
Citation: Hu, B.; Luo, J. A Robust

Semi-Direct 3D SLAM for Mobile

Robot Based on Dense Optical Flow

in Dynamic Scenes. Biomimetics 2023,

8, 371. https://doi.org/10.3390/

biomimetics8040371

Academic Editor: Ming Xie

Received: 4 July 2023

Revised: 6 August 2023

Accepted: 15 August 2023

Published: 16 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

A Robust Semi-Direct 3D SLAM for Mobile Robot Based on
Dense Optical Flow in Dynamic Scenes
Bo Hu and Jingwen Luo *

School of Information Science and Technology, Yunnan Normal University, No. 768 Juxian Street, Chenggong
District, Kunming 650500, China; hb431368@163.com
* Correspondence: by1503117@buaa.edu.cn

Abstract: Dynamic objects bring about a large number of error accumulations in pose estimation
of mobile robots in dynamic scenes, and result in the failure to build a map that is consistent
with the surrounding environment. Along these lines, this paper presents a robust semi-direct 3D
simultaneous localization and mapping (SLAM) algorithm for mobile robots based on dense optical
flow. First, a preliminary estimation of the robot’s pose is conducted using the sparse direct method
and the homography matrix is utilized to compensate for the current frame image to reduce the
image deformation caused by rotation during the robot’s motion. Then, by calculating the dense
optical flow field of two adjacent frames and segmenting the dynamic region in the scene based on
the dynamic threshold, the local map points projected within the dynamic regions are eliminated.
On this basis, the robot’s pose is optimized by minimizing the reprojection error. Moreover, a
high-performance keyframe selection strategy is developed, and keyframes are inserted when the
robot’s pose is successfully tracked. Meanwhile, feature points are extracted and matched to the
keyframes for subsequent optimization and mapping. Considering that the direct method is subject
to tracking failure in practical application scenarios, the feature points and map points of keyframes
are employed in robot relocation. Finally, all keyframes and map points are used as optimization
variables for global bundle adjustment (BA) optimization, so as to construct a globally consistent 3D
dense octree map. A series of simulations and experiments demonstrate the superior performance of
the proposed algorithm.

Keywords: dynamic scenes; mobile robot; simultaneous localization and mapping (SLAM);
semi-direct method; dense optical flow; relocation

1. Introduction

Simultaneous localization and mapping (SLAM) has gradually become a frontier
research hotspot in the field of intelligent robots. SLAM enables the robot to use the
environmental information perceived by its sensors to estimate its pose in real time and
incrementally construct an environment map. In recent years, with the widespread ap-
plication of depth cameras, it has been possible to simultaneously obtain both the color
and depth information of the environment, i.e., RGB-D information, which provides richer
environmental perception for the SLAM system of mobile robots. Thus, visual SLAM
(VSLAM) using RGB-D information has rapidly developed [1–4].

The solutions of VSLAM mainly include feature-based and direct methods. Specifically,
the feature-based method relies heavily on the feature points extracted from the image
and is sensitive to image quality. In order to improve the robustness of the algorithm in
cases of missing features or blurred images, the direct method has emerged to solve the
camera’s motion by directly comparing the pixel colors of the images; it avoids feature point
extraction and fully utilizes all the information in the image. A typical case is the large-
scale direct monocular (LSD) SLAM based on grayscale images, known as LSD-SLAM [5],
which can achieve semi-dense reconstruction of complex scenes using the CPU. However,

Biomimetics 2023, 8, 371. https://doi.org/10.3390/biomimetics8040371 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8040371
https://doi.org/10.3390/biomimetics8040371
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0003-3366-6995
https://doi.org/10.3390/biomimetics8040371
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8040371?type=check_update&version=2

Biomimetics 2023, 8, 371 2 of 27

LSD-SLAM is very sensitive to the camera’s intrinsic parameters and exposure, and it is
easy to lose tracking when the camera moves quickly. Moreover, due to the inconvenience
of implementing loop closure detection based on direct methods, LSD-SLAM needs to rely
on feature points for loop closure detection. After this, to enhance the efficiency of the
algorithm, a semi-direct monocular visual odometry (SVO) SLAM scheme [6] was proposed,
which only tracks sparse feature points. However, due to the inadequate performance of
deep filtering in SVO, it possesses poor robustness and requires repeated relocalization.

It is noticed that most of the existing SLAM algorithms are designed mainly for static
scenes. Unfortunately, in practical applications, dynamic environmental conditions present
significant challenges to robot perception and decision-making behavior. If the feature
points of dynamic objects are included in robot pose estimation, it will result in erroneous
feature matching, leading to severe trajectory drift and the inability to construct consistent
and accurate environmental maps. Although outlier removal algorithms such as random
sample consensus (RANSAC) [7] can eliminate some dynamic feature points as outliers,
these algorithms still fail when dynamic objects occupy most of the robot’s field of view.
Therefore, reducing the impact of dynamic objects in the scene on robot pose estimation is
crucial for high-performance and robust 3D SLAM.

In summary, to meet the application requirements of mobile robots in dynamic scenes,
this paper proposes a robust semi-direct 3D SLAM algorithm based on dense optical flow.
Compared with the feature-based method, we adopt the semi-direct method in the front-
end to quickly obtain the initial pose of the camera and use dense optical flow to detect the
dynamic areas in the images, which ensures the real-time performance of the algorithm.
Meanwhile, dense optical flow is employed to detect the dynamic regions of the image and
eliminate map points in the dynamic regions. It should be noted that the dynamic objects
in the scene can be accurately detected using the dense optical flow, which in turn obtains
the static map points with high confidence and is utilized in the back-end of the system for
the optimization of the camera pose, effectively suppressing the interference of the moving
objects and improving the robustness of the system while ensuring the accuracy. Then,
high-quality keyframes are selected and ORB feature points are extracted from them for
mapping and optimization in the back-end. Considering the tracking failures that occur in
dynamic scenes, ORB feature points are extracted from the current frame to recover the
robot pose by matching them with keyframes and map points. Finally, global optimization
is applied to the mobile robot pose and sparse map points, and a 3D dense octree map that
can be used for robot navigation and obstacle avoidance is constructed.

The main contributions of this work are as follows:
(1) A high-precision dynamic object detection method based on dense optical flow is

proposed, which can accurately determine the dynamic region of the image.
(2) A high-performance keyframe selection strategy is proposed, reducing the influence

of dynamic objects on the quality of keyframes and improving the accuracy of the algorithm.
(3) Aiming at the problem that it is difficult to relocate after the direct method tracking

loss, an effective relocation method is developed by introducing feature point extraction
and matching, hence improving the success rate of relocation and the robustness of the
algorithm.

The overall structure of this paper is as follows: Section 2 details the system framework,
improvement strategies, and implementation process of our algorithm. Section 3 provides
typical experimental results and comparative analyses, which include a series of simulations
with a public dataset and a case study with a mobile robot in a real scene. Section 4
summarizes the work and proposes future research directions.

2. Related Work

To reduce the impact of dynamic objects in the scene on the robot’s pose estimation, it is
necessary to detect the dynamic objects in the visual odometry at the front-end and remove
their corresponding 3D points generated by these objects. So far, the dynamic detection

Biomimetics 2023, 8, 371 3 of 27

schemes used in the front-end of SLAM can be roughly divided into three categories: optical
flow-based, geometric-based, and deep learning-based methods.

2.1. Optical Flow-Based Methods

As a method for estimating the motion of image pixels, the optical flow-based method
has been widely used in dynamic object segmentation. Derome et al. [8,9] used the residuals
between different images to calculate the optical flow and detect dynamic objects through
the residuals; Wang et al. [10] segmented dynamic objects in the scene by calculating the
dense optical flow of the image and clustering the image using sparse point trajectories.
This method has good detection performance for rigid and non-rigid moving objects in
the scene, but it cannot work in real time; Sun et al. [11] built a dense point cloud map by
combining dense optical flow with the CodeBook model to segment the foreground and
background, thereby reducing the impact of dynamic objects; Zhang et al. [12] applied the
optical flow residuals to dynamic segmentation, namely, first using the PWC-Net [13] to
calculate the optical flow of RGB-D images, then combining the optical flow with camera
motion to calculate the 2D scene flow, using the scene flow for dynamic segmentation, and,
finally, completing the reconstruction of the static background through multiple iterations.
The use of the dense optical flow provides better results for dynamic region detection, but
dense optical flow needs to calculate the motion of all pixel points in the image, which
has a greater impact on the real-time performance of the SLAM algorithm. Likewise, the
calculation of optical flow is also highly susceptible to the influence of motion.

2.2. Geometric-Based Methods

The geometry-based method distinguishes dynamic features from static features
mainly by means of epipolar geometry constraints. Li et al. [14] proposed a static point
weighting method for keyframe edge points, which used weight to indicate the possibil-
ity that a point belongs to a static point, thereby reducing the impact of feature points
generated by dynamic objects on pose estimation; Yuan et al. [15] determined dynamic
objects in a scene by combining point features with line features; Dai et al. [16] introduced
Delaunay triangulation to establish the connection between different points and separated
dynamic feature points from static feature points by the correlation between points; Wei
Tong et al. [17] combined polar geometric constraints and the superpixel segmentation
algorithm to judge dynamic objects, but the segmentation algorithm reduced the real-time
performance of the system; Ai Qinglin et al. [18] classified and filtered the feature points by
strict geometric constraints and finally estimated the pose and constructed the map by static
feature points only. The geometry-based based method has high real-time performance,
but it struggles to deal with non-rigid dynamic scenes.

2.3. Deep Learning-Based Methods

Most recently, deep learning-based dynamic detection methods have shown high accu-
racy. The DS-SLAM proposed by Yu et al. [19] employed a semantic segmentation network
to filter out dynamic objects in the scene and then calculated the precise pose of the camera
based on the remaining static points; Yan et al. [20] performed dynamic segmentation by
combining motion residual information of adjacent frames with the YOLACT++ [21,22]
instance segmentation network, and the results showed high segmentation accuracy; Dy-
naSLAM [23] segmented a priori dynamic objects in the scene by adopting the instance
segmentation network Mask R-CNN [24] and utilized multi-view geometry to detect poten-
tial dynamic objects, which improved the accuracy of the SLAM system to detect dynamic
objects. Unfortunately, these deep learning-based approaches need a priori information
and have the characteristic of high computational complexity, making them difficult to run
in real time.

Biomimetics 2023, 8, 371 4 of 27

3. Algorithm Framework

The overall framework of our scheme is shown in Figure 1. For the front-end, the
sparse direct method is utilized to preliminarily estimate the pose of the robot, and the first
frame of the RGB-D image acquired by the depth camera is used as the initial keyframe.
The initial pose of the robot is calculated by minimizing the photometric error, and the
correspondence of pixels is optimized by feature alignment to obtain the matching points
of adjacent frames. Then, the dense optical flow field of two adjacent frames is calculated
to judge the dynamic area. In order to reduce the computational complexity of the dense
optical flow, down-sampling processing is performed on the image. Meanwhile, to reduce
the influence of robot motion on optical flow calculation, the dense optical flow of two
adjacent frames is calculated by combining the homography matrix. By setting a dynamic
threshold to separate dynamic regions in the scene, the points in the dynamic area in the
current frame are eliminated, and the remaining static points are chosen to further optimize
the robot’s pose. After successful tracking of the robot’s pose, a new keyframe is selected
and the ORB feature points are extracted in its static area.

Figure 1. Scheme of the robust semi-direct 3D SLAM for mobile robot based on dense optical flow in
dynamic scenes.

For the back-end, the keyframe’s pose and map points continue to be optimized by
local bundle adjustment (BA). If the robot poses tracking fails, relocation is performed using
the feature point method, where ORB feature points are extracted in the current frame and
matched with the previous keyframes or map points in the map to recover the pose. In
this way, all keyframes and map points are then employed as optimization variables for
global BA optimization, resulting in a globally consistent robot trajectory and 3D dense
map. Finally, the 3D navigation map is generated by coupling with the octree map.

3.1. Mobile Robot’s Pose Tracking

In our work, after obtaining an RGB-D image with the depth camera, the sparse direct
method is used to preliminarily estimate the robot’s pose, and the initial pose of the robot
is computed by minimizing the photometric error between the corresponding pixel points
of the same 3D point in adjacent frames. When the previous frame is successfully tracked,
the constant velocity motion model is exploited to predict the pose of the current frame,
and the 3D points tracked in the previous frame are projected to the current frame by the
estimated pose. Based on the assumption of photometric constancy, the photometric error
of the pixel points corresponding to the same 3D point between the adjacent frames Ik, Ik−1
is as follows:

δI(T, u) = Ik

(
π
(

T · π−1(u)
))
− Ik−1(u) (1)

where T is the robot pose, u is the position of the pixel point in the previous frame, and π is
the projection function.

However, in practical applications, there may be a photometric difference between two
adjacent frames caused by factors such as illumination, shadow, exposure, etc. Therefore, to
reduce the photometric difference between adjacent frames, this paper introduces two pho-

Biomimetics 2023, 8, 371 5 of 27

tometric compensation variables α and β to perform inter-frame photometric compensation
on the previous frame image, i.e.,

δI(T, u) = Ik

(
π
(

T · π−1(u)
))
− (Ik−1(u + α) + β) (2)

where α is the photometric gain coefficient, and β is the offset of photometric.
By minimizing the photometric error between adjacent frames, the rough pose estimate

Tk,k−1 from the previous frame to the current frame can be obtained as follows:

Tk,k−1 = arg min
Tk,k−1

1
2 ∑

i∈R

∥∥δI(Tk,k−1, ui)
∥∥2 (3)

where ui is the ith pixel in the previous frame, R is the whole image.
For a general case, only using adjacent frames to calculate the robot’s pose is prone

to cumulative drift, so it is necessary to search for local maps to obtain more map points
that need to be tracked and optimized. Specifically, the local map is first tracked to obtain
the covisibility keyframes and covisibility map points of the current frame, and then the
covisibility map points are projected to the current frame using the poses obtained in the
previous step. For each successfully projected map point, the correspondence between
the pixel points and map points of the current frame is optimized by minimizing the
photometric error of the corresponding pixel points.

As shown in Figure 2, in order to ensure the uniform distribution of the projected
points, the current frame image is divided into a grid of 5× 5, and the covisibility keyframe
with the shortest distance to the current frame is set as the reference keyframe of the current
frame. Then, by tracking the covisibility map points between the reference keyframe and
the current frame, the corresponding map points in the reference frame are projected onto
the current frame. Further, the grid is divided according to the current frame, and then a
maximum of 5 map points are selected within each grid for pixel point matching. Owing to
the inaccuracy of the preliminary pose estimation, the projected position of the map point
in the current frame has a certain error compared to the real position. According to the
photometric consistent assumption, the photometric value of the pixel points corresponding
to the same map point in the reference keyframe and the current frame is consistent. Thus,
the correspondence of pixel points can be optimized by minimizing the photometric error
as follows:

ui
′ = arg min

ui

1
2

∥∥Ik
(
u′ i
)
− Ir(ui)

∥∥2, ∀i (4)

where ui
′ and ui denote the position of the pixel point in the current frame and the covisi-

bility keyframe, respectively.
Since there may be scale problems caused by the distance and angle between the

covisibility keyframe and the current frame, the two frames cannot be aligned directly, so
the affine matrix Ai [6] is introduced and the pixel points in the reference keyframe are
affine warped and then aligned with the current frame:

ui
′ = arg min

ui

1
2

∥∥Ik
(
ui
′)− Ai Ir(ui)

∥∥2, ∀i (5)

Further, the Gauss–Newton method is adopted to solve the above equation to optimize
the correspondence of pixel points.

Biomimetics 2023, 8, 371 6 of 27

Figure 2. Calculation of correspondence between pixel points.

3.2. Dynamic Region Detection

The main idea of optical flow is based on the photometric consistency assumption
between adjacent frames [25], and the optical flow equation can be written as follows:

I(x, y, t) = I(x + dx, y + dy, t + dt) (6)

where I(x, y, t) denotes the photometric function of the pixel point (x, y), and (dx, dy)
denotes the distance that the pixel point (x, y) moves within time step dt. Assuming that fx
and fy are the horizontal optical flow amplitude and vertical optical flow amplitude of the
pixel point, respectively, we obtain the following:

fx =
dx
dt

, fy =
dy
dt

(7)

To reduce the impact of dynamic objects on the robot’s pose estimation, this paper
combines dense optical flow for dynamic detection and eliminates dynamic points in
dynamic regions. The remaining static points are used to further optimize the robot’s pose.
The dense optical flow method determines the dynamic regions in the image by calculating
the motion of each pixel in the image. Compared with the sparse optical flow, the dense
optical flow can provide more detailed motion information, but the dense optical flow is
more computationally intensive. Scenarios for the dynamic areas’ detection is shown in
Figure 3.

Biomimetics 2023, 8, 371 7 of 27

Figure 3. Scenarios for the dynamic areas’ detection.

The traditional optical flow is based on the assumption of a static background and
can effectively track dynamic objects when the mobile robot is stationary or has a small
displacement. However, when the mobile robot moves in translation or rotation, the image
will undergo deformation, resulting in the static object and the background generating
optical flow as well, which may interfere with the detection of dynamic objects. To reduce
the impact of the motion of the mobile robot on the optical flow calculation, this paper
adopts the homography matrix to compensate the image. The homography matrix charac-
terizes the correspondence of 3D points on the same plane at different viewpoints, which
can correct the image deformation caused by the motion of the mobile robot. Equation (8)
represents the coordinate correspondence before and after the homography transformation,
and Ht+1 is the homography matrix from frame t to frame t + 1.xt+1

yt+1
1

 = Ht+1,t

xt
yt
1

 (8)

In this paper, the correspondence between pixel points is calculated by minimizing
the photometric error to optimize the correspondence of pixel points, so that the matching
points between adjacent frames can be obtained, and then the homography matrix of two
adjacent frames can be obtained by four pairs of matching points. However, on account
of the excessive number of matching points in adjacent frames and a large number of
mismatches, the RANSAC algorithm is employed to solve the homography matrix to
obtain more robust results. Then, the homography matrix is further used to compensate for

Biomimetics 2023, 8, 371 8 of 27

the current frame image, and the optical flow field is computed with the previous frame
image. This approach effectively mitigates optical flow interference caused by camera
motion and enhances the accuracy of solving the optical flow field.

Typically, dense optical flow requires calculating the motion of each pixel in the image,
which consumes a large amount of computing resources. In order to improve the efficiency
and real-time performance of the algorithm, this paper adopts down-sampling the image as
a means of improving algorithm efficiency and real-time performance. After obtaining the
image It at time t and the image I′t+1 after homography compensation at time t + 1, down-
sampling is performed on the two frames to reduce their resolution. In order to ensure
that the details and clarity of the original image are retained after the down-sampling, the
bilinear interpolation [26] method is utilized for down-sampling, as shown in the following:

J(i, j) =

4
∑

k=1
(xk − x)(yk − y)pk

(x2 − x1)(y2 − y1)
(9)

where J(i, j) denotes the value of the (i, j)th pixel point of the down-sampled image, pk de-
notes the value of the kth pixel point in the original image, (x, y) denotes the corresponding
coordinates of the pixel points in the original image, and (xk, yk) denotes the coordinates of
the 4 nearest pixels to (x, y).

Then, the dense optical flow of images It and I′t+1 before and after down-sampling is
calculated to obtain a low-resolution optical flow field. Finally, the low-resolution optical
flow field is up-sampled again to recover to the resolution of the original optical flow field
image. Although this processing may reduce the accuracy of optical flow calculations to a
certain extent, it can significantly improve the time of dense optical flow calculation.

After obtaining the optical flow field of the original resolution image, in order to
distinguish between dynamic and static regions in the image, the optical flow amplitude f
is calculated for each pixel point (x, y) based on its horizontal optical flow amplitude fx and
vertical optical flow amplitude fy, i.e.,

f =
√

fx2 + fy2 (10)

In general, the magnitude of optical flow amplitude f can be used to represent the
displacement of a pixel point between two frames. The optical flow amplitude f of each
pixel point (x, y) is compared with a set dynamic threshold f th, and if the optical flow
amplitude f > f th, the pixel point is considered to have a large displacement between
two frames and is marked as a dynamic pixel point Pdynamic; otherwise, it is a static pixel
point Pstatic, as shown in Equation (11). In the subsequent optimization process, the points
falling in the dynamic region are eliminated to improve the efficiency and accuracy of
the optimization.

(x, y) ∈
{

Pdynamic,
√

fx2 + fy2 > fth

Pstatic, otherwise
(11)

As a note, the setting of dynamic threshold f th is based on the rotation and translation
of the robot, so its expression can be written as follows:

f th = α

∥∥TrwTcw
T
∥∥

F
‖t‖2

(12)

where Trw∈SE(3) is the transformation matrix of the reference keyframe from the world
coordinate system to the camera coordinate system, Tcw∈SE(3) is the transformation matrix
of the current frame from the world coordinate system to the camera coordinate system,
TrwTcw

T describes the rotation of the camera, ‖·‖F is the Forbenius norm, defined as the
square root of the sum of the squares of the absolute values of all elements of the matrix, t is

Biomimetics 2023, 8, 371 9 of 27

the translation of the camera vector, ‖·‖2 is the Euclidean norm, defined as the squared sum
of the absolute values of all elements of the vector and recalculated, and α is the scale factor.

As the calculation of optical flow is affected by camera rotation and translation, when
the range of the robot’s motion is large, the dynamic threshold f th increases with the
increase in the transformation matrix of the current frame and the reference frame, so as to
filter out the optical flow noise caused by rotation; when the robot is panning or stationary,
the dynamic threshold f th decreases with the increase in the translation vector, allowing
the robot to detect some small dynamic objects in the scene during motion.

Figure 4 compares the results of different optical flow detection methods, where
Figure 4a shows the original input image with a pedestrian in motion in the scene, while
the camera is also moving to the right. From Figure 4b, it can be seen that the sparse
optical flow only detects a few dynamic feature points on the pedestrian, and some of
the feature points in the background are also mistakenly detected as dynamic points. In
Figure 4c, the red area represents the detected dynamic areas and we observed that although
pedestrians are detected as dynamic objects, the background and stationary objects are
also mistaken for dynamic regions because of the camera motion. We could reasonably
conclude from Figure 4d that our method removes most of the false detections and only
detects the pedestrian part as a dynamic area, indicating that the use of homography matrix
compensation effectively reduces the impact of camera motion on optical flow and the
dynamic threshold still provides good detection results for optical flow during camera
rotation and rapid motion, thus improving the robustness of optical flow calculation.

Figure 4. Comparison of the results for different optical flow detection methods: (a) original image;
(b) sparse optical flow; (c) dense optical flow; (d) dense optical flow with homography compensation.

3.3. Mobile Robot’s Pose Optimization

Through the above processing, the dynamic region information of the current frame
can be well determined. To reduce the impact of dynamic objects on robot pose estimation,
the points falling in the dynamic area of the current frame are marked as dynamic points
and eliminated, while the map points that successfully match with the points in the dynamic
area of the current frame are also considered as outliers and removed from the local map.
After removing the dynamic points, the feature points set us that matches the static map
points is obtained and, by minimizing the reprojection error, the robot’s pose is optimized
again to reduce the impact of dynamic objects on the robot’s pose, i.e.,

Tk,w = arg min
Tk,w

1
2 ∑

ui∈us

∥∥ui − π(Tk,wPi)
∥∥2 (13)

3.4. Keyframe Selection

In our case, the front-end of the algorithm performs pose tracking through direct
methods, and the subsequent steps such as loop closure detection, relocation, and mapping
are all based on keyframes. Therefore, the reasonable selection of keyframes can enhance
the efficiency of the algorithm and lower the memory usage of the system. At present, most
SLAM algorithms select keyframes by mainly focusing on the time interval from the last
keyframe insertion, the number of feature points in the current frame, and the number of
keyframes in the system, without considering the influence of camera motion and dynamic

Biomimetics 2023, 8, 371 10 of 27

objects in the scene. Therefore, drawing on the conventional keyframe selection strategy,
we add the pose transformation of the robot and the optical flow amplitude of the current
frame as the condition of keyframe selection.

First, the rotation matrix Rrc of the current frame relative to the reference frame is
calculated by using the rotation matrix of the current frame and the reference keyframe
relative to the world coordinate system, i.e.,

Rcr = RrwRT
cw (14)

where Rcw and Rrw denote the rotation matrix of the current frame and the reference
keyframe relative to the world coordinate system, respectively. Furthermore, the rotation
angle ∆αi of the robot can be computed by the rotation matrix Rcr as follows:

∆αi = arccos
(

tr(Rcr)− 1
2

)
(15)

where tr(·) is the trace of the matrix and defined as the sum of the diagonal elements of
the matrix.

Then, the translation ∆tcr of the current frame relative to the reference frame is estab-
lished by the translation vector of the current frame tcw and the translation vector of the
reference frame trw, that is:

∆tcr = tcw − trw (16)

According to the rotation angle ∆αi and the translation ∆trc, the robot’s pose transfor-
mation V could be expressed as follows:

V = (1− β)‖∆tcr‖2 + β

(
w · ∆αi

π

)
(17)

where ‖·‖2 is the Euclidean norm, w is the scale factor, and β is the weight of camera
rotation angle. For a set threshold Vth, V > Vth means that the current camera motion is
larger, which may lead to difficulty in feature point matching or tracking loss. Thereby, the
current frame needs to be selected as a keyframe to avoid tracking failure or pose drift.

Next, the optical flow amplitude is exploited to determine whether to select a keyframe.
More specifically, in the dynamic region detection stage, the optical flow amplitude fi of
each pixel in the image is obtained, and then the variance σ2 of the optical flow amplitude
of all pixels in the whole image is calculated to indicate the degree of image variation in
that frame. Thus, we obtained the following:

σ2 =
1
N

N

∑
i=1

(
fi −

1
N

N

∑
i=1

fi

)2

(18)

where N is the total number of pixels in the image. If the variance of the optical flow
amplitude of a certain frame is relatively large, it means that the motion of some pixel
points in that frame deviates from the average motion and there may be the influence of
dynamic objects.

Additionally, the ratio σ between the optical flow amplitude variance σc
2 of the

current frame and the optical flow amplitude variance σr
2 of the previous keyframe is

calculated, i.e.,

σ =
σ2

c
σ2

r
(19)

For a set threshold σth, if σ > σth, the current frame has undergone significant changes
compared to the previous keyframe, which may be influenced by dynamic objects, and
thus the current frame is not suitable as a keyframe. In this case, we should skip the
current frame and continue to judge subsequent frames. This strategy can effectively
reduce the influence of dynamic objects on keyframes, enhance the stability and reliability

Biomimetics 2023, 8, 371 11 of 27

of keyframes, and decrease the redundancy of keyframes. After inserting a new keyframe,
ORB feature [27] extraction is performed in the static area of the keyframe, and then
new map points are constructed based on the feature matching relationship between the
keyframe and its covisibility keyframe. Next, the keyframes and map points are filtered
to remove some low-quality or redundant keyframes and map points. Finally, local BA is
utilized to optimize the keyframe pose and map points, resulting in a more accurate and
stable local map.

3.5. Relocation and Global Optimization

Considering uncertain situations, e.g., motion blur and illumination changes in dy-
namic scenes, the direct method may fail to track the pose of mobile robots. In this case, the
relocation algorithm is needed to recover the robot’s pose. For the direct method, when the
tracking fails, the photometric information of the image cannot be used for relocation. Thus,
this paper introduces the feature point method for relocation and determines whether to
directly match the map points to restore the pose based on the number of selected candidate
keyframes. The relocation process is illustrated in Figure 5, and its procedure is listed in
Algorithm 1.

Figure 5. Scenarios for the relocation process.

Biomimetics 2023, 8, 371 12 of 27

Algorithm 1: Relocation algorithm

input: current frame Icur, keyframe Kf, local map Map
output: camera pose pose
1 if Tracking→ Lost then
2 pi ← Extraction(Icur)
3 BowV← Compute (pi)
4 Icand {Kfi|i = 1. . .Ncand}← Detect (Kf, BowV)
5 if n > 2 then
6 for i = 0→Ncand do
7 Ni ←Matching(Icur, Kfi)
8 if Ni > 15
9 end for
10 pose← PnPsolver(Ni)
11 Else
12 update(Map)
13 M = {mi| i = 1. . .n }← Search(BowV, Map)
14 Ni ←Matching(Icur, mi)
15 if Ni > 15
16 pose← PnPsolver(Ni)
17 if Nin > 50
18 relocalization← Optimize(pose)
19 end if
20 end if

After the front-end experiences tracking loss, we first extract ORB features from
the current frame Icur that has failed to track and calculate its bag-of-words [28] vector
vc = {vci|i = 1. . .n}. Then, the L1 distance of the bag-of-words vector is chosen to calculate
the similarity score s between the current frame and its covisibility keyframes, i.e.,

s(vc, vk) =
1
2∑

i
{|vci|+ |vki| − |vci − vki|} (20)

where vk is the bag-of-words vector of covisibility keyframes, vci, and vki are the weights of
the ith word in the current frame and keyframe, respectively.

In terms of the ranking of keyframe similarity scores from highest to lowest,
several keyframes Kf with the highest scores are selected as candidate keyframe sets
Icand = {Kfi|i = 1. . .n}. Then, all the candidate keyframes are traversed, the feature points
between the current frame Icur and all the candidate keyframes Kfi are quickly matched
using the bag-of-words vector, and the effective number of matches Ni is filtered according
to the quality of the matching points. If the effective number of matches of a candidate
keyframe is greater than 15, it is set as the reference keyframe, and the EPnP [29] algorithm
is employed to solve the relative poses of the reference keyframe and the current frame.
Namely, the 3D points are represented as a combination of 4 control points, and only the 4
control points are optimized. The coordinates of 3D points in the world coordinate system
and camera coordinate system are represented in the form of control point coordinates,
which are respectively modeled as follows:

pw
i =

4
∑

j=1
aijcw

j

pc
i =

4
∑

j=1
aijcc

j

(21)

where pw
i and pc

i are the coordinates of the ith 3D point in the world coordinate system and
the camera coordinate system, respectively, cw

j and cc
j are the coordinates of the jth control

point in the world coordinate system and the camera coordinate system, respectively, and

Biomimetics 2023, 8, 371 13 of 27

αij is a barycentric coordinate, which can be obtained according to the projection principle
of the camera as follows: [

ui
1

]
= Kpc

i =
1
wi

K
4

∑
j=1

aijcc
j (22)

cc
j = Rcw

j + t (23)

where wi is the depth value and ui is the 2D coordinate corresponding to pc
i .

By solving Equation (23), the coordinates cc
j of the control point in the camera co-

ordinate system can be obtained, thereby obtaining the coordinates pc
i of the 3D point

in the camera coordinate system. Then, the corresponding relationship between the 3D
points in the world coordinate system and the camera coordinate system of the current
frame is used to solve the pose of the current frame relative to the keyframe, and the
Levenberg–Marquardt method [30] is utilized for optimization, i.e.,

T = arg min
1
2

n

∑
i=1

ρ
(
‖pc

i − Tpw
i ‖

2
)

(24)

where ρ(·) is the robust kernel function and T is the robot pose.
If the number of optimized inner points is greater than 50, the current frame is judged

to be successfully relocated. If the number of candidate keyframes is too small, it may
not be possible to find a frame that is sufficiently similar to the current frame, or if the
similarity between the found frame and the current frame is too low, then using image
retrieval methods may not be able to successfully recover the robot pose. Therefore, in this
case, the “image–map matching” method is used for relocation. It is important to note that
the approach estimates the robot pose by directly matching the feature points of the current
frame with the map points, which does not rely on the number of candidate keyframes.

When the number of candidates keyframes Ncand < 2, it becomes difficult and unreliable
to use image matching for relocation. So, the “image–map matching” relocation method
is used in this case. First, the local map is updated, i.e., for each visual word vci in the
bag-of-words vector vc of the current frame and, if its TF-IDF [31] value in the current
frame is greater than the threshold vth, it can be employed to characterize the current frame,
and the index of the corresponding leaf node of the visual word in the K-tree is used to
quickly find all map points that contain the visual word to obtain a subset M = {m1,. . ., mn}
of map points. Then, the nearest neighbor search algorithm [32] is used to fast match the
feature point pi of the current frame with the map point mi in the subset of map points.
On this basis, using (pi, mi) to represent the matching relationship between feature points
and map points, the set of matching point pairs between feature points and map points is
{(pi, mi)}n

i=1. During the matching process, the EPnP algorithm is utilized to improve the
efficiency and accuracy, and then the robot’s pose T is solved based on the obtained 2D–3D
matching points, i.e.,

T = arg min
1
2

n

∑
i=1

ρ
(
‖pi − π(Tmi)‖2

)
(25)

where π is the projection function and ρ(·) is the robust kernel function. Using the
Levenberg–Marquadt method to solve the above equation can effectively improve the
accuracy of the pose solution and finally successfully recover the current camera tracking.

The image–map matching relocation method can effectively improve the success rate
of relocation, but it may cause drift after restoring the mobile robot’s pose, so loop closure
detection can be adopted to eliminate the accumulated drift of the system. When the
system detects a closed loop, the global BA is performed to continue to optimize the mobile
robot’s pose. As the robot continues to move, the number of keyframes and map points
in the system will continue to increase, which will place a huge burden on the system
optimization. The location of map points in the scene will converge to a value after being
observed many times, and it is often futile to continue optimizing the location of map

Biomimetics 2023, 8, 371 14 of 27

points. Therefore, the system is optimized only for certain moments of the mobile robot
poses, i.e., the pose graph is used for optimization, and the pose points of the optimized
map are robot poses and map points, and the edges represent the constraint relations
between them. Assuming the pose of the mobile robot at each pose point is T1, T2, T3,. . .,
Tn, then, the motion relationship between any two Ti and Tj can be expressed as:

Tij = T−1
i Tj (26)

In terms of BA optimization, the error is established as follows:

eij = ln
(

TijT−1
i Tj

)
(27)

Further, the global optimization is performed for all position points of the robot using
the following overall objective function:

(T1, T2, · · · , Tn)opt = min
1
2 ∑

i,j∈ξ

eT
ij∑

−1
ij eij (28)

where ξ is all edges in the pose graph.
The use of the global BA algorithm can further optimize the mobile robot poses and

map points, reduce the cumulative drift of the whole system, and improve the accuracy
and robustness of the system.

3.6. 3D Navigation Map Building

In our work, to enable the map to be used for robot navigation and autonomous obsta-
cle avoidance, we capitalize on the RGB image information, depth value, and keyframes’
pose to build a 3D dense point cloud map of the scene, and then combine the octree map to
further generate a 3D navigation dense map. Typically, 2D points can be converted into
3D point clouds by using the RGB information and depth value of the keyframes, and the
conversion relationship is as follows:

s

 u
v
1

 = K(R|t)

xw
yw
zw

 (29)

where s is the scaling factor of depth value, K is the camera internal parameter, R and
t are the rotation matrix and translation vector, respectively, [u v 1]T are the pixel point
coordinates, and [xw yw zw] are the 3D points in space. According to Equation (29), the
coordinates of the real point cloud can be obtained as follows:

xw
yw
zw

 =


z(u−cx)

fx
z(u−cy)

fy
z

 (30)

where cx, cy, fx, fy denote the camera internal parameters.
When constructing a dense map, it is susceptible to the influence of point clouds

generated by dynamic objects. If the map contains information about dynamic objects,
the robot cannot determine whether the object exists during navigation or autonomous
obstacle avoidance. Hence, in our case, the dynamic points are judged based on the optical
flow amplitude of each pixel in the image. During the process of map building, once a
keyframe is inserted, each pixel in the keyframe needs to be traversed. First, these pixels
with abnormal depth values are eliminated, and then the magnitude of the optical flow
amplitude of the pixel point is determined. If its optical flow amplitude is greater than the
threshold, the point is determined as a dynamic point and removed from the dense point

Biomimetics 2023, 8, 371 15 of 27

cloud. After eliminating the dynamic point cloud, the static point cloud is compensated
by keyframes from different perspectives to construct a complete static dense point cloud
map. Due to the existence of certain redundant information between adjacent keyframes, a
large number of repeated point clouds will be generated in the process of constructing a
dense map, resulting in an increase in required storage space. Therefore, voxel filtering is
employed to down-sample point clouds, which not merely maintains the shape features of
the point cloud, but removes certain noise, smooths the interval between point clouds, and
finally adopts statistical filtering to filter out outliers again. The process of 3D dense map
construction is shown in Figure 6.

Figure 6. Scenarios for the 3D dense map construction.

Although the dense point cloud map can intuitively represent each object in the scene,
the point cloud map occupies a large amount of storage space and cannot be used for
robot navigation and obstacle avoidance. Therefore, this paper further constructs an octree
map based on the dense point cloud map. The leaf nodes of the octree map represent
the occupancy state of each voxel in the form of probability. If a leaf node is observed as
being occupied, the probability is constantly approaching 1. If the leaf node is observed
as unoccupied, the probability is constantly approaching 0. To ensure that the probability
does not exceed the interval, the logit function is usually used instead of the probability
description, i.e.,

l = log it(p) = log
p

1− p
(31)

where l is the logarithm of probability, and p is the probability of 0~1. When a node
is continuously observed to be occupied, l will continue to increase; when the node is
unoccupied, l will continue to decrease. Assuming that n denotes a node and the observed
value is z, the probability logarithm of the node from the beginning to time t is L(n|z1:t),
then, at time t + 1, the probability logarithm is established as follows:

L(n|z1:t+1) = L(n|z1:t) + L(n|zt+1) (32)

Apparently, adopting this form can make map updates more flexible and convenient.

4. Simulations and Experiments

To verify the effectiveness of the proposed algorithm, a series of simulations and
experiments were conducted on the TUM public dataset and real scenes, respectively. The

Biomimetics 2023, 8, 371 16 of 27

experimental platform was as follows: Intel Core i5-7300HQ, 2.4 GHz CPU, with 16 G
RAM, no GPU acceleration, running under the Ubuntu 18.04 operating system.

4.1. Simulation Analysis with TUM Dataset

In this work, the “walking” and “sitting” dynamic sequences from the TUM RGB-D
datasets [33] were selected to test the performance of the SLAM algorithm in dynamic
scenes. The dynamic sequences correspond to different camera motion modes and scene
structures, including static, xyz, halfsphere, and rpy. Each sequence contains RGB images,
depth images, and the system’s true value trajectory, which can be used to evaluate the
system’s localization accuracy. Pedestrians walked around a desk in the dynamic sequence,
while the camera was in constant motion, putting forward high requirements for the
robustness of the SLAM system.

To validate the capability of dynamic point culling in the front-end of the proposed
algorithm, experiments were conducted on two scenarios: the camera, relative to the
background, being stationary and moving. Figure 7 displays the running results of ORB-
SLAM2 and our algorithm under the walking_xyz sequence, where the 781st frame was
a motion scene with the camera stationary relative to the background. It can be found
that ORB-SLAM2 extracted many features of pedestrians, while our algorithm successfully
obtained the dynamic regions in the scene by the motion detection algorithm and rejected
the features falling in the dynamic regions. Figure 8 illustrates the running effects of the
two tested algorithms under the walking_half_sphere sequence, where the 58th frame
was a scene of camera motion relative to the background. It is clear that, compared to
the ORB-SLAM2, our algorithm effectively removed feature points in dynamic regions.
Therefore, it can be concluded that the front-end of our algorithm can successfully detect
the dynamic regions and reject their feature points in both cases.

Figure 7. Comparison of the dynamic point rejection effects in the case of the camera being stationary,
(red box represent dynamic point clouds): (a,b) are feature point extraction results and correspond-
ing sparse pose graph of ORB-SLAM2, respectively; (c,d) are feature point extraction results and
corresponding sparse pose graph of ours, respectively.

Figure 8. Comparison of dynamic point rejection effect in the case of the camera being in motion
(red box represent dynamic point clouds): (a,b) are feature point extraction results and correspond-
ing sparse pose graph of ORB-SLAM2, respectively; (c,d) are feature point extraction results and
corresponding sparse pose graph of ours, respectively.

Biomimetics 2023, 8, 371 17 of 27

To evaluate the error performance of the algorithm in dynamic scenes, a series of
simulations were conducted on the highly dynamic “walking” sequence and slightly
dynamic “sitting” sequence of the TUM datasets, and then absolute trajectory error (ATE)
and relative pose error (RPE) were employed as indicators for system accuracy. Herein,
ATE was used to evaluate the accuracy of SLAM systems, which directly calculates the error
between the actual and estimated poses of the system, reflecting the global positioning
accuracy of the system; RPE calculates the difference between the actual and estimated
pose changes in the same time interval to evaluate the drift of the SLAM system, including
relative translation error (RTE) and relative rotation error (RRE). In this study, to fully
demonstrate the effectiveness of the proposed algorithm in dynamic scenes, in addition to
comparing with ORB-SLAM2 [34], the other five dynamic SLAM algorithms were selected,
including DVO + MR [35], BAMVO [36], DynaSLAM, and two different methods proposed
by Dai et al. [16] and Sun et al. [11], respectively.

The RMSE comparisons of RTE and RRE between our algorithm and other methods
under different image sequences are respectively reported in Tables 1 and 2. Apparently,
our algorithm achieved better rotation and translation RMSEs under most of the image
sequences. In slightly dynamic sequences, the performance of our algorithm was compara-
ble to other algorithms. Since the ORB-SLAM2 directly incorporates the feature points of
dynamic objects into pose optimization without processing them, its pose estimation drift
was significant, and the RMSEs of relative rotation and relative translation were greater
than other methods. For all highly dynamic image sequences, the RTE and RRE of our algo-
rithm outperformed the DVO + MR and BAMVO algorithms, with an average reduction of
79.6% and 80.4% in translation RMSE and 78.9% and 87.1% in rotation RMSE. Remarkably,
due to the large rotation and fast motion speed of the camera along the hemispherical
trajectory in the walking_rpy sequence, the dynamic threshold of the proposed algorithm
changes significantly, and the detection effect of dynamic objects was poor. Thus, in the
walking_rpy sequence, the translation and rotation RMSEs of our algorithm were higher
than that of the dense optical flow method, but in the other three highly dynamic sequences,
the rotation and translation errors of our algorithm were better than that of the dense opti-
cal flow method. Compared with the geometric method, our algorithm performed better
in walking_static and walking_xyz sequences, and in the walking_half and walking_rpy
sequences, the positional errors of our algorithm and the geometric method were on the
same order of magnitude. From Tables 1 and 2, it can also be found that our algorithm
performed poorly compared to deep learning-based DynaSLAM on walking sequences,
but on the other three sequences, the error in our algorithm was essentially the same as the
one in the DynaSLAM.

Table 1. Comparison of RMSE for relative translation error (RTE) among different algorithms.

Sequences

Translation RMSE/(m/s)

ORB-
SLAM2

DVO +
MR Geometric

Dense
Optical

Flow
BAMVO DynaSLAM Ours

Static
Environment

fr2_desk 0.1279 - - - 0.0299 - 0.1217
fr3_long_house 0.0123 - - - 0.0332 - 0.0125

Slightly
Dynamic

Environment

fr2_desk_person 0.0110 0.0172 0.0362 0.0213 0.0352 - 0.0112
fr3_sitting_static 0.0158 - 0.0138 - 0.0248 0.0126 0.0145
fr3_sitting_xyz 0.0134 0.0330 0.0134 0.0357 0.0482 0.0208 0.0153
fr3_sitting_rpy 0.0386 - 0.0320 - 0.1872 - 0.0437

Highly
Dynamic

Environment

fr3_walking_static 0.1557 0.0842 0.0141 0.0307 0.1339 0.0133 0.0076
fr3_walking_xyz 1.0913 0.1214 0.1266 0.0668 0.2326 0.0254 0.0269
fr3_walking_half 1.0289 0.1672 0.0517 0.0611 0.1738 0.0394 0.0317
fr3_walking_rpy 1.2863 0.1751 0.2299 0.0968 0.3584 0.0415 0.2123

Biomimetics 2023, 8, 371 18 of 27

Table 2. Comparison of RMSE for relative rotation error (RRE) among different algorithms.

Sequences

Rotation RMSE/(◦/s)

ORB-
SLAM2

DVO +
MR Geometric

Dense
Optical

Flow
BAMVO DynaSLAM Ours

Static
Environment

fr2_desk 1.8524 - - - 1.1167 - 1.6889
fr3_long_house 0.0249 - - - 2.1583 - 0.0257

Low
Dynamic

Environment

fr2_desk_person 0.4491 0.7341 1.3951 0.7744 1.2159 - 0.4582
fr3_sitting_static 0.3633 - 0.3786 - 0.6997 0.3416 0.3775
fr3_sitting_xyz 0.5817 0.9828 0.5729 1.0362 1.3885 0.6249 0.5982
fr3_sitting_rpy 0.9358 - 0.9047 - 5.9834 - 1.2253

High
Dynamic

Environment

fr3_walking_static 7.0757 2.0487 0.3293 0.8998 2.0833 0.3000 0.2623
fr3_walking_xyz 18.6722 3.2346 2.7413 1.5950 4.3911 0.6252 0.6530
fr3_walking_half 23.1243 4.3755 0.9854 1.9004 4.2863 0.8933 0.8729
fr3_walking_rpy 21.6317 5.0108 4.6327 2.5936 6.3398 0.9047 4.1323

Table 3 compares the RMSE for the ATE among different algorithms under three types
of image sequences. It is clear that the error of our method was basically on the same
order of magnitude as other algorithms in both static and slightly dynamic scenes. In
highly dynamic scenes, although the ORB-SLAM2 optimized the camera pose by back-end
projection, because of too many feature points generated by dynamic objects, the ATE of
ORB-SLAM2 was relatively large. Instead, our algorithm detected and eliminated dynamic
points in the front-end, resulting in a 92.7% improvement in accuracy compared to ORB-
SLAM2. From Table 3, it can be seen that the two deep learning-based methods DynaSLAM
and DS-SLAM had higher accuracy. The accuracy of our method was not as good as
DynaSLAM, but it was similar to DS-SLAM, and it is worth mentioned that our method
did not involve a GPU. Additionally, compared with the other three tested algorithms, our
algorithm performed well in walking_static, walking_xyz and walking_half sequences, but
the dynamic detection result of our algorithm was poor due to the excessive camera motion
in walking_rpy sequences, so the localization accuracy of our algorithm in walking_rpy
sequences was relatively low.

Table 3. Comparison of the RMSE for absolute trajectory error (ATE) among different algorithms.

Sequences

ATE

ORB-
SLAM2

DVO +
MR Geometric

Dense
Optical

Flow
DynaSLAM DS-SLAM Ours

Static
Environment fr2_desk 0.0841 - - - - - 0.0809

Slightly
Dynamic

Environment

fr2_desk_person 0.0739 0.0596 0.0075 0.0759 - - 0.0768
fr3_sitting_static 0.0847 - - - 0.0108 0.0065 0.0801
fr3_sitting_xyz 0.0090 0.0482 0.0091 0.0514 0.0159 - 0.0122
fr3_sitting_rpy 0.0313 - 0.0025 - - - 0.0385

Highly
Dynamic

Environment

fr3_waling_static 0.4231 0.0656 0.0108 0.0334 0.0069 0.0082 0.0080
fr3_walking_xyz 0.6903 0.0932 0.0874 0.0657 0.0155 0.0246 0.0227
fr3_walking_half 0.4325 0.1252 0.0354 0.0668 0.0257 0.0311 0.0289
fr3_walking_rpy 0.9527 0.1333 0.1608 0.0729 0.0378 0.4438 0.3328

Figure 9 plots the ATE comparison between the proposed algorithm and ORB-SLAM2
under the walking_xyz sequence and the walking_half sequence, respectively. The black
curve represents the real trajectory of the camera, the blue curve represents the estimated
trajectory of the algorithm, and the red region represents the error between the two. It can be

Biomimetics 2023, 8, 371 19 of 27

seen that the ATE of our algorithm in the two sequences was better than that of ORB-SLAM2,
indicating that our algorithm has high accuracy in dynamic scenes. Figure 10 compares the
RPE between our algorithm and ORB-SLAM2 in walking_xyz and walking_half sequences.
It can be seen that the trajectory drift of our algorithm is smaller, and it performs better in
the face of continuous camera pose transformation in dynamic scenes.

Figure 9. Comparison of the absolute trajectory error (ATE) under different image sequences:
(a,b) are the results of ORB-SLAM2 under walking_xyz and walking_half sequences, respectively;
(c,d) are the results of our method under walking_xyz and walking_half sequences, respectively.

Figure 10. Comparison of the relative pose errors (RPEs) under different image sequences: (a,b) are
the results of ORB-SLAM2 under walking_xyz and walking_half sequences, respectively; (c,d) are
the results of our method under walking_xyz and walking_half sequences, respectively.

Figure 11 compares the number of keyframes in different image sequences between
our algorithm and ORB-SLAM2. In the fr1_room sequence, the camera moves continu-
ously and rapidly, and there is a large amount of rotational motion. Since our method
selects keyframes based on the size of the camera pose transformation, the number of
keyframes extracted by our algorithm was greater than that of ORB-SLAM2 under the
fr1_room sequence. In highly dynamic sequences, e.g., fr3_walking_xyz, fr3_ walking_half,
fr3_walking_static, and fr3_walking_rpy, due to the interference of dynamic feature points,
the number of inner points of ORB-SLAM2 was relatively small, so the tracking was
maintained by adding a large number of keyframes. However, our algorithm used static
feature points to estimate camera pose, which can not only maintain stable tracking but also
eliminate a large number of low-quality keyframes by judging the dynamic characteristics
of the current frame. It reveals that the number of keyframes of our algorithm in highly
dynamic datasets was much smaller than that of ORB-SLAM2, reducing the redundancy of
keyframes and improving the optimization efficiency of the system in dynamic scenes.

Generally, the mean tracking time of tracking threads and mean sampling frequency
could reflect the real-time performance and running efficiency of SLAM systems. In our
work, the front-end of the system achieves fast tracking through the semi-direct method.
Although the method exploited dense optical flow to complete dynamic detection, the
computational complexity of optical flow was reduced by performing down-sampling on
the image, so the whole system still has high running efficiency. The comparison results of
running efficiency for our algorithm, ORB-SLAM2, DS-SLAM, and the algorithm proposed
in [37] under the fr3_walking_xyz sequence are reported in Table 4. It is clear that the
mean tracking time for our algorithm to successfully track a frame was 45.576 ms, so our
algorithm had the greatest increase in time consumption with respect to ORB-SLAM2

Biomimetics 2023, 8, 371 20 of 27

compared to other tested algorithms. Meanwhile, compared with the other two algorithms
involving dynamic detection, our algorithm did not merely take the least time but also
ran at a higher sampling frequency of 21.941 Hz, which implied that it has better real-time
performance and running efficiency. Moreover, we also list the simulation results of our
method without using down-sampling processing in Table 4; this method in Table 4 is
denoted as “Ours *”. Apparently, the method in this paper adopted down-sampling with
faster tracking speed and higher sampling frequency. Therefore, the comparison results
demonstrate that our algorithm successfully reduced the computational complexity of the
system and improved running efficiency.

Figure 11. Comparison of the number of keyframes under different image sequences.

Table 4. Comparison of running efficiency among different algorithms.

Algorithms Mean Tracking Time/ms Mean Sampling Frequency/Hz

ORB-SLAM2 25.979 38.492
Sparse optical flow 53.455 18.707

DS-SLAM 85.257 11.729
Ours * 69.332 14.423
Ours 45.576 21.941

* represents our method without using down-sampling processing.

In dynamic scenes, after the interference of dynamic feature points, there are often
situations where the number of matching points is too small and there are a large number
of mismatches in the matching points, which leads to pose tracking failure and is not con-
ducive to the long-term autonomous navigation of mobile robots. To verify the robustness
of the algorithm in dynamic scenes, the proposed algorithm and ORB-SLAM2 were run
five times under highly dynamic sequences walking_xyz, walking_half and walking_rpy
and their tracking loss count and successful recovery pose count were calculated. From
Table 5, it can be seen that ORB-SLAM2 experienced pose tracking loss in all three highly
dynamic sequences, while the proposed algorithm tracked stably in the walking_xyz and
walking_half sequences, without any pose loss. It only lost the pose once in the walk-
ing_rpy sequence but successfully retrieved the pose through relocation. Therefore, it can
be concluded that our algorithm has stronger robustness in highly dynamic scenes.

Table 5. Comparison of tracking loss and relocation times of different algorithms.

Sequence
Number of Lost Tracks Number of Relocations

ORB-SLAM2 Ours ORB-SLAM2 Ours

walking_xyz 4 0 3 0
walking_half 5 0 2 0
walking_rpy 3 1 2 1

Biomimetics 2023, 8, 371 21 of 27

4.2. A Case Study with Mobile Robot in Real Scene

To verify the feasibility and effectiveness of the proposed algorithm in real dynamic
scenes, a case study was conducted in an indoor dynamic scene utilizing a mobile robot
equipped with an ASUS Xtion depth camera. The depth camera was composed of three
main components: an RGB camera, an infrared structured light emitter, and a receiver. Its
parameters are listed in Table 6. The experimental scene was a laboratory with an area of
8.4 m × 6.4 m, as shown in Figure 12. A reference trajectory with a length of 6 m and a
width of 1 m was set in the scene, and a pedestrian constantly walked back and forth to
simulate a real dynamic environment.

Table 6. Detailed parameters of the ASUS Xtion depth camera.

Performance Indicators Parameter Values

Size of depth camera 18 cm × 3.5 cm × 5 cm
Effective measurement range 0.8~3.5 m

Field of view angle 58◦ H × 45◦ V × 70◦ D
Sampling frame rate 30 frames/s

Size of image obtained 680 × 480

Figure 12. Experimental scene: (a) the experimental platform of the mobile robot and the reference
trajectory; (b) the ASUS Xtion depth camera used by the mobile robot.

To evaluate the capability of eliminating dynamic points in the front-end of our
algorithm, a comparative experiment was conducted between the proposed algorithm and
ORB-SLAM2 in a real dynamic scene. During the experiment, the mobile robot moved
forward at a constant speed along the reference trajectory, and a pedestrian walked in front
of the robot to simulate the dynamic object. Figures 13 and 14 demonstrate the feature
point extraction results and sparse pose graph of the two tested algorithms. We could
reasonably conclude from Figure 13a–d that the ORB-SLAM2 extracted a certain number
of feature points of pedestrians. Thus, from Figure 13f,g, we find that the trajectory of
ORB-SLAM2 in sparse maps had undergone significant drift to the right. It is immediately
apparent from Figure 14a–d that our algorithm adopted dense optical flow to detect and

Biomimetics 2023, 8, 371 22 of 27

remove dynamic features, so no dynamic feature points were extracted from pedestrians. It
is further seen from Figure 14e–h that, due to not being affected by dynamic feature points,
the trajectories in the sparse map constructed by our algorithm did not drift. This indicated
that our algorithm can effectively detect dynamic regions and remove dynamic features,
thereby improving the localization accuracy of the algorithm in dynamic scenes.

Figure 13. Feature point extraction results and corresponding sparse pose graph of ORB-SLAM2 in
real dynamic scene. (a–d) are the feature point extraction results of ORB-SLAM2, (e–h) are the sparse
pose graph of ORB-SLAM2.

Figure 14. Feature point extraction results and corresponding sparse pose graph of the proposed
algorithm in real dynamic scene. (a–d) are the feature point extraction results of ours, (e–h) are the
sparse pose graph of ours.

To further verify the effectiveness of the proposed relocation method and the global
localization accuracy in real dynamic scenes, comparison experiments were conducted
between our algorithm and ORB-SLAM2 in a laboratory environment and manually in-
terrupted for relocation. Figure 15 compares the trajectories estimated by our algorithm
and ORB-SLAM2 in a real dynamic scene, where point A was the location of manual

Biomimetics 2023, 8, 371 23 of 27

interruption (i.e., intentionally obstructing the camera’s field of view). We observed that,
in the case of manual interruption and loss of pose, both our algorithm and ORB-SLAM2
can successfully retrieve the pose. However, with the presence of a large number of dy-
namic points in the map of ORB-SLAM2, there was still significant trajectory drift after
the pose was successfully restored by feature matching. In contrast, for the entire process,
our algorithm only matched with keyframes and static map points to restore the pose by
eliminating dynamic points. Although the robot’s pose might include some errors after suc-
cessful relocation, the overall drift degree was relatively small. In terms of global trajectory,
ORB-SLAM2 introduces a large number of dynamic points in pose optimization, resulting
in a large drift of its overall trajectory compared with the reference trajectory. In the vicinity
of point B, on account of the slow moving speed of the robot and the long occupation time
of pedestrians in the scene, some dynamic points were added to the pose estimation, so our
algorithm produces a small trajectory drift, while the rest were not significantly affected
by dynamic objects, and the overall trajectory of our algorithm basically fitted with the
reference trajectory. Consequently, the experimental results show that our algorithm had
high localization accuracy and robustness in a dynamic scene.

Biomimetics 2023, 8, x FOR PEER REVIEW 24 of 27

Figure 15. Comparison of the trajectories estimated by different algorithms in dynamic scene.

Figure 16 illustrates the 3D dense local map and the corresponding octree map

constructed by different algorithms in dynamic scenes. Clearly, the dense point cloud map

shown in Figure 16a did not exclude dynamic objects, so a large number of dynamic point

clouds can be observed in the red box of the map, and voxel blocks containing a large

number of dynamic objects were found in Figure 16c. As compared to the ORB-SLAM2,

most dynamic point clouds have been removed in the dense map shown in Figure 16b,

and only static object point clouds were included. The corresponding scene in Figure 16d

only contains a small number of voxel blocks of dynamic objects. Similar results can be

found from the global map in Figure 17. Although ORB-SLAM2 can complete the final

map building, it contained clear moving objects and deviations (Figure 17a,b), whereas

our method generated a consistent map that only included a few residual features of

moving objects, and there was a slight overlap and distortion in the map at the manual

interruption point A. Therefore, these results clearly indicate that the proposed algorithm

does not merely effectively eliminate the dynamic point clouds but generates a consistent

and accurate 3D navigation map, thereby demonstrating the feasibility and effectiveness

of our method.

(a) (b)

A

Figure 15. Comparison of the trajectories estimated by different algorithms in dynamic scene.

Figure 16 illustrates the 3D dense local map and the corresponding octree map con-
structed by different algorithms in dynamic scenes. Clearly, the dense point cloud map
shown in Figure 16a did not exclude dynamic objects, so a large number of dynamic point
clouds can be observed in the red box of the map, and voxel blocks containing a large
number of dynamic objects were found in Figure 16c. As compared to the ORB-SLAM2,
most dynamic point clouds have been removed in the dense map shown in Figure 16b, and
only static object point clouds were included. The corresponding scene in Figure 16d only
contains a small number of voxel blocks of dynamic objects. Similar results can be found
from the global map in Figure 17. Although ORB-SLAM2 can complete the final map build-
ing, it contained clear moving objects and deviations (Figure 17a,b), whereas our method
generated a consistent map that only included a few residual features of moving objects,
and there was a slight overlap and distortion in the map at the manual interruption point
A. Therefore, these results clearly indicate that the proposed algorithm does not merely
effectively eliminate the dynamic point clouds but generates a consistent and accurate 3D
navigation map, thereby demonstrating the feasibility and effectiveness of our method.

Biomimetics 2023, 8, 371 24 of 27

Figure 16. Comparison of the 3D dense local map and the corresponding octree map construction by
different algorithms in dynamic scene (red box represent dynamic point clouds): (a,b) are dense maps
of ORB-SLAM2 and ours, respectively; (c,d) are octree maps of ORB-SLAM2 and ours, respectively.

Figure 17. Comparison of the 3D dense global map and the corresponding octree map construction
by different algorithms in dynamic scene: (a,b) are dense map and the corresponding octree map of
ORB-SLAM2; (c,d) are dense map and the corresponding octree map of ours.

5. Conclusions and Future Works

This paper proposed a robust semi-direct 3D SLAM algorithm for mobile robots based
on dense optical flow in dynamic scenes. The front-end of the algorithm adopted the
semi-direct method to calculate the robot’s pose, compensated the image through the
homography matrix, and combined with the dynamic threshold to separate the dynamic
region in the scene. On this basis, the feature points falling in the dynamic region were
eliminated, and the static feature points were used to estimate the robot’s motion, which
improved the accuracy and robustness of the algorithm in the dynamic scene. Meanwhile,

Biomimetics 2023, 8, 371 25 of 27

considering the importance of keyframes to system optimization and mapping, a high-
performance keyframe selection strategy was constructed by combining the pose trans-
formation and the dynamic degree of the scene, which improves the quality of keyframes
and reduces the complexity of back-end optimization. Furthermore, we also developed
a relocation method that combines keyframes and map points, solving the problem of
difficulty in retrieving the robot pose after direct tracking failure. Specifically, feature
extraction was performed on the current frame that had failed tracking, and the number
of candidate keyframes was used to determine whether to use image matching or map
matching to restore pose, thereby improving the success rate of relocation. Finally, the
effectiveness of the algorithm was verified through a series of simulations and experiments.

Considering the dense optical flow has a large calculation error in the case of light
changes or noise interference, it will lead to inaccurate tracking and detection of dynamic
objects. In future work, we plan to employ a more stable optical flow network to calculate
dense optical flow, which can more accurately distinguish the dynamic objects and static
backgrounds, thereby reducing false positives and missed detections. Another perspective
of this research is to combine a lightweight segmentation network or object detection
network to constrain the calculation of optical flow, so as to more accurately detect and
track dynamic objects. Indeed, the method further reduces the impact of dynamic objects
on pose estimation, while ensuring the real-time performance of the algorithm. As our
algorithm only considers the photometric error of the image during the initial estimation
stage of the robot pose, the depth image obtained by the RGB-D camera can provide
accurate distance information of the scene. Therefore, we also plan to introduce the depth
error of pixel points into pose estimation to more accurately estimate the robot’s pose. In
addition, there are often different lighting transformations in actual scenes, which have a
significant impact on semi-direct methods and dense optical flow calculations. Although
inter-frame brightness compensation can reduce the impact of some lighting changes, the
algorithm still performs poorly in some extreme cases. As part of future work, we intend to
introduce the photometric imaging model into the semi-direct method, reduce the impact of
lighting changes on the algorithm by performing photometric correction on the image, and
consider combining other types of sensors with the RGB-D camera for data fusion, thereby
further improving the robustness of the algorithm and expanding its application scenes.

Author Contributions: B.H. and J.L. wrote the main manuscript text, prepared figures, and con-
tributed equally to this work. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by the National Nature Science Foundation of China under
Grant 62063036 and the Research Foundation for Doctor of Yunnan Normal University under
Grant 01000205020503115.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, S.; Zheng, L.; Tao, W. Survey and evaluation of RGB-D SLAM. IEEE Access 2021, 9, 21367–21387. [CrossRef]
2. Li, J.; Gao, W.; Wu, Y.; Liu, Y.; Shen, Y. High-quality indoor scene 3D reconstruction with RGB-D cameras: A brief review. Comput.

Vis. Media 2022, 8, 369–393. [CrossRef]
3. Tychola, K.A.; Tsimperidis, I.; Papakostas, G.A. On 3d reconstruction using rgb-d cameras. Digital 2022, 2, 22. [CrossRef]
4. Macario Barros, A.; Michel, M.; Moline, Y.; Corre, G.; Carrel, F. A comprehensive survey of visual slam algorithms. Robotics 2022,

11, 24. [CrossRef]
5. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In Proceedings of the European Conference on

Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 834–849.
6. Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast semi-direct monocular visual odometry. In Proceedings of the IEEE International

Conference on Robotics & Automation, Hong Kong, China, 31 May–7 June 2014.

https://doi.org/10.1109/ACCESS.2021.3053188
https://doi.org/10.1007/s41095-021-0250-8
https://doi.org/10.3390/digital2030022
https://doi.org/10.3390/robotics11010024

Biomimetics 2023, 8, 371 26 of 27

7. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

8. Derome, M.; Plyer, A.; Sanfourche, M.; Besnerais, G.L. Real-Time Mobile Object Detection Using Stereo. In Proceedings of the
International Conference on Control Automation Robotics & Vision, Singapore, 10–12 December 2014.

9. Derome, M.; Plyer, A.; Sanfourche, M.; Besnerais, G.L. Moving Object Detection in Real-Time Using Stereo from a Mobile Platform.
Unmanned Syst. 2015, 3, 253–266. [CrossRef]

10. Wang, Y.; Huang, S. Towards dense moving object segmentation based robust dense RGB-D SLAM in dynamic scenarios.
In Proceedings of the 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore,
10–12 December 2014; pp. 1841–1846.

11. Sun, Y.; Liu, M.; Meng, M.Q.H. Motion removal for reliable RGB-D SLAM in dynamic environments. Robot. Auton. Syst. 2018,
108, 115–128. [CrossRef]

12. Zhang, T.; Zhang, H.; Li, Y.; Nakamura, Y.; Zhang, L. FlowFusion: Dynamic Dense RGB-D SLAM Based on Optical Flow. In
Proceedings of the International Conference on Robotics and Automation, Paris, France, 31 May–31 August 2020.

13. Sun, D.; Yang, X.; Liu, M.Y.; Kautz, J. PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–22 June 2018.

14. Li, S.; Lee, D. RGB-D SLAM in Dynamic Environments using Static Point Weighting. IEEE Robot. Autom. Lett. 2017, 2, 2263–2270.
[CrossRef]

15. Yuan, C.F.; Xu, Y.L.; Zhou, Q. PLDS-SLAM: Point and Line Features SLAM in Dynamic Environment. Remote Sens. 2023, 15, 1893.
[CrossRef]

16. Dai, W.; Zhang, Y.; Li, P.; Fang, Z.; Scherer, S. RGB-D SLAM in Dynamic Environments Using Point Correlations. IEEE Trans.
Pattern Anal. Mach. Intell. 2020, 44, 373–389. [CrossRef]

17. Tong, W.; Xu, L. Binocular Vision SLAM Algorithm Based on Dynamic Region Eliminationin Dynamic Environment. Robot 2020,
42, 10.

18. Ai, Q.L.; Liu, G.J.; Xu, Q.N. An RGB-D SLAM Algorithm for Robot Based on the Improved Geometric and Motion Constraints in
Dynamic Environment. robot 2021, 43, 167–176.

19. Yu, C.; Liu, Z.; Liu, X.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018.

20. Yan, L.; Hu, X.; Zhao, L.Y.; Chen, Y.; Wei, P.C.; Xie, H. DGS-SLAM: A Fast and Robust RGBD SLAM in Dynamic Environments
Combined by Geometric and Semantic Information. Remote Sens. 2022, 14, 795. [CrossRef]

21. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9157–9166.

22. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT++ Better Real-Time Instance Segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
2022, 44, 1108–1121. [CrossRef]

23. Bescos, B.; Fácil, J.M.; Civera, J.; Neira, J. DynaSLAM: Tracking, mapping, and inpainting in dynamic scenes. IEEE Robot. Autom.
Lett. 2018, 3, 4076–4083. [CrossRef]

24. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017.

25. Horn, B.K.P.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [CrossRef]
26. Kirkland, E.J.; Kirkland, E.J. Bilinear interpolation. In Advanced Computing in Electron Microscopy; Springer: Berlin/Heidelberg,

Germany, 2010; pp. 261–263. [CrossRef]
27. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G.R. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE

International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, 6–13 November 2011.
28. Yang, J. Evaluting Bag-of-Visual Words Representations in Scene Classification. In Proceedings of the International Workshop on

Workshop on Multimedia Information Retrieval, Augsburg, Germany, 24–29 September 2007.
29. Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vis. 2009, 81, 155–166.

[CrossRef]
30. Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph optimization.

In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 3607–3613.

31. Wu, H.C.; Luk, R.W.P.; Wong, K.F.; Kwok, K.L. Interpreting TF-IDF term weights as making relevance decisions. ACM Trans. Inf.
Syst. 2008, 26, 55–59. [CrossRef]

32. Li, W.; Zhang, Y.; Sun, Y.; Wang, W.; Li, M.; Zhang, W.; Lin, X. Approximate nearest neighbor search on high dimensional
data—Experiments, analyses, and improvement. IEEE Trans. Knowl. Data Eng. 2019, 32, 1475–1488. [CrossRef]

33. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM systems.
In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal,
7–12 October 2012.

https://doi.org/10.1145/358669.358692
https://doi.org/10.1142/S2301385015400026
https://doi.org/10.1016/j.robot.2018.07.002
https://doi.org/10.1109/LRA.2017.2724759
https://doi.org/10.3390/rs15071893
https://doi.org/10.1109/TPAMI.2020.3010942
https://doi.org/10.3390/rs14030795
https://doi.org/10.1109/TPAMI.2020.3014297
https://doi.org/10.1109/LRA.2018.2860039
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1007/978-1-4419-6533-2_12
https://doi.org/10.1007/s11263-008-0152-6
https://doi.org/10.1145/1361684.1361686
https://doi.org/10.1109/TKDE.2019.2909204

Biomimetics 2023, 8, 371 27 of 27

34. Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans.
Robot. 2017, 33, 1255–1262. [CrossRef]

35. Sun, Y.; Liu, M.; Meng, Q.H. Improving RGB-D SLAM in dynamic environments: A motion removal approach. Robot. Auton. Syst.
2016, 89, 110–122. [CrossRef]

36. Kim, D.H.; Kim, J.H. Effective Background Model-Based RGB-D Dense Visual Odometry in a Dynamic Environment. IEEE Trans.
Robot. 2016, 32, 1565–1573. [CrossRef]

37. Ai, Q.L.; Wang, W.; Liu, G.J. RGB-D SLAM Algorithm in Indoor Dynamic Environments Based on Gridding Segmentation and
Dual Map Coupling. Robot 2022, 44, 431–442.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1016/j.robot.2016.11.012
https://doi.org/10.1109/TRO.2016.2609395

	Introduction
	Related Work
	Optical Flow-Based Methods
	Geometric-Based Methods
	Deep Learning-Based Methods

	Algorithm Framework
	Mobile Robot’s Pose Tracking
	Dynamic Region Detection
	Mobile Robot’s Pose Optimization
	Keyframe Selection
	Relocation and Global Optimization
	3D Navigation Map Building

	Simulations and Experiments
	Simulation Analysis with TUM Dataset
	A Case Study with Mobile Robot in Real Scene

	Conclusions and Future Works
	References

