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Abstract: Aimed at the problems of the Harris Hawks Optimization (HHO) algorithm, including
the non-origin symmetric interval update position out-of-bounds rate, low search efficiency, slow
convergence speed, and low precision, an Improved Harris Hawks Optimization (IHHO) algorithm is
proposed. In this algorithm, a circle map was added to replace the pseudo-random initial population,
and the population boundary number was reduced to improve the efficiency of the location update.
By introducing a random-oriented strategy, the information exchange between populations was
increased and the out-of-bounds position update was reduced. At the same time, the improved sine-
trend search strategy was introduced to improve the search performance and reduce the out-of-bound
rate. Then, a nonlinear jump strength combining escape energy and jump strength was proposed to
improve the convergence accuracy of the algorithm. Finally, the simulation experiment was carried
out on the test function and the path planning application of a 2D grid map. The results show
that the Improved Harris Hawks Optimization algorithm is more competitive in solving accuracy,
convergence speed, and non-origin symmetric interval search efficiency, and verifies the feasibility
and effectiveness of the Improved Harris Hawks Optimization in the path planning of a grid map.

Keywords: grid map; path planning; Harris Hawks Optimization algorithm; circle map; random
guidance strategy; improved sine-trend search; nonlinear jump strength

1. Introduction

Intelligent agent path planning is currently one of the hottest research topics. In
fact, path planning has been widely used in multiple fields, such as mobile robots [1–3],
UAVs [4], and urban planning [5]. Especially in smart factories, efficient path planning
can significantly save time and reduce costs. Path planning can be considered a combi-
natorial optimization problem. The solution to this type of problem is usually based on
traditional algorithms and intelligent algorithms. Traditional algorithms include the A* (A-
star) algorithm [6,7], Dijkstra algorithm [8], artificial potential field [9], Rapidly-exploring
Random Trees (RRT) [10,11], etc., whereas intelligent algorithms include the Particle Swarm
Optimization (PSO) [12], Genetic Algorithm (GA) [13], Grey Wolf Optimizer algorithm
(GWO) [14], Artificial Fish Swarm Algorithm (AFSA) [15], Whale Optimization Algorithm
(WOA) [16], etc. Due to the simple structure, fast convergence speed, high search precision,
and simple operation of the swarm intelligence algorithm, it is currently used in many
practical projects [17,18]. Wang et al. proposed an adaptive and balanced Grey Wolf Opti-
mization algorithm, which uses a novel level-based strategy to select random wolves to
improve the exploration energy of the algorithm and introduces an adaptive coefficient to
dynamically adjust the exploration and exploitation capabilities of different optimization
stages. It is used to find the optimal feature subset for high-dimensional classification [19].
Liu et al. proposed a differential evolutionary chaotic Whale Optimization Algorithm,
which increases the diversity of the population by introducing the initial population of sine
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chaos theory. A new adaptive inertia weight is introduced to improve the optimization per-
formance of the algorithm, and the differential variance algorithm is integrated to improve
the search speed and accuracy of the algorithm. And, the improved algorithm is applied to
the distribution network fault location of the IEEE-33 nodes [20]. Tajziehchi et al. proposed
a new approach for selecting optimal accelerographs, and the scaling of them for dynamic
time history analysis is presented by the binary genetic algorithm and natural numbers in
order to achieve the mean response spectrum, which has a proper matching and a short
distance with the target spectrum and indicates the expected earthquake of the site [21].
In the literature, there has been a lot of research on 2D path planning and mobile robots
in recent years [1–3], especially research on 2D mobile robot path planning [22–26]. The
mainstream of mobile robot path planning is based on the grid map. The classification of 2D
path planning methods is generally divided into classical algorithms and natural heuristic
algorithms. Since classical algorithms cause problems such as high computational cost and
low computational efficiency, heuristic algorithms have a fast response speed and are more
suitable for the optimization of local path planning [27]. Therefore, the natural heuristic
algorithm is the most suitable method for two-dimensional grid map path planning.

The Harris Hawks Optimization algorithm is a swarm intelligence algorithm proposed
by Heidari et al. in 2019 [28]. This algorithm simulates the special hunting behavior of the
Harris hawk population. The HHO algorithm has a total of six phases: two exploration
phases and four exploitation phases. In order to find the optimal solution, HHO randomly
executes one of the six stages. Due to its powerful structure, its original performance
is far superior to many recognized methods, such as the PSO, GWO, AFSA, and WOA
algorithms [29]. Compared with these popular methods, the results of HHO are of relatively
high quality. This feature also supports why it is widely used [30]. At the same time,
the HHO algorithm also has the characteristics of good convergence speed, powerful
neighborhood search, good balance between exploration and exploitation, suitability for
many problems, easy implementation, and so on [31]. Therefore, HHO has been applied
to convolutional neural network structures [32], image segmentation [33,34], UAV path
planning [35], and PM prediction [36], among other fields. However, similar to other
swarm intelligence algorithms, the Harris hawks algorithm also has its own drawbacks,
such as being prone to falling into local optima, jumping out of the interval in non-origin
symmetric intervals, and having low convergence accuracy. With the emergence of more
and more highly complex problems, many scholars have tried to improve HHO to enhance
its performance. Zhang et al. explored six escaping energy and proposed MHHO, which
proves the superiority and effectiveness of the exponential decreasing strategy [37]. Liu et
al. introduced square neighborhood topology and random arrays to solve the imbalance
problem in the HHO exploration phase and exploitation phase and improve the algorithm’s
convergence accuracy and optimization ability [38]. Zhu et al. proposed a method based
on chemotaxis correction to improve the HHO algorithm, improving the problem of slow
convergence speed and the tendency to fall into local optimum [39]. Sihwail et al. proposed
a new search mechanism using an elite backward learning strategy to avoid falling into
local optima and enhance search ability [40]. Zhang et al. proposed the ADHHO algorithm
based on adaptive coordinated foraging and dispersed foraging to improve the stability
of the algorithm because the HHO algorithm has low population diversity and a single
search method during the exploration phase [41]. Although these improvements made
to the HHO algorithm have achieved good results, it is worth noting that there is no
perfect algorithm capable of handling all the optimization problems due to the No Free
Lunch (NFL) theory [42]. Moreover, these improvements are not suitable for handling
nonsymmetric interval path planning problems.

As engineering problems become more complex and automation becomes more
widespread, the environment that path planning technology faces will become more com-
plex too, requiring it to adapt to the environment. However, using traditional strategies,
such as the A* (A-star) algorithm and the Dijkstra algorithm, to implement path planning is
far from sufficient. Currently, many scholars have conducted research on path planning by
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applying swarm intelligence algorithms [43] and other strategies. For example, Liu X et al.
designed a hybrid path planning algorithm based on optimized reinforcement learning and
improved particle swarm optimization. This algorithm optimizes the hyper-parameters of
reinforcement learning to make it converge quickly and learn more efficiently. A preset op-
eration was designed for the particle swarm algorithm to reduce the calculation of invalid
particles, and the algorithm proposes a correction variable obtained from the cumulative
reward of reinforcement learning; this corrects the adaptation of the individual optimal
particle and the global optimal position of the particle swarm optimization degree to obtain
effective path planning results. Also designed was a selection parameter system to help
choose the optimal path [22]. Lab X et al. proposed a method based on the improved
A-star ant colony algorithm, using the A-star algorithm to optimize the initial pheromone
of the ant colony to improve the convergence speed of the algorithm and, at the same
time, increase the enhancement coefficient of the ant colony pheromone to avoid the late
stage of the ant colony algorithm’s excess accumulation of pheromones, leading to local
optimization problems [23]. Szczepanski R et al. used the artificial bee colony algorithm
to optimize the path globally and then used the Dijkstra algorithm to select the shortest
path, making it possible to obtain at least a satisfactory path in the workspace with a small
computational workload in real-time path planning [24]. Xiang D et al. improved the eval-
uation function of the A* algorithm, increased the convergence speed of the A* algorithm,
and removed the unnecessary nodes in the A* algorithm, thereby reducing the path length
and used the mechanism of the greedy algorithm to insert unselected nodes one by one. In
the optimal path, the planning of multiple target points is realized at one time [25]. Zhang Z
et al. proposed an improved sparrow search algorithm, which added a new domain search
strategy and a new position update function to improve the fitness value and convergence
speed of the global individual, respectively, and introduced it to obtain high-quality paths
and fast convergence, and proposed a linear Path strategy, so that the robot can reach the
goal faster [26]. Although the aforementioned fusion research has achieved good results in
the path planning of mobile robots, there are also some shortcomings. For example, path
planning is implemented by rounding the coordinates when following the grid map, which
may sacrifice the length of the path. And, using random points for path planning can not
only search for paths in a wider range but also improve the flexibility of path planning and
avoid local optimal solutions. The way of randomly picking points can improve globality,
flexibility, and robustness.

The current path planning interval is based on map data, and the maps usually use
asymmetric origin intervals to represent data distribution. Path planning maps provide
an optimal path based on the asymmetric origin interval between the starting point and
the endpoint and are asymmetrical. The origin interval will have a certain impact on
the algorithm of the path planning map. Due to the asymmetric origin interval between
the starting point and the endpoint, the path lengths in different regions are different.
Therefore, the algorithm of the path planning map needs to take this into account to ensure
that the final path is the shortest one and goes through a suitable area. In the standard HHO
algorithm, when facing non-origin symmetric intervals, the position updating formula
during the exploration phase may cause the HHO algorithm to jump out of the defined
interval, thereby reducing the search efficiency. Because MHHO is biased toward the
exploration phase, it improves the formula of the exploration position, making MHHO
more likely to jump out of the set range. ADHHO proposed a phase based on adaptive
cooperative foraging, dispersed foraging, and a biased exploitation phase, which will make
the jump out of the set interval much smaller. However, the position step size improvement
is not complete, resulting in a high probability of jumping out of the set interval. Based on
the above problems, this paper improves the HHO algorithm; using the circle map during
the population initialization reduces the probability of initializing points on the boundary
and prevents out-of-bounds during position updating, thus increasing the purpose of the
initial population and improving search efficiency. The use of nonlinear jump strength
improves the convergence accuracy of the local search stage. Integrating the concept of
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the A* algorithm into the fitness function of the Harris Hawks Optimization algorithm to
plan the path of the 2D grid map, the grid map is no longer limited to the selection and
rounding of the center of the grid, but to the random selection of points, so that the path
length is shorter and more stable.

In the experimental section, the out-of-bounds rate of the IHHO algorithm is compared
with HHO and its variants in asymmetric intervals. A total of 11 benchmark functions are
selected to perform the function optimization tasks, compare each strategy of the IHHO
separately, and compare with other algorithms. Through the statistics and analysis of
the experimental data, the Improved Harris Hawks Optimization algorithm has better
performance in solution accuracy, convergence speed, and non-origin symmetric interval
search efficiency.

The rest of this paper is organized as follows: In Section 2, a mathematical optimization
model for path planning in the grid map is given. In Section 3, the basic principle of HHO
is introduced. Section 4 introduces the IHHO algorithm in detail. Section 5 simulates and
experiments on the IHHO algorithm and verifies the performance of the IHHO algorithm.
Section 6 applies the IHHO algorithm to the path planning of the grid map and verifies
its superiority and effectiveness. Section 7 concludes with some conclusions and some
prospects for the future.

2. Description of the Mathematical Problem

To study the path planning problem of the grid map, it is necessary to establish a
grid map model that is similar to the environment. The obstacles are classified as black
blocks, while white blocks represent safe areas. When determining the optimization
objective function (fitness function), the path length is the major consideration of the
optimization objective.

2.1. Path Length

The path length is the primary consideration in path planning problems, as it affects
the robot’s running time and energy consumption. The premise of seeking the shortest path
is to avoid obstacles. The calculation formula for the path length is shown in Formula (1),
where xi is the horizontal coordinate of the node and yi is the vertical coordinate of the node.

f (x) =
N−1

∑
i=1

√
(xi − xi+1)

2 − (yi − yi+1)
2 (1)

2.2. Mathematical Model

The A* algorithm is a commonly used algorithm for path planning. The A* algorithm
mainly calculates the goodness of the traversed nodes using the evaluation function [44].
The core expression of the evaluation function is shown in Formula (2).

F(n) = G(n) + H(n) (2)

The evaluation function is set to F, and the value of F(n) can estimate the minimum
path cost from the initial node to any node n and the minimum path cost from node n to
a destination node. G(n) is defined as knowing the actual cost from the start node to n
nodes, and H(n) is defined as the actual cost of the optimal path from n nodes to the target
node [45].

For an optimal path cost f (x) from the initial node to the target node, it will be divided
into two parts, namely g(x) and h(x); g(x) is the moving cost from the initial node vector
to the target node vector, that is, the path length, and h(x) is the path cost of the initial node
vector and the target node vector. Then, the mathematical optimization model of the path
length cost function f (x) can be defined as follows:

min f (x) = min g(x) + min h(x). (3)
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By combining the path length and cost function into the optimization objective func-
tion, it is obvious that the desired better path in the grid map path planning process is one
that is both the shortest and crosses fewer obstacles.

2.3. Grid Modeling

The principle of the grid method is to divide the entire two-dimensional space into
grids of the same size and simulate the obstacles and safety areas as a collection of small
squares of different colors, which form a grid map. Figure 1 is the simulated 2D modeling
of the path planning environment. The position of the obstacle is marked as the black part,
the white area is the feasible area, “o” represents the starting point, and “x” represents the
endpoint.
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Figure 1. Mathematics model.

3. Standard Harris Hawks Optimization (HHO) Algorithm

The HHO algorithm simulates the behavior of Harris hawks while hunting rabbits. The
algorithm attacks prey through strategies such as assaulting, encirclement, and disturbance.
HHO mainly includes two phases, exploration and exploitation, and the selection between
the two phases is based on the absolute value of the prey’s escape energy E. Figure 2 shows
the different phases.

Figure 2. Different phases of HHO.
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3.1. Exploration Phase

In the Harris Hawks Optimization algorithm, individual Harris hawks are considered
candidate solutions, and the best candidate solution at each iteration is treated as the target
prey or a near-optimal solution. During the exploration phase, Harris hawks search for
prey in two different ways, which are defined as follows:

X(t + 1) =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)| if q ≥ 0.5
(Xrabbit − Xm(t))− r3(LB + r4(UB− LB)) if q < 0.5

, (4)

where Xrand(t) denotes a random selection of the individual Harris hawk’s position and
Xrabbit(t) is the prey location or optimal location for the Harris hawk population. r1, r2,
r3, r4, and q are all random numbers within the interval (0,1), where r1, r2, r3, and r4 are
scaling coefficients used to provide diverse trends and q is used to simulate the random
selection of prey. UB and LB represent the upper and lower bounds of the search space,
respectively. Xm(t) denotes the average position of the Harris hawk population, which is
calculated using the following formula:

Xm(t) =
1
N

N

∑
i=1

Xi(t). (5)

3.2. Exploitation Phase

During the exploitation phase, in order to trap prey, the Harris hawk employs four
different exploitation strategies based on the prey’s behavior. Using a random number r
within the range (0,1) to assume if the prey has successfully escaped, if r < 0.5, it means
that the prey successfully escapes the encircling circle; otherwise, it means that the prey
fails to escape the encircling circle. When |E| < 0.5, the hawk will use the hard besiege
method, while, when 0.5 ≤ |E| < 1, it will use the soft besiege method. When 0.5 ≤ |E| < 1
and r ≥ 0.5, meaning that the prey has enough energy to successfully escape, the Harris
hawk updates its position using the soft besiege strategy. The specific calculation formula
is as follows:

X(t + 1) = 4X(t)− E | JXrabbit(t)− X(t) | (6)

4X(t) = Xrabbit(t)− X(t) (7)

J = 2(1− r5), (8)

where 4X(t) represents the difference in the position vectors between the prey and the
current position vector, J is the random jump strength during the prey’s escape process,
and r5 is a random number within the range (0,1).

When 0 ≤ |E| < 0.5 and r ≥ 0.5, which means the prey has insufficient energy but
can still successfully escape, the Harris hawk uses a hard besiege method for the position
update. The specific calculation formula is as follows:

X(t + 1) = xrabbit − E|4X(t)|. (9)

When 0.5 ≤ |E| < 1 and r < 0.5, which means the prey has sufficient energy but failed
to escape the encirclement, the Harris hawk uses a soft besiege with the progressive rapid
dives method for the position update. The specific calculation formula is as follows:

X(t + 1) =

{
Y = Xrabbit − E|JXrabbit − X(t)| if F(Y) < F(X(t))
Z = Xrabbit − E|JXrabbit − X(t)|+ S× LF(D) if F(Z) < F(X(t))

, (10)
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where D is the problem dimension, S is a 1× D random variable, and F is the fitness
function. LF is the levy flight function. The specific calculation formula is as follows:

LF(x) = 0.01× µσ

|ν|
1
β

, σ =

Γ(1 + β)× sin(πβ
2 )

Γ( 1+β
2 × β× 2

β−1
2 )

 1
β

, (11)

where µ and ν are random numbers within the range (0,1) and β is a default constant of 1.5.
When 0 ≤ |E| < 0.5 and r < 0.5, this means the prey has low escape energy and

the hawk continually approaches the prey to reduce the distance. If the prey does not
have enough energy to escape, the hawk will try to shorten the central position between
itself and the fleeing prey. At this time, the Harris hawk will use a hard besiege with the
progressive rapid dives method for the position update. The specific calculation formula is
as follows:

X(t + 1) =

Y = Xrabbit(t)− E|JXrabbit − Xm(t)| if F(Y) < F(X(t))

Z = Xrabbit(t)− E|JXrabbit − Xm(t)|+ S× LF(D) if F(Z) < F(X(t))
, (12)

where Xm(t) is calculated using Formula (5) and LF is computed using Formula (11).

3.3. Escaping Energy

The exploratory and development stages can be converted through the escaped energy
E of the prey, and the absolute value of the escaped energy E decreases continuously during
the process of evading the pursuit of the Harris hawk. The calculation formula of the
escaped energy E is shown below:

E = 2E0(1−
t
T
), (13)

where E0 represents the initial state of the prey, which is a random number between (−1,1);
t is the current iteration number; and T is the maximum iteration times. The variation of
the escaped energy with the iteration times is shown in Figure 3.
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Figure 3. Escaping energy.
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4. Improved Harris Hawks Optimization (IHHO) Algorithm

The standard HHO is a stable and high-performance optimization algorithm that can
be used to solve many practical engineering problems. Firstly, in the global search phase,
only random individuals are used for position updates, and there is a lack of information
exchange between populations, resulting in a susceptibility to premature convergence and
an inability to escape local optima. Secondly, HHO relies on the average position of the
population, which leads to a reduction in diversity in the early phase and may ignore the
existence of the optimal solution. Thirdly, the position update formula for the exploration
stage has a large step size, which makes it easy to go out-of-bounds during the search
phase, especially in non-origin-symmetric intervals. Fourthly, the jump strength of the
prey mainly affects the development stage and the random jump strength has a certain
probability of causing too large local search step sizes and increasing the instability of the
algorithm. By using the nonlinear convergence curve combined with the escaped energy to
control the step size, the randomness of the algorithm can be better controlled. In addition,
the jump strength of the prey should be proportional to its escaped energy. The lower the
energy, the lower the height or distance the prey can jump. Therefore, this paper adopts
the following strategies:

1. Using the circle map to initialize the population to reduce the number of initialization
points on the boundary.

2. Introducing the random guidance strategy and improvement sine-trend search strat-
egy to replace Formula (4), which increases the information exchange between pop-
ulations, improves diversity, and reduces the step size and premature convergence
to some extent, thus increasing the efficiency of the global search of the hawks. The
improved sine-trend search strategy reduces the dependence of the population on
the average position and guides the individual hawks to approach the prey, thus
improving the convergence in the exploration stage.

3. Proposing the nonlinear jump strength convergence strategy, which combines the
random jump strength with the prey’s escape energy to increase the convergence
accuracy during a local search.

4.1. Circle Map

Both the chaotic map and pseudo-random strategy possess randomness and unpre-
dictability, but the chaotic map has a certain regularity and is often used instead of the
pseudo-random strategy for better results. Many chaotic maps are available, such as the
circle map, Chebyshev map, intermittency map, iterative map, logistic map, sine map,
sinusoidal map, tent map, and singer map. In order to place the initial position of the Harris
hawk as close to the center as possible, we use the circle map to initialize the population.
Its mathematical model is as follows:

XK+1 = mod(XK + a− b
2π

sin(2πXK), 1), (14)

where mod() is a mod function, X1 is obtained from a random function with the interval
(0,1), K is an integer, a = 0.5, and b = 0.2.

4.2. Random Guidance Strategy

In Formula (4) of the exploration phase, using the same random position for updating
the current position leads to a lack of communication between the populations and greatly
increases the out-of-bounds rate during a search. By calculating the vector differences
between multiple random positions and the current position, on the one hand, the out-of-
bounds rate can be reduced and, on the other hand, the information exchange between the
populations can be increased. This avoids a single global optimal position and prevents
the early convergence of HHO to some extent. At the same time, it helps the algorithm to
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further explore and improves the efficiency of a global search. The formula for calculating
the random guidance factor is as follows:

5i = Xi(t)− X(t), (15)

where Xi(t) is the vector position of the random Harris hawk. The vector difference is used
as the step size to guide the Harris hawk population to update their positions. The specific
formula for the position update is as follows:

X(t + 1) = X(t) +
η

n

n

∑
i=1
5i, (16)

where η is the vector weight and n is the number of random Harris hawks.

4.3. Improved Sine-Trend Search

In the exploration phase of the standard HHO, the position updates are based on the
average position of the population and the updating of the positions in the exploitation
phase also depends on the average position of the population. Therefore, when the popula-
tion is trapped in a local optimum, it hardly produces a new position. When the HHO faces
non-origin-symmetric intervals, the position update is easily out of the defined interval,
making the position update invalid and reducing the search efficiency.

The Sine Cosine Algorithm (SCA) [46] uses adaptive amplitude changes in sine and co-
sine functions for global and local search, so that individual Harris hawks can search around
themselves, reducing the out-of-bound rate and increasing optimization performance.

As the Harris hawks algorithm is currently in the exploration phase, only the explo-
ration phase of the sine cosine strategy is retained and the exploitation phase of the sine
cosine strategy is not used. The formula for the improved sine search is shown as follows:

X(t + 1) = X(t) + ω sin(φ)|r6Xrabbit − X(t)|, (17)

where ω is a nonlinear convergence coefficient, φ is a phase factor, and r6 is a random
number between 0 and 1. The formulas for ω and φ are as follows:

ω = 2(1− t
T
) (18)

φ = r7 +
π

6
+ Pπ, (19)

where r7 is a random number between 0 and 1 and P is an integer of 0 or 1. In order to
increase the convergence of the algorithm and guide individuals closer to the population’s
optimal value, the golden ratio coefficient [47] is introduced into the formula to search
around the vicinity of the optimal value. The formula for the improved sine-trend search
strategy is shown as follows:

X(t + 1) = X(t) + ω sin(φ)|cXrabbit − dX(t)|, (20)

where c and d are coefficients obtained by incorporating the golden ratio, c = −1+ 2(1− τ),
d = −1 + 2τ, and the golden ratio numbersτ =

√
5−1
2 .

4.4. Nonlinear Jump Strength

In the HHO algorithm, the escape energy E determines the transformation between
global search and local search and affects the exploitation phase. The escape energy E of
the prey shows a linear downward trend during the process of being chased, while the
jump strength J is a random number of (0,2). It is difficult to describe the actual changing
trend of biological energy. Some scholars have found that the law of energy consumption
can be introduced into the jump strength of prey by combining the escape energy and
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random jump strength [48]. The overall trend of the physical energy consumption of the
prey during the pursuit is declining. As the prey’s physical strength decreases, the jump
strength also gradually decreases, which is more in line with biological laws. And, because
the jump strength is the influencing factor of the step size in the exploitation phase, it
affects the exploitation phase. The jump strength decreases nonlinearly, thus improving
the convergence accuracy of the local search stage. The specific calculation formula for
nonlinear jump strength is as follows:

J = 2E2. (21)

4.5. Computational Complexity
4.5.1. Time Complexity Analysis

The time complexity is an important index to evaluate the operation efficiency of an
algorithm. The original paper on HHO [28] has already analyzed the time complexity
of HHO and will not discuss these details again. The computation time complexity of
HHO mainly lies in three aspects: population initialization, fitness evaluation, and position
updates. During population initialization, the HHO generates N × D numbers through
pseudo-random generation, while IHHO generates N × D numbers through the circle
map. The time complexity of both methods for initializing the population is O(N). When
updating the position vectors, HHO has a minimum time complexity of O(N × T) and
a maximum time complexity of O(N × T) + O(N × T

2 ). On the other hand, IHHO does
not add a position update formula, so the time complexity for both methods for updating
positions is the same.

4.5.2. Performing Step Time Complexity Analysis

The steps to analyze complexity are listed as the following:

• Step 1: During the initial population calculation, the N × D numbers need to be
computed, with a computation complexity of O(N).

• Step 2: The fitness value of the individuals in the population needs to be evaluated
once, with a computation complexity of O(1).

• Step 3: The escape energy needs to be calculated once, with a computation complexity
of O(1).

• Step 4: If the progressive encirclement approach is used, the position needs to be
updated twice; otherwise, it only needs to be updated once, resulting in a computation
complexity of O(1 + step). If the progressive encirclement approach is used then
step = 1; otherwise, step = 0.

• Step 5: The fitness value and the overall optimal value need to be updated twice, with
a computation complexity of O(2).

• The overall execution time complexity is O(N + (5 + step)× T).

According to the improvement idea mentioned above, the algorithm flow chart of the
IHHO is shown in Figure 4. The pseudo code of the IHHO is as follows Algorithm 1:
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Algorithm 1 Pseudo-code of IHHO algorithm.
Input: The population size and maximum
Output: The location of rabbit and its fitness value
1: Initialize the random population
2: while t < T do
3: Calculate the fitness values of hawks
4: Set Xrabbit as the location of rabbit (best location)
5: for each hawk (Xi) do
6: Update the initial energy E0 and jump strength J
7: Update E using Equation (13)
8: if |E ≥ 1| then
9: Update the location vector using Equation (16) or Equation (17)

10: else
11: if 0.5 ≤ |E| < 1 and r ≥ 0.5 then
12: Update the location vector using Equation (6)
13: else if 0.5 ≤ |E| < 1 and r < 0.5 then
14: Update the location vector using Equation (10)
15: else if 0 ≤ |E| < 0.5 and r ≥ 0.5 then
16: Update the location vector using Equation (9)
17: else
18: Update the location vector using Equation (12)
19: end if
20: end if
21: end for
22: end while
23: return Xrabbit

Calculate the fitness value

Initialize the Harris hawks Population using equation (14)

Start

Update E and J using equation (13) and equation(21)

|E| 1Generate random number q Generate random number r

q 0.5 r 0.5

|E| 0.5

Population 

update using 

equation (16) 

Population 

update using 

equation (20) 

Population 

update using 

equation (6) 

Population 

update using 

equation (9) 

Population 

update using 

equation (10) 

Population 

update using 

equation (12) 

t<T

t=1

End

|E| 0.5

Yes No

Yes No Yes

Yes Yes

Yes

No

No

No

No

Figure 4. Flow chart of IHHO.

5. Algorithm Simulation Experiment and Analysis

All experiments were implemented in Matlab 2018b. All computations were run with
the following hardware: Intel Core i7-8550u, 1.80 GHz, 8GB RAM, and Windows 10 (64-bit)
operating system. The algorithm parameter settings used in the simulation experiment are
shown in Table 1.
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Table 1. Parameter settings of algorithm.

Algorithm Parameter Name Parameter Value

PWOA Learning coefficient α 0.2
Discount factor γ 0.8

EGWO
Individual memory coefficient b1 0.1

Communication coefficient b2 0.9
Control parameter initial value

ainitial and a f inal
2 and 0

ADHHO Attenuation factor δ 1.5

IHHO
The number of random Harris

hawks n 3

Vector weight η random(0, 1)

5.1. Out-of-Bounds Comparison

The grid map is a typical non-origin symmetric path planning map. The standard
HHO algorithm sets the search step too large in non-origin-symmetric intervals during
the exploration phase, which leads to easy position updates that venture outside of the set
interval, resulting in ineffective position updates and reduced algorithm efficiency. In con-
trast, IHHO balances global search and controls the step size during the exploration phase,
reducing the probability of venturing outside the set interval and improving algorithm
efficiency. This section sets the maximum number of iterations T to 500, the dimensionality
D to 30, the population N to 30, and the interval to [0, 100], and conducts 20 function tests,
with the final mean taken as the result. As shown in Figure 5, the number of out-of-bounds
occurrences is shown in Table 2.
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Figure 5. Comparison diagram of out-of-bound numbers.

Table 2. Comparison table of total numbers out-of-bounds.

Algorithm Min Max Mean Out-of-Bound
Probability

HHO 36,607 40,777 38,067.00 8.459%
MHHO 44,882 50,476 47,758.50 10.613%

ADHHO 3796 25,201 12,726.75 2.828 %
IHHO 56 638 351.00 0.078%

From Figure 5, it can be seen that in the early phase of iteration, the number of out-
of-bounds occurrences in HHO continues to increase and, after transitioning from the
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exploration phase to the development phase and entering local search, the number of
out-of-bounds occurrences no longer increases. However, IHHO consistently maintains
a low number of out-of-bounds occurrences throughout the exploration phase. A clear
comparison can be made through Table 2, which shows that using the improved algorithm
can significantly reduce the Harris hawk positions venturing outside the set interval and
improve the efficiency of the Harris hawk position updates.

It can be seen from Figure 5 that the inflection point of the line segment is the trans-
formation between the exploration phase and the exploitation phase. The IHHO, HHO,
and their variant algorithms are analyzed from the exploration and exploitation behaviors.
Exploration and exploitation are two important aspects of the algorithm. When the number
of iterations is fixed, if the algorithm is biased toward exploration, the algorithm will find
the extreme points of the function faster, but the accuracy will be lost by the algorithm, and
it will be easier to jump out of the set range. If the algorithm is biased toward exploitation,
the number of out-of-bounds will be reduced, but the algorithm is prone to fall into the
local optimum. Therefore, the balance between exploration and exploitation needs to be
considered. In general, the results are better when the number of iterations of the two
phases is close [49]. As in the introduction and analysis of this paper, IHHO is improved
based on non-origin symmetric interval problems. It is a good way to favor the exploitation
phase, but the HHO algorithm itself has the disadvantage of being easily trapped in the
local optimum. Based on the above, and the analysis of the experimental data, IHHO
performance is at its best when the ratio between the exploration and exploitation is close
to unity.

5.2. Test Function

In this experiment, 11 benchmark functions with different optimization character-
istics were randomly selected from the commonly used CEC test functions, including
five unimodal benchmark functions, three multimodal benchmark functions, and three
fixed-dimensional benchmark multimodal functions. The IHHO algorithm was tested
and compared using these benchmark functions, where F1–F5 are unimodal benchmark
functions and F6–F11 are multimodal benchmark functions, all of which can be used to
test the optimization performance and convergence accuracy of the algorithm. The test
functions are listed in Table 3.

In order to better verify the impact of each strategy on the IHHO algorithm, this
section uses 11 benchmark functions to compare the circle map, improved sine-trend search,
random guidance strategy, nonlinear jump strength, and IHHO. In order to be able to make
a fair comparison, the number of populations N is set to 30 and the maximum number
of iterations T is 500. Each group was individually tested for 30 rounds and its average
value, optimal value, worst value, and standard deviation were recorded. The test results
are shown in Table 4.

From Table 4, and from the test results of the F1–F4 unimodal functions, the improved
sine-trend search has the greatest impact on IHHO. According to the test results of function
F5, the circle map, improved sine-trend search strategy, and nonlinear jump strength have
a greater impact on IHHO than the random guidance strategy. The test results of function
F6 show that the impact of nonlinear jump intensity on IHHO is the largest. The impact on
functions F7–F8 is similar. According to the test results of functions F9 and F11, the random
guidance strategy and the improved sine-trend search strategy have the largest impact on
IHHO, while function F10 is the one with the largest impact on IHHO by random guidance
strategy and nonlinear jump strength.

From the overall analysis of Table 4, the IHHO algorithm performance of all strategies
fusion is optimal, followed by the improved sine-trend search strategy, but the improved
sine-trend search strategy will lead to an easier fall into the local optimum because of
its tendency to optimality, while the random guidance strategy increases the mutual
communication of its population, which can better improve this shortcoming. From the
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test and results, the circle map and nonlinear jump strength provide support to IHHO in
terms of optimization accuracy.

In this section, HHO, GWO [14], WOA [16], PWOA [50], MHHO [37], ADHHO [41],
and IHHO were compared using the 11 benchmark functions. To ensure a fair comparison,
the population size N was set to 30, and the maximum number of iterations T was set to
500 for each function test. Each function was tested separately for 30 rounds, recording its
mean, best, worst, and standard deviation results; the test results are shown in Table 5.

From Table 5, it can be seen that the IHHO algorithm in this paper achieved 11 optimal
results on the benchmark test function. The results demonstrate that the improved HHO
algorithm is superior to the other five algorithms. On the unimodal test function, the
convergence speed of IHHO is the fastest among the other six algorithms, further verifying
the effectiveness of the proposed improvements in improving the convergence speed of
the HHO algorithm. On the multimodal test function, in the case of test function F6, it can
be seen from the standard deviation that IHHO is the most stable among the compared
algorithms, including HHO, MHHO, and ADHHO. As for test functions F7 and F8, IHHO
performs equally well as HHO, MHHO, and ADHHO. In terms of the fixed-dimensional
multimodal benchmark functions F9 and F10, the numerical differences between the test
functions are not significant. However, it can still be clearly observed that IHHO has higher
stability compared to the other algorithms. Furthermore, based on test function F11, IHHO
has improved significantly compared to the other improved and original HHO, while GWO
has higher stability on this test function. Overall, the IHHO algorithm maintains a fast
search speed and has certain advantages in stability for multimodal functions. On the test
functions, it is obvious that IHHO has superior convergence performance and stability
compared to the other algorithms. The fitness convergence curves on some test functions
are shown in Figures 6 and 7.

Table 3. Benchmark function.

No Function Dimension Interval fmin

F1 f (x) = ∑n
i=1 x2

i 30 [−100,100] 0

F2 f (x) = ∑n
i=1|xi|+ ∏n

i=1|xi| 30 [−10,10] 0

F3 f (x) = ∑n
i=1(∑

i
j=1 xi)

2 30 [−100,100] 0

F4 f (x) = max{|xi, 1 ≤ i ≤ n|} 30 [−100,100] 0

F5 f (x) = ∑n
i=1 ix4

i + random[0, 1) 30 [−1.28,1.28] 0

F6 f (x) = ∑n
i=1−xi sin(

√
|xi|) 30 [−500,500] −418.9829 × n

F7 f (x) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

30 [−5.12,5.12] 0

F8 f (x) = −20 exp(−0.2
√

1
n ∑n

i=1 x2
i )− exp( 1

n ∑n
i=1 cos(2πxi)) + 20 + e 30 [−32,32] 0

F9 f (x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1
2 [−65.536,65.536] 1

F10 f (x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5,5] 0.00030

F11 f (x) = ∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0,10] −10.5363
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Table 4. The value of each test function under different strategies.

Function Index HHO Circle Map
Improved

Sine-Trend
Search

Random
Guidance
Strategy

Nonlinear
Jump

Strength
IHHO

F1

mean 1.50 × 10−95 6.31 × 10−99 4.64 × 10−192 3.15 × 10−90 1.97 × 10−99 3.25 × 10−221

best 1.28 × 10−109 1.39 × 10−117 3.38 × 10−212 2.55 × 10−113 2.53 × 10−123 1.62 × 10−238

worst 3.63 × 10−94 1.86 × 10−97 1.39 × 10−190 9.44 × 10−89 5.86 × 10−98 4.20 × 10−220

std 6.75 × 10−95 3.40 × 10−98 2.54 × 10−191 1.72 × 10−89 1.07 × 10−98 0.99 × 10−220

F2

mean 3.95 × 10−51 8.27 × 10−52 8.18 × 10−91 5.38 × 10−51 6.46 × 10−54 2.16 × 10−108

best 5.45 × 10−59 8.21 × 10−60 1.70 × 10−106 2.85 × 10−56 1.93 × 10−63 9.26 × 10−124

worst 8.91 × 10−50 1.50 × 10−50 2.43 × 10−89 6.50 × 10−50 1.80 × 10−52 6.48 × 10−107

std 1.64 × 10−50 2.99 × 10−51 4.43 × 10−90 1.54 × 10−50 3.28 × 10−53 1.18 × 10−107

F3

mean 5.54 × 10−71 3.33 × 10−78 6.52 × 10−146 7.81 × 10−68 7.56 × 10−72 3.85 × 10−172

best 5.14 × 10−103 5.40 × 10−96 2.56 × 10−183 3.43 × 10−97 7.08 × 10−103 3.39 × 10−196

worst 1.65 × 10−69 9.97 × 10−77 1.74 × 10−144 2.06 × 10−66 2.27 × 10−70 1.15 × 10−170

std 3.02 × 10−70 1.82 × 10−77 3.18 × 10−145 3.77 × 10−67 4.14 × 10−71 2.10 × 10−171

F4

mean 3.16 × 10−48 1.55 × 10−50 1.51 × 10−92 2.24 × 10−45 2.74 × 10−53 6.19 × 10−112

best 1.21 × 10−56 1.47 × 10−59 4.59 × 10−107 5.30 × 10−59 1.48 × 10−61 5.35 × 10−121

worst 8.18 × 10−47 2.72 × 10−49 3.65 × 10−91 6.70 × 10−44 4.36 × 10−52 1.33 × 10−110

std 1.49 × 10−47 5.42 × 10−50 6.76 × 10−92 1.22 × 10−44 9.36 × 10−53 2.44 × 10−111

F5

mean 1.58 × 10−04 1.44 × 10−04 9.00 × 10−05 1.46 × 10−04 1.35 × 10−04 3.74 × 10−05

best 9.70 × 10−06 4.00 × 10−06 4.08 × 10−06 1.41 × 10−05 6.13 × 10−06 2.33 × 10−06

worst 5.82 × 10−04 7.22 × 10−04 2.73 × 10−04 6.68 × 10−04 4.15 × 10−04 9.57 × 10−05

std 1.75 × 10−04 1.52 × 10−04 7.76 × 10−05 1.48 × 10−04 1.10 × 10−04 2.77 × 10−05

F6

mean −1.26 × 10+04 −1.25 × 10+04 −1.25 × 10+04 −1.25 × 10+04 −1.26 × 10+04 −1.26 × 10+04

best −1.26 × 10+04 −1.26 × 10+04 −1.26 × 10+04 −1.26 × 10+04 −1.26 × 10+04 −1.26 × 10+04

worst −1.26 × 10+04 −1.23 × 10+04 −1.16 × 10+04 −1.16 × 10+04 − 1.26 × 10+04 −1.26 × 10+04

std 1.43 × 10+00 8.41 × 10+01 2.25 × 10+02 1.75 × 10+02 1.07 × 10+00 2.89 × 10−01

F7

mean 0 0 0 0 0 0
best 0 0 0 0 0 0

worst 0 0 0 0 0 0
std 0 0 0 0 0 0

F8

mean 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

best 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

worst 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

std 0 0 0 0 0 0

F9

mean 1.43 × 10+00 1.29 × 10+00 1.86 × 10+00 2.08 × 10+00 1.30 × 10+00 9.98 × 10−01

best 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01

worst 5.93 × 10+00 5.93 × 10+00 2.98 × 10+00 5.93 × 10+00 2.98 × 10+00 1.01 × 10+00

std 1.26 × 10+00 9.40 × 10−01 9.30 × 10−01 1.80 × 10+00 5.30 × 10−01 1.57 × 10−03

F10

mean 3.89 × 10−04 7.04 × 10−04 5.32 × 10−04 3.41 × 10−04 3.45 × 10−04 3.40 × 10−04

best 3.09 × 10−04 3.16 × 10−04 3.37 × 10−04 3.08 × 10−04 3.10 × 10−04 3.02 × 10−04

worst 1.51 × 10−03 1.79 × 10−03 1.33 × 10−03 3.99 × 10−04 4.51 × 10−04 4.00 × 10−04

std 2.15 × 10−04 5.30 × 10−04 2.03 × 10−04 2.96 × 10−05 3.82 × 10−05 1.78 × 10−05

F11

mean −5.03 × 10+00 −5.12 × 10+00 −6.33 × 10+00 −6.61 × 10+00 −5.47 × 10+00 −1.03 × 10+01

best −5.13 × 10+00 −5.11 × 10+00 −1.03 × 10+01 −1.05 × 10+01 −1.03 × 10+01 −1.05 × 10+01

worst −2.41 × 10+00 −5.13 × 10+00 −5.06 × 10+00 −5.00 × 10+00 −5.12 × 10+00 −9.50 × 10+00

std 4.94 × 10−01 4.49 × 10−03 1.79 × 10+00 2.38 × 10+00 1.30 × 10+00 2.25 × 10−01



Biomimetics 2023, 8, 428 16 of 26

Table 5. The calculated optimization value of each test function with different algorithms.

Function Index GWO WOA PWOA HHO MHHO ADHHO IHHO

F1

mean 3.59 × 10−27 1.60 × 10−73 8.71 × 10−92 1.50 × 10−95 1.88 × 10−120 5.93 × 10−194 3.25 × 10−221

best 1.97 × 10−29 2.58 × 10−87 1.48 × 10−111 1.28 × 10−109 1.44 × 10−141 3.57 × 10−221 1.62 × 10−238

worst 9.37 × 10−26 3.04 × 10−72 2.61 × 10−90 3.63 × 10−94 5.64 × 10−119 3.35 × 10−193 4.20 × 10−220

std 1.70 × 10−26 6.20 × 10−73 4.77 × 10−91 6.75 × 10−95 1.03 × 10−119 2.14 × 10−193 0.99 × 10−220

F2

mean 9.43 × 10−17 3.71 × 10−50 2.72 × 10−71 3.95 × 10−51 1.55 × 10−62 5.70 × 10−100 2.16 × 10−108

best 2.25 × 10−17 4.72 × 10−57 2.67 × 10−81 5.45 × 10−59 3.13 × 10−72 1.81 × 10−111 9.26 × 10−124

worst 2.80 × 10−16 1.01 × 10−48 5.91 × 10−70 8.91 × 10−50 4.32 × 10−61 4.08 × 10−99 6.48 × 10−107

std 6.09 × 10−17 1.84 × 10−49 1.08 × 10−70 1.64 × 10−50 7.86 × 10−62 9.43 × 10−100 1.18 × 10−107

F3

mean 1.72 × 10−05 4.95 × 10+04 5.25 × 10+04 5.54 × 10−71 1.72 × 10−98 8.91 × 10−129 3.85 × 10−172

best 9.62 × 10−10 1.35 × 10+04 2.73 × 10+04 5.14 × 10−103 1.34 × 10−125 4.21 × 10−166 3.39 × 10−196

worst 2.11 × 10−04 7.34 × 10+04 9.07 × 10+04 1.65 × 10−69 4.10 × 10−97 1.21 × 10−128 1.15 × 10−170

std 4.21 × 10−05 1.30 × 10+04 1.63 × 10+04 3.02 × 10−70 7.66 × 10−98 3.01 × 10−130 2.10 × 10−171

F4

mean 7.52 × 10−07 5.36 × 10+01 5.64 × 10+01 3.16 × 10−48 7.44 × 10−63 9.85 × 10−87 6.19 × 10−112

best 6.17 × 10−08 2.30 × 10−01 3.05 × 10+00 1.21 × 10−56 1.17 × 10−71 5.74 × 10+112 5.35 × 10−121

worst 2.70 × 10−06 8.78 × 10+01 9.14 × 10+01 8.18 × 10−47 1.79 × 10−61 1.61 × 10−89 1.33 × 10−110

std 6.33 × 10−07 2.64 × 10+01 2.73 × 10+01 1.49 × 10−47 3.33 × 10−62 1.68 × 10−90 2.44 × 10−111

F5

mean 1.96 × 10−03 5.06 × 10−03 2.30 × 10−03 1.58 × 10−04 1.42 × 10−04 1.01 × 10−04 3.74 × 10−05

best 4.54 × 10−04 1.86 × 10−04 1.04 × 10−04 9.70 × 10−06 7.34 × 10−06 2.79 × 10−06 2.33 × 10−06

worst 4.20 × 10−03 1.69 × 10−02 8.45 × 10−03 5.82 × 10−04 6.07 × 10−04 2.63 × 10−04 9.57 × 10−05

std 9.39 × 10−04 4.65 × 10−03 2.24 × 10−03 1.75 × 10−04 1.46 × 10−04 9.93 × 10−05 2.77 × 10−05

F6

mean −6.08 × 10+03 −1.00 × 10+04 −9.75 × 10+03 −1.26 × 10+04 −1.26 × 10+04 −1.26 × 10+04 −1.26 × 10+04

best −7.31 × 10+03 −1.26 × 10+04 −1.26 × 10+04 −1.26 × 10+04 −1.26 × 10+04 −1.26 × 10+04 −1.26 × 10+04

worst −3.19 × 10+03 −7.44 × 10+03 −6.98 × 10+03 −1.26 × 10+04 −1.26 × 10+04 −1.26 × 10+04 −1.26 × 10+04

std 9.71 × 10+02 1.79 × 10+03 1.77 × 10+03 1.43 × 10+00 5.77 × 10−01 3.91 × 10−01 2.89 × 10−01

F7

mean 3.18 × 10+00 0 0 0 0 0 0
best 5.68 × 10−14 0 0 0 0 0 0

worst 1.02 × 10+01 0 0 0 0 0 0
std 2.74 × 10+00 0 0 0 0 0 0

F8

mean 1.04 × 10−13 4.68 × 10−15 4.20 × 10−15 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

best 7.55 × 10−14 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

worst 7.55 × 10−14 7.99 × 10−15 7.99 × 10−15 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

std 1.69 × 10−14 2.46 × 10−15 2.63 × 10−15 0 0 0 0

F9

mean 5.17 × 10+00 3.90 × 10+00 6.34 × 10+00 1.43 × 10+00 1.33 × 10+00 1.32 × 10+00 9.98 × 10−01

best 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01

worst 1.27 × 10+01 1.08 × 10+01 1.27 × 10+01 5.93 × 10+00 5.93 × 10+00 1.92 × 10+00 1.01 × 10+00

std 4.54 × 10+00 3.94 × 10+00 4.74 × 10+00 1.26 × 10+00 9.47 × 10−01 9.41 × 10−01 1.57 × 10−03

F10

mean 3.73 × 10−03 8.83 × 10−04 7.04 × 10−04 3.89 × 10−04 4.04 × 10−04 3.52 × 10−04 3.40 × 10−04

best 3.07 × 10−04 3.08 × 10−04 3.16 × 10−04 3.09 × 10−04 3.08 × 10−04 3.07 × 10−04 3.02 × 10−04

worst 2.04 × 10−02 2.25 × 10−03 2.25 × 10−03 1.51 × 10−03 1.54 × 10−03 2.01 × 10−03 4.00 × 10−04

std 7.57 × 10−03 5.25 × 10−04 4.18 × 10−04 2.15 × 10−04 2.75 × 10−04 0.24 × 10−04 1.78 × 10−05

F11

mean −1.04 × 10+01 −6.97 × 10+00 −5.87 × 10+00 −5.03 × 10+00 −5.26 × 10+00 −6.35 × 10+00 −1.03 × 10+01

best −1.05 × 10+01 −1.05 × 10+01 −1.05 × 10+01 −5.13 × 10+00 −1.04 × 10+01 −1.04 × 10+01 −1.05 × 10+01

worst −5.17 × 10+00 −2.42 × 10+00 −1.67 × 10+00 −2.41 × 10+00 −3.77 × 10+00 −4.98 × 10+00 −9.50 × 10+00

std 9.79 × 10−01 3.03 × 10+00 2.70 × 10+00 4.94 × 10−01 1.01 × 10+00 2.17 × 10+00 2.25 × 10−01

In Figure 6, the convergence curve and functions F1 to F4 show that IHHO has higher
accuracy and can converge to the global optimal solution more quickly than the other
five algorithms. Function F5 converges the fastest in the early stage but falls into a local
optimum in the middle stage and jumps out of it in the later stage, obtaining better values
than the other five algorithms. Function F6 converges to the optimal value first and
maintains a better value than the other five algorithms throughout.

In Figure 7, functions F7 and F8 show that IHHO has excellent search performance
and can converge to the optimal value faster than the other five algorithms. Function F9
has the highest initial function value due to the effect of the chaotic map, falls into a local
optimum in the middle stage, but eventually jumps out of it, making IHHO the algorithm
with the best optimal value ranking among the six algorithms. Functions F10 and F11 show
that IHHO performs better than the other comparative algorithms in terms of optimization
performance.

Based on the comprehensive analysis of Table 5 and Figures 6 and 7, IHHO has good
optimization performance, the ability to jump out of local optima, and higher convergence
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accuracy. Based on the number of optimal values, IHHO ranks first with 11 optimal
values among the six algorithms. In terms of comprehensive convergence accuracy, and
optimization performance among the six algorithms, IHHO still ranks first.
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Figure 6. The convergence curves of fitness values of 11 test functions.
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Figure 7. The convergence curves of fitness values of 11 test functions.

6. Grid Map Path Planning

The interval of path planning is a typical non-origin symmetric interval, and the stan-
dard HHO algorithm has insufficient search efficiency for non-origin symmetric intervals.
However, IHHO has made certain improvements for non-origin symmetry. By combining
the HHO’s own position updating mechanism, the IHHO has better advantages and higher
stability in path planning on a grid map.



Biomimetics 2023, 8, 428 19 of 26

6.1. Fusion of A* and IHHO Algorithm

The A algorithm is a commonly used algorithm for path planning. A mainly calcu-
lates the quality of the traversal nodes through an evaluation function, which is shown
in Equation (2), where G(n) represents the path length as a movement cost and H(n)
represents the cost function, whose formula is as follows:

G(N) =
N−1

∑
i=1

√
(xi − xi+1)2 + (yi − yi+1)2 (22)

H(N) = ck, (23)

where N represents the population size, c represents the number of obstacles crossed, and
k is a constant value, which we set as the area of the path planning map. The path length
and cost function are combined as the evaluation function (fitness function). In the process
of path planning on a grid map, a large constant value is added to the path length for each
obstacle crossed as the cost function, and the fitness function is the sum of the path length
and cost function, as shown in Formula (24).

F(N) =
N−1

∑
i=1

√
(xi − xi+1)2 + (yi − yi+1)2 + ck (24)

6.2. Parameter Setting of Grid Map Path Planning

To better highlight the superiority of the improved algorithm, this paper introduces
the EGWO [51], HIWOA [52], HHO, MHHO, ADHHO, and IHHO algorithms for path
planning. The introduced EGWO and HIWOA have similar partial test results on the
benchmark function. For fairness, the other algorithms adopt the same strategies as IHHO
path planning, such as A-star and elite retention. This paper uses two different grid maps,
20× 20 and 60× 60, so, for the 20× 20 grid map, the number of populations (nodes) is set to
20, according to the horizontal (vertical) of the grid, the maximum iteration times of the path
is set to 50, and the maximum iteration times within the population is set to 500. Whereas
for the 60 × 60 grid map, the number of populations is set to 60, according to the horizontal
(vertical) coordinates of the grid. Due to more information, the maximum iteration times
of the population is increased to 1000. The parameter settings in the introduced EGWO
and HIWOA algorithms are based on Table 1. The specific parameter settings are shown in
Table 6.

Table 6. Set path planning parameters.

Size Parameter Value

20× 20

Number of population 20
The number of iterations of the path 50

Number of iterations of
the population 500

60× 60

Number of population 60
The number of iterations of the path 50

Number of iterations of
the population 1000

6.3. Experimental Results and Analysis of Path Planning

Figure 1 shows the models of the environments. The starting points are both set at (0.5,
0.5) and the endpoints are set at (19.5, 19.5) and (59.5, 59.5), respectively. The black grids
represent the obstacles and the rest are safe zones. The results of the improved algorithm
and the six introduced algorithms on the 20× 20 grid map path planning are shown in
Figures 8 and 9. The results of the path planning on the 60× 60 grid map are shown in
Figure 10. The 20× 20 path comparison convergence graph is shown in Figure 11a. and
the path comparison convergence graph is shown in Figure 11b. For each experiment, it
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was conducted 10 times independently and the average value, optimal value, and worst
value were recorded. The results are shown in Table 7.

Table 7. Path length comparison.

Size Index A-star EGWO HIWOA HHO MHHO ADHHO IHHO

20 × 20
Mean / 29.00 31.20 28.86 34.09 30.25 28.00
Best 33.05 28.10 29.25 28.13 28.75 27.74 27.30

Worst / 31.06 34.18 30.14 44.91 35.12 29.32

60 × 60
Mean / 91.97 96.92 90.50 94.37 93.11 85.39
Best / 89.39 92.71 88.16 87.82 88.73 84.47

Worst / 95.93 104.79 93.42 100.51 97.08 87.62

From Table 7, it can be seen that A-star has deficiencies in path planning for random
point selection and complex scenarios, but adding swarm intelligence algorithms to A-star
can effectively solve this problem.

In Figure 8 and 9, the IHHO algorithm has the shortest path length among all the
algorithms in a 20× 20 grid. Compared to the other algorithms, IHHO has achieved good
results not only in path selection, but also in path length optimization. In Figure 10, the
IHHO algorithm has the best path optimization in a 60× 60 grid, while other algorithms
perform poorly in path length optimization, and the path length increases with an increas-
ing number of grids and obstacles. Based on the comparison in Figures 8–10, as well as
Table 7, it can be concluded that the IHHO algorithm has the shortest path length and the
most stable path. IHHO has the best optimization effect, followed by HHO, EGWO, and
ADHHO, while HIWOA and MHHO have the worst optimization effect.

In Figure 11a, the IHHO and EGWO algorithms showed excellent optimization per-
formance in the early stages of searching for paths, followed by the ADHHO and HHO
algorithms. Throughout the later stages, the IHHO algorithm maintains the shortest path
length, while the A-star algorithm only finds the better path later. In Figure 11b, the IHHO
and HHO algorithms demonstrated good path optimization performance, followed by the
EGWO and MHHO algorithms. In the later stages, the IHHO algorithm showed signs of a
continuous optimization of the path length.
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Figure 8. 20× 20 path comparison diagram.

The EGWO algorithm borrows the modified position update function from Particle
Swarm Optimization (PSO) and makes the GWO algorithm be guided in the position
updates with the tent map, which gives it an advantage in diversity in the initial population
and, thus, makes it better in the early stage of path planning than HIWOA. HIWOA
introduces the inertia weight coefficient, which makes the position update smaller and
introduces a nonlinear convergence factor, increasing its convergence accuracy. The HIWOA
algorithm also introduces a feedback mechanism that makes the algorithm more capable of
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escaping local optima, making the HIWOA algorithm better than the EGWO algorithm in
the later stage of path planning.

The MHHO and ADHHO algorithms adjust the escape energy, which makes the algo-
rithms biased toward searching, and the path searching range is wide but the performance
of local convergence is reduced. The ADHHO algorithm introduces adaptive collaboration
and dispersion foraging strategies, which increases its search for paths and corrects the
escape energy to enhance the performance of local convergence in the exploitation phase.
However, overall, compared with the ADHHO algorithm, the IHHO algorithm still has
better convergence and search effectiveness.

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

(a) HIWOA

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

(b) HHO

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

(c) MHHO

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

(d) ADHHO

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

(e) IHHO

Figure 9. 20× 20 path comparison diagram.
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(a) EGWO (b) HIWOA

(c) HHO (d) MHHO

(e) ADHHO (f) IHHO

Figure 10. 60× 60 path comparison diagram.
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Figure 11. Path comparison convergence graph. (a) Seven algorithms compare the convergence
graph in the 20× 20 path. (b) Six algorithms compare convergence graphs in 60× 60 path.

7. Conclusions

This article analyzes the effectiveness of the basic HHO algorithm in finding that
there are shortcomings in the search effectiveness of the nonzero point symmetric interval.
Meanwhile, it is discovered that the basic HHO algorithm has problems with convergence
accuracy and convergence speed. This paper proposes an improved HHO algorithm. First,
the circle mapping in chaotic mapping is used to initialize the population, increasing its
purposefulness and enabling the distribution of the population to be centered, thus reducing
the probability of location updates exceeding the bounds and improving the diversity and
effectiveness of the algorithm. Secondly, a random direction strategy and an improved sine
tendency search strategy are used to improve the exploration stage, completely replacing
the global search formula of the original algorithm and constructing a composite novel
search formula, effectively improving the effectiveness and efficiency of the algorithm in
searching the nonzero point symmetric interval. Finally, the combination of escape energy
and jump strength is used to improve the convergence accuracy of the algorithm.

To verify the superiority and feasibility of the new algorithm, first, on the benchmark
test function, the four strategies were compared and tested to test the impact of each
strategy on the IHHO algorithm. The experimental results show that the four strategies
have good performance on IHHO, especially the improved sine-trend search. Then, we
compared and tested the GWO, PWOA, HHO, MHHO, ADHHO, and IHHO algorithms.
The experimental results show that the IHHO algorithm is generally superior to the com-
pared algorithms, such as GWO, WOA, MHHO, ADHHO, and the basic HHO algorithm,
in terms of convergence accuracy, convergence speed, and stability. Finally, we applied
IHHO to the path planning of the grid map. In the experimental results, the optimal
length of the path planning length of the IHHO algorithm is 1.61–21.06% lower than that
of the EGWO, HIWOA, HHO, MHHO, and ADHHO algorithms in Scenario 1, and the
average length of the path planning in Scenario 2 is 5.98–13.03% lower than that of the
other algorithms. The length is 4.37–9.75% lower than other algorithms, indicating that
the IHHO planning ability is significantly better than the EGWO, HIWOA, MHHO, and
ADHHO algorithms. The algorithm still has room for optimization, and the path planning
is based on a known and fixed grid map. There are still many challenges for future work,
such as the continuous optimization of the algorithm, dynamic obstacles, and unknown
interference in path planning. Therefore, the improvement of the HHO algorithm and the
problem of grid path planning will continue to receive attention. In addition, it can be
seen from the experiment that as the map continues to grow, the optimization begins to be
difficult, and the effect of randomly picking points is not obvious compared with the center
rounding. It can be concluded that this method is suitable for smaller grid maps. Of course,
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with the continuous improvement of equipment and facilities, we will continue to optimize
methods and strive to apply research results to actual environments.
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