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Abstract: The widespread use of chemical herbicides has jeopardized concerns about food safety
and ecological consequences. To address these issues and reduce reliance on chemical herbicides,
a physical weed control device was developed for the tillering stage in paddy fields. This device
features a biomimetic duckbill-like vibration chain that effectively controls weed outbreaks. The chain
penetrates the soft surface soil of the paddy field under gravity and rapidly stirs the soil through
vibration, leading to the detachment of the weed roots anchored in the surface layer. Simultaneously,
the device avoids mechanical damage to rice seedlings rooted in deeper soil. This study aimed to
investigate the effects of chain structural parameters (the number of chain rows, vibration amplitude,
and length of chains) and operational parameters (vibration frequency and working velocity) on
weed control efficiency and rice seedling damage. Through a central composite regression field test,
the optimal device structure and operational parameters were determined. The optimization results
demonstrated that a vibration amplitude of 78.8 mm, a chain length of 93.47 cm, and 3.4 rows of
chains, along with a vibration frequency and working velocity ranging from 0.5 to 1.25 m/s, achieved
an optimal weeding effect. Under the optimal parameter combination, field test results demonstrated
that approximately 80% of the weeds in the field were effectively cleared. This indicates that the
design of the biomimetic duckbill-like vibration chain weeding device exhibits a relatively superior
weeding performance, offering a practical solution for the management of weeds in rice fields.

Keywords: biomimetic duckbill-like; vibration chain; physical weed control in paddy fields; tillering stage

1. Introduction

The growth of rice crops is highly sensitive to weed competition in the early stages.
Research conducted by Shrivastava et al. has shown that failure to adhere to proper
crop management practices can result in grain yield losses of 20–30% depending on weed
density [1]. If weeds are not controlled within the first three weeks after sowing (the tillering
stage), the yield can be reduced by 50% [2,3]. Research has shown that weed control in
paddy fields during the tillering stage not only achieves the highest weed removal rates
but also attains optimal economic efficiency [4,5]. Thus, early weed control and removal
are essential [6].

Although methods such as crop rotation, biological control, and straw mulching
can effectively control weed growth, herbicide use remains the primary means of weed
control [7]. However, the long-term use of herbicides can lead to weed resistance, reduced
herbicide efficacy, and serious threats to agroecosystems and food safety, which ultimately
endangers human health and survival [8–10]. Glyphosate, a commonly used contact
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herbicide, has been linked to cancer and can leave residues in crops such as flour, rice,
and onions, as well as in animals, such as cows, fish, and domestic pets [11–15]. Paraquat,
another widely used herbicide, poses a great danger to humans upon contact and threatens
the safety of pesticide applicators, while crop losses due to pesticide drift have been
reported [16,17]. Therefore, there is a growing demand for physical weed control methods
to replace chemical weed control.

Mechanical weeding offers a safer and more reliable solution to weed management
in paddy fields. Research by Maimunah et al. has shown that mechanical weeding not
only reduces the chance of weed outbreaks but also significantly improves nitrogen uptake
and agronomic utilization efficiency in rice, resulting in increased yields [18]. Various
mechanical weed control methods have been developed, including the weeding turtle
robot designed by Nakamura et al. [19]. Tian et al. designed a self-propelled paddy field
weeding machine and conducted dynamic modeling research on the interaction between
the walking wheel and soil, providing support for the motion model of the paddy field
walking chassis [6]. Tang et al. designed a weeding wheel with rake teeth to bury the
weeds between the rice rows [20]. Jiao et al. designed a weeding roller with spirals to
press the weeds between the rice rows into the soil, achieving the same effect as chemical
weeding [21]. However, these weeding methods inevitably have issues such as damaging
rice seedlings and crushing them. Moreover, it is necessary to develop different weeding
devices for weeds between the rice rows and within the rows. A more gentle and effective
weeding method is urgently needed to clear weeds in the fields with minimal damage to
rice seedlings.

Research has found that wild animals living in paddy fields can have potential benefits
for rice production [22,23]. Their movements in the water can increase turbidity, blocking
sunlight and inhibiting weed growth [24]. This biological disturbance can also increase the
oxygen content in the soil, promote microbial activity, and stimulate root growth, resulting
in improved crop growth and yield [25]. Therefore, it is necessary to develop a more
ecologically friendly and effective weeding method that considers the relationship between
rice crops and wild animals in paddy fields.

The symbiotic system of ducks and rice crops has a long history and has been rec-
ognized as an effective way to suppress weeds in rice fields. In the rice–duck co-culture
system, ducks can not only control weed populations by feeding on them, but their move-
ment, trampling, and stirring can also bury weeds in the soil, effectively controlling their
growth. At the same time, the disturbance caused by the ducks in the water can increase
turbidity, reduce light penetration, disturb the sediment, and inhibit weed germination and
growth [26,27].

Based on the observation of duck behavior, this study proposes a biomimetic duck-bill
chain vibration weeding device and conducts experimental research to investigate the
structural and operational parameters of the device. The aim is to reduce damage to rice
seedlings and improve the weed removal rate.

2. Evaluation of Weed Seedling Growth

After approximately one week of transplanting the seedlings, rice plants enter the
vegetative growth stage and establish strong roots. Meanwhile, weeds scattered in the
field begin to germinate and take root, making weeding increasingly challenging as they
grow. To identify the best timing for rice weeding, a weed seed cultivation experiment was
conducted. The germination times of two prevalent rice field weeds, barnyard grass and
sedge, were recorded, and the relationship between the root growth of barnyard grass and
time was analyzed.

2.1. Weed Seed Cultivation Experiment

To evaluate the effect of seeding days on the germination rates of barnyard grass and
sedge seeds, a single-factor experiment was conducted. The germination time of weed
seeds is an important characteristic of weed outbreak. During the experiment, 100 plump
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weed seeds were selected and evenly sown on the surface of 45 mm thick paddy soil in a
container with dimensions of 170 mm in length, 115 mm in width, and 55 mm in height.
The container was then placed in a germination chamber at a temperature of 26 ◦C with soil
constantly moistened but without standing water. Three sets of repetitions were conducted
for each experiment, and the number of germinated weeds was recorded daily to calculate
the average germination rate.

The test results are presented in Figure 1, where the germination rate data for the
barnyard grass and sedge seeds from day 1 to day 17 are shown. The barnyard grass
seeds germinated faster, with a maximum germination rate of 78.3% on the 7th day. The
sedge seeds, however, had a slower germination rate and started to germinate on the 7th
day, with a maximum germination rate of 38% on the 13th day. There was no evidence
of germination for any of the ungerminated seeds until the end of the experiment. The
experiment demonstrated that the germination times for these two weed seeds were
concentrated within 1 to 12 days after sowing.
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Figure 1. Germination rates of weed seeds from day 1 to day 17.

2.2. Observation of Barnyard Grass Root System

Root systems are not only the main absorption organs for plant growth nutrients but
also crucial support for plants to resist disturbances. In order to observe the growth of
weed roots after sowing, a study was conducted focusing on the growth of barnyard grass
roots as our research subject. The research aimed to investigate the influence of sowing
time on the length of barnyard grass roots.

A 45 mm thick layer of paddy field soil was evenly spread in a container with di-
mensions of 170 mm in length, 115 mm in width, and 55 mm in height. Thirty plump
barnyard grass seeds were sown on the soil surface each day, and the sowing time was
marked on the containers. The containers were then placed in a germination chamber at
a temperature of 26 ◦C for 17 days, ensuring that the soil was moist but not waterlogged.
After cultivation, the soil around the weed seedlings was cleaned with a brush and water.
Ten weed seedlings with intact root systems were selected for each sowing day. The weed
root systems were analyzed using a ScanMaker i800 plus scanner produced by Microtek
and Wseen LA-S plant image analysis software(WSEEN 2017).

The relationship between the total length of the weed roots and the sowing time is
shown in Figure 2. The growth of the barnyard grass roots is relatively slow in the first four
days, followed by a rapid increase starting from the 5th day. The growth rate slows down
around the 11th day and stabilizes at around 36 mm. The growth of the barnyard grass
seedling roots from the 1st day to the 16th day is shown in Figure 3. Small branches start
to emerge around the 7th day, resulting in rapid growth of the root system. However, the
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length growth rate of the main root slows down as the second leaf begins to emerge. The
conclusion regarding root depth is consistent with the research by Wang et al. [28].

Biomimetics 2023, 8, x FOR PEER REVIEW 4 of 23 
 

 

four days, followed by a rapid increase starting from the 5th day. The growth rate slows 
down around the 11th day and stabilizes at around 36 mm. The growth of the barnyard 
grass seedling roots from the 1st day to the 16th day is shown in Figure 3. Small branches 
start to emerge around the 7th day, resulting in rapid growth of the root system. However, 
the length growth rate of the main root slows down as the second leaf begins to emerge. 
The conclusion regarding root depth is consistent with the research by Wang et al. [28]. 

 
Figure 2. Total length of barnyard grass roots from day 1 to day 16 of cultivation. 

 
Figure 3. Barnyard grass seedlings grown for 1 to 16 days. 

In summary, waterlogged weeds take about 12 days to complete germination after 
seeding, with the main root system growing rapidly to over 35 mm. Concurrently, trans-
planted rice seedlings complete the green-up, and the root system stabilizes at over 100 
mm, entering the tillering stage. This is the optimal time for carrying out weeding opera-
tions. 

3. Duckbill Weed Removal and Its Mathematical Model 
3.1. High-Speed Photography Observation of Ducks Weeding 

To clearly observe the disturbance process of ducks on weeds, Muscovy ducks raised 
in southern Chinese rice fields were selected as the research subjects. A glass tank meas-
uring 1200 mm in length, 400 mm in width, and 500 mm in height was designed. The 
tank’s bottom was covered with a 130 mm thick sponge to simulate the soft soil of rice 
fields, and plastic fake grass with a height of 70 mm was fixed on the surface of the sponge. 
Figure 4 shows a FASTCAM SA-Z high-speed camera used to continuously observe the 
living habits of a 6-month-old Muscovy duck for two days under both no water and a 3 
cm deep water layer on the surface of the sponge. The high-speed camera had a shooting 
frequency of 2400 frames per second. 

Figure 2. Total length of barnyard grass roots from day 1 to day 16 of cultivation.

Biomimetics 2023, 8, x FOR PEER REVIEW 4 of 23 
 

 

four days, followed by a rapid increase starting from the 5th day. The growth rate slows 
down around the 11th day and stabilizes at around 36 mm. The growth of the barnyard 
grass seedling roots from the 1st day to the 16th day is shown in Figure 3. Small branches 
start to emerge around the 7th day, resulting in rapid growth of the root system. However, 
the length growth rate of the main root slows down as the second leaf begins to emerge. 
The conclusion regarding root depth is consistent with the research by Wang et al. [28]. 

 
Figure 2. Total length of barnyard grass roots from day 1 to day 16 of cultivation. 

 
Figure 3. Barnyard grass seedlings grown for 1 to 16 days. 

In summary, waterlogged weeds take about 12 days to complete germination after 
seeding, with the main root system growing rapidly to over 35 mm. Concurrently, trans-
planted rice seedlings complete the green-up, and the root system stabilizes at over 100 
mm, entering the tillering stage. This is the optimal time for carrying out weeding opera-
tions. 

3. Duckbill Weed Removal and Its Mathematical Model 
3.1. High-Speed Photography Observation of Ducks Weeding 

To clearly observe the disturbance process of ducks on weeds, Muscovy ducks raised 
in southern Chinese rice fields were selected as the research subjects. A glass tank meas-
uring 1200 mm in length, 400 mm in width, and 500 mm in height was designed. The 
tank’s bottom was covered with a 130 mm thick sponge to simulate the soft soil of rice 
fields, and plastic fake grass with a height of 70 mm was fixed on the surface of the sponge. 
Figure 4 shows a FASTCAM SA-Z high-speed camera used to continuously observe the 
living habits of a 6-month-old Muscovy duck for two days under both no water and a 3 
cm deep water layer on the surface of the sponge. The high-speed camera had a shooting 
frequency of 2400 frames per second. 

Figure 3. Barnyard grass seedlings grown for 1 to 16 days.

In summary, waterlogged weeds take about 12 days to complete germination after
seeding, with the main root system growing rapidly to over 35 mm. Concurrently, trans-
planted rice seedlings complete the green-up, and the root system stabilizes at over 100 mm,
entering the tillering stage. This is the optimal time for carrying out weeding operations.

3. Duckbill Weed Removal and Its Mathematical Model
3.1. High-Speed Photography Observation of Ducks Weeding

To clearly observe the disturbance process of ducks on weeds, Muscovy ducks raised in
southern Chinese rice fields were selected as the research subjects. A glass tank measuring
1200 mm in length, 400 mm in width, and 500 mm in height was designed. The tank’s
bottom was covered with a 130 mm thick sponge to simulate the soft soil of rice fields, and
plastic fake grass with a height of 70 mm was fixed on the surface of the sponge. Figure 4
shows a FASTCAM SA-Z high-speed camera used to continuously observe the living habits
of a 6-month-old Muscovy duck for two days under both no water and a 3 cm deep water
layer on the surface of the sponge. The high-speed camera had a shooting frequency of
2400 frames per second.
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Figure 4. High-speed photography experiment for observing the living habits of ducks.

As observed in Figure 5a, it was found that, in the absence of water on the mud
surface, the disturbance of the simulated grass mainly concentrated on the action of the
duck’s webbed feet. When the duck’s foot was extended forward, the claw contracted.
Once touching the ground, the duck’s webbed feet would quickly open into a fan shape,
increasing the contact area between the feet and the mud surface. The contact area between
the duck’s foot and the mud surface reached its maximum, effectively distributing the force
generated by the duck over a larger soil area. After the other foot completed the stepping
motion, the base of the duck’s foot left the ground first, followed by the toes. During this
process, the weeds under the duck’s foot experienced limited pressure and were difficult to
be pressed into the soil, resulting in a limited weeding effect. As shown in Figure 5b, it was
observed that, in the presence of water, the motion of the duck’s foot is consistent with that
in the absence of water. Therefore, it can be concluded that the disturbance caused by the
duck’s foot to the weeds is not significant.
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Compared with the situation of no water on the mud surface, when there was a
shallow layer of water, in addition to the duck’s feet, the duck’s beak also contributed to the
interference with the weeds, as shown in Figure 5c. It was found that ducks have a habit of
pecking at water, and their beaks constantly disturb the area near the weed roots, while
their heads sway left and right and move back and forth. This easily causes the surface
layer of soil to flip over, allowing the weed roots to detach from the soil without affecting
the rice seedlings. According to the research of Wang, during the tillering stage, the root
system of rice is much larger and deeper in the soil than that of weeds [28].

In summary, the weeding effect of the duck’s beak may play an irreplaceable role in the
weeding process. The swinging motion of the duckbill agitates the soft soil in the surface
layer of the rice field, causing the weed roots to detach from the soil. Simultaneously, due
to the presence of a certain depth of water in the field, the weeds float on the water surface,
preventing their roots from anchoring in the soil and depriving them of the opportunity
to survive. Since transplanted rice roots are inherently larger than weed roots, they have
a longer lifespan in the soil after transplanting. Rice seedlings exhibit excellent flexibility,
making them more resilient to external disturbances. Based on this, we chose the duck’s
beak as the biomimetic object for the design of the weeding mechanism in this study.

3.2. Duck Beak Feature Model

Following the techniques used in related studies [29–31], the duck beak was pho-
tographed to obtain its side and top views. Adobe Illustrator software was used to trace
the edge of the beak and extract its contour curves, which were then exported as .dwg
format files. The control point coordinates of the contour curves were exported as .txt files
using Autodesk CAD 2020. Finally, the morphological characteristics of the duck beak were
extracted using the fitting tool in MATLAB 2016b software, and a mathematical model for
the frontal and side views of the beak was established using segmented fitting.

As shown in Figures 6 and 7, the side view of the duck beak was divided into two
curve sections and the top view into four curve sections according to their features. Curve
equations were fitted for each section, and the goodness of fit was evaluated using the
coefficient of determination R2. A value closer to 1 indicates a better fit, while a value closer
to 0 indicates greater errors between the fitting curve and the sample data.
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Based on the technology used in related research, the contour fitting equations of the
duck bill side view are y11 and y12, respectively. The coefficients of the functions and their
95% confidence intervals are shown in Table 1. The residual sum of squares (SSE) and root
mean square error (RMSE) of the upper contour fitting equation y11 are 48.67 and 0.8165,
respectively, and the coefficient of determination (R2) is 0.9987. The SSE and RMSE of the
lower contour fitting equation y12 are 41.66 and 0.8784, respectively, and the R2 is 0.9996.

Table 1. The coefficient of contour fitting function of duckbill beak side view.

Function Coefficient Value 95% Confidence Bounds

y11

b10 240.9 (239.4, 242.5)
b11 −0.3296 (−0.5538, −0.1055)
b12 1.654 × 10−3 (8.533 × 10−3, 1.184 × 10−2)
b13 −7.152 × 10−6 (2.176 × 10−4, 2.033 × 10−4)
b14 5.408 × 10−8 (−2.286 × 10−6, 2.394 × 10−6)
b15 −7.647 × 10−10 (−1.595 × 10−8, −1.442 × 10−8)
b16 6.235 × 10−12 (−5.298 × 10−11, 6.545 × 10−11)
b17 −2.535 × 10−14 (−1.62 × 10−13, 1.113 × 10−13)
b18 4.983 × 10−17 (−1.219 × 10−16, 2.216 × 10−16)
b19 −3.795 × 10−20 (−1.286 × 10−19, 5.266 × 10−20)

y12

b20 −0.3475 (−2.457, 1.762)
b21 0.2094 (−0.1077, 0.5264)
b22 −6.737 × 10−3 (−2.106 × 10−2, 7.585 × 10−3)
b23 1.591 × 10−5 (−1.312 × 10−4, −4.495 × 10−4)
b24 −2.012 × 10−6 (−5.176 × 10−6, 1.152 × 10−6)
b25 1.502 × 10−8 (−5.133 × 10−9, 3.517 × 10−8)
b26 −6.723 × 10−11 (−1.445 × 10−10, 1.009 × 10−11)
b27 1.767 × 10−13 (8.537 × 10−16, 3.525 × 10−13)
b28 −2.506 × 10−16 (−4.688 × 10−16, −3.239 × 10−17)
b29 1.477 × 10−19 (3.395 × 10−20, 2.615 × 10−19)

The contour fitting equations of the duck bill top view are y21, y22, y23, and y24. The
coefficients of the functions and their 95% confidence intervals are shown in Table 2. The
SSE and RMSE of the contour fitting equation y21 are 47.06 and 0.8444, respectively, and
the R2 is 0.9495. The SSE and RMSE of y22 are 147.27 and 1.752, respectively, and the R2 is
0.9989. The SSE and RMSE of y23 are 396.9 and 2.686, respectively, and the R2 is 0.9962. The
SSE and RMSE of y24 are 26.40 and 0.5709, respectively, and the R2 is 0.9890. The R2 values
of all fitting equations are above 0.98, indicating that the equations can accurately express
the characteristics of the duckbill.

Table 2. The coefficient of contour fitting function of duckbill top side view.

Function Coefficient Value 95% Confidence Bounds

y21

d10 299.7 (299, 300.3)
d11 0.06227 (0.04834, 0.07619)
d12 −4.45 × 10−4 (−5.216 × 10−4, 3.684 × 10−4)
d13 6.147 × 10−7 (4.988 × 10−7, 7.305 × 10−7)

y22

d20 2.737 × 109 (1.426 × 109, 4.048 × 109)
d21 −4.762 × 107 (−7.009 × 107, −2.516 × 107)
d22 3.676 × 105 (1.968 × 105, 5.384 × 105)
d23 −1652 (−2409, −896.1)
d24 4.766 (2.617, 6.915)
d25 −9.148 × 10−3 (−1.321 × 10−2, −5.085 × 10−3)
d26 1.168 × 10−5 (6.572 × 10−6, 1.68 × 10−5)
d27 −9.577 × 10−9 (−1.371 × 10−8, −5.449 × 10−9)
d28 4.571 × 10−12 (2.629 × 10−12, 6.512 × 10−12)
d29 −9.678 × 10−16 (−1.373 × 10−15, −5.627 × 10−16)
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Table 2. Cont.

Function Coefficient Value 95% Confidence Bounds

y23

d30 9.546 × 108 (−8.684 × 108, 2.778 × 109)
d31 −1.655 × 107 (−4.781 × 107, −1.471 × 107)
d32 1.273 × 105 (−1.105 × 105, 3.651 × 105)
d33 −570.1 (−1624, 483.5)
d34 1.638 (−1.357, 4.633)
d35 −3.132 × 10−3 (−8.798 × 10−3, −2.533 × 10−3)
d36 3.986 × 10−6 (−3.147 × 10−6, 1.112 × 10−5)
d37 −3.254 × 10−9 (−9.017 × 10−9, −2.508 × 10−9)
d38 1.547 × 10−12 (−1.164 × 10−12, 4.258 × 10−12)
d39 −3.263 × 10−16 (−8.92 × 10−16, 2.395 × 10−16)

y24

d40 20.45 (20, 20.9)
d41 −0.1277 (−0.1368, −0.1185)
d42 3.841 × 10−4 (3.352 × 10−4, 4.329 × 10−4)
d43 −4.62 × 10−7 (−5.355 × 10−7, −3.884 × 10−7)

4. Design and Analysis of a Biomimetic Duckbill Chain-Type Weeding Device
4.1. Design of a Biomimetic Weeding Mechanism

The use of chains for weeding in rice fields has been reported [32], but there is a lack
of design and research on specific parameters. The shape of the duck beak and the shape
of a single chain link are similar. According to the characteristic curve of the duck beak, a
chain with the specifications shown in Figure 8 was selected. The steel wire used to make
the chain had a diameter of 5.5 mm, the total length of the chain link was 53 mm, the total
width was 28 mm, and the material was galvanized manganese steel. The weight of a single
chain link was 15.77 g.
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In order to mimic the disturbance of soil and weeds in paddy fields by the duckbill,
a biomimetic weeding device was designed as shown in Figure 9. It mainly consists of a
biomimetic chain and a biomimetic vibration system. The biomimetic vibration system
drives the biomimetic chain to swing, imitating the lateral movements of a duck’s head.
One end of the biomimetic chain is free, while the other end is installed on a sliding
module fixed on a crossbeam. The biomimetic vibration system mainly consists of a drive
motor, a crankshaft, articulated bearings, and slide rails. The torque output from the motor
is transmitted to the biomimetic weeding chain through the crank arm to achieve the
swinging motion of the weeding chain. Adjusting the motor speed, the vibration frequency
of the chain can be varied (driving frequency of chain forced vibration), while adjusting
the installation hole of the joint bearing allows for amplitude adjustment. Changing
the installation position of the chain on the crossbeam enables the adjustment of the
chain density.
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Figure 9. Experimental device of biomimetic duckbill weeding. 1. Motor mounting bracket. 2.
Gearbox motor. 3. Crank arm. 4. Articulated bearing. 5. Connecting rod. 6. Frame. 7. Sliding module.
8. Crossbeam. 9. Chain mounting ring. 10. Chain.

4.2. Dynamics Analysis of the Weed Removal Chain

For a suspended chain, its dynamic equation is generally solved using Bessel functions
and Neumann functions to obtain its natural frequency of vibration, energy distribution,
chain tension, composite vibration, standing wave characteristic points, etc., [33–35]. As
shown in Figure 10, for a chain with length L and density ρ, suspended along the x-axis, with
endpoint A undergoing sinusoidal vibration in the y-direction, the vibration displacement
of any point B on the chain at time t is u(x,t), and point C at a distance dx (dx approaching
0) from point B is subject to tension FT(x), FT(x+dx), and external force dF. The kinematic
equilibrium equations in the x and y directions are shown in Equation (1).
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{
FT(X + dx) cos θ2 − FT(x) cos θ1 − dF = 0

FT(X + dx) sin θ2 − FT(x) sin θ1 = ρ ∂2u
∂2t ds

(1)

Because θ1 ≈ θ2 ≈ 0, then cos θ ≈ 1, θ ≈ sin θ ≈ tan θ = ux = ∂u/∂x, ds ≈ dx. Therefore,
there is dFT = dF, i.e., ∂(FTux)/∂x − ρ(∂2u/∂2t) = 0. Therefore, the vibration motion
equation of the suspension chain is shown in Equation (2):

FT
∂2u
∂2x

+
∂FT
∂x

∂u
∂x
− ρ

∂2u
∂2t

= 0 (2)

When the free end is stationary, dFT = dF = ρgdx can be obtained from dFT = dF.
Therefore, FT(x) = ρgx. Substituting this into Equation (2), we obtain the wave equation of
the hanging chain as shown in Equation (3):

x
∂2u
∂2x

+
∂u
∂x
− 1

g
∂2u
∂2t

= 0 (3)
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Substituting u(x, t) = ϕ(x) f (t) into Equation (3) and separating variables yields
Equation (4):

ϕ−1(xϕ′′ + ϕ′) = ( f g)−1••f = −k (4)

Where k is a dimensionless constant. According to Equation (6), we can derive Equa-
tions (5) and (6) through manipulation:

••
f + kg f = 0 (5)

xϕ′′ + ϕ′ + kϕ = 0 (6)

The solution of Equation (7) is

f (t) = A cos(ωt) + B sin(ωt) (7)

where ω2 = kg. Both ω and k are determined by boundary conditions. Substitute
W = 2

√
kx into Equation (6) to obtain the 0-order Bessel equation as shown in Equa-

tion (8):
dϕ

dw2 +
1
w

dϕ

dw
+ ϕ = 0 (8)

Therefore, the solution of Equation (6) is

ϕ(x) = J0(w) = J0(2
√

kx) (9)

Point x = 0 is a singular point, but it does not meet the physical conditions. Due to the
boundary condition u(l,t) = 0, ϕ(l) = 0, and, therefore, J0(2

√
kl) = 0. So, k satisfies

ki =

[
µ
(0)
i

]2

4l
(10)

where µ
(0)
i is the i-th positive zero of the Bessel equation of order 0. Therefore, the intrinsic

vibration frequency of the suspension chain vibration is obtained as shown in Equation (11):

ωi =
√

kig =
µ
(0)
i
2

√
g
l

(11)

The general solution to the vibration equation of the suspension chain is

u(x, t) =
∞

∑
i=1

J0(2
√

kix)[Ai cos(ωit) + Bi sin(ωit)] (12)

In the equation, Ai and Bi are determined by the initial conditions.
According to Equations (11) and (12), the vibration of the suspended chain is a super-

position of multiple vibration modes, and the inherent vibration frequency and the length of
the chains of each vibration mode are responsible for the vibration of the suspended chain.

In addition to vibration, the weeding chain also has a traction motion in the work-
ing direction under the drive of the machinery, which can be regarded as linear motion.
Therefore, a forward traction motion needs to be superimposed on the vibration.

5. Experimental Study on Parameters and Operational Performance
5.1. Design of a Biomimetic Weeding Mechanism

The experiment was conducted in October 2022 at the Crop-Soil-Machine System
Laboratory of South China Agricultural University, Guangdong Province, People’s Republic
of China (23◦10′04′′ N, 113◦21′50′′ E). The experimental field was an agricultural machinery
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field trench with dimensions of 70 m × 16 m, forming a rectangular shape with an effective
planting area of 1120 m2. A track-type agricultural machinery test trolley was installed
along the edge of the field, with an adjustable working velocity of 0–5 km/h and controllable
vertical displacement. The test trolley could carry various agricultural machineries, such
as rotary tillers, transplanters, and pesticide sprayers, for operation. The experimental
field was planted with two seasons of rice throughout the year and was left fallow after
winter plowing. Before rice transplantation, water-assisted rotary tillage was conducted,
and the experiment began on the 12th day after transplantation. The rice variety used in
this experiment was Huahang 51, provided by the Seed Industry Company of South China
Agricultural University, with three seedlings per hole and a row spacing of 30 cm. The
main weeds in the field were common and malignant rice weeds in southern China, such
as barnyard grass, sedge, and pygmy arrowhead. During the experiments, a water depth of
3–8 cm was maintained in the field. After the experiments, the water depth was maintained
above 8 cm, ensuring that the rice seedling core was not submerged.

5.2. Experimental Design
5.2.1. Experimental Factors

According to the above analysis, the factors that mainly affect the vibration effect
of the chain include the length of the chains, vibration frequency, and working velocity.
Obviously, the number of chains per row (the number of chains arranged in a single rice
row with a width of 30 cm) and the vibration amplitude (the swing amplitude of the chain
root) are also factors that need to be considered. Therefore, this paper focuses on five factors
to investigate their effects on the weed removal performance of the biomimetic vibration
chain weeding device.

After some preliminary experiments and an investigation of the working velocity of
rice field machinery, it was determined that the speed of the paddy field machinery is
generally between 0.5 and 1.2 m/s, the length of the chains is more reasonable at 0.6–1.4 m
(with a gap of about 0.25 m above the mud surface), the vibration amplitude is more
appropriate at 34–120 mm, and the number of chains per row of rice is more reasonable at
1–5. Referring to the vibration of the duckbill observed in the high-speed photography, the
vibration frequency of the chain was set to 5–15 Hz.

Design-Expert software was used to design a central composite design text for the five
aforementioned factors. The experiment was carried out using a 1/2 fraction type design,
with 6 center point repeated tests and a total of 32 tests. Therefore, r = 2, and according to
the coding formula shown in Equation (13), the natural space factor values were converted
into coding space values, resulting in the test factor level settings shown in Table 3. z1, z2,
z3, z4, z5, x1, x2, x3, x4, and x5 correspond to the natural factors zj and coding factors xj for
the vibration amplitude, length of chains, number of chains per row, vibration frequency,
and working velocity, respectively.

xj =
2× (zj − z0j)

z2j − z1j
(13)

Table 3. Test factor level.

xj (zj)
Vibration

Amplitude
(z1)/mm

Length of
Chains
(z2)/mm

Number of
Chains Per Row

(z3)

Vibration
Frequency

(z4)/Hz

Working
Velocity

(z5)/m·s−1

r(z′2j) 120 140 5 7.5 1.2
1(z2j) 98.5 120 4 10 1.025
0(z0) 77 100 3 12.5 0.85
−1(z1j) 55.5 80 2 15 0.675
−r(z′1j) 34 60 1 17.5 0.5
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The experimental setup, as shown in Figure 11, utilized a motor-driven rocker mech-
anism to induce vibration in the chains. The field plot was divided into 36 experimental
plots, with 32 plots randomly designated as experimental zones and subjected to the desig-
nated weeding treatments. The remaining four plots served as blank control test zones and
received no treatment.
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5.2.2. Evaluation indices of weeding

In order to accurately evaluate the operational performance of the bio-inspired vi-
bration chain weeding device, the weed removal rate and rice seedling damage are two
important evaluation indicators for assessing the weeding machinery, according to relevant
research methods [21]. The weed removal rate was statistically analyzed on the day of
weeding and on the 7th day after weeding. In the area where weeding was not performed
within the same field, five points were randomly selected, the number of weeds within a 1
m2 area was counted, and the average value N was obtained. Three points were selected
within each test plot to count the number of weeds M within a 1 m2 area. The weed removal
rate yj was calculated according to Equation (14):

yj =
N −M

N
× 100% (14)

Due to the small number of injured seedlings, the rice seedlings that were bent or flat-
tened did not lose their vital signs after several days of growth, and it became increasingly
difficult to count them as time went on. Therefore, this measurement was only conducted
on the day of the experiment. The number of injured seedlings was counted in each ex-
perimental plot, including both broken and flattened rice seedlings. The measurement of
injured seedlings was only carried out on the day of the experiment and was not repeated
seven days later.

5.3. Testing Results and Analysis
5.3.1. Central Composite Text Plan Design

The experimental design and results are shown in Table 4, where y1, y2, and y3
represent the first and second statistical results of the weed removal rate and the number of
damaged seedlings.
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Table 4. Test plan and results.

No x1 x2 x3 x4 x5 y1 y2 y3

1 1 1 1 1 −1 50.7614 54.7718 1
2 1 1 1 −1 1 56.3452 49.3776 0
3 1 1 −1 1 1 75.1269 68.4647 0
4 1 1 −1 −1 −1 56.3452 61.8257 0
5 1 −1 1 1 1 91.3706 85.0622 0
6 1 −1 −1 −1 1 20.8122 19.917 0
7 1 −1 1 −1 −1 88.3249 84.2324 0
8 1 −1 −1 1 −1 70.0508 65.1452 0
9 −1 −1 −1 −1 −1 67.0051 68.8797 0

10 −1 −1 −1 1 1 51.269 51.8672 1
11 −1 −1 1 −1 1 39.5939 39.0041 3
12 −1 −1 1 1 −1 69.0355 62.2407 0
13 −1 1 −1 −1 1 −10.1523 −15.7676 1
14 −1 1 −1 1 −1 60.9137 64.3154 0
15 −1 1 1 −1 −1 80.203 76.7635 0
16 −1 1 1 1 1 61.4213 63.0705 1
17 −2(−r) 0 0 0 0 68.0203 67.6349 0
18 2(r) 0 0 0 0 86.2944 81.7427 0
19 0 2(r) 0 0 0 63.9594 65.5602 0
20 0 −2(−r) 0 0 0 80.203 75.9336 0
21 0 0 2(r) 0 0 71.5736 72.6141 2
22 0 0 −2(−r) 0 0 5.07614 7.05394 1
23 0 0 0 2(r) 0 75.6345 67.2199 0
24 0 0 0 −2(−r) 0 40.1015 46.888 0
25 0 0 0 0 −2(−r) 80.7107 82.1577 0
26 0 0 0 0 2(r) 51.269 40.6639 0
27 0 0 0 0 0 91.8782 87.9668 0
28 0 0 0 0 0 86.2944 81.3278 0
29 0 0 0 0 0 70.5584 65.5602 0
30 0 0 0 0 0 84.264 80.9129 1
31 0 0 0 0 0 63.9594 59.751 0
32 0 0 0 0 0 78.1726 73.444 0

5.3.2. Regression Model Establishment and Significance Test

The test results were analyzed using Design-Expert 8.0 software, and the regression
model variance analysis, regression coefficient significance test, and lack of fit test were
performed on the first day weed removal rate (y1), the seventh day weed removal rate (y2),
and the number of damaged seedlings (y3). Table 5 presents the results of the analysis.

An analysis of Table 5 shows that the quadratic regression model established between
the experimental factors and the two weed removal rates obtained from the two measure-
ments is extremely significant, with a significance level of 0.01 (p-values of 0.0002 and 0.004),
indicating a good fit of the regression model. The lack of fit test result is not significant
(p > 0.25, with p-values of 0.7738 and 0.6999), indicating a high degree of fit of the regression
equation. The quadratic regression model established between the experimental factors
and the number of damaged seedlings is also extremely significant, with a significance level
of 0.05 (p = 0.0155); the lack of fit test result is not significant (p = 0.4481 > 0.25), indicating a
high degree of fit of the regression equation concerning the number of damaged seedlings.

According to the significance test results of the regression equation coefficients in
Table 5, eight factors have an extremely significant impact on the weed removal rate on the
first day after weeding, namely, x3, x4, x5, x1x5, x3x4, x4x5, x3

2, and x4
2, with two factors

having a significant impact, namely, x1 and x2. Five factors have an extremely significant
impact on the weed removal rate on the seventh day after weeding, namely, x3, x4, x5, x4x5,
and x3

2, with five factors having a significant impact, namely, x1, x1x5, x3x4, x3x5, and x4
2.

Two factors have an extremely significant impact on the number of damaged rice seedlings,
namely, x1x5 and x3

2, with three factors having a significant impact, namely, x1, x3, and
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x5. The determination coefficients R2 of the three models are 0.9496, 0.9389, and 0.8696,
respectively, indicating that the three fitting models have sufficient explanatory power for
the evaluation indicators.

Table 5. Analysis of variance of regression equation.

Evaluation
Indicator

Source
Variation

Sum of
Squares

Degree
Freedom Mean Square F Value p Value

Weeding rate
1st day y1/%

Model 16,709.07 20 835.45 10.37 0.0002 **
x1 665.66 1 665.66 8.26 0.0151 *
x2 408.25 1 408.25 5.07 0.0458 *
x3 3235.94 1 3235.94 40.16 <0.0001 **
x4 1709.24 1 1709.24 21.21 0.0008 **
x5 1939.25 1 1939.25 24.07 0.0005 **

x1 x2 0.4 1 0.4 5 × 10−3 0.9449
x1 x3 17.54 1 17.54 0.22 0.6499
x1 x4 0.016 1 0.016 2 × 10−4 0.989
x1 x5 800.86 1 800.86 9.94 0.0092 **
x2 x3 10.07 1 10.07 0.12 0.7304
x2 x4 0.016 1 0.016 2 × 10−4 0.989
x2 x5 41.89 1 41.89 0.52 0.4859
x3 x4 829.85 1 829.85 10.3 0.0083 **
x3 x5 376.99 1 376.99 4.68 0.0534
x4 x5 2854.38 1 2854.38 35.42 <0.0001 **
x1

2 7.73 1 7.73 0.096 0.7625
x2

2 93.19 1 93.19 1.16 0.3052
x3

2 3064.72 1 3064.72 38.04 <0.0001 **
x4

2 835.12 1 835.12 10.36 0.0082 **
x5

2 320.46 1 320.46 3.98 0.0715
Residual error 886.34 11 80.58

Lack of fit 341.62 6 56.94 0.52 0.7738
Pure error 544.72 5 108.94
Cor total 17,595.4 31

Weeding rate
7th day y2/%

Model 15,414.69 20 770.7344 8.451414 0.0004 **
x1 473.8282 1 473.8282 5.195718 0.0436 *
x2 229.8586 1 229.8586 2.520492 0.1407
x3 2838.285 1 2838.285 31.12294 0.0002 **
x4 1223.643 1 1223.643 13.41774 0.0037 **
x5 2820.264 1 2820.264 30.92534 0.0002 **

x1 x2 11.71855 1 11.71855 0.128499 0.7268
x1 x3 11.71855 1 11.71855 0.128499 0.7268
x1 x4 13.18202 1 13.18202 0.144546 0.7110
x1 x5 516.1004 1 516.1004 5.659249 0.0366 *
x2 x3 0.010761 1 0.010761 0.000118 0.9915
x2 x4 42.70975 1 42.70975 0.46833 0.5079
x2 x5 3.884661 1 3.884661 0.042597 0.8403
x3 x4 614.6696 1 614.6696 6.740101 0.0249 *
x3 x5 554.495 1 554.495 6.080262 0.0314 *
x4 x5 3057.035 1 3057.035 33.52162 0.0001 **
x1

2 1.440647 1 1.440647 0.015797 0.9022
x2

2 42.74073 1 42.74073 0.468669 0.5078
x3

2 2341.965 1 2341.965 25.6806 0.0004 **
x4

2 628.9049 1 628.9049 6.896197 0.0236 *
x5

2 367.8255 1 367.8255 4.033356 0.0698
Residual error 1003.155 11 91.1959

Lack of fit 436.1307 6 72.68846 0.640964 0.6999
Pure error 567.0242 5 113.4048
Cor total 16,417.84 31
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Table 5. Cont.

Evaluation
Indicator

Source
Variation

Sum of
Squares

Degree
Freedom Mean Square F Value p Value

Number of
damaged

seedings y3

Model 13.23 20 0.66 3.67 0.0155 *
x1 1.04 1 1.04 5.77 0.0351 *
x2 0.042 1 0.042 0.23 0.6403
x3 1.04 1 1.04 5.77 0.0351 *
x4 0.042 1 0.042 0.23 0.6403
x5 1.04 1 1.04 5.77 0.0351 *

x1 x2 0.56 1 0.56 3.12 0.1052
x1 x3 0.063 1 0.063 0.35 0.5681
x1 x4 0.56 1 0.56 3.12 0.1052
x1 x5 3.06 1 3.06 16.97 0.0017 **
x2 x3 0.062 1 0.062 0.35 0.5681
x2 x4 0.56 1 0.56 3.12 0.1052
x2 x5 0.56 1 0.56 3.12 0.1052
x3 x4 0.063 1 0.063 0.35 0.5681
x3 x5 0.062 1 0.062 0.35 0.5681
x4 x5 0.56 1 0.56 3.12 0.1052
x1

2 0.015 1 0.015 0.084 0.7774
x2

2 0.015 1 0.015 0.084 0.7774
x3

2 3.64 1 3.64 20.17 0.0009 **
x4

2 0.015 1 0.015 0.084 0.7774
x5

2 0.015 1 0.015 0.084 0.7774
Residual error 1.98 11 0.18

Lack of fit 1.15 6 0.19 1.15 0.4481
Pure error 0.83 5 0.17
Cor total 15.22 31

Model 16,709.07 20 835.45 10.37 0.0002 **

Note: ** indicates that the difference is extremely significant (p ≤ 0.01); * indicated significant difference
(0.01 < p ≤ 0.05).

To optimize the regression model, insignificant coefficient terms were removed, and
the y1, y2, and y3 quadratic regression equations were converted to the natural space
according to coding Equation (13), as shown in Equations (15)–(17).

From the F-values and absolute values of the regression equation coefficients in Table 5,
the impact sequence of each experimental factor on the weed removal rate on the first and
seventh days after weeding is consistent, and the impact sequence is as follows: working
velocity > number of chains per row > vibration frequency > vibration amplitude > length
of chains. The impact sequence of each experimental factor on the number of damaged
rice seedlings after weeding is as follows: working velocity > number of chains per row >
vibration amplitude > vibration frequency > length of chains. Figures 12 and 13 respectively
depict the weed status in the field on 1 day after weeding and 7 days after weeding.

ŷ1 = 170.42− 1.35z1 − 0.21z2 + 106.55z3 + 5.81z4 − 577.77z5 + 1.88z1z5 − 2.88z3z4 + 30.53z4z5 − 9.82z2
3 − 0.79z2

4 (15)

ŷ2 = 297.83− 1.08z1 − 0.15z2 + 64.75z3 + 0.54z4 − 674.03z5 + 1.51z1z5 − 2.48z3z4 + 33.64z3z5 + 31.59z4z5 − 8.58z2
3 − 0.68z2

4 (16)

ŷ3 = −4.78 + 0.09z1 − 1.94z3 − 0.02z4 + 10.145 − 0.12z1z5 + 0.36z2
3 (17)
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5.3.3. Influence of Interaction Factors on Performance Indicators

According to the above analysis, the interactions between the factors have varying
degrees of impact on the test results. The interaction between the vibration amplitude
and working velocity (x1x5) has a significant effect on the weed removal rate and seedling
damage on the first and seventh days after weed removal. The interaction between the
number of chains per row and vibration frequency (x3x4) has a significant effect on the weed
removal rate on the first and seventh days after weed removal. The interaction between the
number of chains per row and working velocity (x3x5) has a significant effect on the weed
removal rate on the seventh day after weed removal. Additionally, the interaction between
the chain vibration frequency and working velocity (x4x5) has a significant effect on the
weed removal rate on the first and seventh days after weed removal. The response surface
of the interaction was obtained using Design-Expert software, as shown in Figures 14–17.
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When the length of chains x2 = 100cm and the number of chains per row x3 = 3, and
the vibration frequency x4 = 12Hz, the interaction between the vibration amplitude x1 and
working velocity x5 is shown in Figure 14a for the weed removal rate one day after weeding.
As the working velocity increases, the weed removal rate decreases. At low working speeds,
a lower vibration amplitude achieves a higher weed removal rate than a higher vibration
amplitude. However, at high working speeds, a higher vibration amplitude achieves a
better weed removal effect than a lower vibration amplitude. Figure 14b shows the test
results seven days after weeding, with a similar trend to Figure 14a, but with a slight
decrease in the weed removal rate compared to the first day’s test results. The interaction
between these two factors’ impact on seedling damage is shown in Figure 14c, where a
higher vibration amplitude results in less seedling damage at higher working speeds, but



Biomimetics 2023, 8, 430 18 of 23

the opposite is observed at low working speeds, where a greater vibration amplitude results
in more seedling damage than a smaller vibration amplitude.

Figure 15 examines the interaction between the number of chains per row x3 and
vibration frequency x4, where the vibration amplitude x1 = 77 mm, the length of chains
x2 = 100 cm, and working velocity x5 = 0.85 m/s. Figure 15a shows the interaction between
these two factors and the weed removal rate on the first day. When both the number
of chains per row and the vibration frequency are small, the weed removal rate is low.
However, increasing the vibration frequency and the number of chains can effectively
improve the weed removal rate. The trend shown in Figure 15b is consistent with that in
Figure 15a.

Figure 16 shows the interaction between the vibration frequency x4 and working
velocity x5 on the weed removal rate on the first and seventh days of weeding. Similar
trends were observed in both periods. When the vibration amplitude x1 = 77 mm, the
length of chains x2 = 100 cm, and the number of chains per row x3 = 3, better results were
obtained at relatively low levels of vibration frequency and working speed. When a low
vibration frequency and a high working speed were used, the weed removal rate was only
about 40%. Similarly, excellent results were obtained with a higher working speed and
vibration frequency. However, when both the working speed and vibration frequency were
at high levels, the weed removal rate decreased.

When the chain vibration amplitude (x1) is 77 mm, the length of chains (x2) is 100 cm,
and the vibration frequency (x4) is 12.5 Hz, the effect of the number of chains per paddy row
(x3) and working velocity on the weed removal rate on the 7th day is shown in Figure 17.
When the number of chains per paddy row is constant, the weed removal rate increases
as the working velocity decreases. However, at low speeds, the weed removal rate first
increases as the number of chains increases and reaches a maximum value at around 3.5,
and then it slowly decreases.

6. Parameter Optimization and Test
6.1. Parameter Optimization

Using the optimization function in Design-Expert software, the biomimetic vibrating
weeding device was optimized based on Equations (18)–(20). Combining the structural
parameter range specified in Equation (18), the operating parameter range defined in Equa-
tion (19), and the optimization objectives and boundary conditions limited by Equation (20),
a total of 54 optimal parameter combinations were obtained. Under these parameter combi-
nations, weed removal rates exceeding 90% and minimal seedling damage were achieved.
However, it should be noted that, among the five experimental factors, working velocity
and vibration frequency are working parameters, especially working velocity, which is
variable during actual operation, while the structural parameters need to be determined
during operation.

Regarding the optimization of structural and operational parameters for the bionic
chain-type weeding machine, when only considering the objectives specified in Equa-
tion (20), numerous combinations of x can be obtained, all of which achieve a weed removal
rate above 90% and minimal crop damage. However, x4 and x5 are operational parameters
(O.P) that need to vary within a certain range during actual operation, especially work-
ing velocity x5. However, x1, x2, and x3 are structural parameters (S.P) that need to be
determined as a specific value.

s.p


55.5 < x1 < 98.5
60 < x2 < 100
2 < x3 < 4

(18)

o.p
{

7.5 < x4 < 17.5
0.5 < x5 < 1.2

(19)
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aim



y1 = f1(x1, x2, x3, x4, x5)

y2 = f2(x1, x2, x3, x4, x5)

y3 = f3(x1, x2, x3, x4, x5)

maxy1

maxy2

miny3

(20)

In order to determine the three structural parameters x1, x2, and x3, the distribution of
each parameter was statistically analyzed. The data from the 54 groups showed that the
central values of x1, x2, and x3 followed normal distributions of N (78.8, 175.6), N (93.47,
423.1), and N (3.42, 0.16), respectively.

s.p


x1 = 78.8
x2 = 93.47
x3 = 3.42

(21)

Setting the structural parameters as shown in Equation (21), the optimization condi-
tions were established by combining Equations (19)–(21), resulting in 38 sets of optimal
working parameter combinations. Among them, both the weed removal rate on the first
day and the weed removal rate on the seventh day were greater than 85%, and the seedling
damage rate was close to 0. The distributions of x3 and x4 for the 38 parameter combinations
obtained are shown in Figure 18. Using quadratic polynomial data fitting, the relationship
curve between the working velocity and vibration frequency under the optimal operating
result is shown in Equation (22), with a residual sum of squares of the fitting equation
SSD = 16.89, R2 = 0.9648, and adj-R2 = 0.96279. This indicates that, during actual operation,
the vibration frequency can be adjusted based on the working velocity to match the two
parameters and achieve the optimal operation effect.

x4 = −21.4x2
5 + 50.55x5 − 12.91 (22)
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6.2. Test

According to the regression experiments and optimization results, a vibrational chain
weeding device with a vibration amplitude of 80 mm, a chain length of 95 cm, and a
single-row installation density of 3.5 (with an installation spacing of 8.5 mm) was installed
behind the rice fertilizer applicator. The experiment was conducted with the power chassis
of the Yangma rice transplanter, and the chain vibration was powered by the PTO (Power
Take-Off) unit integrated into the chassis.
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The test was conducted on April 16, 2023, in Guanghai Town, Taishan City, Guangdong
Province, People’s Republic of China (21◦57′50.31′′ N, 112◦46′42.54′′ E). The test field took
the form of a rectangular plot measuring 162 m in length and 42 m in width, with a total
area of 0.68 hectares (ha). Among this area, 0.437 ha was allocated for the application of the
vibrating chain weeding treatment, while the remaining area served as the control group.
Throughout the experiment, uniform field management practices were applied to all plots.
Weed growth status was assessed on 2 May (15 days after test) and 16 May (30 days after
test) on a per-unit area basis, with three repetitions. Shortly afterwards, the rice was closed,
and no further evaluation was conducted. The testing site as shown in Figure 19. Weed
growth status 1 month after is depicted in Figure 20.

On 2 May, the weed density in the experimental group was 85.46% ± 4.73 lower per
square meter than in the control group. On 16 May, the weed density in the experimental
group was 79.51% ± 6.35 lower per square meter than in the control group. These results
indicate that the investigated weed control method has a positive effect on rice production.
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7. Conclusions

In this study, we developed a chain-type weeding device based on the biomimetic
design of a duck bill for weed management in paddy fields during the tillering stage. The
weed removal rate and seedling damage were used as evaluation indicators to study the
effect of the device’s structural and operational parameters. The main research results are
as follows:

The tillering stage of rice growth, when weeds have shallow roots and seeds have
completed germination, is the best time for physical weeding.

Based on the playful water habits of duck bills in shallow water, a vibration chain-type
weeding device for paddy fields was designed.

A central composite regression experiment was conducted to study the effects of
three structural parameters and two operational parameters on the weed removal rate and
seedling damage. The matching function between the device’s structural and operational
parameters was determined.

This study provides an in-depth analysis of the weeding principle of chain-type
weeding devices and investigates the interaction between the device’s structural and
operational parameters. This technology offers a novel solution for weed control in rice
cultivation. For future research, it is essential to investigate the production efficiency and
economic benefits of weed control devices through experimental studies. This will provide
further insights into the additional advantages of using mechanical weed control in the rice
cultivation environment.
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