all these problems seems par‑
ticularly significant. Researchers have recently proposed a mass of processing methods com‑
bining constraints with swarm intelligence algorithms. According to the different processing
ways of thesemethods [99], the functions of the penalty aremainly divided into five categories:
co‑evolutionary, static, adaptive, dynamic, and death penalty functions. Considering the char‑
acteristic of the algorithm proposed, themethod used in this study to handle four constrained
benchmark problems is the death penalty function, which is the modest one in constructing
an objective value of a mathematical model.

5.4.1. Tension/Compression String Problem
The way to solve the tension/compression string problem is to obtain the optimal pa‑

rameters that canminimize theweight. This problemhas three variables, which arewire di‑
ameter (d), mean coil diameter (D), and the number of active coils (N). Meanwhile, to solve
this problem need to pay attention to four constraints functions h1

(→
x
)
, h2

(→
x
)
, h3
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x
)
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x
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. Its structure is shown in Figure 10. The mathematical description of this problem

is shown as follows:
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h3

(→
x
)
= 1 − 140.45x1

x3
2x3

≤ 0,

h4

(→
x
)
=

x1 + x2

1.5
− 1 ≤ 0

Variable ranges:
0.05 ≤ x1 ≤ 2.00,

0.25 ≤ x2 ≤ 1.30,

2.00 ≤ x3 ≤ 15.0
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The comparison results of RLHGS with other eight advanced optimization algorithms
in the tension/compression spring design problem are shown in Table 16. Observing the data
from the table, it can be found that RLHGS obtains the lowest value 0.0126653which is in bold,
followed by INFO, IHS, PSO, and GSA close, which is 0.012666, 0.0126706, 0.0126747 and
0.0126763 respectively. The results verify that RLHGS has good capability in optimizing this
engineering problem.

Table 16. Comparison results of nine algorithms on tension/compression spring design problem.

MAs
Optimal Values of Parameters

Optimum Cost
d D N

RLHGS 0.051749979 0.358185026 11.20345892 0.0126653
IHS [100] 0.051154 0.349871 12.076432 0.0126706
MFO [93] 0.053064 0.390718 9.542437 0.012699
PSO [25] 0.015728 0.357644 11.244543 0.0126747
WOA [101] 0.050451 0.327675 13.219341 0.012694
GSA [33] 0.050276 0.345215 13.52541 0.0126763
INFO [36] 0.051555 0.353499 11.48034 0.012666
SMA [28] 0.05847 0.523420486 6.95166221 0.0160198
SMFO [102] 0.06573 0.32869515 2.629561202 0.0138029
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5.4.2. Welded Beam Design Problem
The key to solving welded beam design problem is to acquire the optimal parameters

that can minimize the cost of welded beams. In this problem, shear stress (τ), bending
stress (θ), buckling load (Pc) and deflection (δ) are four constraints that need to be satisfied
and thickness of welding seam (h), length of welding joint (l), width of beam (t), and thick‑
ness of bar (b) are four variables need to be considered. The shape of the welded beam
design problem is shown in Figure 11. The following mathematical descriptions detailed
describe this problem and its constraints:

Consider:
→
x = [x1, x2, x3, x4] = [h, l, t, b]

Minimize:
f
(→

x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x4)

Subject to:
g1

(→
x
)
= τ

(→
x
)
− τmax ≤ 0

g2

(→
x
)
= σ

(→
x
)
− σmax ≤ 0

g3

(→
x
)
= δ

(→
x
)
− δmax ≤ 0

g4

(→
x
)
= x1 − x4 ≤ 0

g5

(→
x
)
= P − PC

(→
x
)
≤ 0

g6

(→
x
)
= 0.125 − x1 ≤ 0

g7

(→
x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

Variable range:

0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2

where:

τ
(→

x
)
=

√
(τ′)2 + 2τ′τ′′ x2

2R
+ (τ′′)2, τ′ =

P√
2x1x2

τ′′ =
MR

J
M = P

(
L +

x2

2

)

R =

√
x2

2
4

+

(
x1 + x3

2

)2

J = 2

{
√

2x1x2

[
x2

2
4

+

(
x1 + x3

2

)2
]}

σ
(→

x
)
=

6PL
x32x4

, δ
(→

x
)
=

6PL3

Ex2
3x4

PC

(→
x
)
=

4.013E
√

x2
3x6

4
36

L2

(
1 − x3

2L

√
E

4G

)

P = 6000 lb, L = 14 in, δmax = 0.25 in,
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E = 30 × 16 psi, G = 12 × 106 psi

τmax = 13, 600 psi, σmax = 30, 000 psi

Biomimetics 2023, 8, x FOR PEER REVIEW 32 of 40 
 

 

𝐸𝐸 = 30 × 16 𝑝𝑝𝑠𝑠𝑖𝑖, 𝐺𝐺 = 12 × 106 𝑝𝑝𝑠𝑠𝑖𝑖  

𝜏𝜏𝑚𝑚𝑎𝑎𝑥𝑥 = 13600 𝑝𝑝𝑠𝑠𝑖𝑖, 𝜎𝜎𝑚𝑚𝑎𝑎𝑥𝑥 = 30,000 𝑝𝑝𝑠𝑠𝑖𝑖  

 
Figure 11. Shape of the welded beam design problem. 

Table 17 shows the optimization results of welded beam design problem. This prob-
lem compares RLHGS with HGS, GSA, CDE, HS, GWO, BA, IHS, and RO. According to 
the data of optimum cost, the optimal value is shown in bold, which is obtained by 
RLHGS. Thus, it is easy to conclude that RLHGS performs best in solving the welded 
beam design problem. When the variables are set to 0.2015, 3.3345, 9.03662391, and 
0.20572964, the optimum cost can reach 1.699986, lower than all compared algorithms.  

Table 17. Comparison results of ten algorithms on welded beam design problem. 

MAs 
Optimal Values of Parameters Optimum 

Cost 𝒉𝒉 𝒍𝒍 𝒕𝒕 𝒑𝒑 
RLHGS 0.2015 3.3345 9.03662391 0.20572964 1.699986 
HGS[60] 0.26 5.1025 8.03961 0.26 2.302076 
GSA [33] 0.182129 3.856979 10 0.202376 1.879952 
CDE [41] 0.203137 3.542998 9.033498 0.206179 1.733462 
HS [103] 0.2442 6.2231 8.2915 0.2443 2.3807 

GWO [26] 0.205676 3.478377 9.03681 0.205778 1.72624000 
BA [104] 2 0.100000 3.174303 2 1.8181 
IHS [100] 0.205730 3.470490 9.036620 0.20573 1.7248 
RO [105] 0.203687 3.528467 9.004233 0.207241 1.735344 

SIMPLEX [106] 0.2792  5.6256 7.7512 0.2796 2.5307 

5.4.3. Pressure Vessel Design Problem 
Pressure vessel design problem is a conundrum in the engineering field. The way to 

solve this problem should focus on minimum the cost of welding, material, and forming 
of a vessel. The mathematical description of four variables and four constraints are shown 
in the following equations. Looking at these variables, 𝑥𝑥1 to 𝑥𝑥4 indicate the thickness of 
the shell (𝑇𝑇𝑎𝑎), the thickness of the head (𝑇𝑇ℎ), the internal radius (𝑅𝑅), and the vessel length 
excluding head (𝐿𝐿), respectively. Figure 12 displays the Components of this problem. 

Consider: 

𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4] = [𝑇𝑇𝑎𝑎, 𝑇𝑇ℎ, 𝑅𝑅, 𝐿𝐿]  

Figure 11. Shape of the welded beam design problem.

Table 17 shows the optimization results of welded beam design problem. This prob‑
lem compares RLHGSwithHGS, GSA, CDE,HS, GWO, BA, IHS, andRO.According to the
data of optimum cost, the optimal value is shown in bold, which is obtained by RLHGS.
Thus, it is easy to conclude that RLHGS performs best in solving the welded beam design
problem. When the variables are set to 0.2015, 3.3345, 9.03662391, and 0.20572964, the op‑
timum cost can reach 1.699986, lower than all compared algorithms.

Table 17. Comparison results of ten algorithms on welded beam design problem.

MAs
Optimal Values of Parameters Optimum

Costh l t b

RLHGS 0.2015 3.3345 9.03662391 0.20572964 1.699986
HGS [60] 0.26 5.1025 8.03961 0.26 2.302076
GSA [33] 0.182129 3.856979 10 0.202376 1.879952
CDE [41] 0.203137 3.542998 9.033498 0.206179 1.733462
HS [103] 0.2442 6.2231 8.2915 0.2443 2.3807
GWO [26] 0.205676 3.478377 9.03681 0.205778 1.72624000
BA [104] 2 0.100000 3.174303 2 1.8181
IHS [100] 0.205730 3.470490 9.036620 0.20573 1.7248
RO [105] 0.203687 3.528467 9.004233 0.207241 1.735344

SIMPLEX [106] 0.2792 5.6256 7.7512 0.2796 2.5307

5.4.3. Pressure Vessel Design Problem
Pressure vessel designproblem is a conundrum in the engineeringfield. Theway to solve

this problem should focus onminimum the cost of welding, material, and forming of a vessel.
The mathematical description of four variables and four constraints are shown in the follow‑
ing equations. Looking at these variables, x1 to x4 indicate the thickness of the shell (Ts),
the thickness of the head (Th), the internal radius (R), and the vessel length excluding head
(L), respectively. Figure 12 displays the Components of this problem.

Consider:
X = [x1, x2, x3, x4] = [Ts, Th, R, L]
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Minimize:

f
(→

x
)
= 0.6224x1x3x4 + 1.7781x2

1x3 + 3.1661x2
1x4 + 19.84x2

1x3

Subject to:
g1(X) = −x1 + 0.0193x3 ≤ 0

g2(X) = −x2 + 0.00954x3 ≤ 0

g3(X) = −πx2
3x4 −

4
3

πx3
3 + 1, 296, 000 ≤ 0

g4(X) = x4 − 240 ≤ 0

Range of Variables:
0 ≤ x1 ≤ 99,

0 ≤ x2 ≤ 99,

10 ≤ x3 ≤ 200,

10 ≤ x4 ≤ 200
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In solving pressure vessel design problem, RLHGS is arranged to compare with ES,
PSO, GA, G‑QPSO, SMA, Branch‑and‑bound, HIS, GA3, and CPSO. The results in Table 18
show that when Ts, Th, R, L are set as 0.8125, 0.4375, 42.0984456, 176.6365958 respectively,
RLHGS gets the value 6059.714335, an optimal cost. This result demonstrates the proposed
algorithm in this paper is superior to other algorithms for solving these kinds ofmechanical
engineering problems.



Biomimetics 2023, 8, 441 31 of 37

Table 18. Comparison results of ten algorithms on pressure vessel design problem.

MAs
Optimal Values of Parameters Optimum

CostTs Th R L

RLHGS 0.8125 0.4375 42.0984456 176.6365958 6059.714335
ES [107] 0.8125 0.4375 42.098087 176.640518 6059.7456
PSO [25] 0.8125 0.4375 42.091266 176.7465 6061.0777
GA [22] 0.9375 0.5 48.329 112.679 6410.3811

G‑QPSO [108] 0.8125 0.4375 42.0984 176.6372 6059.7208
SMA [28] 0.75 50.3125 41.17 193.001 6772.7333

Branch‑and‑bound [109] 1.125 0.625 47.7 117.71 8129.1036
IHS [100] 1.125 0.625 58.29015 43.69268 7197.73
GA3 [81] 0.812500 0.437500 42.0974 176.6540 6059.9463
CPSO [110] 0.812500 0.437500 42.091266 176.746500 6061.0777

5.4.4. Three‑Bar Truss Design Problem
Three‑bar truss design problem is a well‑known constrained space problem, which

is derived from civil engineering. Figure 13 presents its component. The method to solve
this problem is to gain the minimum value of the weight of the bar structures. The stress
constraints of each bar are the basis of the constraints in this problem. The problem is
expressed mathematically in the following way:

Consider:
f (x) =

(
2
√

2x1 + x2

)
× l

Subject to:

g1(x) =
√

2x1 + x2√
2x2

1 + 2x1x2
P − σ ≤ 0

g2(x) =
x2√

2x2
1 + 2x1x2

P − σ ≤ 0

g2(x) =
1√

2x2 + x1
P − σ ≤ 0

where:
0 ≤ xi ≤ 1 i = 1, 2, 3,

L = 100 cm, P = 2 kN/cm2, σ = 2 kN/cm2
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Table 19 lists the results of seven optimization algorithms in solving the three‑bar
design problem. In the table, optimum cost indicates the weight of the bar structures, and
it is not hard to notice that RLHGS ranks first among all algorithms based on theminimum
value of 263.89584338. BWOA and MVO ranked second and third with 263.8958435 and
263.8958499, respectively. Though the narrowing gap between values, it also supports
the RLHSG can provide powerful assistance for dealing with three‑bar design.

Table 19. Comparison results of seven algorithms on three‑bar truss design problem.

MAs
Optimal Values of Parameters

Optimum Cost
x1 x2

RLHGS 0.788673486 0.408252954 263.89584338
CS [92] 0.78867 0.40902 263.9716
MFO [93] 0.788244771 0.409466958 263.8959797
BWOA [98] 0.788666327 0.408273202 263.8958435
GOA [111] 0.788897556 0.40761957 263.8958815
MBA [112] 0.7885650 0.4085597 263.8958522
MVO [34] 0.78860276 0.408453070 263.8958499

6. Conclusions and Future Work
HGS is a novel heuristic algorithm that has gained attention in recent years.

Building upon the original literature, it is evident that HGS demonstrates remarkable op‑
timization capabilities, surpassing numerous robust algorithms. However, the original
HGS does have some limitations, including premature convergence, susceptibility to local
optima, and slow convergence speed. These shortcomings indicate room for improvement
within HGS. This study introduces the RLHGS algorithm, which incorporates an adapted
LS‑OBLmechanism and an adaptedRMmechanism into the originalHGS. These additions
aim to enhance the algorithm’s exploration and exploitation abilities, respectively.

To assess the efficiency of these introduced mechanisms and the superiority of RL‑
HGS over other powerful algorithms, several evaluations are conducted using the 23 clas‑
sic benchmark functions and CEC2020 test suite, encompassing various function types.
The first experiment analyzes the effectiveness of embedded strategies, yielding the con‑
clusion that RLHGS performed exceptionally well when the LS‑OBL strategy and adapted
RM strategyworked in tandem. This finding validates the effectiveness of the addedmech‑
anisms in overcoming HGS’s drawbacks. In the second comparison experiment, RLHGS
is compared alongside CS, MFO, HHO, SSA, JADE, ALCPSO, SCGWO, and RDWOA.
According to the experiment results, the performance of RLHGS not only surpasses well‑
established classic algorithms like CS, SSA, JADE, RDWOA, and ALCPSO but also outper‑
forms exceptional state‑of‑the‑art algorithms such as MFO, HHO, and SCGWO.
Furthermore, RLHGS is applied to optimize parameters in four engineering design prob‑
lems. Comparative analysis with other algorithms reveals that the proposed method
achieves superior results. Thus, RLHGS exhibits promise in tackling complex real‑world
optimization problems and could serve as a valuable auxiliary method for a broader range
of global optimization problems. Overall, the integration of LS‑OBL and RM into HGS,
resulting in RLHGS, proves to be a valuable improvement, showcasing enhanced perfor‑
mance and robustness in various evaluation scenarios and real‑world engineering opti‑
mization challenges. Additionally, this study only scratches one of RLHGS’s potential
applications. In the future, RLHGS can find utility in numerous other fields beyond engi‑
neering optimization, such as image segmentation, machine learning model optimization,
and others.
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