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Abstract: Rice paddy diseases significantly reduce the quantity and quality of crops, so it is essential
to recognize them quickly and accurately for prevention and control. Deep learning (DL)-based
computer-assisted expert systems are encouraging approaches to solving this issue and dealing with
the dearth of subject-matter specialists in this area. Nonetheless, a major generalization obstacle is
posed by the existence of small discrepancies between various classes of paddy diseases. Numerous
studies have used features taken from a single deep layer of an individual complex DL construction
with many deep layers and parameters. All of them have relied on spatial knowledge only to learn
their recognition models trained with a large number of features. This study suggests a pipeline called
“RiPa-Net” based on three lightweight CNNs that can identify and categorize nine paddy diseases
as well as healthy paddy. The suggested pipeline gathers features from two different layers of each
of the CNNs. Moreover, the suggested method additionally applies the dual-tree complex wavelet
transform (DTCWT) to the deep features of the first layer to obtain spectral–temporal information.
Additionally, it incorporates the deep features of the first layer of the three CNNs using principal
component analysis (PCA) and discrete cosine transform (DCT) transformation methods, which
reduce the dimension of the first layer features. The second layer’s spatial deep features are then
combined with these fused time-frequency deep features. After that, a feature selection process
is introduced to reduce the size of the feature vector and choose only those features that have
a significant impact on the recognition process, thereby further reducing recognition complexity.
According to the results, combining deep features from two layers of different lightweight CNNs can
improve recognition accuracy. Performance also improves as a result of the acquired spatial–spectral–
temporal information used to learn models. Using 300 features, the cubic support vector machine
(SVM) achieves an outstanding accuracy of 97.5%. The competitive ability of the suggested pipeline
is confirmed by a comparison of the experimental results with findings from previously conducted
research on the recognition of paddy diseases.

Keywords: paddy disease; deep learning; convolutional neural networks; rice disease recognition;
smart agriculture

1. Introduction

More than 50% of the global population relies on rice as their primary source of
nutrition [1,2]. It makes up thirty-six percent of all essential foods consumed worldwide,
and the need for it is expected to increase in the coming years [1]. Paddy agriculture is
impacted by numerous diseases. Both farmers and agricultural professionals face challenges
in the timely identification of these paddy conditions [3]. Agriculturalists have historically
used manual methods relying on their knowledge and sight to determine paddy illnesses,
but these methods are incredibly ineffective, laborious, and susceptible to mistakes [4].
Because of a broad spectrum of signs that are the same, paddy diseases can sometimes be
difficult to precisely recognize despite the efforts of skilled farmers as well as agricultural
specialists [5]. Therefore, a straightforward, efficient, and automated tool or technological
advance is required to alleviate these important concerns for agriculturalists.
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A paradigm shift is required in agriculture that utilizes cutting-edge concepts and
technologies to address the problems mentioned above in a sustainable manner at afford-
able prices without harming the ecosystem. To this end, this study is inspired by the
success of artificial intelligence (AI) methods, such as deep learning (DL) and machine
learning, in multiple areas involving medicine [6–10], healthcare [11–14], machine fault
diagnosis [15,16], and industry [17,18]. These techniques have been adopted to revolution-
ize agriculture. DL has become a powerful method to solve a variety of computer vision
problems. Furthermore, convolutional neural networks (CNNs), an example of DL models,
have demonstrated promising efficiency for the detection of crop diseases. Throughout
the past couple of decades, a number of DL-driven disease detection approaches have
recently been established [19–21]. The CNN models are potentially challenging to put
into operation for real-time and live plant disease identification and evaluation employing
light computational tools. Regular CNN structures with large deep layers require a lot of
computational capability and possess a big storage footprint. If lightweight CNN structures
with a smaller amount of layers and parameters are capable of identifying illnesses with an
equivalent level of accuracy, they may be an acceptable substitute [22].

For the aforementioned reason, this study aims to propose a pipeline entitled “RiPa-
Net” based on numerous compact CNNs with fewer layers and fewer parameters that
are capable of detecting and classifying rice diseases in agricultural paddy areas. The
proposed pipeline acquires features from two distinct deep layers of each compact CNN
instead of obtaining features from a sole layer like in other studies on the detection of plant
disease [23–28]. Furthermore, in order to attain a spectral–temporal illustration of the input
data instead of relying on spatial information provided by CNN, the proposed pipeline
employs dual-tree complex wavelet transform (DTCWT) on deep features obtained from
the first layer, which is also employed to reduce the complexity of the classification by
diminishing the size of the deep features. The proposed pipeline uses transformation
methods including principal component analysis (PCA) and discrete wavelet transform
(DCT) to fuse deep features obtained from the first layer of the three CNNs, which also lower
feature size. The proposed pipeline then concatenates the spectral–temporal deep features
of the first layer with those of the second deep layer. Next, it employs a feature selection
procedure to reduce the dimension of the concatenated features, which correspondingly
reduces the complexity of the classification process.

The following highlights the originality and contribution of the study:

• Introducing an efficient and reliable pipeline to detect and classify nine paddy diseases
based on three lightweight CNNs instead of a single DL model.

• Acquiring deep features from dual distinct deep layers of each CNN rather than
obtaining deep features from one layer.

• Relying on spatial–spectral–temporal deep features as a replacement for only spatial
features by adopting DTCWT to analyze and reduce deep features acquired from
the first deep layer of each CNN and then concatenating it with deep features of the
second layer.

• Employing PCA and DCT transformation methods that merge deep features of the
three CNNs and reduce the dimension of deep features, thus reducing the training
complexity of the recognition models.

• Blending deep features of the three CNNs to perform classification rather than de-
pending on the deep features of a single CNN.

• Presenting a feature selection process to choose only the persuasive features and ignore
unnecessary features, thus decreasing the classification complexity.

The remaining sections of the paper are arranged as follows: Section 2 presents recent
previous work on paddy disease recognition. Next, Section 3 describes the methods and
materials employed in this study, including the suggested pipeline. After that, Section 4
demonstrates the dataset description, parameter fine-tuning, and performance metrics
utilized to access the suggested pipeline. Afterward, Section 5 illustrates the results of the
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suggested pipeline. Subsequently, Section 6 discusses the main findings of the suggested
pipeline. Finally, the last section concludes the paper.

2. Previous Work on Paddy Disease Recognition

CNNs have proven their effectiveness in several image analysis applications [29–32],
which is why they are an excellent choice to help examine paddy diseases in smart agri-
culture [33]. An overview of the related work dependent on various CNN variations is
provided in this part of the paper. For example, the study [24] compared the performance of
13 CNN models of different architectures in the detection of rice diseases. The deep features
extracted from these models were used independently to train a support vector machine
classifier (SVM). The features of a Residual Network having 50 deep layers (ResNet-50)
achieved the highest accuracy of 98.38%. Likewise, the SVM classifier was fed with deep
features obtained from Alex Network (AlexNet) CNN to classify rice diseases reaching an
accuracy of 96.8%. Additionally, research articles [34,35] acquired deep features using a
custom CNN to detect and classify growing diseases, achieving accuracies of 92.23% and
99.2%, respectively. The authors of the study [36] modified the Re-parameterization Visual
Geometry Group (RepVGG) CNN model by adding an efficient channel attention mech-
anism to improve the performance in detecting rice diseases accomplishing an accuracy
of 97.06%.

In addition, the study [37] compared the performance of a custom CNN with tradi-
tional machine learning algorithms based on handcrafted feature extraction and segmenta-
tion approaches. The results showed that CNN outperformed traditional machine learning
methods, reaching 87.5% accuracy. On the contrary, the research article [38] detected key
points from paddy images and then extracted deep hypercolumn features from the VGG
CNN model. Finally, classification was performed using artificial neural network (ANN),
SVM, and random forest (RF) classifiers, where RF attained a maximum accuracy of 93%.
The researchers of [39] employed GoogleNet and VGG-16 separately to detect and classify
several rice diseases, achieving accuracies of 92.24% and 91.28%, respectively. On the other
hand, the study [40] proposed a new deep learning framework where features were ex-
tracted using a customized CNN and classified using a long short-term memory (LSTM) DL
model, achieving an accuracy of 97.0%. The study [41] acquired deep features of VGG-16
and fed an SVM classifier to classify rice diseases with an accuracy of 97.31%. On the
other hand, the study [42] optimized a CNN using a mutant particle swarm optimization
approach to detect rice disease accomplishing 93.35% accuracy.

It can be noted that most of the studies mentioned above depend on only spatial
information to detect and classify paddy disease, while employing spectral–temporal
demonstration could enhance the classification process. Additionally, most of the existing
studies employed CNNs of large dimensions and parameters, whereas using compact
CNNs with a minor amount of layers and parameters while achieving high accuracy is
better as it reduces the complexity of classification [22]. Furthermore, most current models
for paddy diseases relied on a single DL model; however, depending on an ensemble of
DL models may boost classification results [9,43]. Also, the present studies obtained deep
features from a single layer of a DL model, nevertheless acquiring deep features from more
than one layer could enhance performance [44]. Moreover, most of them did not employ
feature selection to decrease feature space size and lessen the complexity. Furthermore,
many studies classified a few paddy diseases due to the lack of a public dataset that
contains numerous paddy diseases. To address the aforementioned shortcomings, this
study proposes RiPa-Net, which is a pipeline based on three lightweight CNNs to detect
and recognize nine paddy diseases as well as normal paddy. Opposing current studies,
the proposed pipeline acquires features from two different layers of each of the CNNs.
Rather than relying solely on spatial knowledge to classify paddy diseases, the proposed
pipeline applies the dual-tree complex wavelet transform (DTCWT) to deep features of
the first layer to obtain spectral–temporal information. DTCWT is also used to lessen
the dimension of deep features extracted from the first layer and lower the complexity of
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recognition. Instead of employing the deep features of each CNN independently to perform
recognition, the proposed pipeline combines the deep features of the three lightweight
CNNs. It utilizes PCA and DCT transformation methods to combine deep features of the
first layer of the three CNNs, which also reduces the dimension of features obtained from
the first layer. It then concatenates these fused time-frequency deep features after the PCA
or DCT with the spatial deep features of the second layer. Afterward, it introduces a feature
selection procedure to diminish the feature vector size and select only those influential
features that affect the classification process, which accordingly reduces the classification
complexity further.

3. Materials and Methods
3.1. Transformation and Reduction Methods
3.1.1. Dual-Tree Complex Wavelet Transform

In a number of fields, the discrete wavelet transform (DWT) has demonstrated effective
analyzing ability. With DWT, minor changes in input data (x) may end up in considerable
variations in the proportion of energy of coefficients associated with wavelets, where this
problem is known as shift variance [45]. To solve the issue, DTCWT was proposed in [46],
which analyses the input data by employing a pair of distinct DWT transformations [47,48].
The DTCWT method consists of two real DWTs: the first DWT provides the real coefficients
of the transformation, and the second DWT presents the imaginary portion. Sub-bands of
the higher frequency DWT are required to be used in the DTCWT filters to ensure that the
real component of the DTCWT can be explained, whereas lower DWT frequency sub-bands
demonstrate the fictitious portion of the DTCWT. The transformation is increased by a
weight of 2, and the shift’s invariant is maintained [45]. Take into account that for the real
part, {lo(x), ho(x)} stands in for the low-pass–high-pass filter couple, while for the imaginary
part, {l1(x), h1(x)} presents the same. The two real wavelets that correspond to the respective
values of the two real wavelet transformations are denoted by the letters Ψl(t) and Ψh(t).
Filters are constructed so that roughly speaking, Ψl(t) is the Hilbert transform of Ψh(t)
represented as Ψl(t) ≈ H(Ψh(t)). It is intriguing that since the filters are real, the DTCWT
can be implemented without the need for complex calculations.

3.1.2. Principal Component Analysis

Massive datasets are increasingly prevalent than ever and are often challenging to
comprehend. A method to decrease the size associated with these databases, improving
comprehension while minimizing the loss of information, is PCA. The eigenvector is an
analytical approach that PCA employs to determine the direction of attributes. The ba-
sic idea behind PCA is to convert a j-dimensional feature dimensionality into a lower i
dimension called principal components, where i < j. In order to compute the principal
components, a covariance matrix is initially determined along with the eigenvectors. After-
ward, the eigenvector with the highest eigenvalue is chosen as the principal component
since it demonstrates the strongest correlation among the data features. The principal
component(s) with the highest eigenvalues are chosen, and the eigenvalues with the lowest
values are ignored. It accomplishes this by producing novel, non-correlated variables that
maximize variability one after the other [49,50].

3.1.3. Discrete Cosine Transform

According to [51], DCT is a form of linear transformation approach commonly used in
the signal processing area for compressing and compacting the energy of a signal. DCT
removes disruptive and inefficient values while storing an enormous quantity of data
within the low-frequency portion of the input data [52]. It enables the breakdown of the
input data into its fundamental frequency elements. The input data are expressed in the
DCT as a linear set of weighted basic functions connected to its spectral elements. Due to
the fact that it contains different values, the low-frequency portion is more useful [53]. After
analyzing the input data using DCT, a DCT coefficients matrix is generated. Only some of
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the coefficients are kept and the rest of them are ignored. The feature reduction procedure
includes a crucial step called the choice of the DCT coefficients. Typically, traditional
techniques, like zigzag, are employed to choose among the DCT coefficients [54].

3.2. Suggested RiPa-Net Pipeline

The suggested RiPa-Net pipeline is composed of six phases. These phases are initially
the paddy image formulation and augmentation, in which RGB images of the ten categories
of paddy disease categories are processed. Additionally, the dimensions of these images
are changed to fit the input size of the lightweight CNNs, and then augmentation methods
are applied to them. Next, there is the lightweight CNN development and learning phase,
where three compact CNNs are created involving the Mobile Network (MobileNet), ResNet-
18, and the Dark Network of 19 deep layers (DarkNet-19) and learned with these augmented
images. Afterward comes the bilayer feature extraction and time-frequency representation
phase. At this stage, for every CNN, deep features are acquired from two distinct layers:
layers 1 and 2. Layer 1 produces features of large dimensions; thus, DTCWT is employed
to reduce the dimensionality and represent data in the spectral–temporal domain instead
of depending on spatial information alone. Subsequently, there is the multi-deep feature
fusion phase, where the deep features of layer 1 of the three CNNs are merged using two
reduction approaches, including PCA and DCT. Also, layer 2 features are concatenated and
integrated with layer 1 spatial–spectral–temporal features. After that is the deep feature
selection, and in this stage, a feature selection approach is applied to choose those features
that are more important to diagnostic performance. Finally, there is the recognition phase,
in which three support vector machine classifiers are employed to perform the recognition
step. Figure 1 visualizes the phases of the proposed pipeline.

The pseudocode of the suggested pipeline is described in Algorithm 1:

Algorithm 1. The steps of the proposed RiPa-Net pipeline.

Input: Paddy RGB Images
Output: Recognized paddy diseases
1. Begin RiPa-Net:
2. Resize all images to fit the input size of the CNNs: 224 × 224 × 3 for MobileNet and

ResNet-18 and 256 × 256 × 3 for DarkNet-19.
3. Augment images to avoid overfitting and boost CNNs performance: rotation, flipping,

shearing, and scaling.
4. Create lightweight CNN models including MobileNet, ResNet-18, and DarkNet-19
5. Set some CNN hyperparameters: learning rate (0.0001), mini-batch (10), epochs (20), and

validation frequency (778).
6. Start: CNN learning process:
7. After the learning process is finished, End of the learning process.
8. For each CNN:
9. Extract deep features from layer 1 and layer 2.
10. Apply DTCWT to layer 1 features to obtain spatial–spectral–temporal deep features.
11. End For
12. Fuse Layer 1 deep features of the three CNNs: using PCA and DCT to fuse and reduce

feature space dimensionality.
13. Concatenate deep features of the previous step with deep features of layer 2 of the three

CNNs.
14. Apply mRMR feature selection to select the most significant features.
15. Construct classifiers: linear SVM, quadratic SVM, and cubic SVM.
16. Test classifiers: recognize paddy disease using the testing set (use 5-fold cross-validation).
17. End RiPa-Net
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3.2.1. Paddy Image Formulation and Augmentation

In the beginning, the dimensionality of the photos from the Paddy Doctor dataset
is altered to suit the dimension of the CNN input layers. These aspects are equal to
224 × 224 × 3 for MobileNet and ResNet-18 and 256 × 256 × 3 for DarkNet-19. These data
are then split into a 70–30% ratio for training and testing portions. The training images
are then augmented to expand the number of photographs. This augmentation step is
necessary to enhance the learning experience of the CNNs and stop overfitting. Several
augmentation methods are applied to the training split. These augmentation methods
and their values are presented in Table 1. All the augmentation techniques are applied
to training images only that are used to train the CNNs and not for testing images. This
is performed to ensure that a replica of the image is not included in the training and
testing and to avoid over-optimistic results. It is worth mentioning that the augmentation
utilized in this study is the MATLAB online augmentation technique. This means that
this technique incorporates augmentation while training the model. This indicates that
the model is supplied with randomly chosen batches of the original dataset during each
epoch, and the transformations are then carried out online. Additionally, the photos given
to the model for each epoch vary according to the transformations used. In other words,
the augmentation procedure in MATLAB is integrated into the data store, and the results
of the augmentation are not shown or stored in memory. This happens as MATLAB does
not perform the typical increase in photos in memory. The MATLAB group employed the
concept of data augmentation taking into account a memory-constrained computer. The
dataset used in this study is described later in Section 4.1.

Table 1. Augmentation techniques used and their range values.

Augmentation Technique Range

Flip horizontally and vertically −25 to 25

Scaling 1 to 2

Shearing vertically −30 to 30

Rotation horizontally and vertically 25 to 25

3.2.2. Lightweight CNN Development and Learning

Three lightweight CNNs are developed using transfer learning (TL), such as Mobile-
Net, ResNet-18, and DarkNet-19. The TL methodology is used for transferring the informa-
tion that is learned during the development phase of CNNs learned with massive datasets
to address a similar classification issue via a database that contains relatively few photos
to learn the model. TL aids in avoiding the convergence process and problems associated
with overfitting. This procedure typically improves the accuracy of recognition [55]. DL
models that employ TL are called pre-trained models. TL is adopted in this study to change
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the output layer of CNNs to 10 similar to the number of dataset categories. Augmented
images formed in the previous stage are then utilized to learn the pre-trained CNNs after
adjusting some CNNs’ hyperparameters, including mini-batch, learning rate, epochs, and
validation frequency. More details regarding the hyperparameters will be discussed later
in Section 4.2.

3.2.3. Bilayers Feature Extraction and Time-Frequency Representation

After ending the learning progression of the three CNNs, TL is again used to extract
deep features from two different deep layers of each CNN. This part aims to examine
whether extracting deep features from more than one layer of a CNN is superior to obtaining
deep features from a single deep layer of a CNN. In addition, this section examines which
of the deep layers has a greater impact on classification accuracy. The last two deeper layers
are employed in this step. This is because deeper layers obtain more detailed and substantial
information in contrast to primary layers which learn elementary representations from the
input data [56]. Layer 1 signifies the final pooling layer of MobileNet and ResNet-18, while
it is the last convolution layer of DarkNet-19, whereas layer 2 represents the ultimate fully
connected (FC) layer of MobileNet and ResNet-18 and the last pooling layer for DarkNet-19.
Features acquired from these layers demonstrate only spatial information of the input;
however, as mentioned earlier, obtaining a spatial–spectral–temporal representation of
the input is superior to using only spatial demonstration and could enhance performance.
Table 2 displays the size of the feature vector obtained from each layer of the three CNNs.
The dimension of the features of layer 2 is greater than that of layer 1, as shown in Table 2.
For this reason, DTCWT is employed to reveal the spatial–spectral–temporal representation
of the layer 1 features. Furthermore, it is used to compress their size. Note that two levels of
decomposition were employed from DTCWT, where the lowpass coefficients of the second
level are chosen as the reduced spatial–spectral–temporal features.

Table 2. Length of feature vectors acquired from the two layers of each CNN.

Model Layer 1 Layer 1 (After
DTCWT) Layer 2

ResNet-18 512 256 10

DarkNet-19 660 330 10

MobileNet 1280 640 10

3.2.4. Multi-Deep Features Fusion

In this phase, rather than relying on the deep features of a single CNN architecture,
the deep features of each deep layer of the three CNNs are incorporated separately. This
integration process combines all the privileges of the three CNN structures, which usually
improves performance. The fusion procedure for layer 1 features is attained using two
transformation algorithms, which are PCA and DCT. These two methods are compared
to demonstrate that fusion can enhance performance. These approaches not only merge
features, but also diminish their size. To demonstrate how changing the number of fused
features affects performance, an ablation study is conducted. On the other hand, the deep
features of layer 2 for the three CNNs are concatenated, as they have low dimensions and
do not require a reduction step.

3.2.5. Deep Feature Selection

Next comes the deep feature selection step, where the aim of this phase is to diminish
the dimensionality of the feature space and reduce training time duration and complexity
of the training time. In this phase, the features of each deep layer of three CNNs integrated
with the previous step are then concatenated, and a feature selection process is applied
to them to choose a reduced set of features that impact the recognition performance. The
term “feature selection” describes a group of computational methodologies, the objective
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of which is to choose the most relevant attributes from the initial feature set [57]. Feature
selection is a useful technique for handling data that is highly multi-dimensional because
it may decrease feature dimensionality and redundancy and help with problems like the
overfitting of models in subsequent analysis. This is unlike dimension reduction techniques,
such as PCA, which integrates and converts the dataset’s original variables to produce a
smaller variable size. Feature selection techniques only determine and choose features that
meet pre-established criteria or optimize particular computational techniques.

In the proposed pipeline, a maximum relevance minimum redundancy (mRMR)
feature selection approach is used. The mRMR is a feature selection method that chooses
attributes that are little in correlation with one another and have a significant association
with the output label. For variable selection, the Pearson correlation coefficient may be
utilized to determine the relationship among variables (redundancy), and the F-statistic
may be applied to determine the association with the output label (relevance). The objective
function, which is an equation of significance and redundant status, is then maximized
by selecting variables iteratively using a greedy algorithm [58]. Mutual information is the
objective function employed in this step.

3.2.6. Recognition

In order to recognize the different paddy diseases in the Paddy Doctor dataset, three
SVM classifiers of different kernels are operated. These kernels are linear, cubic, and
quadratic. SVM is a well-known robust classifier. It is regarded as being one of the most
well-known techniques for signal/image identification [59]. Because it employs a function
called the kernel to translate the feature space into an alternative transformation that
is capable of distinguishing among categories of data, it works effectively in massive
dimension spaces and multi-class problems. As a result, it is frequently combined with the
enormous size of deep learning attributes obtained from CNNs [60,61]. The recognition
procedure is accomplished in three scenarios. In the first context, deep features obtained
from layer 2 and layer 1 after applying DTCWT are used to feed the three SVMs. On the
other hand, in scenario 2, the integrated features using the two fusion algorithms (PCA and
DCT) are employed as inputs to the three SVMs. Later, in Scenario 3, the features selected
using the mRMR feature selection approach are used to train the three SVMs.

4. Pipeline Setting
4.1. Rice-Paddy Disease Dataset

The dataset employed to validate the performance of the proposed model is called
“Paddy Doctor” [62]. The dataset consists of nine paddy diseases along a tenth category
consisting of normal images. The dataset includes RGB photographs taken in rice paddies
in the Tirunelveli region of Tamilnadu, an Indian state. A total of 13,876 photos were taken;
however, out of these images, only 10,407 were labeled with a specific category (normal or
diseased with one of the paddy diseases), and thus, only these 10,407 labeled images were
employed in this study. Each of these images has a resolution of 480 × 640. The rice diseases
existing in the dataset, along with the total number of photos available for each disease,
are indicated in Table 3. Figure 2 presents a representative example from every category
of disease in the Paddy Doctor dataset. This figure represents a visual comprehension of
the deviations existing throughout each class’s external appearance, such as various signs,
phases, or harmed leaf portions. The observed fluctuations confirm the importance and
difficulty of creating solid DL solutions that can precisely distinguish among diseases and
generalize effectively to previously unknown deviations within a disease category.
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Table 3. Images distribution along disease categories of the Paddy Doctor dataset.

Paddy Disease Category Sum of Photos

Blast 1738

Tungro 1088

Dead heart 1442

Bacterial leaf blight 479

Bacterial panicle blight 337

Bacterial leaf streak 380

Hispa 1594

Brown spot 965

Downy mildew 620

Normal 1764
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4.2. Parameter Fine-Tuning

A few numbers of the CNNs hyperparameters are adjusted. These hyperparameters
are the mini-batch, epoch size, learning rate, and validation frequency. These hyperpa-
rameters are adjusted to 10, 20, 0.0001, and 728 for the mini-batch, epoch size, learning
rate, and validation frequency, respectively. Other parameters are kept with their default
values. When a greater batch number is used, it was observed in [63] that the CNN model’s
effectiveness, as measured by the network’s capacity to generalize, declines. Each of the
learning and evaluation procedures eventually converges to razor-sharp minimizers when
using larger batch lengths. Sharp minimal values have a negative impact on generalizability.
Contrarily, the comparatively tiny number commonly coincides with soft minimizers and
often accomplishes the highest generalization ability [64], so it is decided to limit it to a
maximum of 10. In order to reach the smallest error, the learning rate advances while
reflecting the factor of scaling at each epoch of learning. Rapid training times are made
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possible by high learning rates, but this results in an ultimate weight collection that is not
ideal. In contrast, lower learning rates might actually enable the model to understand a
slightly more optimal or even globally optimal collection of weights, leading to a compar-
atively prolonged training time. Additionally, high learning rates will lead to significant
weight alterations, which will significantly alter the model performance across training
runs. Efficiency varies as a result of weight variation. However, extremely low learning
rates might never converge or might remain a less-than-ideal solution. As a consequence,
the learning rate in the suggested pipeline is adjusted to 0.0001, which is neither low
enough nor excessively big. The optimization technique implemented (SGDM) is stochastic
gradient descent with momentum. Table 3 lists the rice diseases found in the dataset in
addition to the overall amount of pictures provided for every illness.

To evaluate the effectiveness of the recognition models, a five-fold cross-validation
and holdout test set is deployed. In five-fold cross-validation, the dataset is split into five
equal subdivisions. Each time, the classifier is trained with four subdivisions and tested
with the fifth sub-portion. This process is conducted five times; each time the training
procedure is performed with four distinct subsets of data and tested with the remaining
fifth subset. The testing accuracy is calculated each time; then, the average accuracy of the
five testing folds is computed to evaluate the performance of the model. In the hold-out
test set, 70% of the data is used for training and 30% is used for testing.

4.3. Assessment Measures

The effectiveness of pipeline recognition is measured using several assessment mea-
sures, including precision, F1-score, specificity, and the Mathew correlation coefficient
(MCC). In order to calculate these measures, numerous indicators should be first deter-
mined, including true positive (TP), true negative (TN), false positive (FP), and false
negative (FN). TP resembles the sum of correctly recognized positive labels, whereas TN
signifies the total number of correctly identified negative labels. On the other hand, FP
indicates negative labels incorrectly recognized as a positive class, while FN is the sum
of positive label instances mistakenly classified as negative. The following formulas are
adapted to calculate the assessment measures:

Accuracy =
TP + TN

TN + FP + FN + TP
(1)

Sensitivity =
TP

TP + FN
(2)

Speci f icity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

F1 Score =
2 × TP

(2 × TP) + FP + FN
(6)

5. Results

This section demonstrates the results of three scenarios of the proposed RiPa-Net
pipeline. In the initial scenario, the three SVMs are fed with deep features that are extracted
from layer 1 or 2 after applying DTCWT. In contrast, the combined attributes created using
each of the two integration methods (PCA and DCT) are used as inputs to the three SVMs
in scenario 2. Later, in scenario 3, the three SVMs are trained using features chosen using
the mRMR feature selection strategy.
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5.1. Results of the First Scenario

The target of this scenario is to investigate and compare the recognition performance
of the trained SVM classifier with the deep features of two different layers. The results of
the first scenario are discussed in this section. Table 4 displays the recognition accuracy
of the three SVM classifiers trained with the deep features obtained from the two layers
of each CNN. It is clear from Table 4 that the deep features of either of the two layers of
DarkNet-19 attained the highest performance with an accuracy range of 95.6% to 96.4%
using the three SVMs. This performance is followed by the deep features of either of the
two layers of MobileNet, which achieved an accuracy in the range of 91.6% to 94.0%, while
the deep features of either of the two layers of ResNet-18 attained an accuracy that varies
between 89.7% and 93.4%. Note that for the cubic SVM classifier, the deep features of layer
1 achieved greater accuracy compared to the deep features of layer 2 for the three CNNs.
However, for linear and quadratic SVM classifiers, layer 1 has comparable accuracies,
except for the linear SVM classifier fed with deep features of MobileNet and ResNet-18.

Table 4. Accuracy (%) of the classifiers trained with the deep features of the two layers of each CNN.

ResNet-18 MobileNet DarkNet-19

Layer 1 Layer 2 Layer 1 Layer 2 Layer 1 Layer 2

LSVM 89.7 92.5 91.6 93.4 96.0 95.9

Q-SVM 92.6 93 93.1 93.4 96.4 96.3

C-SVM 93.4 92.7 94.0 92.9 96.3 95.6

5.2. Results of the Second Scenario

The goal of this scenario is to verify that the use of deep features of multiple CNNs
of different constructions could enhance performance. This section compares the results
of the two fusion algorithms that merge layer 1 features and shows that feature fusion
could enhance the recognition accuracy of paddy disease using layer 1. An ablation study
is accomplished and shown in Figure 3 to demonstrate the variation in accuracy with
the number of fused features using both fusion methods (DCT and PCA) for deep layer
1 features. As can be seen in Figure 3, for the DCT method, the recognition accuracy
increases until it reaches 96.6%, 96.8%, and 96.4% using the linear, quadratic, and cubic
SVM classifiers fed 500 DCT features. Similarly, when using the PCA algorithm to combine
deep layer 1 features of the three CNNs, the recognition accuracy improves to 96.4%, 96.7%,
and 96.8% by means of the linear, quadratic, and cubic SVM classifiers trained with 300
principal components. These accuracies attained utilizing the two fusion methods are
greater than that attained in the first scenario (as indicated in Table 5), which verifies that
merging spatial–spectral–temporal features of the three CNNs is capable of enhancing the
recognition performance.

Note that the accuracies have improved significantly compared to layer 1 features of
MobileNet and ResNet-18 CNNs using the two feature transformation approaches. On the
other hand, the accuracies have slightly improved after the fusion step using both feature
transformation methods in the case of DarkNet-19. However, the slight improvement in
accuracy is accompanied by a great reduction in the number of features employed to train
the SVM classifiers, which lowers the complexity of the training models. This is obvious
as the accuracies attained after the fusion step using DCT and PCA are (96.6%, 96.4%),
(96.8%, 96.7%), and (96.4%, 96.8%) using linear, quadratic, and cubic SVM classifiers. These
accuracies are accomplished using only 500 and 300 features by means of DCT and PCA
methods which are lower than the 660 features obtained from layer 1 of DarkNet-19 CNN
that achieved an accuracy of 96.0%, 96.4%, and 96.3% using the linear, quadratic, and cubic
SVM classifiers.
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Figure 3. Variation in the recognition accuracy with the number of fused features using both fusion
methods: (a) DCT and (b) PCA.

Table 5. Accuracy (%) of the classifiers trained with the deep features of the two layers of the CNNs.

PCA Layer 1 Fused Features + Layer 2 Features

Number of Features

50 100 150 200 250 300

LSVM 57.4 58.4 81.1 96.4 97.0 97.1

Q-SVM 78.1 84.2 91.2 96.7 97.2 97.2

C-SVM 78.6 85.3 93.3 96.9 97.4 97.2

DCT Layer 1 Fused Features + Layer 2 Features

Number of Features

50 100 150 200 250 300

LSVM 96.7 97.2 97.2 97.3 97.2 97.3

Q-SVM 97.0 97.4 97.5 97.3 97.5 97.5

C-SVM 97.0 97.4 97.3 97.5 97.5 97.5
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The confusion matrices after both fusion algorithms are calculated for the quadratic
SVM classifier fed with 500 DCT and 300 PCA coefficients, which achieved the highest
accuracy. These confusion matrices are plotted in Figure 4 that specifies the recognition
accuracy of each paddy disease. The figure shows that the quadratic SVM classifier has
recognized bacterial leaf blight with an accuracy of (92.3% and 92.7%) bacterial leaf streak
with an accuracy of (97.6% and 98.2%), bacterial panicle blight with an accuracy of (94.4%
and 96.4%), blast with an accuracy of (96.8% and 96.7%), brown spot with an accuracy of
(95.1% and 96.0%), dead heart with an accuracy of (99.0% and 99.3%), downy mildew with
an accuracy of (88.7% and 90.0%), hispa with an accuracy of (96.8% and 97.0%), tungro
with an accuracy of (95.8% and 96.2%), and normal rice leaves with an accuracy of (98.7%
and 97.9%) using DCT and PCA features.
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5.3. Results of the Third Scenario

The third scenario aims to show that combining the two layers of features of the three
CNNs and selecting among these features is capable of boosting recognition accuracy.
To achieve this goal, the PCA and DCT features are merged independently with layer
2 fused features of the three CNNs; then, the mRMR feature selection approach is applied
to choose from these features, thus reducing the feature space dimensionality and lowering
the complexity of the recognition process. Table 5 shows the results of the ablation study
conducted when changing the number of selected features with the recognition accuracy.
Table 5 demonstrates that for PCA Layer 1 Fused Features + Layer 2 Features, the accuracy
increases until it accomplishes 97.1%, 97.2%, and 97.2% using linear, quadratic, and cubic
SVM classifiers, respectively, with only 300 features. This accuracy is lower than using each
fused feature set of each layer separately. Likewise, for DCT Layer 1 Fused Features + Layer
2 Features, the accuracy has improved to 97.3%, 97.5%, and 97.5% with 250 and 300 DCT
features using linear, quadratic, and cubic SVM classifiers. These results are higher than
those obtained in Table 4 and Figure 4. This improvement in accuracy verifies that feature
selection can successfully reduce the number of features and boost recognition accuracy.
Furthermore, these results prove that the combination of features from multiple deep layers
of distinct CNN structures is capable of enhancing performance.
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Other performance measures are also calculated to evaluate the effectiveness of the
suggested pipeline with a five-fold cross-validation and hold-out test set. These metrics
involve sensitivity, precision, F1-score, specificity, and MCC for the selected features of DCT
and PCA. Table 6 reveals these performance measures and indicates that sensitivity ranges
from 0.9564 to 0.9707, precision varies between 0.9634 and 0.9742, specificity fluctuates
between 0.9959 and 0.9971, F1-score alters between 0.9598 and 0.9722, and MCC changes
within the range of 0.9557 to 0.9694 for five-fold cross-validation. Furthermore, the table
indicates that when using a hold-out test set, the accuracy fluctuates between 0.9699 and
0.9747, sensitivity ranges from 0.9644 to 0.9724, precision varies between 0.9681 and 0.9750,
specificity fluctuates between 0.9966 and 0.9971, F1-score alters between 0.9662 and 0.9736,
and MCC changes within the range of 0.9632 to 0.9707. These results show that the proposed
pipeline is reliable. Furthermore, the receiving operating characteristic curve (ROC) is also
plotted and displayed in Figure 5, and the area under ROC (AUC) is calculated for the
quadratic SVM classifier trained with the 300 selected deep features that are fused using
the DCT method, as they achieved the highest performance in Table 5.

Table 6. Performance measures of the classifiers trained with the 300 selected DCT and PCA features
of the two layers of the three CNNs.

PCA Layer 1 Fused Features + Layer 2 Features

Accuracy Sensitivity Specificity Precision F1-Score MCC

Five-Fold Cross-Validation

LSVM 0.9700 0.9564 0.9959 0.9634 0.9598 0.9557

Q-SVM 0.9720 0.9682 0.9968 0.9720 0.9700 0.96692

C-SVM 0.9740 0.9687 0.9970 0.9738 0.9712 0.9682

Hold-Out Test Set

LSVM 0.9702 0.9661 0.9966 0.9688 0.9674 0.9641

Q-SVM 0.9747 0.9721 0.9971 0.9750 0.9734 0.9706

C-SVM 0.9747 0.9724 0.9971 0.9750 0.9736 0.9707

DCT Layer 1 Fused Features + Layer 2 Features

Accuracy Sensitivity Specificity Precision F1-Score MCC

Five-Fold Cross-Validation

LSVM 0.9730 0.9672 0.9970 0.9721 0.9656 0.9667

Q-SVM 0.9750 0.9697 0.9971 0.9742 0.9719 0.9691

C-SVM 0.9750 0.9707 0.9971 0.9739 0.9722 0.9694

Hold-Out Test Set

LSVM 0.9702 0.9662 0.9966 0.9683 0.9671 0.9638

Q-SVM 0.9699 0.9644 0.9966 0.9681 0.9662 0.9628

C-SVM 0.9699 0.9657 0.9966 0.9676 0.9666 0.9632
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heart, downy mildew, hispa, tungro, or normal class.
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6. Discussion

This research study introduces a pipeline for the automatic recognition of rice paddy
diseases. The majority of models used in recent studies operated on databases with few
pictures and diseases. However, the suggested pipeline employs a large database with a
variety of paddy diseases and a large number of paddy photos. Furthermore, the suggested
pipeline deployed three lightweight CNNs of different architectures, fusing the benefits
of each composition, contrary to the approaches used in the existing literature, which are
based on single CNN models that use a lot of deep layers and a lot of parameters. In
contrast to recent research, the suggested pipeline gathers features from two different CNN
layers for each. To identify paddy diseases, the suggested pipeline pertains DTCWT to the
initial layer’s deep features in order to acquire spectral–temporal information, as opposed
to focusing just on spatial knowledge. Additionally, DTCWT is utilized to reduce the size of
deep features retrieved from layer 1 and to simplify classification. The suggested pipeline
incorporates the deep features of all three lightweight CNNs, as opposed to using the deep
features from every CNN separately to carry out recognition. The three CNNs’ layer 1
deep features are merged using PCA and DCT transformation techniques, which further
decrease the length of the layer 1 features. After performing a PCA or DCT, it concatenates
those integrated spectral–temporal deep features together with the spatial deep features
of the second layer. It then provides a feature selection technique to minimize the feature
vector dimension and choose only those features that have a significant impact on the
recognition process, thereby further lowering recognition complexity.

Three scenarios were used to complete the recognition process. In the first context,
the three SVMs are fed with deep features that are obtained from layer 2 and layer 1 after
applying DTCWT. Contrarily, in scenario 2, the three SVMs are fed with the combined
attributes generated by the two fusion algorithms (PCA and DCT). The three SVMs are then
trained using features chosen using the mRMR feature selection approach in scenario 3.
The goal of the first scenario is to examine and contrast the performance of the SVM
classifier developed with deep features from two different layers of each CNN in terms of
recognition. The results of this scenario show that the cubic SVM classifiers trained with
layer 1 features are superior to those obtained using layer 2 deep features. These results
verify that employing spatial–spectral–temporal features is usually capable of enhancing
performance compared to spatial data only. The second scenario aimed to demonstrate
how using deep features from various CNNs with different constructions may improve
performance. The results of this scenario were better than the first scenario, which proves
that merging features from multiple layers improves performance. The purpose of the third
scenario was to compare and analyze the SVM classifier’s recognition performance after
training it with reduced deep features from two different deep layers selected with the
mRMR feature selection approach. The results of this scenario demonstrated that merging
features from multiple layers of distinct CNNs can enhance recognition. Furthermore,
mRMR feature selection could select a reduced set of features that impact recognition
performance. It is worth noting that due to its quick pace and small number of floating-
point computation operations, Darknet-53 surpasses other cutting-edge DL techniques,
including DenseNet-201 and ResNet-50. Also, Darknet-53 has small-sized (3 × 3 and 1 × 1)
subsequent convolutional filters that aid in the identification of objects or structures of
different sizes and can accurately discriminate among different patterns [65].

6.1. Comparative Evaluation

The efficacy of the suggested pipeline was contrasted with DL frameworks and base-
line models that other researchers had previously looked into based on the Paddy Doctor
dataset. Note that in the proposed pipeline, there are only nine diseases detected as well as
a normal class. In other words, there are 10 classes, including 9 paddy diseases and 1 nor-
mal category. Table 7 compares the experimental outcomes of various DL structures with
the performance of the suggested pipeline. Table 7 provides evidence that the suggested
pipeline is superior to earlier models at identifying the paddy disease. This is because the
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majority of former models were built on a single DL model, and many of them are complex
with huge deep layers and parameters. All of them relied on obtaining deep features from
one single deep layer. To select the most important features, these techniques lacked any
feature selection approaches. The suggested pipeline, on the other hand, merged deep
features of two distinct layers of various lightweight CNNs and employed feature selec-
tion, thus improving performance. It also employed spatial as well as spectral–temporal
knowledge to achieve recognition.

Table 7. Comparison of numerical findings with cutting-edge DL models and previous studies for
paddy infection recognition using the Paddy Doctor database.

Reference # Paddy
Diseases Model Accuracy F1 Score Sensitivity Precision

[36] 6 RepVGG 0.9706 0.9709 0.9708 0.9713

[66] 10 Custom CNN 0.8888 - - -

[67] 10 FormerLeaf: a customized
vision transformer model 0.9502 0.9616 0.9725 0.9210

[68] 10 Swin Transformer 0.9434 0.9343 0.9430 0.9252

[69] 10 Convolutional Swin 0.9565 0.9536 0.9615 0.9536

[70] 10 Xception 0.9251 0.9155 0.9180 0.9130

[71] 10 MobileNet 0.8987 0.9197 0.9348 0.9051

[72] 10 ResNet-50 0.9113 0.8933 0.9082 0.8905

Proposed
RiPa-Net
Five-fold

cross-validation 10

MobileNet + ResNet-18 +
DarkNet + DCT 0.9750 0.9722 0.9707 0.9739

Proposed
RiPa-Net
Hold-out

MobileNet + ResNet-18 +
DarkNet + PCA 0.9740 0.9666 0.9625 0.9680

MobileNet + ResNet-18 +
DarkNet + DCT + CSVM 0.9699 0.9666 0.9657 0.9676

MobileNet + ResNet-18 +
DarkNet + PCA + CSVM 0.9747 0.9736 0.9724 0.9750

6.2. Shortcomings and Upcoming Directions

The limitations of this research are primarily focusing on conditions that affect paddy
plants rather than all plant illnesses. The topic might be expanded in the upcoming
experiments to cover additional plant/crop diseases. Furthermore, the study examined
nine paddy diseases as well as one normal condition. Future work will consider more rice
diseases. In addition, this study did not employ segmentation and object detection DL
models. Forthcoming work will employ segmentation and object detection DL models to
examine if they could improve performance. One of the areas that this study did not cover
was real-time assessment and implementation, so subsequent research needs to emphasize
these areas. The suggestion for the use of chemicals and pesticides depending on the
recognized diseases is another worthwhile investigation area that was not addressed in this
study. Future research will concentrate on this interesting subject. Additionally, employing
image enhancement techniques to make the DL models’ learning process easier will help
them distinguish among various ailments of crops. Also, additional elements might be
included when collaborating with distinct cultures, such as gathering pictures of multiple
species of every crop grown across several nations. The DL models are then trained on
these many species to improve their generalization capacity to categorize crops of various
species that have been gathered from various cultural contexts.
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7. Conclusions

This study proposed a reliable and efficient DL-based pipeline for the automatic
recognition of several paddy diseases with close appearance. The findings of the sug-
gested pipeline demonstrated that the two feature transformation methods (PCA and
DCT) that were employed separately to fuse layer 1 features of the three CNNs signifi-
cantly increased accuracies in comparison to layer 1 features of MobileNet, ResNet-18, and
DarkNet-19 CNNs. Additionally, the feature selection of the suggested pipeline notably
decreased the amount of features utilized in developing the SVM classifiers coinciding with
a slight improvement in accuracy, reducing the training models’ complexity. Furthermore,
the integration of deep features from the two separate deep levels of the CNNs having
different compositions positively impacted identification accuracy. Also, combining the
spatial–spectral–temporal attributes of the three CNNs successfully improved recognition
performance. In comparison to other prior studies and baseline models for paddy diseases,
the results of the proposed pipeline outperformed both models. The outcomes of the sug-
gested pipeline support its efficacy for intelligent agricultural purposes due to its capability
to accurately recognize and discriminate paddy illnesses.
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