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Abstract: In recent years, limited works on EOG (electrooculography)-based biometric authentication
systems have been carried out with eye movements or eye blinking activities in the current literature.
EOGs have permanent and unique traits that can separate one individual from another. In this
work, we have investigated FSST (Fourier Synchrosqueezing Transform)-ICA (Independent Com-
ponent Analysis)-EMD (Empirical Mode Decomposition) robust framework-based EOG-biometric
authentication (one-versus-others verification) performances using ensembled RNN (Recurrent Neural
Network) deep models voluntary eye blinkings movements. FSST is implemented to provide accurate
and dense temporal-spatial properties of EOGs on the state-of-the-art time-frequency matrix. ICA is
a powerful statistical tool to decompose multiple recording electrodes. Finally, EMD is deployed to
isolate EOG signals from the EEGs collected from the scalp. As our best knowledge, this is the first
research attempt to explore the success of the FSST-ICA-EMD framework on EOG-biometric authenti-
cation generated via voluntary eye blinking activities in the limited EOG-related biometric literature.
According to the promising results, improved and high recognition accuracies (ACC/Accuracy:
≥99.99% and AUC/Area under the Curve: 0.99) have been achieved in addition to the high TAR
(true acceptance rate) scores (≥98%) and low FAR (false acceptance rate) scores (≤3.33%) in seven
individuals. On the other hand, authentication and monitoring for online users/students are be-
coming essential and important tasks due to the increase of the digital world (e-learning, e-banking,
or e-government systems) and the COVID-19 pandemic. Especially in order to ensure reliable ac-
cess, a highly scalable and affordable approach for authenticating the examinee without cheating or
monitoring high-data-size video streaming is required in e-learning platforms and online education
strategies. Hence, this work may present an approach that offers a sustainable, continuous, and
reliable EOG-biometric authentication of digital applications, including e-learning platforms for
users/students.

Keywords: EOG-biometric; FSST; ICA; EMD; ensembled RNN-deep models; E-learning

1. Introduction

Physiological and behavioral biometric traits can separate one individual from another
and deal with identifying and verifying a unique person. These traits can be permanent,
unique, and complex definitional in biometric authentication systems. The systems observe
the security aspects of the applications that are imperative for security requirements of the
digital world and technologies [1,2]. Biometric authentication systems have been steadily
growing in popularity due to the development of many useful, challenging, and widely
accepted applications, such as security issues and identity access management, such as
cellphones, laptops, and entering a building [3,4]. These systems offer approaches to solve
access control problems related to the authentication and verification stages [1,2,5].

Biometric authentication techniques implement behavioral or physiological features,
including fingerprint, palm print, face pattern, iris, voice, and gait analysis to identify
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someone [6,7]. Physiological traits are known as the physical traits of an individual (fin-
gerprint and hand etc.), and these static attributes are widely accepted because of their
collectability and inexpensive characteristics in verification [1]. However, these static
conventional biometric methods can be abused and sometimes can be easily accessed by
imposters attacks [8,9]. Hence, security concerns against threats and fraud exist in these
biometric approaches. On the other hand, in recent years, dynamic biological biometric
traits are gaining popularity using EEG (electroencephalography), ECG (electrocardio-
gram), EMG (electromyogram), and PPG (photoplethysmography) signals [2,8,10]. All
these 1D time-series signals have advantages and disadvantages in authentication systems.
For example, lately, electroencephalography (EEG)-based authentication has received con-
siderable attention from the scientific community. However, the limited usability of these
biometric systems has been noted due to the high mental effort and continuous requirement
of cognitive ability (hard-to-elicit motor imagery EEGs) [11]. ECG-based biometry will also
succeed if fiducial points (P, QRS, and T complexes) are correctly identified in intrabeat and
interbeat variations. However, correctly identifying fiducial points is reported as a difficult
task in a practical biometric application scenario [8].

Electrooculography (EOG) is electrical activity resulting from a potential change due
to eyeball or eyelid movements. The EOG waveform is recorded with skin electrodes
around the eyes, or EEG electrodes are placed on the scalp. The amplitude of the EOG
signals occurs between 10 and 200 µV and has been observed to change at frequencies
falling within the 0.5–15 Hz range. The eyeball acts as a dipole and charged organ [12–14].
The positive and negative poles are oriented anteriorly (cornea) and posteriorly (retina).
When the eyeball rotates about its axis, thus acting can generate a detectable amplitude
electric signal that is distinguished by any electrodes near the eye or scalp electrodes. When
the eyeball rotates upwards, the positive pole (cornea) closes to the frontal electrodes,
producing positive deflection changes. Otherwise, when the eyeball rotates downwards
(closer to the ear reference electrodes), it produces a negative deflection change. Deflections
of eye blink resemble this situation. When the eyelid closes, the cornea closes to frontal
electrodes, and a positive pulse occurs. However, the eyelid opens, and the cornea rotates
away from the frontal electrodes, producing a negative pulse. The duration of eye blinking
occurs in the range of 300 to 400 ms [14].

The proposed authentication process with FSST-ICA-EMD framework and voluntary
eye blinking activity employs convenient methods (such as one-versus-others strategy and
template matching) to confirm identity in the enrollment and authentication phases. In
order to accomplish this, the following technical contributions were made:

n This article proposes a one-versus-others biometric authentication approach investigat-
ing FSST-ICA-EMD framework using ensembled Recurrent Neural Network (RNN)
models via voluntary eye blinking activities (EOG responses) to high correct recog-
nition rates, reliable and suitable for next-generation consumer electronic devices.
According to our best knowledge, this is the first attempt to explore high-level time-
frequency features extracted by FSST and decomposed EOGs via ICA and EMD in a
combined framework for EOG-biometric authentication in the existing literature.

n Verifying the proposed authentication approach is essential via statistical discrimi-
nation to present a robust and effective system. Hence, this work is a first attempt
to implement broad statistical methods to estimate discrimination EOG-biometric
besides the correction rates (sensivibity, F-score, accuracy etc.) and TAR/FAR score
metrics.

n Visualizing the functional brain connectivity with circular graphs and brain map-
pings during eye-blinking activity. The following key superiority the FSST-ICA-EMD
framework for EOG-biometric authentication focuses on the short-length of time (only
0.5 s) for training/testing/attempt processes for deep RNN models in enrollment and
authentication. As far as we know, this time-segment is the least for the mentioned
processes of the deep models. Thus, this advantage might address some of the afore-
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mentioned problems for swift enrollment and authentication phases [8]. The most
used terms in the article are listed in Table 1.

Table 1. The list of abbreviations in the paper.

Abbreviations Descriptions

EOG Electrooculography
FSST Fourier Synchrosqueezing Transform
ICA Independent Component Analysis

EMD Empirical Mode Decomposition
RNN Recurrent Neural Network
LSTM Long Short Term Memory

BiSLTM Bidirectional LSTM
GRU Gated Recurrent Unit
EEG Electroencephalography
EMG Electromyogram
ECG Electrocardiogram
TAR True Acceptance Rate
FAR False Acceptance Rate

The article is also organized as well: Section 2 discusses the literature review for this
work. Section 3 addresses the methods and dataset descriptions. The results section is
explained in Section 4. Section 5 reports the conclusion section to analyze outcomes and
future work.

2. Literature Review

In recent years, the capability of eye-blinking EOG (electrooculogram) signals has
been explored to discriminate between individuals in EOG-based biometric authentication
systems. The eye-blinking EOG signals are extracted from brain waves recorded using an
EEG headset. This new modality for authentication is a promising method. Furthermore, it
has achieved a high recognition rate of up to >90.0% in identification mode and a low false
acceptance rate (FAR) among multiple persons [12]. Moreover, a multi-level EEG-based
authentication approach with EOG signals has also been reported in the limited litera-
ture [13,14]. Jalilifard et al. have developed a hybrid human authentication system using
EEG and EOG signals generated by involuntary spontaneous blinking eye movements.
Patterns of a series of blinks were processed by using Gated Recurrent Unit (GRU), and
the classification accuracy was obtained over >98.0% [14]. In another study, Abo-Zahhad
et al. provided a human recognition system voluntary eye-blinking waveform of around
97.0% in the test phase of identification mode. Linear Discriminant Analysis (LDA) was
implemented to identify 25 individuals [15]. Juhola et al. has proposed a hybrid biometric
system with EOG and VOG (video-oculography) signals using shallow machine learning
models (kNN, LDA, etc.). This verification method employs saccadic eye movements to re-
liably distinguish a legitimate person from others in the range of 45-99% correct recognition
rates [15]. Empirical Mode Decomposition (EMD) was applied to isolate EOGs from raw
EEG signals using the decomposition process into Intrinsic Mode Functions (IMFs) [12,14].

In addition, eye blink features have also been implemented several other image and
video-based research. Eye movement features (the motion, speed, energy, and frequency
signal of eye blinks) were reported consisting of implicit and dynamic patterns that oc-
curred on the microsecond temporal resolution of event densities [16]. Hence, these studies
were offered to be used in eye-tracking applications [16]. The disadvantage of this kind of
work, participants/students have to look at the monitor or camera consistently during the
authentication process [17]. Especially this progress is a hard task for students in online
e-learning/e-assessment education and it needs a high-speed internet [17]. In recent times
after the COVID-19 pandemic, the need for sustainable and continuous online monitoring
and authentication to e-learning platforms has evolved to seek accurate identification and
verification for performing any behavior not authorized by the device on which students
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perform the activity [17–29]. Thanks to these important opportunities of biosignal-based au-
thentication ways, e-learning platform courses/examinations may be provided as an effec-
tive verification in the learning-teaching experience [18]. Thus it might be widely accepted
in all educational environments as a different alternative to traditional monitoring systems.
In the limited literature on e-learning and authentication, most works concern monitoring
technologies (webcams and microphones). However, according to our best knowledge,
there is a lack of study implementation of EOG-biometric authentication technology as
sustainable and continuous access for e-learning platforms. Digital Transformation (DT)
must be adapted to competitive strategies and constantly renewed to succeed in the global
competition of education and economics. The most significant of these innovations is
secure access to the DT. Thus the strategic significance of different biometric authentication
in today’s global education and a sustainable environment will be anticipated in growing
cases day by day. Furthermore, short-time enrollment/authentication phases during secure
and quick access to the digital e-learning platforms can also concentrate on the economic
situation of “Sustainable Energy” [19].

This study aims to develop Fourier Synchrosqueezing Transform (FSST)-ICA-EMD
framework-based EOG-biometric authentication approach using voluntary eye blinkings.
The Fourier SST proposes a sharper time-frequency estimation by reconstruction of the
coefficients for the time-frequency matrix [30]. The relevant time-series features are ex-
tracted by the Fourier SST (FSST), and this time-frequency representation can provide
better performance for the detection of patterns in biosignals [31,32]. Independent Com-
ponent Analysis (ICA) employes statistical technique background to decompose mixed
multi-channel sources into statistically independent channels [33]. This technique de-
composes each multi-channel recorded EEG/EOG signal set into temporally independent
components [34]. Here, the ICA was the fundamental method to provide high true accep-
tance rate (TAR) and low false acceptance rate (FAR) metrics in multiple times attempts
to the ensemble (Long Short Term Memory) models for EOG-biometric one-versus-others
authentication. In addition, EMD was used to extract EOGs from the raw EEG signals to
explore the accuracy and other performance metrics regarding the isolated eye-blinking
waveforms [14].

3. Methods and Materials
3.1. Related Work and Motivation

This article proposes a robust and effective EOG-biometric authentication approach
using voluntary eye blinking movements consisting of enrollment and authentication
phases (see Figure 1). These waveform biometric traits protect private information stored
in digital devices. The unique primary novelty of the processing of EOG signals is based
on the FSST-ICA-EMD framework. Fourier SST can prompt high-resolution time-frequency
feature extraction for time-series data [32]. On the other hand, ICA separates statistically
independent components for multichannel recordings, and EMD is able to isolate EOG
signals from EEGs [15,33]. The combined framework has highly capable of reliable and
high-performance one-versus-others EOG-biometric authentication implementing ensembled
RNN models. Majority voting, matching, and thresholding are also implemented to achieve
consistent performance metrics. Time-segment generator extract random frames (0.5 s for
100 times) from the time-series data are to attempt these frames (for determining TAR and
FAR scores) into the ensembled RNN models.

The applied statistical techniques in the work are:

• t-distributed stochastic neighbor embedding (t-SNE) was employed to demonstrate
scattering for distinction.

• Probability density function (PDF) distribution for the distinction individuals (cross-
subject and same-subject) over the diverse scalp parts.

• Correlation matrix for each subject to verify the unique pattern.
• Recurrence Plot (RP) is used for the seperation of sequential recorded channel source

separation to verify the ICA/EMD technique effectiveness.
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• MANOVA (Multivariate ANOVA) analysis was to describe grouping separation
among individuals.

• Functional connectivity analysis was drawn to correlate each brain cortices over the
Circular Graph technique.
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3.2. Eye Blinking Activity and EOG Signal Acquisition

Eye blinking movement generated EOG responses (see Figure 2) were recorded in
a noninvasive manner over the scalp with the Micromed SAM32RFO acquisition device.
The impedance values were kept under the 10 kΩ. The sampling frequency was 1024 Hz
and 50 Hz notch filter was applied to remove the power line noise [11]. After a filtering
operation, the raw EOG signals are decomposed source separation via ICA and made
extraction EOGs from brain activity via EMD according to the literature background (see
Figure 1) [15,33]. The headset has 19 wet electrodes (see Table 2 for enumerated channels).
The international 10–20 electrode placement system was employed with monopolar leads
on the scalp (see Figure 3). Left-right earlobes (A1–A2) and left eyebrow are defined as the
references and ground, respectively [11]. The indication of the brain cortex in the Figure 3
are titled as; F: Frontal, C: Central, T: Temporal, O: Occipital and P: Parietal.
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Table 2. The monopolar placement list for EEG electrodes.

Ch. Num. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ch. Name Fp1 Fp2 F7 F3 Fz F4 F8 T3 C3 Cz C4 T4 T5 P3 Pz P4 T6 O1 O2

Ch. Num: Channel Number, Ch. Name: Channel Name.
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(a) Electrode placement setup on the scalp (b) Indication of brain lobe locations (c) Recorded EOG
responses (from the Subject-5 samples).

3.3. Trial Organization

For this experiment, we settled on a single-trial organization consisting of multiple vol-
untary eye-blinking movements. The participants followed the experimental instructions
on a monitor (17” LCD). These instructions are represented in Figure 4. Each experimental
trial included different phases; starting point fixation, voluntary eye blinking movements,
ready for relaxation, and resting state.
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According to an experimental procedure, this trial organization begins with a start
fixation point. Then the voluntary eye-blinking activities were carried out for 6 s without
movement. After that, 1 s and 8 s periods are stated as the ready relaxation and resting
state phases, respectively. The same process is repeated six times, and the entire trial is
conducted, lasting 86 s duration. Therefore, the dataset size for eye blinking acting based
EOGs is recorded as 36,864× 19 (6 s× 1024 sampling rate× 6 times× 19 channels) for each
participant during a single trial. In the resting state phases, the participants were instructed
to simultaneously think of hand-action motor imagery (EEGs). However, the resting
state phases were cut out to define EOG activity solely in the developed EOG-biometric
authentication.

Naive and healthy subjects (aged from 20 to 38) were recruited for this experiment,
including students and academic staff at the Bandirma Onyedi Eylül University. One
focus point is to explore the FSST-ICA-EMD framework with limited users in EOG-based
authentication. Furthermore, male (3) and female (4) subject numbers were chosen in
close proportions to prevent from gender bias. Reliably distinguishing legitimate student
children with electrooculography is suitable in computational verification due to the easy-
to-use and universal characteristic of eye blinking activities.

3.4. Time-Frequency Feature Extractıon and Ensembled RNN Models

Feature extraction is reported as a critical step in developing effective and robust
biometric systems. This Fourier Synchrosqueezing Transform (FSST)-based feature ex-
traction strategy was proposed to extract time-frequency domain features for each time
segment (0.5 s) of eye-blinking EOG signals. Then time-frequency matrices (based on FSST)
were employed to enable ensembled RNN models for the one-versus-others biometric
authentication systems. FSST reorganizes energy only in the frequency direction and is
a highly effective way. Therefore, the time resolution of EOG signals can be effectively
maintained in the time-frequency domain. As far as we know, in terms of the available
literature background, this FSST-based feature extraction technique is used to improve
EOG-biometric authentication performance for the first time in this research study. The
time-frequency feature extraction process is shown in Figure 5.
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Ensemble methods are a technique that combines predictions of various machine learn-
ing models, which helps classification models to have stronger generalization ability. Thus,
better prediction performance has been achieved in comparison with the base classifiers.
Reducing the model’s bias and the dependence of the predictions on the properties of a
training set is important and is reduced by a few coupling models.

In our study, the ensembled model approach was implemented for each person (one-
versus-others) in distinctive form datasets (one feature set-versus-others’ feature sets). These
trained machine learning models were fed with complementary sets in terms of the data size
that can produce diverse and complying outcomes (own personal/the one or others/the
others) [35]. Adversarial-trained LSTM models (LSTM model-1/LSTM model-3) (see
Figure 6) are working against each other. And the rest one (BiLSTM model-2) was fed
with equal-size features. Finally, the last prediction is conducted by a majority voting
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process [36,37]. The testing phase was carried out using feature set-2 on the ensembled
RNN models.
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Time segments and training size are important critical parameters to provide better
biosignal-based biometric systems [38]. The FSST conducted the feature extraction process
(see Figure 5). The relevant time segment is defined as 0.5 s over the single-trial EOG
sequential time series for the training, testing, and attempts on the ensembled RNN models.
Biosignal-based biometrics does not describe the optimal time segment length. Neverthe-
less, increased time segments are noted that this change only achieves better performances
significantly. Furthermore, increased training size can achieve higher biometric system
performances, as in the reported works [39]. In our study, an 80–20% rate of data splitting
strategy was employed for the training and testing phases, respectively. According to
the literature, this rate is the best and optimal rate for providing higher performance for
biosignal-biometric systems constructed on RNN deep models [8].

3.5. Fourier Synchrosqueezing Transform (FSST)

The analysis of non-stationary electrophysiological signals requires high-level time-
frequency (TF) methods due to the spectral properties of these time-series signals varying
over time [30]. Synchrosqueezing transform is an intended advanced TF strategy based
on Continuous Wavelet Transform (CWT) and the Short-Time Fourier Transform (STFT)
to concentrate sharpens localization of spectral estimation for the oscillation components
of a signal. The synchrosqueezing process reassigns “condenses” time-frequency maps
around the curves of the instantaneous frequency changes [30]. Hence, FSST is capable
of concentrating energy coefficients to obtain compact TF distribution covering TF-based
feature extraction vectors. Thus, it may enable high accuracy rates for EOG-based biometric
authentication tasks (see Figure 7). STFT determines Fourier transforms while moving
along the signal from start to end with a fixed-length window function [30,31]. The related
mathematical relations were represented in the following equations. Where R and Re are
defined for the round and real part operations, respectively.

S(m, k) =
N−1

∑
n=0

x(n)W(n−m)e−j 2π
N k(n−m) (1)
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ŵ[m, k] =

{
R
[

Re
(

N
2π j

S(m+1,k)
S(m,k)

)]
i f S(m, k) 6= 0

0 i f S(m, k) = 0
(2)

FSST
(

m, k̂
)
=

N−1

∑
k=0

S(m, k)δ
[
k̂− ŵ(m, k)

]
(3)
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3.6. Independent Component Analysis (ICA)

Characterizing EOG time-series responses over the multisite EEG recordings is im-
portant for developing more reliable and better performance biometric authentication
strategies during signal procedures in a framework [40,41]. Multiple electrodes over the
scalp are composed of a multiple mixture of independent sources/electrical signals, which
occur from the cerebral and/or extracerebral sources [42]. On this point, Independent
Component Analysis (ICA) signal processing technique is so effective way to decompose it
into a limited number of independent components (ICs) [43]. Here, it defines the multiple
channel signals, while the coefficients matrix/mixing matrix and s describe the source
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components. Firstly, matrices are calculated with maximum likelihood estimation, and ICs
are determined by multiplying the inverse of A by, as seen in the following equations:

X = As (4)

s = A−1X (5)

ICA has an important potential application to be considered as a powerful statistical
technique for multichannel responses of a unique pattern while decomposing mixed signals
into statistical ICs [34].

Recurrence plot (RP) is a recent analysis technique for nonlinear and dynamic activity
of biological signals. This method can focus on the repeating patterns of the time-series
signals over states and can define geometric structures to visualize the recurrent occur-
rences of states as a phase space [44]. In this research, RP was employed to visualize the
decomposition success over the sequential channels (Fp1–Fp2) for the raw EOG signals
and decomposed responses via ICA and EMD (see Figure 8). Long vertical line is able to
describe responses, occurred the same state during some time steps [45]. Here, the related
segments of this case for signals mean staying in the same phase space region for a short
while, and it can be dominated by slow (theta or alpha) waves, including EOGs (8–15 Hz).
Thus, high-frequency components can vanish, and slow waves are shown as longer times
leading to the up-slope/down-slope patterns [45].
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The Figure 8 represents the raw data signals and ICA/EMD applied responses,
respectively/top-to-bottom. Moreover, the relevant signals are plotted from the Subject-3
during 1 s and distinct responses are to show the success of ICA/EMD decomposition
techniques over the sequential channels.

3.7. Empirical Mode Decomposition (EMD)

The Empirical Mode Decomposition algorithm is considered an adaptive and data-
dependent technique to decompose non-linear and non-stationary signals into a set of
amplitude-modulated and frequency-modulated components called Intrinsic Mode Func-
tions (IMFs) [14]. This separating analysis way is a powerful time–frequency analysis
technique expressing the internal modes’ instantaneous frequency. IMFs include relevant
and instant frequency information to obtain frequency values that change over time to offer
better time resolution compared to ones. Thus, EMD is to facilitate EOG isolation from
EEG signals/ and it is employed voluntary eye blinks extraction from the scalp-recorded
EEGs in EOG-based biometric authentication [14,41].

x(t) =
k

∑
m=0

IMFm (t) + rk(t) (6)

In the relevant formula, k defines the IMF number, and rk (t) stands for the final
residual value. In this work, the eye blinking waveforms were extracted using EMD
according to following last four IMFs and residual value (Isolated EOGs = IMF-2 + IMF-3 +
IMF-4 + IMF-5 + Residual) (see Figure 9) [14].
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The plotted signals in Figure 9 are recorded over the Fp1 channel and Fp2 channel in
the left and right side, respectively. X-axis is to show the time in seconds and the Y–axis is
the amplitude in µV.

3.8. Recurrent Neural Network (RNN) Deep Models

RNN-based deep model networks are able to perceive patterns from the sequential
data via the learning of previous experiences when they encounter over time [46]. This
ability provides a better recognition level for biological-based time-series signals, including
EEGs. The existence of a correlation between the sequential time-series signals stored
at different time intervals is named the term ‘long-term dependence’ [47]. Storing and
transmitting the state information aims to process the sequences in the RNN deep models.
LSTM is designed as a special type of RNN deep model and is capable of observing a
correlation between the data learned [48].

On this point, if xi ∈ Rd are defined as a time-series input vector [x1, x2, . . . , xk] and
Long-Short Term Memory (LSTM) is able to generate a hidden sequence [h1, h2, . . . , hk]
for each processing step [49,50]. The current input function (xt) and the previous hidden
state/feedback into the neuron (ht−1) are both formulating the activation of the hidden state
at time t [50]. Hence, this model is different from the CNN (Convolutional Neural Network)
deep model [51]. 2D-CNN deep models extract deep features from the images [52] and are
evaluated in image processing applications [53]. This related process is as the following
term:

ht = f (xt, ht−1) (7)

LSTM deep model has three modules in terms of the different gate combinations. The
names of these gates are the forgotten ft , input it and output gates ot. The transmitted size
of information is determined for the next stage in the forgotten gates implementing the
sigmoid function in this operation. The next step task is to decide the relevant information
to be stored with the sigmoid function at the input gate. Then, the new state information is
carried out for the memory cell in the system output [47]. The mathematical formulas are
as follows:

it = σ(Wi · [ht−1, xt] + bi) (8)

C̃t = tanh( WC · [ht−1, xt] + bC) (9)

Ct = ft ∗ Ct−1 + it ∗ C̃t (10)

ot = σ(Wo · [ht−1, xt] + b o) (11)

ht = ot ∗ tanh( Ct) (12)

where, according to the general terms, W is the weight vector, b defines the bias term,
σ stands for the sigmoid activation function to put non-linearity. Hence, the new status
information of the memory cell is calculated. Moreover, Bidirectional-LSTM (Bi-LSTM)
calculates the sequential data in both directions (forward and backward propagation). In
the first step, the model performs from the first value of the sequence to the last value.
Then, the starting point is performed from the last time value to the first time value (see
Figure 10) [47]. The models have been designed with multiple neuron numbers (200) and a
fully connected layer (1 neuron). Finally, a softmax classification layer was added to the
architecture. The activation function was ReLU, and the optimizer was chosen as Adam.
The initial learning rate was defined as 1 × 10−3. The training process epoch was selected
as 300. Table 3 concerns a literature survey summarizing EEG-based authentication and
limited EOG-based authentication research in recent years, including RNN-based deep
models.
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3.9. Performance Metrics

The performance metrics are reported as a key to evaluating machine learning models
in pattern recognition tasks and finding the optimal method for solving a problem. The
selection of appropriate metrics is critical in data science [48]. A confusion matrix (see
Figure 11) is employed to create the other metrics frequently from the fundamental metrics
(true positive/TP, true negative/TN, false positive/FP, false negative/FN).
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Table 3. Concise comparative analysis of EOG and EEG-based biometric authentication performances
in recent years.

Ref./Year Signals Ch. N. Sb. N. S./T. S. M. Feature
Engineering/Models Performance

[54]/2019 VEP–EEG 9 25 2 Offline CCA/Task–Related
Component Analysis ACC: 99.43–100%

[55]/2020 VEP–EEG 32 32 32 Offline
Raw, PSD/

CNN–LSTM,
CNN–GRU and SVM

ACC: 33.02–100%

[56]/2020 VEP, MI–EEG 19 45 4 Offline
Raw/CNN,

CNN–RNN and
LDA–SVM

ACC: 77.9–86.9%

[3]/2020 MI–EEG 64 109 10 Offline
EMD, DWT/SVM and

Local Outlier Factor
(LoF)

TAR: 100%
FAR:0.2%

[57]/2021 VEP–EEG 14 70 10 Offline DWT/CNN–LSTM
ACC: 81.78–91.93%

TAR: 92.86%
FAR: 29.28%

[35]/2021 VEP–EEG 9 15 1–10 Online/
Offline

Pearson’s Correlation
Coefficient/Task–

Telated Component
Analysis

ACC: 70.27–100%

[58]/2022 MI–EEG 64 109 14 Offline
Gram–Schmidt

Orthogonalization
Process/CNN

ACC: >98%
TAR: >98%
FAR: <2%

[40]/2023 MI–EEG 19 7 1 Offline
FSST, ICA,

DWT/Ensembled
LSTMs

ACC: ≥96.76

[15]/2013 EOG/VOG ≥1 19–40 40 Offline

Linear Discriminant
Analysis, Quadratic

Discriminant Analysis,
Naı¨ve Bayesian Rule,
k- Nearest Neighbors

ACC: 53–99%

[14]/2015 EOG 1 25 6–8 Offline

Support Vector
Machine, Discriminant
Analysis/EMD/Time
Delineation Feature

Engineering

ACC: ≥97%
EER: 3.7%

[13]/2020 EOG 14 46 2 Offline
Gated Recurrent

Unit/Time Delineation
Feature Engineering

ACC: 98.7%

Our Study EOG 19 7 1 Offline
FSST + ICA +

EMD/Ensembled
RNNs

ACC: ≥99%
TAR: 99.57%
FAR: ≤3.33%

Ch.N: Channel Number, Sb.N: Subject Number, S.T: Session/Trial, S.M: System Mode, VEP: Visual Evoked
Potential-EEG, MI: Motor Imagery-EEG, VOG: Video-Oculography, EER: Equal Error Rate.

The number of correct predictions to the total number of predictions yielding the
quality metric called classification accuracy (ACC). However, ACC is not accepted as an
adequate parameter to determine the proposed algorithm’s performance totally. Hence, the
other statistical performance metrics are described, including specificity (SPEC), sensitivity
(SENS), precision (PREC), and F-score in this respect [48]. The F-score is the coherent
coefficient of the precision and sensitivity [59]. The notations are below:

ACC =
TP + TN

TP + TN + FP + FN
(13)

SPEC =
TN

TN + FP
(14)

SENS =
TP

TP + FN
(15)

PREC =
TP

TP + FP
(16)
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F− Score = 2X
PREC X SENS
PREC + SENS

(17)

Another important metric is the Information Transfer Rate (ITR) to express the amount
of information transferred per unit time, especially for Brain-Computer Interfaces area. The
mathematical formula is based on the logarithmic:

B = log2N + Plog2P + (1− P)log2
(1− P)
(N − 1)

(18)

where B stands for the number of bits per trial, N is indicating class number, and the
correctness of prediction is names as P [47]. The ROC curve is plotted to visualize graph
of the false-positive rate (X-axis) and a true-positive rate (Y-axis) and The area under the
ROC curve provides the AUC value between the interval [0, 1]. The greater AUC value is
regarded as better discrimination [47].

In order to calculate the robustness of the biometric authentication systems, the ‘True
Acceptance Rate’ (TAR) and ‘False Acceptance Rate’ (FAR) are implemented in the devel-
oped biometric approaches. Observation of the quality of specific attempts (genuine or
forgery) is carried out to take into account verifying a true identity claim (TAR) and the
percentage of unauthorized users (FAR) [40]. The expected and successful biometric system
is designed to maximize the TAR score while minimizing the FAR score during multiple
times of attempts. In this EOG-based biometric approach, 100 attempts were conducted to
obtain TAR and FAR scores. Thus, the decision for calculating the TAR and FAR scores was
provided after the matching and thresholding process according to the relevant formulas:

Decision o f TAR (X\Sm) =

{
Genuine, i f Sm > th
Imposter, otherwise

(19)

Decision o f FAR (X\Sm) =

{
Imposter, i f Sm > th
Genuine, otherwise

(20)

where X and th are the query user, and threshold value, respectively. When the similarity
matching (Sm) for TAR score is higher than defined th value, the user is treated as genuine
else rejected. Otherwise, if the similarity matching (Sm) for FAR score is obtained higher
than the defined th, the user is treated as an imposter or else rejected [40]. Threshold levels
according to the similarity matching were described as 90% (TAR score) and 80% (FAR
score), respectively.

4. Results

This work aims to analyze the performances of seven subjects for the FSST-ICA-EMD
framework-based EOG-biometric authentication approach. In order to determine the
robustness and outcomes of the one-versus-others biometric authentication system, ACC,
SENS, SPEC, PREC, F-score, ITR, and AUC scores were determined, as well as finding the
TAR and FAR metrics using the ensembled RNN-deep models.

Table 4 highlights the prediction performances of seven participants in the proposed
one-versus-others EOG-biometric authentication scheme for isolated EOG signals generated
by voluntary eye blinkings. According to the results, Subject-7 has achieved high clas-
sification performances for all metrics (ACC: 99.99%, SENS: 99.95%, SPEC: 100%, PREC:
99.99%, F-score: 99.95%, AUC: 0.999 and ITR: 0.931) among the others. The worst biometric
classification discrimination was calculated on Subject-5 (ACC > 89%, AUC > 0.7, and
ITR > 0.9 score). The framework attained the second highest classification performances
provided over the Subject-4 (ACC: 99.93% and AUC: 0.997), Subject-1 (ACC: 99.92% and
AUC: 0.997), and Subject-3 (ACC: 99.91% and AUC: 0.996), respectively. These biometric
prediction results have depicted the number of four individuals reaching up to the >99%
(ACC, SENS, SPEC, PREC, and F-score) discrimination regarding the observation metrics.
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Moreover, the average of these persons’ outcomes has been obtained over >96% accuracy,
>0.9 AUC score, and >0.9 ITR value.

Table 4. Biometric approach performances in terms of the discrimination metrics over the EOG
signals implemented ICA-EMD techniques.

(%) Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Avg.

ACC 99.92 92.01 99.91 99.93 89.49 97.00 99.99 96.89
SENS 99.50 64.13 99.42 99.51 57.65 82.88 99.95 86.15
SPEC 100 100 99.99 100 99.92 99.92 100 99.97
PREC 99.92 92.01 99.91 99.93 89.49 97.00 99.99 96.89

F-score 99.50 64.13 99.42 99.51 57.65 82.88 99.95 86.15
AUC 0.997 0.755 0.996 0.997 0.701 0.893 0.999 0.905
ITR 0.971 0.916 0.963 0.936 0.938 0.863 0.931 0.931

Because of the demand for secure user authentication systems, the stable EOG-
biometric authentication approach to one specific individual is required under the diverse
frequency and speed of eye blinks. In the limited existing literature for EOG-biometric
systems, it is reported that spontaneous eye blinkings under a normal physical and emo-
tional state can be influenced by diverse emotions, fatigue, and level of focus as well
as the age or light condition. Table 5 defines the proposed system’s robustness against
its own attempts and imposter attacks in verification mode using two metrics (TAR and
FAR). According to the outcomes, the highest scores for TAR were yielded with Subject-3
(100%) and Subject-4 (100%). The other best discrimination (99 attempts out of 100) in the
one-versus-others biometric authentication for the own attempts are observed in Subject-2,
Subject-5, and Subject-6. According to the multiple time sequences of voluntary eye blinks
and discrimination performances, Subject-1 and Subject-7 have achieved the least TAR
scores at 98% and 96%, respectively. Furthermore, the following FAR metric scores show
that Subject-1, Subject-4, and Subject-7 have 0 average values out of 100 attacks for each
isolated EOG-based authentication system. The other subjects’ own systems have 3.33%
(Subject-2 and Subject-5), 1.83% (Subject-3), and 0.5% (Subject-6) in terms of the FAR scores.

Table 5. Biometric approach performances in terms of the matching scores/attempts over the EOG
signals implemented ICA-EMD techniques.

FAR

(%) * TAR Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Avg.

Sb1 98 X 0 0 0 0 0 0 0
Sb2 99 0 X 1 0 19 0 0 3.33
Sb3 100 0 9 X 0 0 2 0 1.83
Sb4 100 0 0 0 X 0 0 0 0
Sb5 99 0 20 0 0 X 0 0 3.33
Sb6 99 0 0 0 3 0 X 0 0.5
Sb7 96 0 0 0 0 0 0 X 0

Avg. 98.71

* 100 attempts.

The most important technique for EOG + EEG signal decomposition for multiple
channels is Independent Component Analysis (ICA). Table 6 presents the prediction results
of the EOG-based biometric authentication with EEGs implemented ICA for multiple
channel recordings. By analyzing the decomposed multiple channels for EOG + EEG
responses in the one-versus-others authentication, it defines that all individuals have achieved
>99% discrimination accuracies for each authentication case. Totally, the average accuracy,
sensitivity, specificity, precision, and F-score prediction outcomes are also higher than
99% value. AUC and ITR scores are also greater than 0.99 values. However, the best
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discrimination is observed in Subject-4 in terms of all performance metrics (ACC: 99.93%
and AUC: 0.997) during vertical voluntary eye blinkings.

Table 6. Biometric approach performances in terms of the discrimination metrics over the EOG +
EEG signals implemented ICA technique.

(%) Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Avg.

ACC 99.93 99.88 99.93 99.93 99.92 99.91 99.94 99.92
SENS 99.53 99.91 99.79 99.54 99.58 99.54 1 99.70
SPEC 1 99.87 99.95 99.99 99.98 99.97 99.93 99.96
PREC 99.93 99.88 99.93 99.93 99.92 99.91 99.94 99.92

F-score 99.53 99.91 99.79 99.54 99.58 99.54 1 99.70
AUC 0.997 0.998 0.998 0.997 0.997 0.997 0.999 0.998
ITR 0.999 0.992 0.999 0.978 0.993 0.999 0.999 0.994

For the proposed high-level feature engineering with FSST in the EOG-biometric
authentication approach, the calculation of the matching score was revealed in Table 7.
According to the TAR and FAR scores, the attempts and attacks for the own individual
biometric authentication system, including ensembled RNN models, have shown high TAR
scores (>99.57%) and low FAR scores (0%) on average. The least matching score for TAR
score was obtained in Subject-6 (97%), and the others have provided 100% authentication
success out of 100 attempts.

Table 7. Biometric approach performances in terms of the matching scores/attempts over the EOG +
EEG signals implemented ICA technique.

FAR

(%) * TAR Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Avg.

Sb1 100 X 0 0 0 0 0 0 0
Sb2 100 0 X 0 0 0 0 0 0
Sb3 100 0 0 X 0 0 0 0 0
Sb4 100 0 0 0 X 0 0 0 0
Sb5 100 0 0 0 0 X 0 0 0
Sb6 97 0 0 0 0 0 X 0 0
Sb7 100 0 0 0 0 0 0 X 0

Avg. 99.57

* 100 attemtps.

Following the steps above, the behavioral biometric feature of EOG signals recorded
over the EEGs was revealed to recognize bioelectrical signal patterns during voluntary eye
blinks for person authentication. The following tests compare EOG and EOG-EEG signals
in authentication achievement consisting of the discrimination metrics and matching scores
(see Figure 12 andFigure 13). Hence, it is clear to be in the observation that EOG-EEG signals
have relatively better authentication success, especially in TAR (0.86% higher) and FAR
(3.33% lower) similarity scores due to the multi-modality responses. Uniqueness and the
biometric characteristics of each subject may be defined better by these two physiological
traits.

The t-distributed stochastic neighbor embedding (t-SNE) was employed to specify the
discrimination of each individual on the scattering benchmark for comparison [40,60]. A
unique colored cluster represented each subject. It also confirmed that the seven individuals
had great separable outcomes based on voluntary eye blinkings. Each subject is represented
by a unique colored cluster [61,62]. It was clearly observed that there are high intraclass
similarity and low interclass similarity with minimal overlap for diverse subjects in the ICA-
based dataset, ICA-EMD-based dataset, and FSST-ICA-EMD-based datasets (see Figure 14).
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In addition to seven-person separation via t-SNE, the discriminative ability of the one-
versus-others biometric features were represented in Figure 15.
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different features (Each colored clusters describe different individuals).

The probability distribution functions (PDFs) of the correlation coefficients between
the frontal-lobe electrode locations (Fp1–Fp2 and Fp1–F3) aim to indicate the ability to
discriminate among paired subjects. The largest differentiation (the smallest overlap area)
means better authentication discrimination, and the smallest differentiation (the largest
overlap area) has poor discrimination performances [40]. According to the PDFs, the lowest
discrimination among the cross-subjects and same-subjects was obtained between Subject-1
and Subject-2. The highest separability performances were provided with Subject-6 and
Subject-7 (see Figure 16). Correlation coefficient matrices might offer to provide a unique
pattern for each subject and the relationship between affective discriminability-related
cerebral cortex (see Figure 17). These results demonstrate the feasibility and potential
robustness of this framework against to intra-session and inter-session variability. Fur-
thermore, the least electrode pairs of related cortices may lead to unique information for
each person and the usability of this FSST-ICA-EMD framework-based EOG-biometric
authentication approach [40].
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Figure 17. Unique patterns of correlation matrices for each subject related to the electrode locations
((a–g) plots correspond to the Subject-1 to Subject-7, respectively).

Multivariate analysis of variance (MANOVA/ multivariate extension of ANOVA) was
implemented to compute group significance and to distribute each person among various
FSST time-frequency feature groups [63]. The discrimination ability of the FSTT-based
framework helps to distinguish each individual by these features. Clustering subjects via
MANOVA shows the high group significance separation over the defined scores for each
group (Figure 18) [39]. Hence, p-values were determined as less than or equal to 0.05, and
these values offer to represent a significant difference among the individuals in terms of
the feature-extracted EOGs generated by voluntary eye blinks. The distinctive ability of
the features/framework is to maximize for each person, and the MANOVA scores were
considered statistically relevant for further analysis in this one-versus-others EOG-based
biometric authentication. The length of the EOG segments for training/testing phases in
the ensembled RNN-based deep models might be investigated to provide less amount
of data during enrollment and authentication progress. Thus, a biometric system can be
user-friendly due to the minimized evaluation time. MANOVA can be employed to observe
the influence of the performance of the EOG-biometric system over the significant scores in
different segment lengths [8,39].
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The time-series EOGs responses occur in frequency falling in the range of 0.5–15 Hz/20 Hz
and have dynamic and nonstatic characteristics acquired by the origin of the voluntary
eye blinkings [14,64]. The channel positions on the scalp were estimated to explore the
performances of the raw EOG signals in the FSST-ICA-EMD framework-based biometric
authentication. A minimal subset of recorded channels is targeted for low computational
cost and portability of the equipment in biometric systems [3,40]. These responses corre-
spond to the seven subjects and represent the brain mappings of the unique pattern for
each person. The power spectral density outcomes for 15 Hz were plotted to address the
temporal-spatial patterns. According to these mappings (see Figure 19 [65]) and functional
connectivity (see Figure 20), frontal (high level) and posterior parietal (low level) cortices
reveal the action-specific sites during eye blinking activations.
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Figure 20. The Circular Graph visualizes the brain’s functional connectivity during the voluntary eye
blinkings (Threshold values were applied to draw a clear understanding of functional connectivity
over the correlation matrix for each subject).

Furthermore, Circular Graphs (CGs) were described to calculate the correlation of scalp
locations introducing the dynamics of functional connectivity across multiple channels [66,67].
Visualization functionality during voluntary eye blinkings for the biometric systems is
important to observe nonlinear connectivity in every EOG recording. The connectivity
values between channels were handled to draw the lines connecting the two channels. The
drawn width on the circumference of the circle is to represent the correlation strength of
the connection [68]. The lines were highly connected, clearly marking the frontal-to-other
cortices in both hemispheres.
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The major drawback for EEG-biometric systems is the instability issue over time
due to the environment and mental state fatigue [40]. However, voluntarily generated
EOG responses are much more stable than EEGs, leading to more reliable authentication
progress. The other primary advantage of this FSST-ICA-EMD framework-based EOG-
biometric authentication is to offer fast enrollment and authentication time with high
TAR (≥98%) and low FAR (≤3.33%) scores via processing low time-segment (0.5 s). In
the limited existing biosignal-related biometric research, few of them concern low-time
segment conditions [40,56].

5. Conclusions

To address some of the aforementioned issues, we have developed robust (high TAR
scores: ≥98% and low FAR scores: ≤3.33%) and high verification accuracy (ACC: 99.99%
and AUC: 0.99) FSST-ICA-EMD framework-based EOG-biometric authentication approach
using ensembled RNN-deep models during voluntary eye blinking activities. Our objective
was to form as voluntary straightforward verification task as possible since this robust
framework-based EOG-biometric approach has enabled a 0.5-s short measurement (time-
segment) in training/testing/attempts of a single trial. Thus, it may be capable of high
access enrollment/authentication phases in real-time usage in future research. With the
COVID-19 pandemic and quarantines, the education system has been abruptly transformed
into distance and online courses under e-learning applications [17,18]. Hence, FSST-ICA-
EMD framework-based EOG-biometric authentication to this e-learning platform may offer
sustainable, continuous, effective strategies and procedures.

Future Work

Different adaptations and experiments have been left for future work due to a lack
of time. Firstly, the limitation of this work has multiple electrode usage. However, this
challenge can be updated in future works by considering the functional connectivity plots
and brain mappings for limited and effective channels with dry and Bluetooth electrode
technologies. In this biometric system, RNN-based ensembled models were implemented
for better-recognizing time-series EOG signals. Moreover, leveraging transfer learning can
be applied to state-of-the-art deep learning models and other biosignals/images to provide
multimode biometric strategies [69,70]. Also, pre-trained networks and fuzzy-based expert
system can be investigated on this EOG-biometric system [71,72]. Furthermore, real-time
authentication experiments can be done on the students while accessing the e-learning
platforms.
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