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Abstract: In this article, we propose an effective grasp detection network based on an improved
deformable convolution and spatial feature center mechanism (DCSFC-Grasp) to precisely grasp
unidentified objects. DCSFC-Grasp includes three key procedures as follows. First, improved
deformable convolution is introduced to adaptively adjust receptive fields for multiscale feature
information extraction. Then, an efficient spatial feature center (SFC) layer is explored to capture
the global remote dependencies through a lightweight multilayer perceptron (MLP) architecture.
Furthermore, a learnable feature center (LFC) mechanism is reported to gather local regional features
and preserve the local corner region. Finally, a lightweight CARAFE operator is developed to
upsample the features. Experimental results show that DCSFC-Grasp achieves a high accuracy (99.3%
and 96.1% for the Cornell and Jacquard grasp datasets, respectively) and even outperforms the
existing state-of-the-art grasp detection models. The results of real-world experiments on the six-DoF
Realman RM65 robotic arm further demonstrate that our DCSFC-Grasp is effective and robust for the
grasping of unknown targets.

Keywords: grasp detection; deformable convolution; spatial feature center mechanism; robotic arm

1. Introduction

With the rapid advancement of artificial intelligence technology, the application of
robots has gradually shifted from the traditional industrial field to unstructured environ-
ment fields, such as home services, warehousing, and logistics, expanding the range of
application scenarios for intelligent grasp detection in robotic arms. Grasping is a basic
robot skill. Achieving robot grasping intelligence can significantly improve production effi-
ciency and human–computer interactions. Compared with traditional industrial robots that
repeatedly grasp specific known objects in fixed working areas, robot grasping in unstruc-
tured environments encounters many practical challenges, such as changes in lighting and
scenery, unknown operation examples, and diverse placement positions. Visual perception
is an important process for intelligent robots to understand the real world. Enhancing visual
perception can help robots overcome grasping challenges in unstructured environments
and further improve their adaptability to grasp new objects in new environments.

To determine precise grasp positions, the robot should focus not only on local geomet-
ric features but also on the entire visual exterior of the target. Particularly in irregular and
chaotic conditions, adapting to changes in appearance, location, and spatial relationships
with adjacent objects is vital for grasp detection performance. In some previous grasp
detectors [1,2], most convolutional neural networks had to repeatedly stack convolutional
layers to maintain a large receptor field, which diminished the spatial resolution ratio and
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unavoidably led to the disappearance of global particulars and performance degradation.
In recent years, transformers [3–5] have been successfully applied as new methods for
computer vision. The transformer attention mechanism [3] provides a suitable solution to
better transmit the fusion of features in a global sequence. However, this causes a significant
problem: the transformer has a large computing overhead, and the model is difficult to
converge, which requires a large amount of computing resources. This complicates the
deployment of mobile robots [6,7].

Therefore, we propose an effective grasp detection network based on improved a
deformable convolution and spatial feature center mechanism (DCSFC-Grasp), which intro-
duces deformable convolution for adaptive receptive field adjustment. Global long-range
dependencies are captured using a lightweight multilayer perceptron (MLP) architecture in
the spatial feature center (SFC), and a learnable feature center (LFC) mechanism is used to
gather local regional features in the layers to capture partial geometric information and the
entire visual appearance of the captured object. Unlike previous studies on robot grasping,
in which the required grasping was predicted as a rectangle calculated by selecting the
best option from multiple grasping probabilities, our network generates three images of
the grasping quality, angle, and width, from which we can directly deduce the grasping
rectangle of multiple grasping objects simultaneously, thus reducing the overall reason-
ing time. We provide detailed experimental evidence that our grasp detection network
performs excellently on popular grasp datasets such as the Cornell and Jacquard datasets.
The experimental results show that the SFC mechanism is indispensable in generating
appropriate grasping rectangles by learning the local and global features of different parts
of each object. Moreover, our grasp detection model is effective on actual robot systems
and exhibits a good generalization ability for unknown objects.

The key contributions of our study can be summarized as follows:

1. We propose a grasping system that can directly deduce the grasping rectangles of mul-
tiple grasping objects by generating images of the grasping quality, angle, and width;

2. Our model introduces improved deformable convolution in the feature extraction
module to adjust the adaptive receptive field, then uses an SFC layer to capture the
global remote dependence through a lightweight MLP architecture. Compared with
transformer encoders based on a multihead attention mechanism, the lightweight
MLP architecture is simpler, lighter, and more computationally efficient. Additionally,
to preserve the local corner region, we propose an LFC mechanism to gather local
regional features in the layer. A lightweight CARAFE operator is used to complete the
upsampling process. Compared with transpose convolution, the CARAFE operator
has lower computational complexity and achieves better performance;

3. We evaluated our model on publicly available grasp datasets and achieved the highest
accuracies of 99.3% and 96.1% for the Cornell and Jacquard grasp datasets, respectively;

4. We deployed the proposed model on an actual robot arm and conducted real-time
grasping, which proved the feasibility of the model.

2. Related Studies
2.1. Grasp Detection with Deep Learning

Grasp detection refers to generation of the posture of the gripper of a manipulator to
accomplish a grasping task by combining visual information with relevant algorithms [8]. It
is primarily divided into two methods: analytical and empirical techniques. The analytical
method refers to the analysis of the geometric structure of three-dimensional (3D) data
according to various parameters of the manipulator and the generation of an appropriate
grasping pose through the constraint of the design of force closure conditions [9]; however,
most research in this area is based on an ideal model. On one hand, the variability of
the actual scene, the randomness of the object placement, and the noise of the image
sensor increase the complexity of the calculation; on the other hand, the accuracy of the
analysis method cannot be guaranteed. Different empirical methods use prior information
to detect the grasping pose and determine its rationality. Beginning with the features
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of objects, similarity is used for classification and pose estimation to achieve grasping.
Recently, the development of deep-learning algorithms has provided strong technical
support for empirical methods, and grasp detection using empirical methods has become
the mainstream research method [10]. In addition, many factors must be considered in the
grasp detection task, such as the physical characteristics of the object and types of grasping
ends, most of which are suction cups and parallel grippers. Grasp detection methods
applied to parallel grippers have been widely studied because of their dexterity.

Two-dimensional (2D) plane grasping methods use RGB or RGB-D image informa-
tion and are limited to vertical grasping. For example, Jiang et al. [11] proposed a five-
dimensional representation of plane-grasping rectangles and an algorithm to predict the
grasping posture of a given target from an image. In [12], the authors proved that the
five-dimensional grasping of 2D images can be manifested in 3D space, and they used deep
learning algorithms to implement plane grasp detection on the Cornell dataset. In [2], a
grasp detection network based on Alexnet [13] was proposed. Although the accuracy was
significantly improved, the results of this method are more inclined to detect the central part
because the direct regression model is often affected by the average annotation information.
Kumra et al. [1] used a deeper ResNet50 [14] network as a feature extraction layer and con-
ducted experiments based on a multimodal input, achieving accuracies of 88.8% and 89.2%.
In [15], accuracy was further improved to 93.2% by correlating each grid cell with a default
contrasted rectangle, such as in Faster-RCNN [16]. Chu et al. [17] adopted the default refer-
ence rectangle strategy and used a classification method to overcome the difficult problem
of angle regression; the accuracy of the model reached 96.0%. Zhou et al. [18] designed a
full convolution grasp detection network based on ResNet101 [14] in combination with the
above concepts and achieved an accuracy of 97.7% on the Cornell grasp dataset; however,
the efficiency was very poor. A common problem with these methods is that the network
layer is deep, and the algorithm efficiency is low. Instead of using a deep CNN model to
improve accuracy, Asif et al. [19] proposed an efficient convolution network architecture
that uses fewer computing resources to achieve grasping prediction. The method achieved
an accuracy of 90.2% on the Cornell grasp dataset at a speed of 24 ms per frame. In [20], a
generative residual convolutional neural network (CNN) model, GR-ConvNet, which can
generate grasping rectangles at a speed of 20 ms per frame, was proposed. Based on an
RGB-D input, the accuracy of this method reached 97.7%; however, based on an RGB input,
the accuracy was only 88.7%.

Recently, Wang et al. [21] proposed an architecture based on a transformer, TF-Grasp,
which can obtain local information (i.e., the outline of an object) simultaneously. Fur-
thermore, long-distance connections were modeled, and higher accuracies of 97.99% and
94.6% were obtained for the Cornell and Jacquard grasp datasets, respectively. However,
some problems remain, such as high computational costs and difficulty in deploying
mobile robots.

In addition, in recent years, some researchers have used object segmentation and pose
estimation methods to achieve robotic grasp. In [22], the authors proposed a structural
hybrid technique for a 3D recognition system based on the BiLuNetICP pipeline. With
object detection and segmentation based on BiLuNet and accurate 3D measurement from
the depth camera, their approach is able to provide robust results in 6D pose estima-
tion. Tian et al. [23] proposed a pose estimation method based on crucial point detection,
CenterNet-SPF, which divides the grasping angle into 18 feature point types and introduces
subpixel convolution instead of transposed convolution to perform dual-channel feature
fusion for high- and low-level features. The prediction accuracy reached 98.31% on the
Cornell grasp dataset.

2.2. Deformable Convolutional Networks

The convolution kernel is an important component of a CNN. An increasing number
of researchers have investigated methods of improving the convolution kernel to enhance
the invariant feature extraction ability of CNNs. Dai et al. [24] proposed deformable
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convolutional networks (DCNs), which significantly improve the ability of CNNs to extract
invariant features. A deformable convolution operation is an extension of the standard
convolution operation. For plane figures, deformable convolution adds the learned offset
to the mesh sampling location in a typical convolution such that the sampling location of
the standard convolution is deformed and more concentrated in the region of interest (ROI).
Thus, the sampling point of the convolution kernel changes its position based on the shape
of the input image, forming an adaptive change ability and improved geometric invariance.

DCNs and CNNs have the same inputs and outputs. However, a DCN has a new
convolutional layer and a fully connected layer for learning offsets. However, owing to
the finite adaptive learning ability of the convolution kernel [25], DCNsv1 still contains
content unrelated to the image content. The advantage of DCNs over CNNs lies in their
ability to adapt to geometric changes in objects. The feature sampling area is closer to the
shape of the objects, but the sampling area may significantly exceed the ROI, resulting in
the features being affected by irrelevant image content. Zhu et al. [26] proposed DCNsv2 to
improve DCNsv1 by integrating a deformable convolution more comprehensively within
the network and introducing a modulation mechanism to expand the scope of deformable
modeling. This comprehensively enhances the geometric modeling capability of deformable
convolution and improves the ability of the network model to focus on key areas of an image.
The deforming convolution module in DCNsv2 increases the adjustment mechanism, which
can learn both the offset of the sampling points and the weight of each sampling point.

2.3. MLP in Computer Vision

To mitigate the limitations of complex transformer models [27–30], recent studies [31–34]
have shown that good performance can still be achieved by replacing attention-based
modules in transformer models with an MLP. This is because both the MLP (e.g., two
fully connected layer networks) and the attention mechanism are information processing
units. On one hand, the introduction of MLP-Mixer [31] mitigates the change in the data
layout. On the other hand, MLP-Mixer can better establish the long dependency/global
and spatial relationships of features through the interaction between spatial and channel
feature information. Although MLP-style models excel in computer vision assignments,
they still have limitations in capturing fine-grained feature manifestations and achieving a
better detection effect [35].

Nonetheless, MLPs play an increasingly important role in the computer vision space
and have the advantage of a plainer network structure compared with the transformer.
In our study, we also used an MLP to capture the global context information and remote
dependencies of input images. Our aim was to capture the centrality of information using
the proposed SFC mechanism.

3. Improved Deformable Convolution and Spatial Feature Center Mechanism
3.1. Problem Statement

In this paper, we use a grasping system that can directly deduce the best grasping pos-
ture of unknown grasping objects by generating images of the grasping quality, angle, and
width and executing them on a robot. Unlike the five-dimensional grasping representation
proposed in [1,2,9], in this paper, we adopt an improved grasping representation similar to
that developed in [36]. We represent the grasping posture in the robot frame as

G = (p, θr, ωr, q), (1)

where p = (x, y, z) is the central location of the end of the robotic-arm two-finger gripper
in the Cartesian coordinate system, θr is the azimuth angle of the gripper around the z axis,
and ωr is the width of the gap required by the two-finger gripper. In addition, the grasp
quality score (q) is used to generate the probability of a successful grasp, and the optimal
grasp configuration can be obtained using G∗ = arg maxqG.
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The grasping posture is detected using the n-channel image (I = Rn×h×w). Therefore,
p = (x, y, z) can be simplified to 2D coordinates (pi = (x, y)), which can be further
defined as

Gi = (pi, θi, ωi, q), (2)

where pi = (x, y) is the central point of the grasping rectangle corresponding to the image
coordinates, θi is the grasping angle at position i, ωi is the grasping width, and q is the
grasping quality score.

θi represents the angle rotation required to grasp the target in each pixel within a range
of [−π

2 , π
2 ]. To maintain the one-to-one mapping of the rotation angle (θi) in the range of

[−π
2 , π

2 ], we decode the rotation angle learning into two components: sin(2θ) and cos(2θ).
Thus, the final rotation angle is inversely derived from arctan(sin 2θ/ cos 2θ)/2. ωi is the
width of the opening required for clamping, which is expressed as a measure of depth
and is within the range of [0, Wmax] pixels. Wmax is the maximum width of the two-finger
gripper. q measures the grasping success rate of each pixel in the image, and a value closer
to 1 indicates a higher grasping success rate.

All the grasping sets can be expressed as follows:

G = (Θ, W, Q) ∈ R3×h×w, (3)

where Θ, W, and Q represent the predictive heat maps of the grasped objects, which are
the grasping angle, width, and quality scores, respectively, and are calculated for each pixel
of the image using Equation (2).

Using the grasping posture generated in the image space, the robot can perform
grasping by transforming the image coordinates into the robot base coordinate system:

Gr = Trc(Tci(Gi)), (4)

where Tci is the transformation of 2D space into 3D space of the camera using the inherent
parameters of the depth camera, and Trc is the conversion of the camera space into robot
space using the camera posture calibration value.

3.2. Network Architecture

The overall network architecture of DCSFC-Grasp is shown in Figure 1. It comprises an
improved deformable convolution-based feature extraction module, SFC, several residual
blocks, and a CARAFE upsampling operator. Grasp detection networks are suitable for any
type of input mode. The pixel-by-pixel grasp position is generated by the grasp quality,
angle, and width heat map. First, an input with a size of n × 224 × 224 (n = 1, 3, 4) is
input into the improved deformable convolution-based downsampling module for feature
extraction; then, the feature map is sent to the SFC layer to capture the global long-range
dependence through a lightweight MLP architecture. Additionally, to retain the local
feature information, we propose an LFC mechanism to aggregate the local features within
the layer; then, the output of the SFC is transferred to five residual blocks. Finally, to easily
interpret and reserve the spatial features after the convolution operation, we upsample
the feature map using the CARAFE operator. Thus, we obtain the same image size on the
output side as that on the input side.

3.2.1. Improved Deformable Convolution-Based Feature Extraction Module

In a recent grasp detection work, GR-ConvNet [20], based on a CNN, three convo-
lutional layers were used for downsampling to extract features. Although the features
extracted using this method have strong semantics, some details are lost. For grasp detec-
tion, knowing the details of an unknown object is very important in order to predict a good
grasping posture. Therefore, in this paper, a DCN is introduced in the feature extraction
part for adaptive receptive field adjustment to obtain detailed feature information. Inspired



Biomimetics 2023, 8, 403 6 of 17

by the research reported in [37], a shared projection weight is added based on DCNv2.
Similar to conventional convolution, different sampling points in DCNv2 have independent
projective weights; therefore, the size of their parameters is linearly related to the total
number of sampling points. To reduce the complexity of the parameters and memory,
we refer to the concept of separable convolution and use position-independent weights
instead of grouping weights to share projective weights among different sampling points
to preserve all sampling position dependencies.

Figure 1. Overall architecture of DCSFC-Grasp. The improved deformable convolution-based
feature extraction module introduces an improved deformable convolution to adaptively adjust the
receptive field to obtain detailed feature information. The spatial feature center (SFC) module uses a
lightweight MLP to capture the global long-range dependence of the top-level feature information,
while a learnable feature center (LFC) mechanism is used to aggregate local regional features within
the layer to preserve local corner regions. Finally, the CARAFE operator is applied to upsample the
feature map and generate a heat map with the same resolution as the input.

The details of the feature extraction module are shown in Figure 2. To obtain hierarchi-
cal feature maps, we use a convolutional layer behind the deformable convolutional layer
to downsample the feature maps twice. The core operator of the deformable convolutional
layer is the improved DCN. The sampling effect and modulation scale are predicted within
the DCN by running the input feature (x) through a separable convolution (3 × 3 deep
convolution followed by a linear projection). A simple method of bridging the gap between
multihead self-attention mechanisms (MHSAs) in the convolution and transformer is to
introduce long-distance dependence and self-adaption spatial polymerization into the
standard convolution. Given the input x ∈ RC×H×W and present point p0, the DCN can be
expressed as

y(p0) =
K

∑
k=1

wmkx(p0 + pk + ∆pk), (5)

where K is the total number of sampling points, representing a single sampling point;
w ∈ RC×C represents the position-independent projection weight, which is shared among
different sampling points, and all sampling position dependencies are preserved; mk ∈ R
expresses the modulation scalar of the k-th sampling point; pk represents the k-th position
of predefined grid sampling {(−1,−1), (−1, 0), . . . , (0,+1), . . . , (+1,+1)} in regular con-
volution; and ∆pk is the offset of the k-th mesh sampling position. Equation (5) indicates
that for long-range dependence, the sampling shift (∆pk) can flexibly connect with local
feature information; therefore, we can conclude that the DCN and MHSA have similar
favorable properties.
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Figure 2. Structure of deformable convolution-based feature extraction module. To obtain the layered
feature map, we use a convolutional layer behind the deformable convolutional layer to downsample
the feature map twice. The core operator of the deformable convolutional layer is the improved DCN.

3.2.2. Spatial Feature Center Module

Inspired by EVCBlock for object detection [38], as shown in Figure 3, the SFC layer
proposed in this paper is primarily composed of two parallel-connected blocks, in which a
lightweight MLP can capture the global remote dependencies of the top-level feature (X).
To preserve the local corner area information, we use an LFC mechanism to integrate local
regional features within layers. The resulting feature maps of the two parallel-connected
blocks are joined together along the channel dimension, which can be formulated as

Xout = cat(MLP(Xin); LFC(Xin)), (6)

where cat(·) represents the feature-map cascade; MLP(Xin) and LFC(Xin) represent the
output features of the lightweight MLP and LFC mechanism, respectively; and Xin is the
output of the stem block, which is used for feature smoothing rather than immediate
implementation in the original feature map, as in [39]. It consists of a convolutional layer,
batch normalization (BN) layer, and rectified linear unit (ReLU) layer.

Xin = σ(BN(Conv7×7(X))) (7)

where Conv7×7(·) is a 7 × 7 convolutional layer, BN(·) represents the BN layer, and σ(·)
represents the ReLU layer.

The lightweight MLP primarily comprises two residual modules: the module based
on deep convolution [40] and the block based on the channel MLP. The two modules are
connected in series. Both blocks are followed by channel scaling [33] and drop-path [41]
operations. Specifically, for deep convolution-based modules, the features (Xin) output
from stem blocks are first fed into a deep convolutional layer. Compared with traditional
spatial convolution, deep convolution can improve feature representation and reduce
computational costs. Subsequently, channel scaling and the drop path are implemented.
Thereafter, residual joining of Xin is implemented. This process can be formulated as

Xd = DConv(GN(Xin)) + Xin, (8)

where GN(·) denotes group normalization, and DConv(·) denotes deep convolution.
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Figure 3. Structure of the SFC, which is primarily composed of two parallel connected blocks, in
which the lightweight MLP can capture the global remote dependencies of the top-level feature.
An LFC is used to integrate the local regional features within layers to preserve local corner area
information. The resulting feature maps of the two parallel-connected blocks are joined together
along the channel dimension. The stem block at the front is used for feature smoothing.

For the module based on the channel MLP, the features that are output from the
module based on deep convolution are first transmitted to GN(·), and the channel MLP [31]
is implemented on these features. Compared with spatial MLP, the channel MLP can
effectively diminish the computational complexity and satisfy the demands of common
visual assignments, after which the channel scaling, drop path, and residual connection to
Xd are achieved.

MLP(Xin) = CMLP(GN(Xd)) + Xd, (9)

where CMLP(·) is the channel MLP. We omit the channel scaling and drop path from
Equations (8) and (9) for demonstration.

The LFC is an encoder with an intrinsic dictionary with two components: (1) an
intrinsic code book (B = {b1, b2, . . . , bK}) and (2) a set of scaling factors (S = {s1, s2, . . . , sK})
of the feature center that can be learned. Specifically, Xin is first encoded using a combi-
nation of a set of convolutional layers (comprising 1 × 1, 3 × 3, and 1 × 1 convolutional
layers). Subsequently, the encoded features are processed using CBR blocks, which consist
of a 3 × 3 convolutional layer, BN layer, and ReLU layer. Through these steps, the code
feature (Xin) is entered into the code book. Thus, we utilize a set of scaling factors (S) to
consecutively map xi and bk to the corresponding location information. The information
regarding the entire image of the k-th code word can be calculated as follows:

ek =
N

∑
i=1

e−sk ||xi−bk ||2

∑K
j=1 e−sk ||xi−bk ||2

(xi − bk), (10)

where xi is the i-th pixel point, bk is the k-th learnable feature code word, and sk is the
k-th scaling factor. xi − bk provides information about the position of each pixel relative to
the code word. K is the total number of feature centers. Subsequently, we utilize φ(·) to
aggregate all ek values, which contain the BN layer with the ReLU and average layers. Based
on this, the complete information about the entire image of K code words is computed
as follows:

e =
K

∑
k=1

φ(ek). (11)
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After the output of the code book is acquired, we further transmit the e value to the
fully connected and convolutional layers to predict the features that emphasize the critical
classes. We then multiply it by the channels between the output feature (Xin) from the stem
block and the scale factor (δ(·)). This process is represented as follows:

Z = Xin ⊗ (δ(Conv1×1(e))), (12)

where ⊗ denotes multiplication by channels, and δ(·) is the sigmoid function. Eventually,
we perform channel addition between the feature (Xin) and the local corner area feature
(Z), which is represented as

LFC(Xin) = Xin ⊕ Z, (13)

where ⊕ denotes the addition of channels.

3.3. Loss Function

Our objective is to obtain the predicted grasping heat map (G) from a set of input
images (I = {I1, I2, . . . , Ik}). For the dataset consisting of the grasped object and grasped
label (L = {L1, L2, . . . , Lk}), we aim to minimize the diversity between G and L. We
analyzed the performance of various loss functions of the network and observed that
after running several tests, the smooth L1 loss had the best performance in handling the
explosion gradient. Therefore, the loss of the entire loss function can be represented as

Loss(G, L) =
K
∑
i

∑m LosssmothL1
(
Gm

i − Lm
i
)

m ∈ {Θ, W, Q}.
(14)

with LosssmothL1:

LosssmothL1 =

{
0.5
(
Gm

i − Lm
i
)2, if

∣∣Gm
i − Lm

i

∣∣ < 1∣∣Gm
i − Lm

i

∣∣− 0.5/σ2, otherwise,
(15)

where K is the total number of sampling points, and σ is the hyperparameter operating in
the smoothing region.

4. Experimental Validation

We verified the performance of DCSFC-Grasp through numerous experiments. We
compared current methods using two popular grasp detection datasets, studied the perfor-
mance of the proposed module, and evaluated its effectiveness on an actual 6-DoF Realman
RM65 manipulator.

4.1. Datasets and Experimental Setup

(1) Datasets: The number of publicly available grasp datasets is limited. We used the
Cornell [10] and Jacquard [42] grasp datasets to train and validate our method. The Cornell
dataset comprises 885 RGB-D images of 224 objects. The Jacquard dataset was generated
in a simulator using a CAD model. It contains more than 50,000 images of 11,000 object
classes and more than 1 million annotated grasp labels.

(2) Evaluation Metric: To fairly compare the results with those of other methods, we
utilized the Jaccard index and azimuth threshold as evaluation indicators. A grasping
configuration is deemed effective when it satisfies the following two circumstances:

• The intersection-over-union (IoU) score between the generated predictive grasping
rectangle G and the ground truth grasping rectangle (Ggt) is greater than 0.25, that is,

IoU =

∣∣G ∩ Ggt
∣∣∣∣G ∪ Ggt
∣∣ > 0.25; (16)
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• The offset (Θ∆) between the predicted azimuth of the grasped rectangle (Θ) and the
ground truth azimuth of the grasped rectangle (Θgt) is less than 30◦, that is,

Θ∆ =
∣∣Θ−Θgt

∣∣ < 30◦. (17)

(3) Network Training: The proposed DCSFC-Grasp was implemented using PyTorch
1.10.1 and CUDA 10.1, and the overall model was used in Ubuntu 18.04. We followed a
common strategy to train DCSFC-Grasp on an NVIDIA A100-PCIE 40-GB GPU with a
batch size of 36. AdamW was applied as the optimizer, and the learning rate was set to
decrease as the training progressed, with an initial value of 5 × 10−4 . DCSFC-Grasp uses a
224 × 224 RGB-D image as its input, and the output is three heat maps of the same size as
the input.

4.2. Experimental Results and Analysis

Owing to the relatively small size of the Cornell dataset, we followed the setup of
previous studies [1,2,11,21] using quintupled cross validation. In addition, we considered
run times to make a comprehensive comparison. For all comparison models, we used
the accuracy informed in their primitive articles. We used image-wise split (IW) and
object-wise split (OW) cross-validation settings to split the dataset [43]. IW is used to trial
a model’s predictive capability when objects have different attitudes, and OW is used to
trial a model’s generalization capability when running into various objects. The detection
accuracy of the Cornell dataset is summarized in Table 1.

Table 1. Comparison of results for the Cornell dataset.

Method Author Accuracy (%) Time (ms)IW OW

SAE [12] Lenz 73.9 75.6 1350
AlexNet, MultiGrasp [2] Redmon 88.0 87.1 76

GG-CNN [44] Morrison 73.0 69.0 19
GRPN [45] Karaoguz 88.7 - 200

ResNet-50x2 [1] Kumra 89.2 88.9 103
GR-ConvNet-RGB-D [20] Sulabh 97.7 96.6 20

E2E-net-RGB [46] Ainetter 98.2 - 63
TF-Grasp [21] Wang 97.99 96.7 42

SE-ResUNet [47] Yu 98.2 97.1 25
CenterNet-SPF [23] Tian 98.31 97.6 24

DCSFC-Grasp Ours 99.3 98.5 22

From the table, we observe that compared with the existing grasp detection methods,
DCSFC-Grasp achieved the highest accuracies of 99.3% and 98.5% for different evaluation
indicators divided by IW and OW on the Cornell dataset, respectively, and the average
reasoning speed of each image was 22 ms, which fully guaranteed the real-time grasp of
the real robot.

To evaluate the robustness of our approach further, we compared DCSFC-Grasp with
GR-ConvNet [20] and TF-Grasp [21] under various evaluation indicators, including the
Jaccard index and azimuth threshold (Table 2). Note that when the Jaccard index reached
0.4, DCSFC-Grasp still maintained an accuracy of 98.5%, which means that the accuracy
of the grasping position is very demanding. From the comparison results, we observed
that our model achieved the best results under all evaluation indicators divided by IW
and OW. In addition, as the Jaccard index increased, the azimuth threshold decreased,
and the success rate of GR-ConvNet and TF-Grasp decreased rapidly, with DCSFC-Grasp
maintaining a high detection accuracy. The results demonstrate that DCSFC-Grasp has a
stable grasp detection capability.
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Table 2. Comparison of accuracy at different Jaccard indices and azimuth thresholds using the
Cornell dataset.

Method Splitting
Jaccard Index Azimuth Threshold

20% 25% 30% 35% 40% 10° 15° 20° 25° 30°

GR-ConvNet [20]
IW (%)

98.1 97.7 96.8 94.1 88.7 86.4 94.4 97.2 97.7 97.7
TF-Grasp [21] 98.4 97.99 97.2 94.9 90.3 89.21 95.44 97.52 97.98 97.99

DCSFC-Grasp 99.5 99.3 99.2 99.0 98.5 93.6 94.8 98. 99.2 99.3

GR-ConvNet [20]
OW (%)

97.1 96.6 93.2 90.5 84.8 84.7 90.9 95.1 95.8 96.6
TF-Grasp [21] 97.4 96.7 93.9 91.7 85.2 85.2 91.6 95.4 96.0 96.7

DCSFC-Grasp 98.6 98.5 98.3 98.1 97.4 93.1 93.9 97.4 98.5 98.5

Figure 4 depicts the grasp detection results of unknown targets using DCSFC-Grasp
after training on the Cornell dataset. The three columns on the left are RGB images,
generated grasping rectangles, and depth images, whereas the three columns on the right
show the grasp width, angle, and quality score heat maps.

We conducted a comparison experiment for [20,21,44] on the grasping prediction
results generated for unknown objects, as shown in Figure 5. As shown in the figure,
DCSFC-Grasp generated correct grasp prediction rectangles for all four unknown objects.
In contrast, the other three models had unsuccessful grasping predictions. For example,
as shown in Figure 5(2), the grasp detection results of the first three models could not be
successfully grasped, and only the proposed method predicted the rectangles that could
be successfully grasped. Our method can generate grasping positions for simply shaped
objects, such as staplers and pliers, which have high-quality heat maps. For objects with
complex structures, such as tapes and game pads, DCSFC-Grasp can correctly capture the
most appropriate grasp location at a suitable grasp width and angle. These advantages
may be attributed to the ability of DCSFC-Grasp to learn locally and globally valid features
of the grasped target, which is vital for the grasping task. The experiments showed that
our model is suitable and robust for targets with various shapes.

RGB Grasp Depth Quality Angle Width

Figure 4. Grasp detection results of unknown targets using DCSFC-Grasp after training on the
Cornell dataset.
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Figure 5. Results of the comparison of grasp predictions for unknown targets on the Cornell dataset.

Table 3 shows the accuracy of DCSFC-Grasp compared with currently available models
on the Jacquard dataset. Our method achieved an accuracy of 96.1% and was superior to
other methods, which indicates that the deformable convolution-based feature extraction
module and SFC module in the proposed DCSFC-Grasp improve the grasping performance.

Table 3. Results of the comparison for the Jacquard dataset.

Method Author Year Accuracy (%)

Jacquard [42] Depierre 2018 74.2
GG-CNN [44] Morrison 2018 84.0

FGGN,ResNet-101 [18] Zhou 2018 91.8
GR-ConvNet [20] Sulabh 2020 94.6

RSEN [48] Cao 2021 94.8
TF-Grasp [21] Wang 2022 94.6

SE-ResUNet [43] Yu 2022 95.7
CenterNet-SPF [23] Tian 2022 95.5

DCSFC-Grasp Ours 2023 96.1

4.3. Comparison of Multiobject Grasp

Although both the Cornell and Jacquard datasets are single-object grasping datasets,
to verify the strong accuracy and robustness of DCSFC-Grasp for multiobject grasping
prediction, we directly used the existing algorithms to conduct comparison experiments,
in which all objects had not been seen before. The generated grasping posture and mass
heat maps are shown in Figure 6. We observed that existing methods produced inaccurate
grasp positions in some scenarios and that the shadow of the object negatively affected
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their generation of appropriate grasp rectangles. In addition, they generated inadequate
grasp angles and widths, which can lead to poor robustness and grasp failures when used
in actual robots. In contrast, from the mass heat map, our method distinguished the object
from the background well, was not affected by shadows, better understood the grasping
scene, and more accurately predicted the grasping success rate of different positions of
the object.

Figure 6. Comparison of grasp detection results for unknown multiple objects.

The detection results show that DCSFC-Grasp improved the performance. We in-
fer that previous models may not have fully considered grasping location information,
resulting in poor spatial representation and the omission of some critical features. In con-
trast, our method, in the entire process of information transmission, adopts a deformable
convolution-based feature extraction module and an SFC module. Thus, grasping models
can establish accurate relationships between grasping and features such as the form, outline,
and location of targets, which are essential for successful grasping.

4.4. Ablation Study

In this section, we consider a more in-depth analysis of the different modules in
DCSFC-Grasp from the following two perspectives to understand their impact on the
performance of the overall model.

4.4.1. Improved DCN vs. Convolutional Layer

In recent grasp detection works, (GG-CNN [44] and GR-ConvNet [20]), three convolu-
tional layers were used for downsampling to extract features. We conducted an ablation
study based on the Cornell dataset. We replace three convolutional layers in GG-CNN
and GR-ConvNet with the improved deformable convolution-based feature extraction
module and verify the effectiveness of the improved DCN through comparative analysis of
precision. Specific information regarding the results of the ablation study is presented in
Table 4.

When the convolutional layer in the model is replaced by the improved DCN, the
accuracy of the two models is improved to different degrees. For grasp detection, obtaining
the details of an unknown object is very important for prediction of a good grasping posture.
Compared to using convolutional layers to extract features, the deformable convolution-
based feature extraction module adaptively adjusts the receptive field to obtain detailed
feature information.
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Table 4. Ablation study of improved DCN on the Cornell dataset.

Network
Accuracy (%)

IW OW

GG-CNN (convolutional layer) 73.0% 69.0%
GG-CNN (improved DCN) 79.6% 77.2%

GR-ConvNet (convolutional layer) 97.7% 96.6%
GR-ConvNet (improved DCN) 98.1% 97.2%

4.4.2. Effectiveness of the SFC Module

The SFC module is primarily composed of two parallel connection blocks, namely a
lightweight MLP and learnable feature center (LFC) blocks. The resulting feature maps of
the two parallel-connected blocks are joined together along the channel dimension, with
the stem block in front of them. In this section, we perform ablation studies based on the
Cornell dataset to understand the role of each sub-block in the SFC module.

The details of experimental results are shown in Table 5, showing that the three sub-
blocks in the SFC module are essential to improve the performance of DCSFC-Grasp. The
proposed SFC can focus on the shape and position information about the feasible grasp
area and help our model locate a position that is easy to grasp.

Table 5. Ablation study of SFC in the proposed modules.

Lightweight MLP X X X X
Learnable Feature Center Block X X X X

Stem Block X X X X

Accuracy (IW) 97.8% 98.0% 98.7% 97.9% 99.1% 98.8% 98.2% 99.3%

4.5. Grasping in Real-World Scenarios

We conducted physical experiments using the 6-DoF Realman RM65 robotic arm
and a Microsoft Azure Kinect DK RGB-D camera mounted with in the eye-out hand
manner to maintain complete field-of-view coverage of the grasping object. We employ
the well-trained grasp model in an independent thread, which communicates with the
camera and other robot threads through the ROS topic mechanism to subscribe images
and publish grasp poses. The experimental setup is shown in Figure 7. In each grasp
task, DCSFC-Grasp accepted a visual signal from the camera and output the optimal grasp
rectangle. The coordinates of the grasp rectangle in the camera coordinate system were
converted to those under the arm base. Thereafter, the robot arm end gripper approximated
the optimum target grasp position according to the motion trajectory planned by the
manipulator motion-path-planning method, and the target was grasped by closing the
two-finger gripper. Therefore, our grasp system can be conveniently applied to other
hardware platforms.

Figure 7. Screenshots of grasping in real-world scenarios.

We conducted extensive robot grasping experiments in real-world scenarios with
other methods. The success rates are presented in Table 6. We conducted 400 grasping
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tasks on a real robot arm, of which 382 were successful, corresponding to a success rate of
95.5%. Compared to other methods, the results demonstrate that our DCSFC-Grasp grasp
detection system performs well on practical robotic arms.

Table 6. Physical grasping results in real-world scenarios.

Method Physical Grasp Success Rate (%)

GG-CNN [44] 167/200 83.5
GR-ConvNet [20] 172/200 86.0

TF-Grasp [21] 152/165 92.1
SE-ResUNet [43] 369/400 92.3

Ours 382/400 95.5

5. Conclusions

This paper proposes a high-performance object grasp detector, DCSFC-Grasp, for pre-
diction of optimal grasp positions for unknown objects. Owing to the modules developed,
DCSFC-Grasp can focus on capturing location features and ensuring the complete and
effective dissemination of information. Thus, a robot can correctly capture the optimum
grasping location and generate appropriate grasping widths and angles for different tar-
gets. We evaluated DCSFC-Grasp on a public grasping dataset, and its performance was
found to be better than that of state-of-the-art methods. In addition, we conducted several
robot grasping tasks in various scenarios, further demonstrating that DCSFC-Grasp can
generate and execute precise grasping. In conclusion, compared with existing models,
our model can learn to capture relevant features more efficiently and achieve higher ac-
curacy. However, it is currently only suitable for two-finger fixtures. In future research,
we will apply DCSFC-Grasp to five-finger dexterous hands to complete more difficult
grasping tasks.

Author Contributions: Conceptualization, M.Z.; methodology, M.Z.; software, X.L.; validation, M.Z.;
formal analysis, Q.Y.; investigation, T.X.; resources, Y.Z.; data curation, J.H.; writing—original draft
preparation, M.Z.; writing—review and editing, M.Z.; visualization, X.L.; supervision, Z.X.; project
administration, X.L.; funding acquisition, X.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China
(No. 62367006), the scientific research foundation of Nanchang Institute of Science and Technology
(No. NGRCZX-23-07), the Science and Technology Research Project of Jiangxi Provincial Department
of Education (No. GJJ212507), and the Graduate Innovative Fund of Wuhan Institute of Technology
(No. CX2022125).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets used in this paper are available from: http://pr.cs.cornell.
edu/grasping/rect_data/data.php (accessed on 10 August 2021) and https://jacquard.liris.cnrs.fr/
(accessed on 15 February 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumra, S.; Kanan, C. Robotic grasp detection using deep convolutional neural networks. In Proceedings of the 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2016; pp. 769–776.
2. Redmon, J.; Angelova, A. Real-time grasp detection using convolutional neural networks. In Proceedings of the 2015 IEEE

International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 6–30 May 2015 ; pp. 1316–1322.
3. Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need.

In Proceedings of the NIPS, Long Beach, CA, USA, 4–9 December 2017.

http://pr.cs.cornell.edu/grasping/rect_data/data.php
http://pr.cs.cornell.edu/grasping/rect_data/data.php
https://jacquard.liris.cnrs.fr/


Biomimetics 2023, 8, 403 16 of 17

4. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arxiv:2010.11929.

5. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC,
Canada, 10–17 October 2021; pp. 9992–10002.

6. Huang, Z.; Zhu, Z.; Wang, Z.; Shi, Y.; Fang, H.; Zhang, Y. DGDNet: Deep Gradient Descent Network for Remotely Sensed Image
Denoising. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [CrossRef]

7. Huang, Z.; Wang, Z.; Zhu, Z.; Zhang, Y.; Fang, H.; Shi, Y.; Zhang, T. DLRP: Learning Deep Low-Rank Prior for Remotely Sensed
Image Denoising. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

8. Sahbani, A.; El-Khoury, S.; Bidaud, P. An overview of 3D object grasp synthesis algorithms. Robot. Auton. Syst. 2012, 60, 326–336.
[CrossRef]

9. Shimoga, K.B. Robot Grasp Synthesis Algorithms: A Survey. Int. J. Robot. Res. 1996, 15, 230–266. [CrossRef]
10. Huang, Z.; Wang, L.; An, Q.; Zhou, Q.; Hong, H. Learning a Contrast Enhancer for Intensity Correction of Remotely Sensed

Images. IEEE Signal Process. Lett. 2022, 29, 394–398. [CrossRef]
11. Jiang, Y.; Moseson, S.; Saxena, A. Efficient grasping from RGBD images: Learning using a new rectangle representation.

In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 3304–3311.

12. Lenz, I.; Lee, H.; Saxena, A. Deep learning for detecting robotic grasps. Int. J. Robot. Res. 2013, 34, 705–724. [CrossRef]
13. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM

2012, 60, 84–90. [CrossRef]
14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
15. Guo, D.; Sun, F.; Liu, H.; Kong, T.; Fang, B.; Xi, N. A hybrid deep architecture for robotic grasp detection. In Proceedings of the

2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1609–1614.
16. Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [CrossRef]
17. Chu, F.J.; Xu, R.; Vela, P.A. Real-World Multiobject, Multigrasp Detection. IEEE Robot. Autom. Lett. 2018, 3, 3355–3362. [CrossRef]
18. Zhou, X.; Lan, X.; Zhang, H.; Tian, Z.; Zhang, Y.; Zheng, N. Fully Convolutional Grasp Detection Network with Oriented Anchor

Box. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018; pp. 7223–7230.

19. Asif, U.; Tang, J.; Harrer, S. GraspNet: An Efficient Convolutional Neural Network for Real-time Grasp Detection for
Low-powered Devices. In Proceedings of the International Joint Conference on Artificial Intelligence, Stockholm, Sweden,
13–19 July 2018.

20. Kumra, S.; Joshi, S.; Sahin, F. Antipodal Robotic Grasping using Generative Residual Convolutional Neural Network.
In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA,
24 October 2020–24 January 2021; pp. 9626–9633.

21. Wang, S.; Zhou, Z.; Kan, Z. When Transformer Meets Robotic Grasping: Exploits Context for Efficient Grasp Detection. IEEE
Robot. Autom. Lett. 2022, 7, 8170–8177. [CrossRef]

22. Tran, V.L.; Lin, H. BiLuNetICP: A Deep Neural Network for Object Semantic Segmentation and 6D Pose Recognition. IEEE Sens.
J. 2021, 21, 11748–11757. [CrossRef]

23. Tian, F.H.; Zhang, J.; Zhong, Y.; Liu, H.; Duan, Q. A method for estimating an unknown target grasping pose based on keypoint
detection. In Proceedings of the 2022 2nd International Conference on Computer Science, Electronic Information Engineering
and Intelligent Control Technology (CEI), Fuzhou, China, 23–25 September 2022; pp. 267–271.

24. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 764–773.

25. Huang, Z.; Zhu, Z.; An, Q.; Wang, Z.; Zhou, Q.; Zhang, T.; Alshomrani, A.S. Luminance Learning for Remotely Sensed Image
Enhancement Guided by Weighted Least Squares. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

26. Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable ConvNets V2: More Deformable, Better Results. In Proceedings of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019 ; pp. 9300–9308.

27. Chen, Y.; Kalantidis, Y.; Li, J.; Yan, S.; Feng, J. A2-Nets: Double Attention Networks. In Proceedings of the Neural Information
Processing Systems, Montreal, QC, Canada, 3–8 December 2018.

28. Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Levskaya, A.; Shlens, J. Stand-Alone Self-Attention in Vision Models. arXiv
2019, arxiv:1906.05909.

29. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers.
arXiv 2020, arxiv:2005.12872.

30. Vaswani, A.; Ramachandran, P.; Srinivas, A.; Parmar, N.; Hechtman, B.A.; Shlens, J. Scaling Local Self-Attention for Parameter
Efficient Visual Backbones. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 12889–12899.

http://doi.org/10.1109/LGRS.2023.3241642
http://dx.doi.org/10.1109/LGRS.2022.3167401
http://dx.doi.org/10.1016/j.robot.2011.07.016
http://dx.doi.org/10.1177/027836499601500302
http://dx.doi.org/10.1109/LSP.2021.3138351
http://dx.doi.org/10.1177/0278364914549607
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/LRA.2018.2852777
http://dx.doi.org/10.1109/LRA.2022.3187261
http://dx.doi.org/10.1109/JSEN.2020.3035632
http://dx.doi.org/10.1109/LGRS.2021.3093935


Biomimetics 2023, 8, 403 17 of 17

31. Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Keysers, D.; Uszkoreit, J.; Lucic, M.; et al.
MLP-Mixer: An all-MLP Architecture for Vision. In Proceedings of the Neural Information Processing Systems, Virtual,
6–14 December 2021.

32. Liu, H.; Dai, Z.; So, D.R.; Le, Q.V. Pay Attention to MLPs. In Proceedings of the Neural Information Processing Systems, Virtual,
6–14 December 2021.

33. Yu, W.; Luo, M.; Zhou, P.; Si, C.; Zhou, Y.; Wang, X.; Feng, J.; Yan, S. MetaFormer is Actually What You Need for Vision.
In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
18–24 June 2022; pp. 10809–10819.

34. Hou, Q.; Jiang, Z.; Yuan, L.; Cheng, M.M.; Yan, S.; Feng, J. Vision Permutator: A Permutable MLP-Like Architecture for Visual
Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 45, 1328–1334. [CrossRef]

35. Huang, Z.; Zhang, Y.; Li, Q.; Li, X.; Zhang, T.; Sang, N.; Hong, H. Joint Analysis and Weighted Synthesis Sparsity Priors for
Simultaneous Denoising and Destriping Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6958–6982.
[CrossRef]

36. Morrison, D.; Corke, P.; Leitner, J. Learning robust, real-time, reactive robotic grasping. Int. J. Robot. Res. 2019, 39, 183–201.
[CrossRef]

37. Wang, W.; Dai, J.; Chen, Z.; Huang, Z.; Li, Z.; Zhu, X.; Hu, X.; Lu, T.; Lu, L.; Li, H.; et al. InternImage: Exploring Large-Scale
Vision Foundation Models with Deformable Convolutions. arXiv 2022, arxiv:2211.05778.

38. Quan, Y.; Zhang, D.; Zhang, L.; Tang, J. Centralized Feature Pyramid for Object Detection. arXiv 2022, arxiv:2210.02093.
39. Gillani, I.S.; Munawar, M.R.; Talha, M.; Azhar, S.; Mashkoor, Y.; Uddin, M.S.; Zafar, U. YOLOV5, YOLO-X , YOLO-R , YOLOV7

Performance Comparison: A Survey. 2022. Available online: https://aircconline.com/csit/papers/vol12/csit121602.pdf
(accessed on 5 February 2023).

40. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arxiv:1704.04861.

41. Larsson, G.; Maire, M.; Shakhnarovich, G. FractalNet: Ultra-Deep Neural Networks without Residuals. arXiv 2016, arxiv:1605.07648.
42. Depierre, A.; Dellandréa, E.; Chen, L. Jacquard: A Large Scale Dataset for Robotic Grasp Detection. In Proceedings of the 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 3511–3516.
43. Huang, Z.; Zhang, Y.; Yue, X.; Li, X.; Fang, H.; Hong, H.; Zhang, T. Joint horizontal-vertical enhancement and tracking scheme for

robust contact-point detection from pantograph-catenary infrared images. Infrared Phys. Technol. 2020, 105, 103156. [CrossRef]
44. Morrison, D.; Corke, P.; Leitner, J. Closing the Loop for Robotic Grasping: A Real-time, Generative Grasp Synthesis Approach.

arXiv 2018, arxiv:1804.05172.
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