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Abstract: The slime mold algorithm (SMA) and the arithmetic optimization algorithm (AOA) are
two novel meta-heuristic optimization algorithms. Among them, the slime mold algorithm has a
strong global search ability. Still, the oscillation effect in the later iteration stage is weak, making it
difficult to find the optimal position in complex functions. The arithmetic optimization algorithm
utilizes multiplication and division operators for position updates, which have strong randomness
and good convergence ability. For the above, this paper integrates the two algorithms and adds a
random central solution strategy, a mutation strategy, and a restart strategy. A hybrid slime mold and
arithmetic optimization algorithm with random center learning and restart mutation (RCLSMAOA) is
proposed. The improved algorithm retains the position update formula of the slime mold algorithm
in the global exploration section. It replaces the convergence stage of the slime mold algorithm
with the multiplication and division algorithm in the local exploitation stage. At the same time, the
stochastic center learning strategy is adopted to improve the global search efficiency and the diversity
of the algorithm population. In addition, the restart strategy and mutation strategy are also used to
improve the convergence accuracy of the algorithm and enhance the later optimization ability. In
comparison experiments, different kinds of test functions are used to test the specific performance
of the improvement algorithm. We determine the final performance of the algorithm by analyzing
experimental data and convergence images, using the Wilcoxon rank sum test and Friedman test.
The experimental results show that the improvement algorithm, which combines the slime mold
algorithm and arithmetic optimization algorithm, is effective. Finally, the specific performance of the
improvement algorithm on practical engineering problems was evaluated.

Keywords: slime mold algorithm; arithmetic optimization algorithm; random center solution
strategy; restart strategy; mutation strategy

1. Introduction

In the past decade, the exploitation and application of optimization models have
begun to receive attention from mathematicians and engineers. In recent years, with the
continuous exploitation of computer technology, more and more optimization problems
have attracted people’s attention. The unconstrained optimization problem is currently
a research hotspot. The complexity of these problems is gradually increasing, and they
have characteristics such as being large-scale, multimodal, and nonlinear [1]. The meta-
heuristic algorithm has become an excellent tool and has been recognized by people
because it is simple, easy to implement, does not require gradient information, and can

Biomimetics 2023, 8, 396. https://doi.org/10.3390/biomimetics8050396 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8050396
https://doi.org/10.3390/biomimetics8050396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0009-0005-9168-1554
https://orcid.org/0000-0002-4339-8464
https://orcid.org/0000-0002-2203-4549
https://doi.org/10.3390/biomimetics8050396
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8050396?type=check_update&version=2


Biomimetics 2023, 8, 396 2 of 30

avoid local optimization [2]. This is because the meta-heuristic algorithm treats the problem
as a black box model and only needs to input the problem to obtain the output of the
problem. Researchers develop meta-heuristic algorithms by simulating various natural
phenomena and biological habits. Meta-heuristic algorithms can effectively handle real-life
optimization problems because they possess valuable randomness that allows them to
bypass local optima and have stronger search capabilities than traditional optimization
algorithms. These valuable characteristics of the meta-heuristic algorithm make it very
smooth when dealing with application problems. Examples include neural networks [3],
clustering [4], engineering [5], and scheduling problems [6].

The main problem is whether a meta-heuristic algorithm can be used to solve most
of the problems. No Free Lunch (NFL) [7] explains that when an algorithm can provide
a good solution to a particular problem, it is not guaranteed a good result on other prob-
lems. NFL’s law motivates researchers to enhance their ability to solve new problems
by improving currently known algorithms. For example, Chen et al. were inspired by
the lifestyle of beluga whales and developed an IBWO [8] that improved the algorithm’s
global optimization ability; Wen et al. enhanced the global optimization capability of the
algorithm by using a new host-switching mechanism [9]; Wu et al. improved the sand cat’s
wandering strategy and applied it to engineering problems [10].

AOA [11] is a meta-heuristic optimization algorithm designed based on the four mixed
operations proposed by Abualigah et al. in 2021. The algorithm uses multiplication and
division operations in mathematics to improve the global dispersion of position updates
and addition and subtraction operations to improve the accuracy of position updates in
local areas. However, AOA still faces problems such as slow convergence in complex
environments. It needs further improvement and perfecting to adapt to more complex
optimization problems. Recently, many researchers have made improvements to the AOA,
including adaptive parallel arithmetic optimization algorithm (AAOA) [12], dynamic arith-
metic optimization algorithm (DAOA) [13], and chaotic arithmetic optimization algorithm
(CAOA) [14].

SMA [15] is a new swarm intelligence optimization algorithm proposed by Li et al. in
2020 to simulate slime mold’s behavior and morphological changes in the foraging process.
Its inspiration comes from simulating the foraging behavior and morphological changes of
physarum polycephalum and using the weight change to simulate the positive feedback
and negative feedback processes generated by slime molds in the foraging process, thus
generating three stages of foraging patterns. The SMA has strong global exploration ability,
certain convergence accuracy, and good stability, but in the later iteration stage, the oscilla-
tion effect is weak, and it is easy to fall into local optima. The contraction mechanism is not
strong, resulting in a slower convergence speed. At present, researchers have improved and
widely used this algorithm. Kouadri et al. [16] applied the algorithm to solve the problem
of minimizing fuel costs and losses in exploration generators. Zhao et al. [17] proposed
mixing SMA and HHO algorithms, utilizing multiple composite selection mechanisms to
improve the algorithm’s selectivity and randomness, the randomness of individual position
updates, and the efficiency of algorithm solving.

Based on the advantages and disadvantages of SMA and AOA, this article aims to
create a more effective optimization algorithm by combining the two algorithms. To further
enhance its performance, a random center solution strategy is introduced. This strategy
uses random center learning to expand the exploration range of individual populations,
enrich population diversity, and can effectively control the balance between exploration and
exploitation. Both mutation strategy and restart strategy were used. The mutation strategy
is a local adaptive mutation method that improves the algorithm’s global search ability and
performs well in high-dimensional spaces. The restart strategy can help poorer individuals
jump to other positions and is usually used to jump out of local optima. The proposed
mixed optimization algorithm, hybrid slime mold and arithmetic optimization algorithm
with random center learning and restart mutation (RCLSMAOA), incorporates the best
features of both SMA and AOA, making it more effective in exploring the search space and



Biomimetics 2023, 8, 396 3 of 30

enabling it to effectively solve corresponding engineering problems. The algorithm focuses
on improving four key aspects:

(1) In the exploration and exploitation stage, SMA and AOA should be organically
combined to improve the exploration and exploitation capabilities comprehensively;

(2) Innovatively propose a random center strategy, which improves the early convergence
speed of the algorithm and effectively maintains a balance between exploration and
development while enhancing the diversity of the population;

(3) The introduction of the mutation strategy and restart strategy enhances the ability to
solve complex problems while also enhancing the algorithm’s ability to jump out of lo-
cal optima. By comparing 23 benchmark test functions with different dimensions with
the CEC2020 test function, it is proven that the algorithm has significant effectiveness;

(4) Five engineering problems were used simultaneously to verify the feasibility of
RCSMAOA on practical engineering problems.

The second part of this article introduces the relevant work. SMA and AOA were
introduced in the third and fourth parts, respectively. In the fifth part, we described the
added strategies; SCLS, MS, and RS explained the implementation process of the algorithm
and provided pseudocode and flowchart. The sixth part is the analysis of time complexity.
The seventh part is the experimental analysis of the specific performance of RCLSMAOA.
The eighth part is the application of RCLSMAOA in specific engineering problems. The
ninth part summarizes the contributions of this article and introduces the next research
directions. If you need the code in our article, you can find it through the following link:
https://github.com/Mars02w/RCLSMAOA, accessed on 20 August 2023.

2. Related Works

In recent years, meta-heuristic algorithms can be divided into the following four
categories based on their inspiration sources: (1) physics-based methods, whose inspi-
ration comes from physical rules in the universe. Specific algorithms include the black
hole algorithm (BH) [18], the gravity search algorithm (GSA) [19], and the most famous
simulated annealing algorithm (SA) [20]. (2) Evolution-based algorithms inspired by the
laws of biological evolution. Researchers have linked natural and artificial evolution to
create many excellent algorithms. Examples include genetic algorithm (GA) [21], genetic
programming (GP) [22], and differential evolution (DE) [23]. (3) Group-based algorithms
focus on modeling observations of animals and other living organisms. The most famous is
particle swarm optimization (PSO) [24], which simulates the behavior of birds and fish. Ant
Colony Algorithm (ACO) [25] simulates the behavior of ants searching for food sources.
The foraging behavior of slime molds inspires the slime mold optimization algorithm
(SMA) [15]. (4) Human behavior habits and ideas inspire human-based algorithms in social
life. A well-known one is the teaching–learning-based optimizer (TLBO) [26], inspired by
the interaction between teachers and students. There are also training-based optimizers
(DTBO) [27] and internal search algorithms (ISA) [28]. In recent years, many excellent
algorithms have still been proposed by researchers, such as the monarch Butterfly opti-
mization (MBO) [29], more search algorithm (MSA) [30], hunger games search (HGS) [31],
Runge Kutta method (RUN) [32], colony prediction algorithm (CPA) [33], weighted mean
of vectors (INFO) [34], Harris hawks optimization (HHO) [35], and prime optimization
algorithm (RIME) [36].

In addition, studying hybrid optimization algorithms is also a new trend at present.
In recent years, researchers have increasingly conducted mixed research on algorithms.
For example, Alam Zeb et al. [37] mixed a genetic algorithm with a simulated annealing
algorithm, and the powerful exploration ability of the genetic algorithm compensated for
the lack of exploration in the simulated annealing algorithm, enhancing the actual optimiza-
tion performance of the algorithm. Chen et al. [38] fused a particle swarm optimization
algorithm with a simulated annealing algorithm and applied it to magnetic anomaly de-
tection, achieving success. Hybrid optimization algorithms also have the ability to solve
optimal power flow problems [39]. Tumari et al. studied a variant of the ocean predator
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algorithm for adjusting the fractional order proportional integral derivative controller of
the automatic voltage regulator system [40]. Wang et al. [41] added an angle modulation
mechanism to a dragonfly algorithm to enable it to work in two-dimensional space and
have good performance. Devaraj A et al. [42] used a combination of fireflies and improved
multi-objective particle swarm optimization (IMPSO) technology to improve load balancing
capabilities in cloud computing environments and the results showed success. Jui et al. [43]
hybridized the average multi-verse optimizer and sine cosine algorithm, demonstrating
good potential in solving continuous-time Hammerstein system problems.

3. Slime Mold Algorithm

The SMA is a meta-heuristic optimization algorithm that simulates the foraging
behavior of slime molds. This algorithm reflects slime molds’ oscillation and contraction
characteristics during the foraging process. The organic matter in slime molds first secretes
enzymes when searching for food, and then during migration, the front end extends into a
fan shape and uses a venous network for foraging. Due to their unique morphology and
characteristics, they can simultaneously utilize multiple pathways to form a connected
venous network to obtain food. In addition, slime molds will also search for food in other
unknown areas.

When the slime mold vein is close to food according to the smell in the air, the higher
the food concentration, the stronger the propagation wave generated by the biological
oscillator in its body, which increases the flow of cytoplasm in the vein. The faster the flow
of cytoplasm, the thicker the slime mold vein tube, which causes the position update of the
slime mold. The position update formula is:

X(t + 1) =
{

Xb(t) + vb× (W × Xrand1(t)− Xrand2(t)), r1 < p
vc× X(t) , r1 ≥ p

(1)

where Xb(t) represents the current position of the individual with the optimal fitness, vb is
a parameter between [-a,a], W represents the weight coefficients of the slime mold, Xrand1(t)
and Xrand2(t) represent the positions of two randomly selected individuals, r1 represents
the random number in the interval [0, 1], vc is the parameter that linearly decreases from 1
to 0, and t is the current number of iterations.

The updating formula of control parameters a, p, and weight coefficient W is as follows:

a = arctanh
(
−
(

t
T

)
+ 1
)

(2)

p = tanh|S(i)− DF| (3)

W(SIndex) =

 1 + r2 × log
(

bF−S(i)
bF−wF + 1

)
, condition

1− r2 × log
(

bF−S(i)
bF−wF + 1

)
, others

(4)

SIndex(i) = sort(N) (5)

The parameters are calculated based on the current individual’s fitness and optimal
values, where i = 1,2,. . ., N. N represents the number of populations, S(i) represents the
fitness value of the ith slime mold individual, and DF represents the optimal fitness obtained
in the current iteration process. T represents the maximum number of iterations, and r2 is a
random number within the [0, 1] interval. condition are the individuals whose fitness is in
the top half of the population, and others are the remaining individuals. bF represents the
best fitness value obtained during the current iteration, and wF represents the worst fitness
value obtained during the current iteration. SIndex(i) indicates the fitness value sequence.
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Even if slime molds find a food source, they will separate some individuals to explore
other unknown areas to find a higher-quality food source. At this point, the formula for the
slime mold update position is as follows:

X(t + 1) =


rand× (UB− LB) + LB, rand < z
Xb(t) + vb× (W × Xrand1(t)− Xrand2(t)), r1 < p
vc× X(t), r1 ≥ p

(6)

Among them, rand is a random number within the [0, 1] interval, UB and LB represent
upper and lower bounds, and z represents a custom parameter (with a value of 0.03).

4. Arithmetic Optimization Algorithm

AOA is a meta-heuristic optimization algorithm exploring and exploiting mechanisms
through arithmetic operators in mathematics. The exploration stage refers to using multipli-
cation (M) and division (D) strategies for extensive coverage and search space, improving
the dispersion of solutions to avoid local optima. The exploitation stage is to improve
the accuracy of the solutions obtained in the exploration stage through the addition (A)
strategy and the subtraction (S) strategy, that is, to enhance the local optimization ability.

4.1. Mathematical Optimization Acceleration Function

Before exploration and exploitation, AOA generates a math optimizer accelerated
(MOA) to select the search phase. When r1 > MOA (t), the exploration phase is carried
out by executing (D) or (M); when r1 ≤MOA (t), the exploitation phase is carried out by
executing (A) or (S); r1 is a random number from 0 to 1.

MOA(t) = Min + t×
(

Max−Min
T

)
(7)

where Min and Max represent the minimum and maximum values of the optimization
acceleration function (MOA).

4.2. Exploration Phase

AOA looks at different parts of the search space (global optimization) using two main
search methods (multiplication (M) search strategy and division (D) search strategy). It
updates its position using this formula:

Xi,j(t + 1) =
{

Xb,j(t)÷ (MOP + ε)× ((UBj − LBj)× µ + LBj), r2 < 0.5
Xb,j(t)×MOP× ((UBj − LBj)× µ + LBj) , others

(8)

where r2 ∈ [0, 1], Xi,j(t + 1) is the position of the ith individual on the jth dimension during
the next iteration. Xb,j(t) is the location of the best solution for the current fitness. ε is a very
small number, where UBj and LBj represent the upper and lower limits of the jth position,
respectively. µ is the control parameter for adjusting the search process, which is 0.499.

MOP(t) = 1− t1/α

T1/α
(9)

The Mathematical Optimizer Probability (MOP) is a coefficient, α is a sensitive parameter
that defines the exploitation accuracy during the iteration process, which is fixed at 5.
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4.3. Exploitation Phase

AOA utilizes operators (subtraction (S) and addition (A)) to deeply explore search
areas in several dense areas and conducts local optimization based on two main exploitation
strategies. The location update formula is as follows:

Xi,j(t + 1) =
{

Xb,j(t)−MOP× ((UBj − LBj)× µ + LBj), r3 < 0.5
Xb,j(t) + MOP× ((UBj − LBj)× µ + LBj), others

(10)

Among them, r3 is a random number between 0 and 1.

5. Hybrid Improvement Strategy
5.1. Stochastic Center Learning Strategy (SCLS)

The random center learning strategy is a newly proposed optimization mechanism in
this paper. In nature, group animals such as wolf packs and whale packs often surround
their food in the middle through group cooperation and then engage in predation. In this
regard, this article proposes a central learning strategy whose core idea is to generate a
central solution based on upper and lower bounds during the process of searching for the
optimal value of the population, comparing it with the target fitness value of the existing
optimal solution, and selecting the optimal one for the next iteration. Definition of the
central solution: if there is a point X in the n-dimensional coordinate system, then the
central solution is calculated as follows:

Xc = (LB + UB)/2 (11)

Among them, Xc is the central solution. Due to the lack of randomness in the central
solution. In order to further improve the ability of the population to find the globally
optimal solution (as shown in Figure 1), this paper proposes an improved random center
learning strategy, which is calculated as follows:

Xcrand =

{
Xc + (Xr − Xc) · r1, rand() < 0.5
Xc + (Xc − Xl) · r2, rand() > 0.5

(12)

where Xcrand represents the random central solution, Xr and Xl represent the object to be
learned, and r1, r2, and rand are random numbers between 0 and 1. In order to reflect the
randomness and symmetry of the value of random center learning, the threshold value of
rand () is 0.5. The schematic diagram of the central solution and random central learning is
shown in Figure 1.
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Figure 1 shows that any position in the interval [Xl, Xr] may have a random central
solution Xcrand, with Xc being the central solution.

5.2. Mutation Strategy (MS)

Mutation strategy refers to a composite mutation strategy based on multiple mutation
operators in the mutation strategy [44]. It generates three candidate positions Vi1, Vi2,
and Vi3, for the ith position by executing Equations (13)–(15) in parallel. The formula is
as follows:

Vi1,j =

{
Xr1,j + F1 ×

(
Xr2,j − Xr3,j

)
, i f rand() < Cr1 or j = jrand

Xi,j , others
(13)
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Among them, Xrk, j represents the jth dimension of the rk solution (the same below), r1,
r2, and r3 are different integers in the range [1, N], jrand represents integers in the interval
[1, D], F1 represents a proportional coefficient equal to 1.0, and Cr1 represents a crossover
rate set to 0.1.

Vi2,j =

{
Xr4,j + F2 ×

(
Xr5,j − Xr6,j

)
+ F2 ×

(
Xr7,j − Xr8,j

)
, i f rand() < Cr2 or j = jrand

Xi,j , others
(14)

r4, r5, r6, r7, and r8 are distinct integers in the range [1, N]. F2 represents a proportional
coefficient equal to 0.8, and Cr2 represents a crossover rate equal to 0.2.

Vi3,j =

{
Xi,j + rand()×

(
Xr9,j − Xi,j

)
+ F3 ×

(
Xr10,j − Xr11,j

)
, i f rand() < Cr3 or j = jrand

Xi,j , others
(15)

r9, r10, and r11 are distinct integers in the range [1, N]. F3 represents a proportional
coefficient equal to 1.0, and Cr3 represents a crossover rate of 0.9.

After generating three candidate positions Vi1, Vi2, and Vi3, first correct them based
on the upper and lower boundaries. Then, select the candidate solution Vi with the best
fitness from Vi1, Vi2, and Vi3 to update the position of the ith solution using Formula (16),
which is called a greedy selection strategy, as shown below.

Xi =

{
Vi , i f f (Vi) < f (Xi)
Xi, otherwise

(16)

Vi represents the modified best candidate solution, and Xi represents the ith position.

5.3. Restart Strategy (RS)

When the mucus cannot find food at this location for a long time, it means that the
nutrients in the area are no longer sufficient to support the continued survival of the slime
molds, so the slime molds in the area need to be relocated. The restart scheme [9] can
help poorer individuals transition from a local optimal state to other positions, so we use
a restart strategy here to change the position of poorer individuals. In this strategy, we
use the trial vector trial(i) to record the number of times the position has not improved.
If the fitness value corresponding to the position in the search does not improve, the test
vector trial(i) increases by 1. Otherwise, trial(i) is reset to 0. If the test vector is not less than
the predetermined limit, a better vector will be selected from the test vectors T1 and T2 to
replace the position of the ith.

T1,j = LBj + rand()×
(
UBj − LBj

)
(17)

T2,j = rand()×
(
UBj + LBj

)
− Xi,j (18)

T2,j = LBj + rand()×
(
UBj − LBj

)
i f T2,j ≥ UBj

∣∣∣∣T2,j ≤ LBj (19)

where T1,j represents the jth dimension position in position T1, T2,j represents the jth
position in position T2, UBj and LBj are the upper and lower boundaries of the jth dimension,
respectively, and rand() represents the random floating-point arithmetic in the region [0, 1].
If T2,j exceeds the upper boundary UBj or lower boundary LBj in the jth dimension of the
position, it will be replaced by Equations (18) and (19), and the test vector test trial (i) will
be reset to zero. This article sets this limit to log t. If the restrictions are smaller in the early
stages, they will help enhance the global performance of the algorithm. If the limit is larger
in the later stage, it can prevent the algorithm from moving away from the optimal solution.

5.4. A Hybrid Optimization Algorithm of Slime Mold and Arithmetic Based on Random Center
Learning and Restart Mutation

As mentioned above, when exploring unknown food sources, slime molds in SMA
update their positions based on the synergistic effect of VB and Vc. The oscillation effect
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of VB increases the possibility of global exploration. When the random number z is less
than, slime molds are initialized. At the end of the iteration, the VB oscillation effect is
weakened, which makes the algorithm easily fall into the local optimum. Vc is a linearly
decreasing parameter from 1 to 0, and the search mechanism is single and weak, making
it difficult for the algorithm to jump out of local optima. In AOA, position updating is
carried out according to the higher distribution of the division operator, and contraction is
realized according to the addition and subtraction operators. The probability MOP of the
mathematical optimizer changes according to the optimal position to improve the search
breadth of exploration and increase the ability of the algorithm to jump out of the local
optimum, but it will inevitably fall into the local optimum in the later iteration. The random
center learning updates the random position according to the general characteristics of
the optimal solution, which will improve the algorithm’s convergence rate in the early
exploration stage. CMS introduces multiple candidate solutions and compares them with
existing solutions. In RS, the number of times the position has not been improved is
recorded using the experimental vector trial (i). When the given threshold is exceeded,
it is preliminarily determined that the algorithm is trapped in a local optimum, and a
new position update formula is given to prevent the algorithm from jumping out of the
local optimum.

Therefore, in this paper, we abandon the weak mechanism in the exploration stage
of SMA and add the multiplication and division operator in AOA to expand the scope of
exploration. The mutation and restart strategies are introduced to improve the ability to
jump out of the local optimal in the late iteration. Given the relatively slow convergence
rate of the algorithm in the exploration stage, a random center learning strategy with
characteristic solutions is added.

To sum up, the hybrid slime mold and arithmetic optimization algorithm with random
center learning and restart mutation (RCLSMAOA) proposed in this paper, which integrates
stochastic center learning, has advantages and balance in the exploration and exploitation
stage, local optimization, and global optimization. Pseudocode as shown in Algorithm 1.
The flowchart is shown in Figure 2.
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Algorithm 1 The pseudocode of the RCLSMAOA

Initialization parameters T, Tmax, ub, lb, N, dim, w.
Initialize population X according to Equation (1).
While T ≤ Tmax

Calculate fitness values and select the best individual and optimal location.
Update w using Formula (4)

For i = 1:N
Update the value of parameter a W S using Formulas (2), (4), and (5)
If rand < z
Update the population position using Formula (6)
Else
Update vb, vc, and p.
If r1 < p
Update the population position using Formula (6)

Else
Update the value of parameter mop using Formula (9)
If r2 < 0.5

Update the population position using Formula (8)
Else

Update the population position using Formula (8)
End If

End If
End If
For i = 1:N

Update population position using SCLS
End For
For i = 1:N

Update population position using MS
End For
Update population position using RS

Find the current best solution
t = t + 1

End While
Output the best solution.

6. Time Complexity Analysis

In the RCLSMAOA, if the number of populations is N, the dimension is dim, and
the maximum number of iterations is T. The time complexity of the population initial-
ization phase is O(N × Dim). During iteration, the location of vb mechanism and AOA
multiplication and division operator in SMA is updated, and the time complexity of the
random central solution strategy and mutation strategy is O(3 × N × Dim × T). The time
complexity of updating the convergence curve is O(1). It is worth mentioning that RS
is rarely used from a general perspective, so it can be ignored and not remembered. In
conclusion, the time complexity of the RCLSMAOA is O(N × Dim × (3T + 1)).

7. Experimental Part

All the experiments in this paper are completed on the computer with the 11th Gen
Intel(R) Core(TM) i7-11700 processor with a primary frequency of 2.50 GHz, 16 GB memory,
and an operating system of 64-bit Windows 11 using matlab2021a. In order to check the
performance of the RCLSMAOA, 23 standard reference functions and CEC2020 reference
functions are used to check the algorithm’s performance. In order to have a more compre-
hensive understanding of the actual performance of the RCLSMAOA, we choose different
algorithms to compare. These include AOA and SMA, as well as the famous remora opti-
mization algorithm (ROA) [37], sine cosine algorithm (SCA) [38], and whale optimization
algorithm (WOA) [39]. In addition, we have added two improved algorithms: the whale
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and moth flame optimization algorithms and the average multi-verse optimizer and sine
cosine algorithm. The parameter settings for these algorithms are shown in Table 1.

Table 1. Parameter settings for the comparative algorithms.

Algorithm Parameter Settings

RCLSMAOA z = 0.03; µ = 0.499; α = 5

AOA [11] α = 5; MOP_Max = 1; MOP_Min = 0.2;
µ = 0.499

SMA [15] z = 0.03
ROA [45] C = 0.1
SCA [46] a = 2

WOA [47]
→
A = 1 ;

→
c ∈ [−1, 1] ; b = 0.75 ; l ∈ [−1, 1]

WMFO [42] aε[1,2]; b = 1
AMVO-SCA [43] Wmax = 1; Wmin = 0.2

7.1. Experiments on the 23 Standard Benchmark Functions

In this section, we selected 23 benchmark functions to test RCLSMAOA’s perfor-
mance [10]. The 23 functions consist of 7 single-mode functions, six multimodal functions,
and ten fixed multimodal functions. Fn(x) represents the specific mathematical expression
of the reference function, dim is the experimental dimension of the reference function, the
range is the search space of the reference function, and Fmin is the theoretical optimal value
of the corresponding reference function. See Figure 3 for the image of the specific function.
In this experiment, we set the population size N = 30, spatial dimension = 30/500, and the
maximum number of iterations T = 500. RCLSMAOA and other comparison algorithms
were run 30 times to obtain each algorithm’s best fitness, average fitness, and standard
deviation after 30 times of independent running.

The specific experimental table is shown in Tables 2–4. We can see that on F1–F7,
RCLSMAOA obtained the optimal values among three data items, including the optimal fit-
ness value. We observed that the AOA performed well on F2, whereas the SMA performed
well on F1 and F3. The RCLSMAOA inherits its advantages in single-mode functions. On
the 500 dimensional scales, the RCLSMAOA still performs well. This is because mutation
strategies can perform local mutations and increase global exploration capabilities.

Similarly, we observed multimodal functions such as F8–F13. On F8, the optimal
fitness value and the average value of RCLSMAOA reached the optimal value, and the
standard deviation was slightly lower than that of SMA. Functions such as F9–F11 are
relatively simple, giving most optimization algorithms good results. The performance of
RCLSMAOA in the F12–13 function is also satisfactory. We observed that the performance of
the RCLSMAOA will not be affected by changes in dimensions, and its performance remains
stable. Functions such as F14–23 are fixed multimodal functions, which are relatively simple.
In our experiment, it is not difficult to see that the performance of RCLSMAOA is still the
best among the comparison algorithms. Although fixed multimodal functions are relatively
simple, their performance in verifying algorithm performance is still reliable. The above
analysis indicates that RCLSMAOA, which integrates SMA and AOA, performs better than
SMA and AOA.
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Table 2. Results of benchmark functions (F1–F13) under 30 dimensions.

Fn Metric RCLSMAOA AOA SMA ROA SCA WOA WMFO AMVO-SCA

F1
Best 0 1.77 × 10−163 0 0 2.34 × 10−2 2.96 × 10−82 3.31 × 10−73 5.59 × 10−1

Mean 0 3.59 × 10−22 5.24 × 10−306 4.33 × 10−306 7.04 6.68 × 10−72 1.49 × 10−54 2.15
Stg 0 1.97 × 10−21 0 0 1.15 × 101 3.66 × 10−71 5.61 × 10−54 8.68 × 10−1

F2
Best 0 0 2.59 × 10−273 2.54 × 10−183 4.56 × 10−4 4.88 × 10−58 3.86 × 10−36 2.56 × 10−1

Mean 0 0 4.09 × 10−157 1.66 × 10−162 2.61 × 10−2 2.50 × 10−51 1.31 × 10−26 6.06 × 10−1

Stg 0 0 2.24 × 10−156 6.67 × 10−162 2.68 × 10−2 6.92 × 10−51 5.00 × 10−26 1.96 × 10−1

F3
Best 0 4.73 × 10−117 0 0 1.50 × 103 1.03 × 104 7.53 × 10−46 4.74 × 101

Mean 0 5.09 × 10−3 3.79 × 10−275 7.70 × 10−280 7.07 × 103 4.41 × 104 3.58 × 101 1.18 × 102

Stg 0 9.36 × 10−3 0 0 4.09 × 103 1.49 × 104 1.90 × 102 4.05 × 101

F4
Best 0 1.07 × 10−54 3.97 × 10−283 1.82 × 10−176 2.36 × 101 1.91 2.11 × 10−30 5.16

Mean 0 3.23 × 10−2 5.55 × 10−138 2.33 × 10−159 3.75 × 101 4.96 × 101 1.17 × 10−10 8.09
Stg 0 1.86 × 10−2 3.04 × 10−137 1.28 × 10−158 7.62 2.73 × 101 6.20 × 10−10 1.97

F5
Best 6.30 × 10−5 2.74 × 101 4.46 × 10−4 2.61 × 101 1.12 × 102 2.70 × 101 0 6.04 × 101

Mean 1.85 × 10−2 2.83 × 101 5.16 2.70 × 101 2.84 × 104 2.80 × 101 1.21 × 101 1.37 × 102

Stg 2.27 × 10−2 3.45 × 10−1 9.59 5.69 × 10−1 5.48 × 104 4.53 × 10−1 1.40 × 101 1.12 × 102

F6
Best 2.61 × 10−7 2.73 1.35 × 10−5 1.37 × 10−2 4.98 9.36 × 10−2 0 4.30

Mean 3.59 × 10−6 3.17 5.77 × 10−3 1.17 × 10−1 2.35 × 101 4.39 × 10−1 0 7.05
Stg 2.99 × 10−6 2.28 × 10−1 3.57 × 10−3 1.42 × 10−1 2.99 × 101 2.17 × 10−1 0 2.60

F7
Best 5.61 × 10−7 3.49 × 10−6 1.57 × 10−5 6.78 × 10−6 2.08 × 10−2 1.57 × 10−4 2.42 × 10−6 4.01 × 10−2

Mean 4.30 × 10−5 6.04 × 10−5 1.84 × 10−4 1.60 × 10−4 1.55 × 10−1 4.62 × 10−3 2.96 × 10−4 6.01 × 10−2

Stg 4.68 × 10−5 5.87 × 10−5 1.95 × 10−4 1.91 × 10−4 2.07 × 10−1 9.69 × 10−3 2.31 × 10−4 1.78 × 10−2

F8
Best −1.26 × 104 −6.32 × 103 −1.26 × 104 −1.26 × 104 −4.24 × 103 −1.26 × 104 −2.37 × 10+22 −7.24 × 103

Mean −1.26 × 104 −5.21 × 103 −1.26 × 104 −1.24 × 104 −3.69 × 103 −1.05 × 104 −1.42 × 10+23 −6.49 × 103

Stg 1.22 4.71 × 102 4.26 × 10−1 4.31 × 102 2.97 × 102 1.76 × 103 7.55 × 10+23 7.77 × 102

F9
Best 0 0 0 0 2.84 × 10−1 0 0 6.28 × 101

Mean 0 0 0 0 4.16 × 101 1.89 × 10−15 2.65 × 101 9.28 × 101

Stg 0 0 0 0 3.30 × 101 1.04 × 10−14 3.10 × 101 2.26 × 101

F10
Best 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 1.04 × 10−1 8.88 × 10−16 8.88 × 10−16 4.46

Mean 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 1.53 × 101 3.97 × 10−15 1.13 × 10−15 6.10
Stg 0 0 0 0 7.95 2.42 × 10−15 1.30 × 10−15 8.36 × 10−1

F11
Best 0 1.39 × 10−2 0 0 3.92 × 10−2 0 0 8.05 × 10−1

Mean 0 1.78 × 10−1 0 0 9.90 × 10−1 1.71 × 10−2 0 9.68 × 10−1

Stg 0 1.31 × 10−1 0 0 3.80 × 10−1 6.81 × 10−2 0 6.45 × 10−2

F12
Best 5.17 × 10−9 4.44 × 10−1 2.83 × 10−5 2.39 × 10−3 2.34 3.37 × 10−3 1.57 × 10−32 7.35

Mean 8.41 × 10−8 5.18 × 10−1 5.35 × 10−3 9.19 × 10−3 6.29 × 104 1.97 × 10−2 1.04 × 10−1 1.11 × 101

Stg 8.95 × 10−8 4.96 × 10−2 6.30 × 10−3 4.46 × 10−3 2.73 × 105 1.41 × 10−2 5.68 × 10−1 3.00

F13
Best 6.96 × 10−8 2.62 9.35 × 10−6 6.01 × 10−3 2.77 2.03 × 10−1 1.35 × 10−32 1.61 × 101

Mean 7.57 × 10−7 2.85 4.01 × 10−3 2.04 × 10−1 1.36 × 105 5.37 × 10−1 1.80 × 10−27 2.91 × 101

Stg 9.70 × 10−7 8.55 × 10−2 3.20 × 10−3 1.33 × 10−1 3.76 × 105 2.60 × 10−1 9.89 × 10−27 9.91

The data cannot intuitively understand the actual performance of the algorithm so we
will show the convergence curves of each algorithm on F23 function images. The function
image is shown in Figures 3–5. From the image, we can see that in F1–F4, the RCLSMAOA
has a fast convergence rate and high convergence precision, which SMA and AOA do not
possess. This is due to the random center learning strategy, which expands the algorithm’s
search range and enhances the convergence rate. For F5–6, RCLSMAOA can find a good
position at the beginning of the iteration and then slowly converge to find the optimal
position. Except for the WMFO algorithm, other algorithms stagnate in the early stages of
the algorithm. For F7, the optimization ability of this algorithm is also stronger than other
algorithms, because the existence of a restart strategy enables the algorithm to continuously
jump out of local optima. On F8, the performance of RCLSMAOA is not as good as the
WMFO algorithm, but stronger than other algorithms. F9–F11 is relatively simple and
easy to find the optimal fitness value. RCLSMAOA algorithm is also the algorithm with
the fastest rate of convergence. For F12–F13, the RCLSMAOA performs well and can
also converge when other algorithms fall into local optima. F14–23 is a relatively simple
function, but it can also play a role in verifying algorithm performance. On these functions,
RCLSMAOA also always finds the optimal value the fastest. In summary, the RCLSMAOA
applies to F23 functions.
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Table 3. Results of benchmark functions (F1–F13) under 500 dimensions.

Fn Metric RCLS-
MAOA AOA SMA ROA SCA WOA WMFO AMVO-SCA

F1
Best 0 5.96 × 10−1 0 0 2.06 × 105 1.70 × 10−76 2.80 × 10−68 7.37 × 10−1

Mean 0 6.43 × 10−1 3.54 × 10−259 0 2.98 × 105 1.75 × 10−69 2.15 × 10−52 2.32
Stg 0 5.98 × 10−2 0 0 8.38 × 104 3.89 × 10−69 1.15 × 10−51 1

F2
Best 0 2.47 × 10−4 9.02 × 10−16 1.50 × 10−174 9.36 × 101 3.38 × 10−51 7.99 × 10−37 3.51 × 10−1

Mean 0 2.74 × 10−3 6.76 × 10−1 3.35 × 10−159 1.84 × 102 6.39 × 10−48 7.25 × 10−22 6.00 × 10−1

Stg 0 2.28 × 10−3 9.50 × 10−1 7.50 × 10−159 6.74 × 101 1.08 × 10−47 3.97 × 10−21 1.34 × 10−1

F3
Best 0 2.91 × 101 0 2.49 × 10−291 6.53 × 106 2.78 × 107 3.05 × 10−50 3.78 × 101

Mean 0 5.28 × 101 4.30 × 10−208 2.89 × 10−279 8.07 × 106 3.90 × 107 9.40 1.19 × 102

Stg 0 3.30 × 101 0 0 1.73 × 106 8.30 × 106 4.41 × 101 6.19 × 101

F4
Best 0 1.76 × 10−1 1.20 × 10−159 4.65 × 10−170 9.88 × 101 5.20 × 101 8.09 × 10−32 5.36

Mean 0 2.00 × 10−1 2.89 × 10−120 2.18 × 10−156 9.92 × 101 7.28 × 101 1.03 × 10−10 8.33
Stg 0 4.69 × 10−2 6.25 × 10−120 4.85 × 10−156 2.93 × 10−1 2.00 × 101 5.64 × 10−10 2.02

F5
Best 1.37 × 10−5 4.99 × 102 3.27 × 101 4.94 × 102 2.03 × 109 4.96 × 102 0 7.12 × 101

Mean 7.52 × 10−2 4.99 × 102 3.70 × 102 4.95 × 102 2.32 × 109 4.97 × 102 8.35 1.35 × 102

Stg 8.06 × 10−2 9.93 × 10−2 2.03 × 102 2.87 × 10−1 3.50 × 108 4.41 × 10−1 1.30 × 101 7.25 × 101

F6
Best 1.51 × 10−6 1.13 × 102 8.25 × 10−1 1.38 × 101 1.30 × 105 2.53 × 101 0 4.06

Mean 7.01 × 10−3 1.16 × 102 5.24 × 101 1.98 × 101 2.25 × 105 3.79 × 101 0 6.94
Stg 9.92 × 10−3 1.80 4.74 × 101 5.45 8.80 × 104 1.21 × 101 0 2.07

F7
Best 2.45 × 10−7 8.86 × 10−5 8.56 × 10−5 1.25 × 10−4 1.60 × 104 1.66 × 10−3 3.12 × 10−5 3.40 × 10−2

Mean 2.63 × 10−5 1.37 × 10−4 7.06 × 10−4 3.96 × 10−4 1.79 × 104 1.21 × 10−2 2.90 × 10−4 6.14 × 10−2

Stg 2.30 × 10−5 4.50 × 10−5 8.20 × 10−4 2.59 × 10−4 2.22 × 103 1.66 × 10−2 2.09 × 10−4 1.69 × 10−2

F8
Best −2.09 × 105 −2.37 × 104 −2.09 × 105 −2.09 × 105 −1.58 × 104 −2.06 × 105 −8.54 × 1024 −7.91 × 103

Mean −2.09 × 105 −2.18 × 104 −2.09 × 105 −1.99 × 105 −1.47 × 104 −1.76 × 105 −2.85 × 1023 −6.41 × 103

Stg 1.77 × 10−1 2.03 × 103 2.34 × 102 1.55 × 104 6.84 × 102 4.11 × 104 1.56 × 1024 6.24 × 102

F9
Best 0 0 0 0 5.17 × 102 0 0 5.17 × 101

Mean 0 6.93 × 10−6 0 0 1.42 × 103 6.06 × 10−14 1.19 × 101 9.26 × 101

Stg 0 6.72 × 10−6 0 0 5.55 × 102 3.32 × 10−13 2.43 × 101 2.28 × 101

F10
Best 8.88 × 10−16 7.44 × 10−3 8.88 × 10−16 8.88 × 10−16 8.07 8.88 × 10−16 8.88 × 10−16 5.15

Mean 8.88 × 10−16 8.12 × 10−3 8.88 × 10−16 8.88 × 10−16 1.92 × 101 4.32 × 10−15 8.88 × 10−16 6.14
Stg 0 3.45 × 10−4 0 0 3.62 2.38 × 10−15 0 6.10 × 10−1

F11
Best 0 6.43 × 103 0 0 9.67 × 102 0 0 7.55 × 10−1

Mean 0 1.06 × 104 0 0 2.02 × 103 3.70 × 10−18 0 9.87 × 10−1

Stg 0 2.97 × 103 0 0 7.53 × 102 2.03 × 10−17 0 6.07 × 10−2

F12
Best 4.18 × 10−13 1.06 2.34 × 10−5 1.43 × 10−2 3.40 × 109 3.93 × 10−2 1.57 × 10−32 7.08

Mean 2.20 × 10−7 1.08 2.60 × 10−2 3.97 × 10−2 5.72 × 109 1.06 × 10−1 1.57 × 10−32 1.02 × 101

Stg 2.92 × 10−7 1.36 × 10−2 9.59 × 10−2 2.25 × 10−2 1.47 × 109 5.14 × 10−2 5.57 × 10−48 2.56

F13
Best 6.02 × 10−11 5.01 × 101 3.61 × 10−3 3.37 5.32 × 109 8.64 1.35 × 10−32 1.82 × 101

Mean 1.79 × 10−3 5.02 × 101 2.87 9.03 1.03 × 1010 2.00 × 101 1.35 × 10−32 3.00 × 101

Stg 3.77 × 10−3 4.33 × 10−2 8.97 2.72 2.39 × 109 5.75 5.57 × 10−48 8.14

7.2. Experiments on the CEC2020 Benchmark Function

Using F23 functions for validation is not sufficient. We have added the CEC2020 test
function [9] to verify this. In this experiment, we set the variables as N = 30, T = 500,
and dim = 10. The comparison algorithm remains unchanged. The results of 30 runs of
RCLSMAOA and other algorithms are shown in Table 5.

CEC2020 has four class functions: unimodal function CEC01, basic multimodal func-
tion CEC02−4, mixed function CEC05-6, and combination function CEC06-10. In unimodal
functions, the best one is RCLSMAOA, followed by SMA. This is because the RCLSMAOA
integrates the SMA and adds mutation strategies to enhance its exploitation capabilities,
enabling it to find better locations. The RCLSMAOA always performs stably based on
multimodal functions and can find better values. This is based on the fact that the ran-
dom center-solving strategy can effectively maintain a balance between exploration and
exploitation in RCLSMAOA. Combined with the search strategy in SMA, the RCLSMAOA
performs well on the basic multimodal functions. Mixed and combined functions are rela-
tively difficult and complex and can easily trap functions into local optima. For this reason,
we introduce a restart strategy to enable the RCLSMAOA to jump out of local optima.
From the implementation results, the RCLSMAOA performs well and is not troubled by
local optima.
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Table 4. Results of benchmark functions (F14–F23).

Fn Metric RCLSMAOA AOA SMA ROA SCA WOA WMFO AMVO-SCA

F14
Best 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1

Mean 9.98 × 10−1 9.49 9.98 × 10−1 3.35 1.60 3.71 4.23 5.74
Stg 0 3.63 8.61 × 10−13 4.01 9.23 × 10−1 4.02 3.92 4.34

F15
Best 3.07 × 10−4 3.77 × 10−4 3.08 × 10−4 3.08 × 10−4 4.92 × 10−4 3.58 × 10−4 3.07 × 10−4 3.68 × 10−4

Mean 3.45 × 10−4 1.69 × 10−2 6.23 × 10−4 5.04 × 10−4 1.10 × 10−3 6.97 × 10−4 4.37 × 10−4 1.38 × 10−3

Stg 9.47 × 10−5 3.25 × 10−2 3.04 × 10−4 3.18 × 10−4 3.56 × 10−4 4.54 × 10−4 2.96 × 10−4 1.10 × 10−3

F16
Best −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03

Mean −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03
Stg 6.78 × 10−16 1.34 × 10−7 1.59 × 10−9 5.27 × 10−8 5.73 × 10−5 2.87 × 10−9 5.80 × 10−10 5.27 × 10−3

F17
Best 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

Mean 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 4.00 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

Stg 0 1.36 × 10−7 2.84 × 10−8 1.32 × 10−5 1.55 × 10−3 5.72 × 10−6 1.02 × 10−8 7.57 × 10−4

F18
Best 3 3 3 3 3 3 3 3

Mean 3 1.34 × 101 3 3 3 3 3 3
Stg 2.08 × 10−15 2.01 × 101 7.57 × 10−11 6.18 × 10−5 8.12 × 10−5 1.05 × 10−2 5.99 × 10−6 6.46 × 10−13

F19
Best −3.86 −3.86 −3.86 −3.86 −3.86 −3.86 −3.86 −3.86

Mean −3.86 −3.85 −3.86 −3.86 −3.85 −3.86 −3.86 −3.86
Stg 2.71 × 10−15 5.82 × 10−3 1.90 × 10−6 2.77 × 10−3 6.12 × 10−3 1.07 × 10−2 3.39 × 10−3 1.36 × 10−2

F20
Best −3.32 −3.16 −3.32 −3.32 −3.13 −3.32 −3.32 −3.32

Mean −3.29 −3.02 −3.24 −3.21 −2.87 −3.20 −3.13 −3.01
Stg 5.35 × 10−2 9.55 × 10−2 5.58 × 10−2 1.42 × 10−1 3.47 × 10−1 1.73 × 10−1 3.13 × 10−1 3.59 × 10−1

F21
Best −1.02 × 101 −5.16 −1.02 × 101 −1.02 × 101 −5.90 −1.01 × 101 −1.02 × 101 −1.01 × 101

Mean −1.02 × 101 −3.62 −1.02 × 101 −1.01 × 101 −2.40 −7.60 −5.23 −4.72
Stg 6.96 × 10−15 1.06 4.55 × 10−4 1.58 × 10−2 1.86 2.81 9.31 × 10−1 2.63

F22
Best −1.04 × 101 −7.58 −1.04 × 101 −1.04 × 101 −6.85 −1.04 × 101 −1.04 × 101 −1.04 × 101

Mean −1.04 × 101 −4.29 −1.04 × 101 −1.04 × 101 −3.69 −7.69 −6.26 −5.89
Stg 1.19 × 10−15 1.23 2.55 × 10−4 1.59 × 10−2 1.86 3.21 2.71 3.10

F23
Best −1.05 × 101 −8.42 −1.05 × 101 −1.05 × 101 −8.38 −1.05 × 101 −1.05 × 101 −1.05 × 101

Mean −1.05 × 101 −4.06 −1.05 × 101 −1.05 × 101 −3.86 −7.34 −7.29 −5.23
Stg 1.78 × 10−15 1.72 3.91 × 10−4 2.00 × 10−2 1.87 3.09 2.69 3.07

To test the actual performance of the algorithm more clearly, we selected the specific
convergence curves of the RCLSMAOA and other comparative algorithms, as shown in
Figure 5. The convergence curves of the RLCSMAOA are mainly divided into two types.
One is mainly reflected in the single-mode function. The RCLSMAOA can converge towards
the optimal value and finally find the optimal value. This is because the RCLSMAOA
integrates the position update formula from the SMA and uses a mutation strategy to
improve it. Another is mainly reflected in the complex combination function and mixed
function. To test the actual performance of the algorithm more clearly, we selected the
specific convergence curves of the RCLSMAOA and other comparative algorithms, as
shown in Figure 6. The convergence curves of the RLCSMAOA are mainly divided into
two types. One is mainly reflected in the single-mode function. The RCLSMAOA can
converge toward the optimal value and finally find the optimal value. This is because the
RCLSMAOA integrates the position update formula from the SMA and uses a mutation
strategy to improve it. Another is mainly reflected in the complex combination function
and mixed function. For complex functions, RCLSMAOA shows a very fast convergence
rate at the early stage of iteration. This is because RCLSMAOA uses the multiplication and
division operator in the AOA, which allows the RCLSMAOA to find the optimal value
very quickly.
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7.3. Analysis of Wilcoxon Rank Sum Test Results and Friedman Test

Wilcoxon Rank Sum Test Results is a non-parametric detection test method that does
not require any assumptions to be made about the data. Therefore, it applies to various
types of data, including discrete, continuous, normal, and non-normal distribution. In this
experiment, it was used to test whether two samples have differences. The experimental
result of this experiment is p, when p is less than 5%. We believe there is a significant
difference in the experimental results. Because the RCLSMAOA cannot compare with
itself, we will not list the specific p-values of RCLSMAOA. Therefore, this article takes
eight algorithms as samples; each algorithm independently solves 30 times and sets the
population size N = 30. Among them, the dimensions selected for testing 23 standard test
functions are 30 dimensions, and CEC2020 is ten dimensions.



Biomimetics 2023, 8, 396 17 of 30

Table 5. Results of benchmark functions (F14–F23).

CEC Metric RCLSMAOA AOA SMA ROA SCA WOA WMFO AMVO-SCA

CEC_01
mid 1.00 × 102 2.99 × 109 1.05 × 102 1.05 × 109 4.08 × 108 5.00 × 106 1.19 × 103 3.15 × 103

mean 1.80 × 103 1.02 × 1010 7.28 × 103 5.69 × 109 1.10 × 109 7.74 × 107 1.57 × 105 8.64 × 108

std 1.88 × 103 4.13 × 109 5.00 × 103 3.26 × 109 5.80 × 108 1.13 × 108 4.30 × 105 1.43 × 109

CEC_02
mid 1.10 × 103 1.83 × 103 1.34 × 103 1.77 × 103 1.75 × 103 1.63 × 103 1.46 × 103 1.57 × 103

mean 1.42 × 103 2.22 × 103 1.77 × 103 2.49 × 103 2.54 × 103 2.24 × 103 1.98 × 103 2.00 × 103

std 1.33 × 102 2.30 × 102 2.52 × 102 3.17 × 102 2.73 × 102 3.44 × 102 3.62 × 102 3.44 × 102

CEC_03
mid 7.11 × 102 7.70 × 102 7.18 × 102 7.71 × 102 7.56 × 102 7.52 × 102 7.22 × 102 7.30 × 102

mean 7.18 × 102 7.96 × 102 7.32 × 102 8.17 × 102 7.86 × 102 7.97 × 102 7.45 × 102 7.65 × 102

std 2.75 1.56 × 101 9.63 2.46 × 101 1.41 × 101 2.76 × 101 1.59 × 101 3.23 × 101

CEC_04
mid 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103

mean 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103

std 0 0 0 0 1.09 2.56 × 10−1 5.83 × 10−1 2.58

CEC_05
mid 1.70 × 103 9.15 × 103 2.46 × 103 4.58 × 103 1.23 × 104 7.71 × 103 6.75 × 103 3.67 × 103

mean 2.91 × 103 4.49 × 105 2.69 × 104 4.77 × 105 6.57 × 104 2.59 × 105 3.36 × 105 3.36 × 105

std 1.62 × 103 3.28 × 105 6.82 × 104 3.36 × 105 6.78 × 104 5.10 × 105 5.16 × 105 3.66 × 105

CEC_06
mid 1.60 × 103 1.76 × 103 1.61 × 103 1.65 × 103 1.69 × 103 1.65 × 103 1.61 × 103 1.60 × 103

mean 1.65 × 103 2.15 × 103 1.77 × 103 1.96 × 103 1.86 × 103 1.89 × 103 1.82 × 103 1.86 × 103

std 5.85 × 101 1.99 × 102 1.05 × 102 1.52 × 102 9.03 × 101 1.25 × 102 1.39 × 102 1.74 × 102

CEC_07
mid 2.10 × 103 4.05 × 103 2.33 × 103 2.98 × 103 5.60 × 103 8.70 × 103 3.43 × 103 2.76 × 103

mean 2.62 × 103 1.04 × 106 9.48 × 103 3.66 × 105 1.72 × 104 7.75 × 105 1.76 × 105 5.75 × 105

std 7.73 × 102 2.14 × 106 9.22 × 103 1.02 × 106 1.06 × 104 2.07 × 106 3.79 × 105 2.97 × 106

CEC_08
mid 2.20 × 103 2.59 × 103 2.30 × 103 2.38 × 103 2.33 × 103 2.31 × 103 2.23 × 103 2.30 × 103

mean 2.30 × 103 3.07 × 103 2.46 × 103 2.71 × 103 2.41 × 103 2.38 × 103 2.40 × 103 2.50 × 103

std 1.99 × 101 3.35 × 102 3.69 × 102 3.50 × 102 4.66 × 101 2.92 × 102 3.80 × 102 3.58 × 102

CEC_09
mid 2.40 × 103 2.66 × 103 2.50 × 103 2.60 × 103 2.57 × 103 2.57 × 103 2.74 × 103 2.50 × 103

mean 2.72 × 103 2.88 × 103 2.75 × 103 2.81 × 103 2.79 × 103 2.78 × 103 2.76 × 103 2.76 × 103

std 6.67 × 101 8.73 × 101 3.82 × 101 8.55 × 101 4.37 × 101 5.17 × 101 2.41 × 101 7.40 × 101

CEC_10
mid 2.90 × 103 2.99 × 103 2.90 × 103 2.97 × 103 2.94 × 103 2.91 × 103 2.90 × 103 2.91 × 103

mean 2.93 × 103 3.38 × 103 2.95 × 103 3.25 × 103 2.99 × 103 2.98 × 103 2.94 × 103 2.97 × 103

std 2.17 × 101 2.89 × 102 3.18 × 101 2.57 × 102 3.12 × 101 9.68 × 101 2.93 × 101 6.47 × 101

Table 6 shows the experimental results of thirty experiments conducted on 23 standard
test functions. Table 6 shows the experimental results of 30 experiments conducted on
23 standard test functions. For F1–F4, because the RCLSMAOA is a hybrid form of SMA,
they are not distinguished in some functions. For F7–F11, these functions are simple, and
most algorithms can achieve good results on them.

Table 7 shows the experimental results of thirty experiments conducted on the CEC2020
test function. We observed significant differences between the RCLSMAOA and other
algorithms, except for CEC04. The main reason is that CEC04 is relatively simple compared
to other functions, and most functions can find the optimal value.

To verify the ranking of the algorithm, we used Friedman detection. We ran each
algorithm independently 30 times to take the average value, and the results are shown in
Tables 8 and 9. The dimension chosen for F23 functions here is 30. It can be noted that
RCLSMAOA is still in the first position.

In this section, we conducted a more comprehensive data analysis of the algorithm’s
performance using the Wilcoxon rank sum test and Friedman detection. We conclude that
there are significant differences and good performance between the RCLSMAOA and most
comparison algorithms for functions.
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Table 6. Experimental results of Wilcoxon rank sum test for F23 functions.

F23 dim
RCLSMAOA

vs.
AOA

RCLSMAOA
vs.

SMA

RCLSMAOA
vs.

ROA

RCLSMAOA
vs.

SCA

RCLSMAOA
vs.

WOA

RCLSMAOA
vs.

WMFO

RCLSMAOA
vs.

AMVO-SCA

F1
30 1.73 × 10−6 5.00 × 10−1 1 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

500 1.73 × 10−6 1.22 × 10−4 5.00 × 10−1 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

F2
30 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

500 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

F3
30 1.73 × 10−6 1 1.95 × 10−3 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

500 1.73 × 10−6 1 6.10 × 10−5 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

F4
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

F5
30 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 4.21 × 10−1 6.10 × 10−5

500 1.73 × 10−6 2.88 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 8.04 × 10−1 6.10 × 10−5

F6
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

F7
30 8.61 × 10−1 2.96 × 10−3 1.11 × 10−2 1.73 × 10−6 1.73 × 10−6 1.22 × 10−4 6.10 × 10−5

500 2.99 × 10−1 4.53 × 10−4 3.61 × 10−3 1.73 × 10−6 2.60 × 10−6 6.10 × 10−4 6.10 × 10−5

F8
30 1.73 × 10−6 3.16 × 10−2 8.13 × 10−1 1.73 × 10−6 1.92 × 10−6 6.10 × 10−5 6.10 × 10−5

500 1.73 × 10−6 1.04 × 10−2 4.45 × 10−5 1.73 × 10−6 2.35 × 10−6 6.10 × 10−5 6.10 × 10−5

F9
30 1 1 1 1.73 × 10−6 1 3.13 × 10−2 6.10 × 10−5

500 1 1 1 1.73 × 10−6 2.50 × 10−1 7.81 × 10−3 6.10 × 10−5

F10
30 1 1 1 1.73 × 10−6 9.90 × 10−6 1 6.10 × 10−5

500 1.73 × 10−6 1 1 1.73 × 10−6 5.00 × 10−1 1 6.10 × 10−5

F11
30 1.73 × 10−6 1 1 1.73 × 10−6 1 1 6.10 × 10−5

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 6.10 × 10−5

F12
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

F13
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

500 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

F14 2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 5.00 × 10−1 6.10 × 10−5

F15 4 1.92 × 10−6 4.45 × 10−5 9.32 × 10−6 1.73 × 10−6 2.35 × 10−6 6.10 × 10−5 1.07 × 10−1

F16 2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 6.10 × 10−5

F17 2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 6.10 × 10−5

F18 5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 9.77 × 10−4 6.10 × 10−5

F19 3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 6.10 × 10−5

F20 6 1.73 × 10−6 6.32 × 10−5 3.52 × 10−6 1.73 × 10−6 4.53 × 10−4 4.03 × 10−3 4.21 × 10−1

F21 4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.13 × 10−2 6.10 × 10−5

F22 4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 7.81 × 10−3 6.10 × 10−5

F23 4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.13 × 10−2 6.10 × 10−5

Table 7. Experimental results of Wilcoxon rank sum test for CEC2020 functions.

F23 dim
RCLSMAOA

vs.
AOA

RCLSMAOA
vs.

SMA

RCLSMAOA
vs.

ROA

RCLSMAOA
vs.

SCA

RCLSMAOA
vs.

WOA

RCLSMAOA
vs.

WMFO

RCLSMAOA
vs.

AMVO-SCA

CEC01 10 1.73 × 10−6 6.34 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 4.27 × 10−3 6.10 × 10−5

CEC02 10 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.36 × 10−3 3.05 × 10−4

CEC03 10 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.22 × 10−4 6.10 × 10−5

CEC04 10 1.73 × 10−6 1 1 1.73 × 10−6 1 3.13 × 10−2 6.10 × 10−5

CEC05 10 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.22 × 10−4 6.10 × 10−5

CEC06 10 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 4.27 × 10−4 6.10 × 10−5

CEC07 10 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.16 × 10−3 2.62 × 10−3

CEC08 10 1.73 × 10−6 2.60 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.10 × 10−5 6.10 × 10−5

CEC09 10 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 8.33 × 10−2 8.33 × 10−2

CEC10 10 1.73 × 10−6 1.13 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.56 × 10−2 3.53 × 10−2
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Table 8. Friedman ranked F23 functions.

F RCLSMAOA AOA SMA ROA SCA WOA WMFO AMVO-
SCA

F1 1.933333333 4.266666667 1.983333333 2.083333333 7.666666667 5.866666667 4.866666667 7.333333333
F2 1.5 1.5 3.2 3.8 7 5 6 8
F3 1.5 4.3 1.5 3 7 8 4.7 6
F4 1 4.9 2.166666667 2.833333333 7 8 4.1 6
F5 1.7 5.1 2.866666667 3.666666667 7.966666667 5.9 1.766666667 7.033333333
F6 2 5.566666667 3 4 7.633333333 5.533333333 1 7.266666667
F7 2.333333333 1.8 3.866666667 2.966666667 7.533333333 6.3 4.1 7.1
F8 3 6.8 3 3 8 5.4 1 5.8
F9 3.133333333 3.133333333 3.133333333 3.133333333 6.866666667 3.683333333 5.05 7.866666667

F10 3.116666667 3.116666667 3.116666667 3.116666667 7.666666667 5.416666667 3.116666667 7.333333333
F11 2.85 5.866666667 2.85 2.85 7.3 3.9 2.85 7.533333333
F12 2 5.733333333 3.1 3.9 7.466666667 5.266666667 1 7.533333333
F13 2 6 3 4 7.8 5 1 7.2
F14 1.416666667 6.933333333 3 4.833333333 4.866666667 6.733333333 1.75 6.466666667
F15 1.566666667 6.166666667 4.1 2.7 5.566666667 5.666666667 6.266666667 3.966666667
F16 1.166666667 6.6 3.8 5.733333333 7.966666667 4.866666667 1.833333333 4.033333333
F17 1.5 4.766666667 3.6 5.866666667 7.5 7.5 1.5 3.766666667
F18 1.033333333 5.1 3.066666667 6.2 6.666666667 6.866666667 1.966666667 5.1
F19 1.3 6.5 3.033333333 5 6.3 7.333333333 1.7 4.833333333
F20 1.3 6.4 3.833333333 4.166666667 7.233333333 7.266666667 2.633333333 3.166666667
F21 1.033333333 6.266666667 2.733333333 3.833333333 7.466666667 5.933333333 4 4.733333333
F22 1.116666667 6.9 3.4 4.266666667 6.9 6.7 2.783333333 3.933333333
F23 1.083333333 6.8 3.366666667 4.266666667 6.8 6.533333333 2.583333333 4.566666667

Avg Rank 1.7644 5.5298 3.0746 3.8789 7.1376 6.0289 2.9376 5.9376
Final Rank 1 5 3 4 8 7 2 6

Table 9. Friedman ranked CEC2020 functions.

CEC2020 RCLSMAOA AOA SMA ROA SCA WOA WMFO AMVO-
SCA

CEC2020_01 1.466666667 7.6 2.133333333 5.166666667 5.266666667 7.366666667 2.666666667 4.333333333
CEC2020_02 1.233333333 5.166666667 3.066666667 4.766666667 6.933333333 7.566666667 3.633333333 3.633333333
CEC2020_03 1.066666667 7 2.4 4.766666667 5.766666667 7.633333333 2.966666667 4.4
CEC2020_04 3.383333333 3.383333333 3.383333333 3.383333333 5.683333333 3.766666667 5.083333333 7.933333333
CEC2020_05 1.133333333 7.066666667 3.3 4.533333333 4.466666667 5.4 5.6 4.5
CEC2020_06 1.4 6.8 2.7 4.6 3.833333333 7.1 4.466666667 5.1
CEC2020_07 1.8 6.7 3.6 4.133333333 4.333333333 7.866666667 4.3 3.266666667
CEC2020_08 1.233333333 7.366666667 2.8 5 5.166666667 7.133333333 3.033333333 4.266666667
CEC2020_09 1.333333333 6.966666667 3.033333333 4.433333333 5.366666667 7.033333333 3.6 4.233333333
CEC2020_10 1.8 7.566666667 2.766666667 4.633333333 5.066666667 7.3 3.066666667 3.8
Avg Rank 1.585 6.5616 2.9183 4.5416 5.1883 6.8166 3.8416 4.5466
Final Rank 1 7 2 4 6 8 3 5

8. Engineering Issues

In this section, we will test the application of the RCLSMAOA in practical engineering
problems in order to assess the quality and computational performance of RCLSMAOA in
solving engineering problems and to explore whether it can achieve satisfactory results.
This section will use five classic engineering problems to test the actual performance of the
algorithm and compare it with other well-known optimization algorithms.

8.1. Pressure Vessel Design Problem

In practical survival problems, a common problem is pressure vessels. This issue aims
to minimize the total cost of materials, forming, and welding for cylindrical containers. The
structural schematic diagram is shown in Figure 7. This problem has four variables: shell
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thickness Ts, head thickness Th, internal radius R, and cylindrical section length L without
considering the head.
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The mathematical model of the pressure vessel design problem is as follows:
Consider:

→
x = [x1 x2 x3 x4] = [Ts Th R L] (20)

Objective function:

f
(→

x
)
= 0.6224x1x2x3 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3 (21)

Subject to:
g1(
→
x ) = −x1 + 0.0193x3 ≤ 0 (22)

g2(
→
x ) = −x3 + 0.00954x3 ≤ 0 (23)

g3(
→
x ) = −πx2

3x4 +
2
3

πx3
3
+ 1296000 ≤ 0 (24)

g4(
→
x ) = −x4 − 240 ≤ 0 (25)

Boundaries:
0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200
10 ≤ x4 ≤ 200

(26)

We can observe Table 10 to see the specific data of the RCLSMAOA on pressure vessel
engineering issues. RCLSMAOA has Ts = 0.742433, Th = 0.370196, R = 40.31961, L = 200,
COST = 5734.9131. Compared with other comparative algorithms, RCLSMAOA achieved
the best results and achieved the optimal value of 200 on L. This means that RCLSMAOA
can solve the engineering problem.

Table 10. Comparison of optimal solutions for the pressure vessel design problem.

Algorithm
Optimal Values for Variables

Cost
Ts Th R L

RCLSMAOA 0.742433 0.370196 40.31961 200 5734.9131

AOA [11] 0.8303737 0.4162057 42.75127 169.3454 6048.7844
SMA [15] 0.7931 0.3932 40.6711 196.2178 5994.1857
WOA [47] 0.8125 0.4375 42.0982699 176.638998 6059.741

GA [21] 0.8125 0.4375 42.0974 176.6541 6059.94634
GWO [48] 0.8125 0.4345 42.089181 176.758731 6051.5639
ACO [49] 0.8125 0.4375 42.103624 176.572656 6059.0888
AO [50] 1.054 0.182806 59.6219 39.805 5949.2258

MVO [51] 0.8125 0.4375 42.09074 176.7387 6060.8066
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8.2. Speed Reducer Design Problem

The reducer is one of the key parts of the gearbox. In this study, we aim to achieve the
minimum quality while meeting four design constraints and seven variables. The model
structure is shown in Figure 8.
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The mathematical model of reducer design is as follows:
Objective function:

f (
→
x ) = 07854× x1 × x2

2 × (3.3333× x3
2 + 14.9334× x3−

43.0934)− 1.508× x1 × (x6
2 + x7

2) + 7.4777× x6
3 + x7

3+
0.7854× x4 × x6

2 + x5 × x7
2

(27)

Subject to:

g1(
→
x ) =

27
x1 × x22 × x3

− 1 ≤ 0 (28)

g2(
→
x ) =

397.5
x1 × x22 × x32 − 1 ≤ 0 (29)

g3(
→
x ) =

1.93× x4
3

x2 × x3 × x64 − 1 ≤ 0 (30)

g4(
→
x ) =

1.93× x5
3

x2 × x3 × x74 − 1 ≤ 0 (31)

g5(
→
x ) =

1
110× x63 ×

√
(

745× x4

x2 × x3
)

2
+ 16.9× 106 − 1 ≤ 0 (32)

g6(
→
x ) =

1
85× x73 ×

√
(

745× x5

x2 × x3
)

2
+ 16.9× 106 − 1 ≤ 0 (33)

g7(
→
x ) =

x2 × x3

40
− 1 ≤ 0 (34)

g8(
→
x ) =

5× x2

x1
− 1 ≤ 0 (35)

g9(
→
x ) =

x1

12× x2
− 1 ≤ 0 (36)

g10(
→
x ) =

1.5× x6 + 1.9
x4

− 1 ≤ 0 (37)

g11(
→
x ) =

1.1× x7 + 1.9
x5

− 1 ≤ 0 (38)
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Boundaries:

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,
7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5

(39)

Table 11 shows that when x = [3.4975, 0.7, 17, 7.3, 7.8, 3.3500, 5.285], the minimum
weight obtained by RCLSMAOA is 2995.437365, ranking first in the comparison algo-
rithm. Observing experimental data, it can be seen that RCLSMAOA still performs well in
relatively complex engineering problems.

Table 11. Comparison of optimal solutions for the speed reducer design problem.

Algorithm
Optimal Values for Variables Optimal

Weightx1 x2 x3 x4 x5 x6 x7

RCLSMAOA 3.4975 0.7 17 7.3 7.8 3.3500 5.285 2995.437365
AOA [11] 3.50384 0.7 17 7.3 7.72933 3.35649 5.2867 2997.9157

FA [52] 3.507495 0.7001 17 7.719674 8.080854 3.351512 5.287051 3010.137492
RSA [53] 3.50279 0.7 17 7.30812 7.74715 3.35067 5.28675 2996.5157
MFO [54] 3.497455 0.7 17 7.82775 7.712457 3.351787 5.286352 2998.94083
AAO [55] 3.499 0.6999 17 7.3 7.8 3.3502 5.2872 2996.783
HS [56] 3.520124 0.7 17 8.37 7.8 3.36697 5.288719 3029.002

WSA [57] 3.5 0.7 17 7.3 7.8 3.350215 5.286683 2996.348225
CS [58] 3.5015 0.7 17 7.605 7.8181 3.352 5.2875 3000.981

8.3. Three-Bar Truss Design Problem

In the design problem of a three-bar truss, in order to minimize the weight constrained
by stress, deflection, and buckling, it is necessary to operate on two-bar lengths to minimize
volume while satisfying the three constraint conditions. It has two decision variables,
namely the lengths A1 and A2 of the two rods, and its specific physical model is shown in
Figure 9.
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The mathematical formulation of this problem is shown below:
Consider:

→
x = [x1 x2] = [A1 A2] (40)

Minimize:
f (
→
x ) = (2

√
2x1 + x2) ∗ l (41)

Subject to:

g1(
→
x ) =

√
2x1 + x2√

2x2
1 + 2x1x2

P− σ ≤ 0, (42)

g2(
→
x ) =

x2√
2x2

1 + 2x1x2
P− σ ≤ 0, (43)
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g3(
→
x ) =

1√
2x1 + x1

P− σ ≤ 0, (44)

l = 100 cm, P = 2 kN/cm3, σ = 2 kN/cm3 (45)

Variable Range:
0 ≤ x1, x2 ≤ 1, (46)

The comparison results between RCLSMAOA and other algorithms in the design of
three bar trusses are shown in Table 12. We observed that the data in the table are very
close, indicating that it is difficult to optimize the problem better, but RCLSMAOA still
achieved the best results.

Table 12. Experimental results of three-bar truss design.

Algorithm x1 x2 Best Weight

RCLSMAOA 0.78841544 0.408113094 263.8523464
MVO [51] 0.788603 0.408453 263.8958
RSA [53] 0.78873 0.40805 263.8928
GOA [59] 0.788898 0.40762 263.8959

CS [58] 0.78867 0.40902 263.9716

8.4. Welded Beam Design Problem

The welded beam design problem is a classic structural optimization problem and
an important example in structural mechanics. This problem aims to minimize the steel
plate’s total weight while satisfying four design variables of the connecting beam: thickness
b, length L, height t, and width h. The detailed diagram of the welded beam is shown in
Figure 10.
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The mathematical model of welded beam design is as follows:
Consider:

x = [x1 x2 x3 x4] = [h l t b] (47)

Objective function:

f (x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2) (48)

Subject to:
g1

(→
x
)
= τ

(→
x
)
− τmax ≤ 0 (49)

g2

(→
x
)
= σ

(→
x
)
− σmax ≤ 0 (50)
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g3

(→
x
)
= δ

(→
x
)
− δmax ≤ 0 (51)

g4

(→
x
)
= x1 − x4 ≤ 0 (52)

g5

(→
x
)
= P− Pc

(→
x
)
≤ 0 (53)

g6

(→
x
)
= 0.125− x1 ≤ 0 (54)

g7

(→
x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 0.5 ≤ 0 (55)

where:

τ
(→

x
)
=

√
(τ′)2 + 2τ′τ”

x2

2R
+ (τ”), τ′ =

P√
2x1x2

, τ” =
MR

J
, (56)

M = P
(

L +
x2

2

)
, R =

√
x2

2
4

+

(
x1 + x3

2

)2
, σ
(→

x
)
=

6PL
x4x2

3
, (57)

J = 2

{√
2x1x2

[
x2

x
4

+

(
x1 + x3

2

)2
]}

, δ
(→

x
)
=

6PL3

Ex4x2
3

, (58)

Pc

(→
x
)
=

4.013E
√

x2
3x6

4
0

L2 ,

(
1− x3

2L

√
E

4G

)
,

(
1− x3

2L

√
E

4G

)
, (59)

P = 6000lb, L = 14 in, δmax = 0.25in, E = 30× 106 psi, (60)

τmax = 13600 psi, and σmax = 30000 psi (61)

Boundaries:
0.1 ≤ xi ≤ 2, i = 1, 4; 0.1 ≤ xi ≤ 10, i = 2.3 (62)

The specific data are shown in Table 13. The same RCLSMAOA still performs well
in engineering problems, and the weight of the welded beam also reaches the minimum
value. The results indicate that the IBWO algorithm is reliable for solving the problem of
welded beams.

Table 13. Comparison of optimal solutions for the welded beam design problem.

Algorithm
Optimal Values for Variables

Best Weight
h l t b

RCLSMAOA 0.20573 3.2530 9.0366 0.20572 1.6952
ROA [45] 0.200077 3.365754 9.011182 0.206893 1.706447

MGTOA [60] 0.205351 3.268419 9.069875 0.205621 1.701633939
MVO [51] 0.205463 3.473193 9.044502 0.205695 1.72645
WOA [47] 0.205396 3.484293 9.037426 0.206276 1.730499
MROA [9] 0.2062185 3.254893 9.020003 0.206489 1.699058

RO [61] 0.203687 3.528467 9.004233 0.207241 1.735344
BWO [62] 0.2059 3.2665 9.0229 0.2064 1.6997

8.5. Car Crashworthiness Design Problem

The engineering issue refers to the safety performance of vehicles in a collision. This
issue involves many aspects, including body structure, interior devices, and airbag systems.
The car crashworthiness design problem is a very important issue in automotive design,
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which is directly related to the safety of passengers. The specific image is shown in Figure 11.
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The mathematical formulation of this problem is shown below:
Minimize:

f (
→
x ) = Weight, (63)

Subject to:
g1(
→
x ) = Fa(load in abdomen) ≤ 1kN, (64)

g2(
→
x ) = V × Cu(dummy upper chest) ≤ 0.32m/s, (65)

g3(
→
x ) = V × Cm(dummy middle chest) ≤ 0.32m/s, (66)

g4(
→
x ) = V × Cl(dummy lower chest) ≤ 0.32m/s, (67)

g5(
→
x ) = ∆ur(upper rib deflection) ≤ 32mm, (68)

g6(
→
x ) = ∆mr(middle rib deflection) ≤ 32mm, (69)

g7(
→
x ) = ∆lr(lower rib deflection) ≤ 32mm, (70)

g8(
→
x ) = F(Publicforce)p ≤ 4kN, (71)

g9(
→
x ) = VMBP(Velocity of V−

Pillar at middle point) ≤ 9.9mm/ms,
(72)

g10(
→
x ) = VFD(Velocity of front door at V−

Pillar) ≤ 15.7mm/ms,
(73)

Variable Range:

0.5 ≤ x1 − x7 ≤ 1.5, x8, x9 ∈ (0.192, 0.345),−30 ≤ x10, x11 ≤ 30, (74)
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The results of this engineering problem are shown in Table 14. In RCLSMAOA, X1,
X3, X5, and X7 were all taken to the minimum value of 0.5, and the final weight was also
the optimal value. This engineering problem shows that the RCLSMAOA still performs
well in engineering problems with multiple variables and constraints.

Table 14. Experimental results of car crashworthiness design.

Algorithm RCLSMAOA ROA [45] WOA [57] MALO [63] GTOA [64] HHOCM
[65]

ROLGWO
[66] MPA [67]

x1 0.5 0.5 0.8521 0.5 0.662833 0.500164 0.501255 0.5
x2 1.230638152 1.22942 1.2136 1.2281 1.217247 1.248612 1.245551 1.22823
x3 0.5 0.5 0.6604 0.5 0.734238 0.659558 0.500046 0.5
x4 1.198406418 1.21197 1.1156 1.2126 1.11266 1.098515 1.180254 1.2049
x5 0.5 0.5 0.5 0.5 0.613197 0.757989 0.500035 0.5
x6 1.08390407 1.37798 1.195 1.308 0.670197 0.767268 1.16588 1.2393
x7 0.5 0.50005 0.5898 0.5 0.615694 0.500055 0.500088 0.5
x8 0.345067013 0.34489 0.2711 0.3449 0.271734 0.343105 0.344895 0.34498
x9 0.347988173 0.19263 0.2769 0.2804 0.23194 0.192032 0.299583 0.192
x10 0.877748111 0.62239 4.3437 0.4242 0.174933 2.898805 3.59508 0.44035
x11 0.729351464 - 2.2352 4.6565 0.462294 - 2.29018 1.78504

Best Weight 23.18907104 23.23544 25.83657 23.2294 25.70607 24.48358 23.22243 23.19982

9. Conclusions

This article fully considers the advantages and disadvantages of SMA and AOA
optimization algorithms. It proposes a hybrid algorithm of slime mold and arithmetic opti-
mization algorithm based on random center learning and restart mutation (RCLSMAOA).
RCLSMAOA integrates the global search strategies of two algorithms. On this basis, a
random center solution strategy is added to enhance the randomness of the algorithm, the
effectiveness of global search, and the diversity of the algorithm population. The mutation
strategy can enhance the convergence ability of the algorithm and further avoid the stag-
nation of the algorithm. Species reintroduction restart strategy can effectively avoid local
optimization. The collaborative use of these strategies can help the RCLSMAOA enhance
its optimization ability and maintain a good relationship between exploration and exploita-
tion. In addition, we used the Wilcoxon rank sum test to test the significant differences
between algorithms and achieved good results. Finally, five engineering experiments were
conducted, and the RCLSMAOA provided an excellent solution.

From the experimental performance, convergence curve, and engineering problems,
we can conclude that:

The RCLSMAOA proposed in this article combines the advantages of the SMA and
AOA and effectively avoids the shortcomings of the two algorithms.

The newly proposed random center solution strategy can effectively address the short-
comings of RCLSMAOA and significantly enhance the algorithm’s global search ability.

The restart mutation strategy can improve the algorithm’s ability to overcome local
optima and enhance the balance between exploration and exploitation.

By verifying the results of different test functions, the actual performance of the
RCLSMAOA was effectively tested

Finally, by verifying five engineering problems, it can be concluded that the RCLS-
MAOA has good engineering application prospects.

This paper only studies the fusion of two optimization algorithms and adds three
effective strategies. RCMSMAOA is still prone to local optimality in high dimensional
space, and the convergence accuracy is not enough, and in some engineering problems
did not show obvious advantages. In the future, we will further improve the performance
of RCLSMAOA in practical engineering problems and improve the applicability of this
algorithm in high-dimensional space. In future work, we will study the binary version of
RCLSMAOA and use it to solve the feature selection problem.
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