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Abstract: Sound reception was investigated in the Yangtze finless porpoise (Neophocaena phocaenoides
asiaeorientalis) at its most sensitive frequency. The computed tomography scanning, sound speed,
and density results were used to develop a three-dimensional numerical model of the porpoise
sound-reception system. The acoustic fields showed that sounds can reach the ear complexes from
various pathways, with distinct receptivity peaks on the forward, left, and right sides. Reception
peaks were identified on the ipsilateral sides of the respective ears and found on the opposite side
of the ear complexes. These opposite maxima corresponded to subsidiary hearing pathways in the
whole head, especially the lower head, suggesting the complexity of the sound-reception mechanism
in the porpoise. The main and subsidiary sound-reception pathways likely render the whole head a
spatial receptor. The low-speed and -density mandibular fats, compared to other acoustic structures,
are significant energy enhancers for strengthening forward sound reception. Based on the porpoise
reception model, a biomimetic receptor was developed to achieve directional reception, and in parallel
to the mandibular fats, the silicon material of low speed and density can significantly improve forward
reception. This bioinspired and biomimetic model can bridge the gap between animal sonar and
artificial sound control systems, which presents potential to be exploited in manmade sonar.

Keywords: finless porpoise; directional reception; acoustic structures; numerical simulation

1. Introduction

The biosonar system of odontocetes has excellent target localization and discrimination
abilities in aqueous environments, which has been the subject of numerous studies [1,2].
Their biosonar has been quoted as outperforming current manmade sonar systems in many
aspects [3], including sound transmission, sound reception, and target detection [4–7].
Odontocetes generate and transmit sounds in the forehead. As sounds propagate forward
into the forehead, the acoustic structures, including the melon, dense connective tissue layer,
upper jaw, nasal passages, and air sacs, modulate sounds into a narrow, forward-oriented
beam [8,9]. Beam formation involves a series of stages [10], and the respective functions
of various anatomical structures involved in beam modulation have been investigated
through modeling [11–14], suggesting skull structures and acoustic fats are important in
achieving directional transmission.

Acoustic fats in the mandibular region and mandible are key to receiving sounds in
many pathways [5,15–18]. The widely accepted reception pathways are composed of the
mandible and mandibular fats. Norris proposed that sounds enter the reception system
through the low-sound-speed external mandibular fat and then traverse the caudal portion
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of the mandible to reach the internal mandibular fat before finally arriving at the bony
complexes [19,20]. This “jaw hearing” pathway was widely accepted and supported in
psychoacoustic studies and numerical simulation [5,21]. The knowledge of sound reception
in odontocetes has been expanded since the new century. The three-dimensional modeling
on the hearing of the common dolphin (Delphinus delphis) indicated that mandibular fats
can facilitate sound reception from forward directions [5]. Cranford et al. developed a
numerical model of a Cuvier’s beaked whale (Ziphius cavirostris) and found an additional
sound entrance through the ventral margin of the mandible [15]. The solid mandible was
thought to be an important guide to conduct sounds to the bony complexes as well, as
demonstrated in auditory examinations on beluga whales (Delphinapterus leucas), indicating
a high sensitivity to sound stimulation from the rostrum tip [22,23]. This location might
also be the entrance of the effective acoustic channels for the Risso’s dolphin (Grampus
griseus) and the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) [24,25].
Song et al. found that the front portion of the mandible was the entrance of an alternative
reception pathway for the finless porpoise (Neophocaena asiaorientalis sunameri), which might
be associated with the high-sensitivity areas found at the rostrum tips of Beluga whales,
Risso’s dolphins, and Yangtze finless porpoises [17]. The mandible tip was found to induce
elastic waves propagating along the mandible posteriorly to merge with those from the
mandibular fats.

This bone conduction phenomenon was observed in a later study on a short-beaked
common dolphin skull [18]. The elastic waves in the mandibles were informative to localize
source positions via binaural cues. The skull vibration, though not examined in detail, may
have already had some input to the measured elastic waves [26]. The role of the mandible
may become negligible in other pathways; Cranford et al. found that in the “gular path-
way”, as sounds propagate to the posterior part of the mandible, it becomes increasingly
transparent posteriorly. In comparison, the soft tissue and the internal mandibular fat body
complexes played the main roles in conducting sounds to the ear bony ear complex [15].

These aggregations showed the complexity of acoustic windows in odontocetes.
Though the most sensitive areas (the positions of acoustic windows) may have been
demonstrated in many species [22–25,27], there might be other sound-reception paths that
have not been addressed in detail as well as the roles of the various structures in these
paths. The head as a whole may be considered a volume antenna [15,27], and thus, the roles
of the various structures, including the mandible, the mandibular fats, soft tissue, and skull,
in conducting sounds to the ear complex require additional work to elucidate. In this study,
we extended the research to investigate sound reception in the Yangtze finless porpoise,
suggesting the complexity of sound reception in this species, and herein, we discuss the
influences of the low-speed and -density acoustic fats on receptivity.

The information we obtained concerning the porpoises’ reception is promising to
initiate biomimetic research. Investigations into the directional sound transmission and
reception pathways in odontocetes can help to inspire biomimetic ideas on system design to
obtain extra gains in underwater target detection [28]. Actually, artificial designs inspired
by odontocetes biosonar have been proposed and physically built to facilitate controls in
sound transmission and reception [29–31], suggesting the reliability of transition from basic
bioacoustics research to bioinspired applications. Regarding practical applications, addi-
tional information is needed to find ways of incorporating the inner workings of odontocete
biosonar into manmade sonar systems. This paper was extended from our previous stud-
ies [32,33] and provided additional information on the sound reception of the species. Here,
we address the roles of acoustic structures in directional sound reception in the Yangtze
finless porpoise. More importantly, a biomimetic model was proposed, and its directional
sound reception was investigated. The results are meaningful to strengthen our understand-
ing of sound reception in this species and provide a reference for biomimetic research.
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2. Materials and Methods
2.1. Computed Tomography Scanning and Reconstruction

We opportunistically took advantage of a stranded and dead Yangtze finless porpoise
to reconstruct its biosonar system. CT scanning was conducted on the specimen the day
after its death. A SOMATOM Definition Dual Source CT Scanner (DSCT; Siemens, Munich,
Germany) with a resolution of 1 mm was used in the Radiology Department of Zhongshan
Hospital of Wuhan University (Wuhan, China). The images were collected at a power
setting of 120 kV × 76 mA and saved in IMA format for subsequent analysis. The biosonar
system was reconstructed in three dimensions (Figure 1). More details concerning the
procedures to reconstruct the sound speed and density can be found in our previous pa-
per [32]. The sound-transmission system in the forehead, represented by the theca (a region
of connective tissue overlying the caudal portion of the melon), melon, nasal passage, and
skull structures, including the cranium, can be clearly visualized (Figure 1). The anatomical
arrangement of these structures was similar to that reported in other odontocetes [17,34].
The structures comprising the sound-reception system in the lower jaw region were also
visualized, including the mandible, acoustic fats (external and internal mandibular fat
bodies) encasing the mandible, and bony complexes adjacent to the internal mandibular fat
bodies. The fine reconstructions made plausible the subsequent model development.
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Figure 1. (a) A photo of the finless porpoise. (b) A computed tomography scanning image of the
porpoise head in a sagittal cross-section. (c) Reconstruction of the finless porpoise showing the
forehead transmission system and reception system in the lower head. The transmission system
in the forehead includes the cranium, nasal passage, theca, melon, and upper jaw components.
The reception system in the mandibular region consists of ear bones (bony ear complex), internal
mandibular fat, external mandibular fat, and mandible.

2.2. Numerical Modeling and Computation

To investigate the directional sound reception, sounds were set to be incident from
different angles and the background incidence field as follows:

pb = p0
rre

rs
e−ikrs (1)
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where rre = 1 m, rS = |x − x0|, k is the wave number, x denotes the location of the spherical
wave, and x0 is the location on the boundary. pb and p0 represent the pressure at x and x0,
respectively. The first set of simulations was presented by introducing ϕ and θ to represent
incidence angles from horizontal and vertical planes, with a step of 3◦ for each plane,
both ranging from 0◦ to 180◦ (Figure 2). The initial incident pressure was set as 1 Pa. The
absolute pressures on the surface of the left and right bony complexes were integrated
to compute the monaural directivity for each ear complex and then added to create a
binaural directivity.
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Figure 2. (a) The geometry model of the biosonar reception system, including the skull, bony ear
complex, internal mandibular fat, external mandibular fat, air component (air sac and nasal passage),
melon, and mandible. (b) The incident background field in the horizontal plane, where arrows depict
the incident angles. (c) The incident background field in the vertical plane. (d) The numerical model
of the porpoise head and computing domain after meshing.

The directivities of sound reception were addressed for 54 kHz at frequency domain,
at which the finless porpoise had the best hearing sensitivity [35,36]. The COMSOL Multi-
physics software (Stockholm, Sweden) was used to solve the volume deformations in fluid
media and shear deformations in solid media. The whole computing domain was meshed
into elements one-fifth of the wavelength. The boundary conditions were set between
different media. In fluid media, including mandibular fats, melon, air, water, and other
soft tissues, the sound pressure and normal velocity at the contact boundary of different
media were set as continuous (that is, p1 = p2 and v1 = v2). For the boundary between
solid mandible/skull and fluid media, the normal velocity and mechanical stress were
continuous (v1 = v2 and T1 = T2).

We assigned 1500 m/s and 998 kg/m3 as the sound speed and density of water,
respectively. These values were 343 m/s and 1.21 kg/m3 for the air-filled nasal passage
and sacs. For soft tissues, the settings were set according to the reconstructions of sound
speed and density of the porpoise (Figure 3). The acoustic impedance of the soft tissues in
the mandibular region was close to that of water, providing a fine impedance matching and
low-energy-loss channel for sounds to enter the odontocete head [32,37,38]. More details
concerning computed tomography scanning, sound speed, and density measurements
can be found in our previous paper [32]. The compressional and shear wave speeds of
the skull structures were set as 3380 m/s and 2200 m/s respectively, and the density was
2035 kg/m3 [16,39].

The numerical model of the species is verified in our previous paper [32], suggesting
that the simulated signals in the far field had similar temporal and spectral characteristics
to those recorded from real porpoise [40]. Thus, we directly used the numerical modeling
and set six cases to address the influence of the various structures on sound-reception
directivity. A full set of acoustic structures, including mandible, mandibular fats, melon,
skull, and air sac, was considered as case I. In the rest of the cases, the acoustic structures
were replaced by water, making different combinations. The skull, melon, mandibular
fats, air components, and mandible were individually removed from case I, creating
case II (No_Skull), case III (No_Melon), case IV (No_Fat), case V (No_Air), and case VI
(No_Mandible) correspondingly.
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Figure 3. The reconstructed (a) sound speed and (b) density distributions of the porpoise’s head at a
sagittal plane.

2.3. Biomimetic Receptor

The Yangtze River finless porpoise’s reception system was not symmetrical concerning
anatomy and the sizes of the respective structures (Figure 2a). We referred to the animal’s
reception system but simplified the biomimetic model as a symmetrical system, termed as
the bio-receptor (Figure 4a). The mandible was replaced by aluminum (shear wave speed:
3080 m/s; longitudinal wave speed: 6260 m/s; density: 2700 kg/m3), and both the external
and internal mandibular fat bodies were mimicked using silicon, with a sound speed of
1050 m/s and density of 1050 kg/m3. The directional reception was first examined for the
biomimetic model by using the background incidence field setting as well. The directivity
was examined at 54 kHz. Furthermore, another biomimetic model was developed in
which the silicon was replaced by water (Figure 4b). These two models were compared to
emphasize the variability of directional reception.
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Figure 4. (a) A biomimetic sound receptor, where aluminum (solid) and silicon were used as com-
posites of the mandible and internal and external mandibular fats, respectively. (b) The biomimetic
model in which the low-speed silicon materials (red) were replaced by water.

3. Results

The monaural reception directivity of the left ear complex and right ear complex
and binaural directivity of the two ear complexes were determined for sounds of 54 kHz
(Figure 5). Sounds incident from left side resulted in many receptivity peaks, showing a
relatively spreading spatial distribution. Several peaks were found on the same side, and a
local peak was surprisingly found in the opposite ear. Comparably, sounds received at the
right ear complex had a distinct maximum from the right incidence angles. A shadowed
region (depicted in blue) was found in the top-right area for the left ear complex, and the
shadowed area shifted to the top left for the right ear complex. The binaural receptivity
(Figure 5b) formed from the combination of the left and right monaural directivities demon-
strated that the reception was enhanced in the forward direction. The right ear peaks were
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raised in the bottom-right region. The reception patterns clearly showed various peaks,
including left ear, right ear, and forward peaks. Local maxima were seen in an extensive
spatial scale below the forward horizon.
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Figure 5. The simulated receptivity for 54 kHz sources at the inner ears of the full model. (a) The
monaural directivity for the left ear complex. (b) The binaural directivity estimated using two
monaural ear complexes. (c) The monaural directivity for the right ear complex. (d) The acoustic
fields on the head surface resulting from incidence from 120◦, 92◦, 90◦, 78◦, and 60◦ (from left to
right) in the horizontal plane for 54 kHz.

To better illustrate the internal reception details, acoustic fields were illustrated in
the horizontal (Figure 5d) plane for the full model (case I). Apparently, the head shielded
the sound waves in the upper head, resulting in amplitude differences on the top of the
head. The differences between the front and back head showed that there was a shadowed
area regardless of the incident angle. The location of the shadowed areas corresponded
to the incidence angle. For sounds incident from the right-forward direction (90◦), the
shadow area was quasi-on-axis, and the rest shadowed areas were unilateral, with the low
acoustic fields distributed consistently on the other side of body axis. Sounds originating
from the animals led to vibrations in the mandible and sound wave propagation in the
mandibular fats. Sounds incident from the 60◦ (right side) corresponded to a stronger
mandible vibration at the same side (Figure 5d), especially at the anterior portion. And this
trend was reversed for sounds incident from 120◦ (left side), in which case the left mandible
had a much stronger vibration amplitude anteriorly. The vibrations at the ear complexes
were the lowest when stimulated by sounds from 60◦ in the horizontal plane.

Apparently, the head was a shield, and a strong shadowed area formed for all incident
angles. The presences of the mandible and mandibular fats formed a waveguide for sounds
to propagate to the ear complexes. Sounds from the forward directions stimulated the
mandible tip to vibrate, and then, the waves were partially transmitted to the internal
mandibular fat before eventually arriving at ear complexes. This bone conduction pathway
was verified again as consistent with our previous simulation [17].

The receptivity was depicted for the chosen horizontal plane with incident angles
ranging from 0◦ to 180◦ (Figure 6). The monaural directivities showed that sounds incident
from the ipsilateral side of each ear complex stimulated strong surface pressure at the
complex locally from 60◦ to 120◦. Moreover, we identified a receptivity peak at the other
side of the reference axis for each ear complex (90◦). After merging the sound pressure
integrals of both ear complexes to acquire a binaural directivity, we found that sounds
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incident from forward directions had a higher reception efficiency than off-axis stimulations,
and the −3 dB beam width was 62◦ (60◦ to 122◦) in the horizontal plane.
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Figure 6. (a) The binaural and monaural sound-reception directivities estimated at 54 kHz in a
chosen horizontal plane. The monaural directivity was estimated using sound pressure received in
surfaces of left hearing bone and right hearing bone, while the “binaural” case means the normalized
distributions from left and right hearing bones are summed. (b) Acoustic field details of sounds
incident from 141◦ (top) and 30◦ (bottom) in the horizontal plane, where sound from the left side
(141◦) stimulated strong vibrations at the right ear complex through a subsidiary pathway, and
sounds from the right side (30◦) stimulated strong vibrations at the left ear complex.

Sounds incident from the 30◦ (right side) showed an effective propagation to the left
ear complex as well, and those incident from 140◦ (left side) led to a receptivity peak at
right ear complex. These lateral maxima on the sides opposite each ear may correspond to
subsidiary hearing pathways (Figure 6b). The multiple maxima identified in the receptivity
patterns demonstrated the complexity of sound reception in the finless porpoise, and the
whole head, especially the lower head, may function in receiving sounds [5].

We further extended the simulations to address the roles of the skull, mandible,
mandibular fats, melon, and air sac in binaural receptivity in the horizontal plane (Figure 7).
The most distinct feature was found in the comparison between case I and case IV, which
led to the conclusion that the amplitude of the received sounds became lower in the
forward directions from 76◦ to 100◦ after the removal of the mandibular fats, suggesting
their important functions to enhance forward sound reception. The average amplitude
difference was 1.3 dB, ranging from 0.7 dB to 1.5 dB. The presence of the fatty conduit
contributed greatly to shaping the receptivity. The removal of skull led to slight variances
between case I and case II at from an incidence angle of 30◦. The influences of the mandible,
air components, and melon were not noticeable in the horizontal plane at 54 kHz.
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the models without skull, without mandible, without melon, without mandibular fats, and without
air at 54 kHz.
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The sound reception was found to be asymmetrical in the animal model, and using
the biomimetic model, we achieved symmetrical sound reception (Figure 8). The wave
propagation demonstrated symmetry with reference to the on-axis direction (90◦). Sound
waves were found to travel bent to the reception sites through the modulation of the low-
speed and low-density silicon (Figure 8a). Its replacement by water led to a loss of sound
energy travelling to the reception sites (Figure 8b). A large proportion of sound waves after
traversing the mandible were not channeled to the reception sites. The comparison of the
wave propagation details between these two models suggests the importance of low-speed
and low-density silicon in enhancing sound reception.
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Figure 8. (a) The acoustic scattered field of sounds incident from 110◦, 90◦, and 70◦ in the horizontal
plane examined for the bioinspired model. (b) The acoustic scattered field of sounds incident from
110◦, 90◦, and 70◦ examined for the bioinspired model in which the silicon was replaced by water.

The enhancement of the silicon can be further glimpsed in the binaural directivities
for the models (Figure 9). The forward reception was efficient from forward incidences,
with the highest-sensitivity axis pointing to 110◦ and 70◦ and a −3 dB receptivity beam of
88 ranging from 46◦ to 134◦. Without silicon, the amplitude of the received sounds became
much lower in the forward directions from 16◦ to 164◦, suggesting their important role
in for enhancing forward sound reception. The average amplitude difference was 3.5 dB,
ranging from 0.2 dB to 5.9 dB within this angle range.
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4. Discussion and Conclusions

Sound reception, as one of the two major processes in odontocetes biosonar, has
gained much attention ever since the 1960s. Mandibular fats were considered important
windows for sounds to enter the head in most papers addressing the sound reception
in odontocetes [5,15,17,20]. However, this does not mean the acoustic fats are the only
functional structure in sound reception. Mooney et al. found that the finless porpoise
had a high sensitivity to acoustic stimuli from the rostral portion of the mandible, and the
simulated field in the current paper suggested that the mandible can conduct sounds to
the internal mandibular fat and bony ear complex (Figure 5) [24]. The solid mandible can
induce vibrations and conduct sounds to the mandibular fats, which can be further carried
to stimulate the ear complexes. It contributed to the sound reception as a wave guide [17]
and a reverberation structure to improve source localization [18,26,41].

Studies on harbor porpoises, belugas, bottlenose dolphins, and common dolphins
have shown that these animals can better sense sounds from forward directions [5,42–46].
The reception directivity at 54 kHz had a high receiving amplitude from forward directions
(Figure 7). Future studies are necessary to investigate the frequency response of reception
directivity in this species because directional reception has not been examined in the
Yangtze finless porpoise, making it difficult to compare simulation and experiment results.
Popov et al. found that the monaural directivities had an asymmetrical distribution at low
frequencies, depicted by the hearing thresholds at all contralateral sound-source positions,
which can also be glimpsed in current study (Figure 6a) [45]. The asymmetry in the binaural
reception directivity may also be ascribed to the morphological asymmetry (with the body
middle line as reference) in sound-conduction pathways. As stated [45], this phenomenon
may be explained by the presence of two or more sound-reception pathways. Aroyan
found that in addition to stimulating receptivity peaks on the ipsilateral side as each ear
complex, there might be subsidiary pathways for sounds forming receptivity peaks at
the ear complex on the opposite side of incidence angles [5]. With such complexity in
pathways, the relative weights may respond to frequency and result in variation of the
lowest-threshold azimuth, and the whole head may be considered as a volume receptor
when considering sound reception from a broadband width.

The simulations and experiments on sound reception in odontocetes have shown
that sounds may propagate through many pathways to stimulate the ear complexes [24].
Structures including the skull, mandible, melon, air components, and mandibular fats
may were considered to be involved in various ways in conducting sounds, which can be
frequency-dependent, direction-dependent, and size-dependent. This paper had limitations
in addressing the frequency-related directivities due to the massive computation costs at
high frequencies, and the skull reverberation was not examined. Our future work will shed
further light on the elastic waves in the skull and mandible as well as their connections
to the receptivity, as estimated using the information carried by the ear complex. The
mandibular fats were simplified in the model for the reason that the precise boundaries
between the mandibular fats and the soft tissues were hard to determine.

Compared to the animal model, we found that the bioinspired and biomimetic model
exhibited perfect symmetrical reception. The binaural directivity was apparently symmetri-
cal for the frequency tested, which might be beneficial to acquire interaural differences in
amplitude and arrival time of travelling sounds to provide good angular resolution [47].
The symmetry in binaural time or phase difference provides informative cues to determine
the difference of the sound’s arrival time at the two ears. The bioinspired design has flexi-
bility, offering the opportunity to modulate reception directivity on demand. The merits of
animal sonar can offer insight into developing artificial designs to achieve effective sound
reception. Similarly, the low-speed and low-density silicon can greatly improve forward
reception, as demonstrated by the red zone in Figure 9. Supposing that the bioreceptor
had a reception angle resolution of 5◦, The enhancement of the silicon can be over 60 dB,
which is calculated by computing (88◦/5◦) × 3.5 dB. The estimations either in the animal
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reception model or the biomimetic model, though requiring further examination, at least
show that the low impedance was key to enhancing sound reception.

The mandibular fats and the silicon were considered as energy collectors that achieved
their role through the lower sound speed and density distributions. Sounds tend to prop-
agate along the low-speed pathway [37,48]. We can use the ray model assumption to
track the wave propagation path. The following equation can be used to describe wave
propagation in inhomogeneous fluid media:

1
λ(r)

∂2 p
∂t2 = ∇•

(
∇p
ρ(r)

)
(2)

where ρ(r) and represent density and compressibility coefficients, respectively. Equation
(2) can be derived into the following:

d
ds

(
nB

dr
ds

)
= ∇nB (3)

s denotes distance along the ray direction, and the ray curvature vector satisfies the follow-
ing formula:

K = ds/ds = V/R (4)

where R and V are the radii of curvature and the unit normal vector of the ray. Accordingly,
Equation (4) can be further derived into the following:

|K| = V•∇ ln nB (5)

where the operator • is the inner product. As |K| is positive, V will direct to the increasing
refractive index, corresponding to a low-speed pathway. This basic theoretical analysis
explains why the mandibular fats and the silicon can act as an important waveguide to
enhance sound reception [48]. We should also note that the there are other substitutes
for the low-sound speed and low-density mandibular fats. More importantly, the sound
speed and density of the new artificial soft materials are tunable. This flexibility in material
properties may provide additional ways to achieve reception performance in demand.

This may help to facilitate artificial reception system designs by concentrating on
the key structures, at least at the 54 kHz that we tested here. The biomimetic model did
not incorporate structures like melon, skull, and air sacs, but the capability of directional
reception was achieved simply by referring to the mandible and acoustic fats, showing the
flexibility in biomimetic design. This transition from animal model to biomimetic model
can bridge the gap between animal sonar and artificial systems to facilitate sound reception.

5. Conclusions

In this paper, we referred to the CT scanning and reconstructions of a Yangtze finless
porpoise and ran numerical simulation to examine the sound reception at 54 kHz. The
results showed that the mandible and mandibular fats enhanced the sound reception from
forward directions in the Yangtze finless porpoise by serving as important energy collectors.
The skull showed some modulation on the receptivity by lowering the sounds from front-
top directions. The melon and air components had negligible effects on the receptivity at
the investigated frequency. The results presented here suggested the potential of referring
to the porpoise’s reception system to inspire artificial structures with sound speed and
density distributions similar to those of the porpoise. Meanwhile, the bioinspired model
has flexibility in adjusting its sound speed and density on demand. These results can
enlighten us to design manmade systems to realize spatial selectivity on demand.
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