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Abstract: The present study introduces a subtraction-average-based optimization algorithm (SAOA),
a unique enhanced evolutionary technique for solving engineering optimization problems. The
typical SAOA works by subtracting the average of searcher agents from the position of population
members in the search space. To increase searching capabilities, this study proposes an improved SAO
(ISAO) that incorporates a cooperative learning technique based on the leader solution. First, after
considering testing on different standard mathematical benchmark functions, the proposed ISAOA
is assessed in comparison to the standard SAOA. The simulation results declare that the proposed
ISAOA establishes great superiority over the standard SAOA. Additionally, the proposed ISAOA
is adopted to handle power system applications for Thyristor Controlled Series Capacitor (TCSC)
allocation-based losses reduction in electrical power grids. The SAOA and the proposed ISAOA are
employed to optimally size the TCSCs and simultaneously select their installed transmission lines.
Both are compared to two recent algorithms, the Artificial Ecosystem Optimizer (AEO) and AQuila
Algorithm (AQA), and two other effective and well-known algorithms, the Grey Wolf Optimizer
(GWO) and Particle Swarm Optimizer (PSO). In three separate case studies, the standard IEEE-30
bus system is used for this purpose while considering varying numbers of TCSC devices that will be
deployed. The suggested ISAOA’s simulated implementations claim significant power loss reductions
for the three analyzed situations compared to the GWO, AEO, PSO, and AQA.

Keywords: benchmark models testing; subtraction-average-based optimizer; cooperative learning
technique; allocation problem; power losses minimization

1. Introduction

Optimization is a broad idea used in many sectors of research. An optimization
problem constitutes a single issue that possesses more than one viable solution. As a
result, the purpose of optimization is to discover the optimal option out of all possible
possibilities. The optimization issues are stated mathematically in three parts: objective
function, constraints, and decision variables [1]. In the research of optimization, problem
solution strategies are classified as deterministic or stochastic [2]. Stochastic techniques
solve optimization issues by randomly exploring the searching space and employing
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arbitrary operators. Such methods build a population of workable solutions to a partic-
ular issue before iteratively improving those answers to finally settle on an acceptable
solution [3–5].

Global optimum is the best response to an optimization issue. Unfortunately, there
is no assurance, however, whether the algorithms being used will exactly produce such
an optimal solution. As a result, the solution produced by an optimization method for a
problem is referred to as a quasi-optimal, which may or may not be equivalent to the global
optimum [6]. To organize an effective search in the problem-solving area, metaheuristic
techniques must be capable of executing and overseeing queries at the local as well as global
levels. The global exploratory investigation leads to an in-depth examination in the space
of issue solution and diverts attention from the finest local regions [7]. Local searching,
when linked with the concept of exploiting, initiates an exhaustive examination of the
most intriguing possibilities for the purpose of converging on possibly better ones. Given
the competing goals of discovering and exploiting, establishing an equitable relationship
between them throughout the process of searching is critical for the success of metaheuristic
techniques [8]. Because of the concept of randomized searching mechanisms, researchers
have developed a huge variety of metaheuristic methods. Evolutionary, physics-based,
human-based, and swarm-intelligence computational techniques are the four basic types
of metaheuristic methods. Evolutionary systems were constructed by representing bi-
ological evolutionary qualities such as crossings, mutations, and selections, as detailed
in [9,10]. Physical rules drive physics-based techniques, including Archimedes’ optimiza-
tion algorithm [11], thermal exchange optimization [12], and the equilibrium algorithm
(EA) [13,14]. Swarm intelligence computations include the heap-based technique [15],
marine predator optimizer [16], grasshopper algorithm [17], jellyfish search optimizer [18],
particle swarm optimizer (PSO) [19], artificial bee colony [20], and whale optimization [21].
Several applications are conducted on these optimization frameworks in engineering fields,
especially regarding renewable energy. In [22], the ant colony optimizer (ACO) has been
intended for training a multilayer feed-forward neural network control system to derive
the maximum power point tracking (MPPT) from photovoltaic (PV) arrays supplying an
arc welding machine (AWM). In [23], a PSO has been enhanced with a Gauss mapping
chaotic component and combined with MPPT for a wind conversion system based on a
permanent magnet (PM) synchronous generator to run its tip-to-speed ratio at the optimal
level. In [24,25] the ACO algorithm has been adopted to optimally find the tuning parame-
ters of the fractional order proportional integral derivative (FOPID) controller of a PMDC
motor that drive a wire-feeder system (WFS) regarding AWM. In [26], a PSO algorithm has
been integrated with an MPPT controller depending on the adaptive neuro fuzzy inference
system to track the maximum available power from a PV system that utilized for supplying
WFS of AWM with varying weather conditions. For dealing with diverse engineering
design challenges, an improved artificial ecosystem optimizer has been conducted [27]. The
amalgamated fitness-distance architecture facilitates in identifying people who effectively
improve the solution quality which was designed to handle engineering design tasks such
as hydrostatic thrust bearing, planetary gear train, speed reducer, pressure vessel, and
rolling element bearing.

Recently, a technique named SAOA [1] has been presented where its fundamental
premise is to update population members’ locations in the search space by deducting the
average of searcher agents. This technique is beneficial since it can be easily applied to
engineering applications and has minimal parameters that need to be changed. The results
of the SAOA were contrasted with more modern approaches and other existing techniques
considering several benchmark models [1]. In this paper, an ISAOA is presented to enhance
the searching capability. The proposed ISAOA augments the standard SAOA, including a
cooperative learning strategy depending on the leader solution. Additionally, the proposed
ISAOA is adopted to handle power system applications for Thyristor Controlled Series
Capacitor (TCSC) allocation-based loss reductions in electrical power grids.
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In order to meet load demand through power export-import agreements, utilities
heavily rely on present generation capacity because the installed generating units are often
situated distant from load centers. As a result, actual power systems include several con-
nections. The minimization of power system losses is a pivotal technical objective function
to enhance the voltage quality for all common coupling system points. It can be optimized
using the optimal power flow issue (OPFI) [28], reactive power management [29], ancil-
lary services [30], and flexible alternating current transmission systems (FACTS) devices
incorporation [31]. For such supporting strategies, maintaining load flow balance and
keeping operating variables within the associated constraints are necessary, including trans-
mission network limitations, voltage restrictions, generator output limitations, and valve
restrictions [32]. Researchers have created a number of traditional and metaheuristic
optimization methods recently in an effort to solve the OPFI [33]. The traditional ap-
proaches include the sequential unconstrained minimization technique [34], interior point
approach [35], linear and nonlinear programming, gradient methods, interior-point meth-
ods, Newton method, Newton-based method [36], and fuzzy linear frameworks. However,
it has been noted that these methods cannot be used for large power systems and do not
produce global ideal solutions. Therefore, researchers have attempted to develop meta-
heuristic methods to sidestep the issues that traditional methods possess. There are diverse
population-based heuristics that are used to solve the OPFI, such as the electromagnetism-
like mechanism [37], simulated annealing optimization [38], Particle Swarm Optimization
(PSO) [39], Gradient-Based Optimization Algorithm (GBOA) [40], and Quantum computing
with Moth Flame Technique (QMFT) [41]. In addition, in [42], the TLBO technique has been
developed and adopted for solving the allocation optimization problem in power systems
of capacitors for the sake of power factor correction. To suitably increase the incorporation
of dispersed sources of energy in low-inertia electrical networks, an updated priority-list
approach with a Boolean inference coding/decoding method and a feed-forward neural
network for determining the subsequent function assessment was hybridized [43]. Priority-
based dynamic computing was used in this study to solve the unit commitment issue
by simulating various scenarios with growing renewable energy. In [44], a priority list
approach based on a genetic algorithm has been presented for investigating the expansion
problem of intermittent renewable sources and measuring their effects on the total cost
of production, involving renewable generation curtailment and load shedding avoidance
while taking into account various types of electricity storage. In [45], Bayesian optimiza-
tion was adopted with Gaussian process regression for finding the best unit commitment
scheduling for coping with the variable and fluctuating behavior of energy from renewable
sources. In [46], the Gorilla Troops Technique (GTT) has been employed on the OPFI with
IEEE 30 bus system. The GTT includes five strategies for the group behaviors of gorillas
which are visiting other gorillas, migrating to a new area, migrating in a certain direction,
vying for adult females, and following the silverback. In [47], GTT has been employed on
the OPFI with the inclusion of TCSC devices in the system. However, the size and allocation
of the TCSC have not been taken into consideration. An Emended Crow Search Algorithm
(ECSA) has been employed on the OPFI as depicted in [48] with adjustments to aggregated
novel bat algorithm. For the purpose of reducing the costs of energy losses with/without
the inclusion of voltage-source-converter stations, a manta-ray foraging optimizer has been
designed for electrical grids in Ref. [49].

The significant contributions mentioned in this study are listed below.

• A novel ISAOA is presented.
• The proposed ISAOA establishes great superiority over the standard SAOA after

considering testing on different standard mathematical benchmark functions.
• Compared to existing studies, the placement and sizing of TCSC devices are handled

to minimize power losses.
• In this context, considering the standard IEEE 30 bus power system, the proposed

ISAOA outperforms various SAOA and other recent approaches of GWO, AEO, PSO,
and AQA.
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• Considering different numbers of TCSC devices, the suggested ISAOA’s precision and
quality of solution are demonstrated compared to the others.

2. Novel ISAOA Version: Mathematical Model

This section explains the theory behind the ISAOA technique that has been suggested
and a presentation of its mathematical modeling for use in optimization problems.

2.1. Standard SAOA Version

The basic idea behind the standard SAOA is to update the location of population
members in the search space by subtracting the average of searcher agents [1]. The search
space represents the name given to the set of solutions to each optimization issue. The
dimension length of the search space is the number of control variables in the problem
being studied. Their numerical values are determined by the positions of the algorithm’s
searching individuals consisting of the population size. As a result, every seeking solution
or individual is computationally represented employing a vector and comprises data
pertaining to the control variables. Random initialization determines the search agents’
initial principal locations in the search space as follows [1]:

Sai = LL + Range× rand(1, Dim) i = 1 : Ns (1)

where Sai indicates a solution vector agent in the SAOA population, which has a size of
solution (Ns). Dim symbolizes the dimensional length regarding the number of control
variables. LL indicates the lower limit of the control variables. Range denotes an acceptable
interval of the dimensions, which can be expressed as follows [1]:

Rangei = ULi − LLi i = 1 : Dim (2)

where UL indicates the higher limit of the control variables.
Each individual investigation seems to be a potential solution to the considered

optimization aspect. Therefore, based on each search individual, the problem’s objective
function can be assessed. Fiti can be used to represent the evaluated values for the problem’s
objective function for each solution vector agent (i). According to the assessed values for the
objective function, the optimal solution is determined using the best value generated for the
goal function. In addition, the worst solution corresponds to the worst value determined
for the goal function.

Mathematical considerations, including mean values, variations in search represen-
tative placements, and the sign of the variation between two objective values, served as
the foundation for the SAOA’s conception. Because it relies on a special functioning “v”
known as the “v-subtraction operator,” the SAOA method for computing the arithmetic
mean is wholly original. Therefore, each solution vector agent in the SAOA population is
updated related to the following equation [1]:

Sai,new = Sai +
→
zi ×

1
Ns

(
Ns

∑
k=1

(Sai −υ Sak)

)
i = 1 : Ns (3)

where Sai,new indicates the new upgraded solution vector agent in the SAOA population.
→
zi denotes a vector of size Dim, containing numbers inside the range [0, 1] and a normal dis-
tribution for each of its elements. Sai −υ Sak indicates the subtraction operation of the two
searching solutions (Sai and Sak) from the SAOA population, which can be mathematically
represented as follows [1]:

Sai −υ Sak = sign(Fiti(Sai)− Fitk(Sak))
(

Sai −
→
υ � Sak

)
(4)
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where � denotes the Hadamard product symbol.
→
υ is a randomized vector of size Dim

containing numbers from the range [1, 2]. Fiti(Sai) and Fitk(Sak) are the evaluated objective
values for solutions (i) and (k), respectively.

After updating each solution vector, the objective value is estimated and assessed.
Then, in accordance with (5), this newly created solution replaces the old one if the new
solution provides a better objective score as follows [1]:

Sai =

{
Sai,new

Sai

i f Fiti,new(Sai,new) ≤ Fiti(Sai)
Else

(5)

2.2. Novel ISAOA Version Incorporating a Cooperative Learning Strategy

In an effort to enhance the searching capability, an ISAOA is proposed in this study
by incorporating a cooperative learning strategy depending on the leader solution. In
the standard SAOA version, as described in the updating mechanism of Equation (3), the
change in position of every searching solution (Sai) within the search space is determined
by the arithmetic mean of the v-subtraction operator of all the other solution vectors in the
population, from it. Using this framework, the exploration characteristics are significant
and powerful. On the other side, the exploitation searching characteristics require further
enhancement by supporting the local searching mechanism around the best promising area.
In order to accomplish that, a cooperative learning strategy is merged in the ISAOA version
to provide learning information from the best solution vector as follows:

Sai,new = SaBEST +
→
wi × (SaR1 − SaR2) (6)

where Sai,new indicates the new upgraded solution vector agent in the SAOA population.
SaBEST refers to the best solution in the current iteration;

→
wi denotes a vector of size Dim,

containing numbers inside range [0, 1] and a normal distribution for each of its elements.
SaR1 and SaR2 represent two random unequal picked from the SAOA population.

In order to provide a balance between the exploration characteristics described in
Equation (3) and the augmented exploitation characteristics described in Equation (6),
a selection probability (SR) is preserved, which is set to 50%. The abovementioned key
phases of the suggested ISAOA are shown in Figure 1.
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3. Experimental Validation of Standard Benchmarking Functions

In this section, an evaluation of the formed ISAOA and the standard SAOA is made
in comparison to ten popular, well-known mathematical benchmarks that are listed in
Table 1 [50]. While the second function (F2) is multimodal, the first function (F1) represents a
unimodal function. Mixed functions are represented by functions (F3–F6), while composite
functions are represented by functions (F7–F10). According to the no free lunch theorem, no
optimization algorithm is the best for all optimization problems. Therefore, the comparisons
involve several problems with distinct features. These simulations were carried out using
MATLAB 2017b software.

Table 1. Definitions in detail of the 10 prevalent benchmarks being considered [50].

Function No. Function Dim Max. Min. Optimal

F1 Shifted and Rotated Zakharov Function 30 100 −100 300

F2 Shifted and Rotated Expanded Scaffer’s F6 Function 30 100 −100 600

F3 Hybrid Function 1 (N = 3) 30 100 −100 1100

F4 Hybrid Function 6 (N = 4) 30 100 −100 1600

F5 Hybrid Function 6 (N = 5) 30 100 −100 1700

F6 Hybrid Function 6 (N = 5) 30 100 −100 1900

F7 Composition Function 1 (N = 3) 30 100 −100 2100

F8 Composition Function 4 (N = 4) 30 100 −100 2400

F9 Composition Function 5 (N = 5) 30 100 −100 2500

F10 Composition Function 7 (N = 6) 30 100 −100 2700

The performance analysis of the designed ISAOA and standard SAOA for ten widely
used mathematical problems is shown in Table 2. Additionally, Figure 2 presents the most
desirable convergent motion characteristics. This table demonstrates the resilience of the
produced ISAOA in determining the optimal solution to the majority of the investigated
mathematical problems by explicitly showing that the designed ISAOA runs and works
better than the standard SAOA in the tested mathematical functions. According to the
best-obtained objective, the suggested ISAOA outperforms the standard SAOA for all
investigated benchmarks except F6, with a success rate of 90%. In addition, the suggested
ISAOA surpasses the regular SAOA for all examined benchmarks, with the exception of F6
and F10, according to the mean achieved objective, with a success rate of 80%. Moreover,
the adopted ISAOA surpasses the regular SAOA for all benchmarks examined, with the
exception of F6, F8, and F10, with a success rate of 70%, according to the worst attained
objective. According to this table, the proposed ISAOA beats the conventional SAOA for the
best, mean, worst, and standard deviations in 70% of the benchmark functions’ statistical
indices regarding the benchmarks investigated. The success rates attested demonstrate
the considerable efficacy of the proposed ISAOA combining the advised cooperative
learning technique.

Table 2. Performance study for the designed ISAOA and standard SAOA on different benchmarks.

Function Index
Algorithms Proposed ISAOA vs.

Standard SAOA
Improvement Percentage (%) Decline Percentage (%)

Standard SAOA Proposed ISAOA

F1

Best 623.6 300.0
√

51.9% -

Mean 2872.2 300.0
√

89.6% -

Worst 8350.7 300.3
√

96.4% -

STD 1682.4 0.0
√

100.0% -

F2

Best 606.0 603.8
√

0.4% -

Mean 620.6 617.5
√

0.5% -

Worst 649.2 647.2
√

0.3% -

STD 10.3 9.4
√

8.4% -
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Table 2. Cont.

Function Index
Algorithms Proposed ISAOA vs.

Standard SAOA
Improvement Percentage (%) Decline Percentage (%)

Standard SAOA Proposed ISAOA

F3

Best 1166.7 1103.3
√

5.4% -

Mean 1493.4 1158.7
√

22.4% -

Worst 2561.0 1273.3
√

50.3% -

STD 372.1 43.4
√

88.3% -

F4

Best 1694.8 1601.7
√

5.5% -

Mean 2077.5 1817.6
√

12.5% -

Worst 2315.7 2135.6
√

7.8% -

STD 119.4 142.0 x - 15.9%

F5

Best 1783.3 1724.0
√

3.3% -

Mean 1888.6 1784.0
√

5.5% -

Worst 2094.9 1925.6
√

8.1% -

STD 80.5 53.5
√

33.5% -

F6

Best 2022.8 2025.1 x - 0.1%

Mean 9198.0 11852.1 x - 22.4%

Worst 32007.5 208941.3 x - 84.7%

STD 6583.5 28897.4 x - 77.2%

F7

Best 2316.5 2200.0
√

5.0% -

Mean 2347.7 2311.1
√

1.6% -

Worst 2385.1 2379.0
√

0.3% -

STD 13.0 53.6 x - 75.8%

F8

Best 2663.2 2500.0
√

6.1% -

Mean 2777.7 2776.8
√

0.0% -

Worst 2859.1 2881.8 x - 0.8%

STD 28.1 48.7 x - 42.1%

F9

Best 2918.9 2897.9
√

0.7% -

Mean 2959.3 2927.0
√

1.1% -

Worst 3038.8 2978.5
√

2.0% -

STD 23.8 25.6 x - 7.1%

F10

Best 3098.5 3093.2
√

0.2% -

Mean 3116.2 3129.6 x - 0.4%

Worst 3203.9 3209.5 x - 0.2%

STD 23.1 36.4 x - 36.5%
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4. TCSC Allocation-Based Loss Minimization in Electrical Power Grids

One of the most well-known FACTS devices in the series is the TCSC, which has a num-
ber of benefits, including great performance, rapid response, and low cost. Inductive and
capacitive capability compensations are the two reactive operational modes available for
TCSC devices. The reactance of the corresponding transmission line can be, consequently,
increased or decreased in both modes. TCSC modeling in electrical systems connected
in series with a line is shown in Figure 3. It is composed of a capacitance (C) coupled in
parallel with an inductance (L), which is modulated by a valve located in anti-parallel
conventional thyristors [51–54].
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In order to technically enhance the power grid and the voltage quality in all buses,
the primary objective is to minimize the whole grid losses, which can be mathematically
represented as illustrated [55]:

OJV =
Npq

∑
p=1

Npq

∑
p 6=q

Gpq(V p
2+Vq

2−2(V pVqcos (θ p−θq)) (7)

where Nbq manifests the number of buses; Gpq points out the transfer conductance among
buses p and q; θ signifies the phase angle; V represents the voltage.

To address the TCSC allocation problem, several equality and inequality limitations
must be maintained, which are related to control and dependent variables. First, regarding
the control variables, the TCSC locations and the regarding reactance compensation have
to be satisfied as illustrated in Equations (8) and (9), respectively.

1 ≤ LineTCSC,p ≤ Nlines, ∀ p ∈ [1, NTCSC] (8)

0.5× XLineTCSC,p ≤ XTCSC(α)p ≤ −0.5× XLineTCSC,p , ∀ p ∈ [1, NTCSC] (9)

where LineTCSC,p manifests the candidate lines to install TCSC devices; Nlines points out
the whole number of lines; NTCSC signifies the number of TCSC devices to be installed;
XLineTCSC,p represents the reactance of the regarding lines selected to install TCSC devices.

The TCSC devices are sized to ensure the capacitor bank compensates for 50–70% of
the transmission line. Therefore, the maximum limit of capacitor bank compensations is
considered 50%, as displayed in Equation (9) which is based on several other previously
published articles [46,47,51–54].

In addition, regarding the control variables, the limitations for the output powers from
generators, generators voltage, reactive powers injection from Var sources, and tap settings
are handled using Equations (10)–(13), respectively [56,57].

Pgenmin
p ≤ Pgenp ≤ Pgenmax

p , ∀ p ∈ [1, Ngen] (10)

Vgenmin
p
≤ Vgen

p
≤ Vgenmax

p , ∀ p ∈ [1, Ngen] (11)
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Qcmin
VAR ≤ QcVAR ≤ Qcmax

VAR, ∀ VAR ∈ [1, Nq] (12)

Tpmin
Tr ≤ TpTr ≤ Tpmax

Tr , ∀ Tr ∈ [1, Nt] (13)

where Ngen represents the total number of generation units; Nt illustrates the total number
of transformer units; Nq characterizes the total number of compensating/capacitors units;
Pgen illustrates generators’ real power output; Tp denotes the tap changer settings; Vgen
gives voltages of the generators; Qc signifies the reactive power injections of switching
reactors/capacitors.

Second, regarding the dependent variables, the limitations for the output reactive
powers from generators, power flow through the lines, and load bus voltages are handled
using Equations (14)–(16), respectively [55].

Qgenmin
p
≤ Qgen

p
≤ Qgenmax

p
, ∀ p ∈ [1, Ngen] (14)

|SflLine| ≤ Sflmax
Line, ∀ Line ∈ [1, Nlines] (15)

VLmin
j ≤ VLj ≤ VLmax

j , ∀ j ∈ [1, NPQ] (16)

where Qgen characterizes generator reactive power outputs; Sfl elaborates transmission
flow limits; VL shows load bus voltage magnitudes at bus j; NPQ signifies the entire number
of load buses.

On the other side, the active and reactive power load balancing equations at each bus
must be maintained as equality constraints. These constraints are fully achieved with the
convergence of the load flow routine.

5. Simulation Results for Optimal TCSC Allocations in Power Systems

The proposed ISAOA is applied in this section to solve the considered problem of
optimal TCSC allocations in power systems to minimize power losses. In this regard,
the IEEE standard 30 bus system is considered. The IEEE 30 bus grid is displayed in
Figure 4 [58], which consists of 41 branches, 30 buses, 4 tap transformers, and 9 VAr com-
pensators. The whole data set for the generation limitations, lines, and buses are derived
from [59]. The maximum generator voltages and tap positions correspond to 1.1 and
0.9 p.u. For load buses, the maximum voltage remains 1.05 and 0.95 p.u., correspondingly.
The limits for the generator voltage and tap settings are 1.1000 and 0.9000 p.u., respectively.
The voltage limits of load buses are considered to be 1.0500 and 0.9500 p.u., respectively.
The proposed ISAOA is contrasted with the standard SAOA and other recent algorithms,
which demonstrated previous effective applications such as AEO [60], AQA [61,62], PSO,
and GWO [63,64]. The five compared algorithms are applied with the same 50 searching
individuals and 300 iterations. They are performed 20 separate times considering three
different case studies as follows:

• Case 1: One TCSC to be allocated.
• Case 2: Two TCSCs to be allocated.
• Case 3: Three TCSCs to be allocated.

5.1. Application for Case 1

In this case, one TCSC device must be assigned to the power grid by looking for the
best location and size. To reduce power losses, the suggested ISAOA is used in place of the
standard SAOA, AEO, AQA, PSO, and GWO.

Table 3 tabulates the optimal control variables related to the compared results in terms
of the generator’s voltage and output power, the Var sources injection power, and the
tap value, in addition to the placement and sizing of the TCSC device. As illustrated, the
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suggested ISAOA yields the lowest power losses of 2.8217 MW with the best performance.
The proposed ISAOA selects the transmission lines (28-27) with a compensation level of
approximately 50% subtraction from the installed line reactance.
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Table 3. TCSC device addition and their compensation levels for Case 1.

Initial Case ISAOA SAOA AEO GWO AQA PSO

VG 1 1.0500 1.1 1.1 1.099351 1.099568 1.1 1.075

VG 2 1.0400 1.09755 1.1 1.094747 1.095818 1.1 1.07809

VG 5 1.0100 1.079716 1.1 1.074308 1.08001 1.09728 1.065148

VG 8 1.0100 1.08684 1.1 1.083873 1.085785 1.09288 1.063441

VG 11 1.0500 1.1 1.1 1.099959 1.078706 1.1 1.022355

VG 13 1.0500 1.1 1.1 1.099709 1.081997 1.1 1.038084

Ta 6-9 1.0780 1.067173 1.1 1.028284 1.025412 1.1 1.057744

Ta 6-10 1.0690 0.9 1.002677 0.925326 0.961107 0.910477 0.986684

Ta 4-12 1.0320 0.986297 1.010226 0.999935 1.008998 1.009181 1.002048

Ta 28-27 1.0680 0.973996 0.978184 0.98665 1.00225 1.034419 0.999681

Qr 10 0 5 5 4.152465 2.13309 5 2.240947

Qr 12 0 5 2.979705 4.930084 3.124115 3.962959 1.838463

Qr 15 0 4.999997 4.851496 4.952519 0.258411 5 0.558184

Qr 17 0 4.999982 4.624229 4.912524 3.793636 5 2.661792

Qr 20 0 4.081398 3.910989 1.71465 2.796705 5 3.442288

Qr 21 0 4.968112 5 4.899575 4.209032 5 3.753513

Qr 23 0 2.58453 2.684319 0.885251 3.763496 4.881004 3.735606

Qr 24 0 5 4.291999 3.534451 3.481095 5 3.049624

Qr 29 0 2.275642 2.726024 2.708482 2.864193 3.107001 1.325189

PG 1 99.2400 51.21077 51.5016 51.4936 62.3303 51.3952 54.40648

PG 2 80 80 80 79.78346 79.61742 80 80

PG 5 50 50 49.89148 49.86303 49.8189 50 48.99943

PG 8 20 35 35 34.99899 33.99505 35 34.5
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Table 3. Cont.

Initial Case ISAOA SAOA AEO GWO AQA PSO

PG 11 20 30 30 29.55887 29.7921 30 28.86584

PG 13 20 40 40 39.98309 37.77225 40 40

TCSC installed Lines - 28-27 23-24 28-27 4-6 6-28 26

TCSC Compensation Percentage - −49.998% +4.665% −49.490% −35.028% −42.017% −22.85%

Losses (MW) 5.832400 2.8217 3.061 2.844 3.035 2.990 3.37174

Positive and negative signs indicate an addition or subtraction in the transmission line reactance installed with
a TCSC.

According to the proposed ISAOA, the achieved power losses represent a significant
reduction percentage of 51.62% compared to the initial case. On the other side, the standard
SAOA obtains power losses of 3.061 MW upon installing a TCSC device in series with lines
(23-24) with a compensation level of approximately 4.66% addition. The proposed ISAOA
derives a significant reduction percentage of 7.81% compared to the SAOA. Additionally,
the AEO acquires power losses of 2.884 MW upon connecting a TCSC device in series with
lines (28-27) with a compensation level of roughly 49.49% subtraction. Upon adding a TCSC
device in series with lines (4-6) with a compensation level of around 35.03% subtraction,
the GWO also achieves power losses of 3.035 MW. Additionally, upon connecting a TCSC
device in series with lines (6-28) and subtracting a compensation level of roughly 42.017%,
the AQA achieves power losses of 2.99 MW. As shown in Table 3, the proposed ISAOA
derives the best performance upon acquiring the smallest measurement of the best power
losses of 2.8217 MW, respectively. On the other side, the SAOA, AEO, GWO, PSO, and
AQA achieve losses of 3.061, 2.844, 3.035, 3.37, and 2.990 MW, respectively.

The suggested ISAOA, standard SAOA, AEO, AQA, PSO, and GWO converging
properties are also shown in Figure 5. As shown, the proposed ISAOA has a high and quick
capability to find promising areas. After only fifty iterations, it starts, with precedence
compared to the others, searching to minimize the losses of less than 2.83 MW. Despite the
AQA converging at an earlier iteration, it becomes stuck in a local optimizing area for more
than 150 iterations.
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Figure 6 shows the bus voltage after installing the candidate TCSC device based on the
suggested ISAOA vs. the initial instance to demonstrate a range of voltage enhancements.
As can be seen, grid buses have made significant advancements. The last grid bus (No. 30)
has the biggest voltage profile rise, increasing from 0.9012 per unit (p.u.) to 1.0696 p.u. with
an improvement percentage of 15.74%.
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To assess the statistical evaluation of the compared techniques, Figure 7 displays the
characteristics of the suggested ISAOA, standard SAOA, AEO, AQA, PSO, and GWO
in terms of the best, mean, worst and standard deviation (STD) over the separate runs.
As shown, the proposed ISAOA derives the best performance by acquiring the smallest
measurements of the best and mean power losses of 2.8217 and 2.93 MW, respectively.
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5.2. Application for Case 2

Upon choosing the appropriate position and size, two TCSC devices may be connected
to the power grid. The proposed ISAOA is employed in place of the conventional SAOA,
AEO, AQA, PSO, and GWO in order to minimize power losses. The associated appropriate
control variables are shown in Table 4. As shown, the recommended ISAOA produces the
highest performance and the lowest power losses of 2.82 MW. It chooses the transmission
lines (28-27) and (6-28) with 50% subtraction compensation levels. The conventional SAOA,
AEO, GWO, PSO, and AQA, on the other hand, experience power losses of 3.102, 2.867,
3.227, 3.36, and 2.995 MW, respectively.
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Table 4. TCSC device addition and their compensation levels for Case 2.

Initial Case ISAOA SAOA AEO GWO AQA PSO

VG 1 1.0500 1.1 1.1 1.099352 1.095119 1.1 1.075

VG 2 1.0400 1.097584 1.1 1.096829 1.089415 1.1 1.075013

VG 5 1.0100 1.079817 1.1 1.078726 1.071614 1.1 1.042909

VG 8 1.0100 1.087006 1.1 1.086607 1.078618 1.094221 1.067203

VG 11 1.0500 1.1 1.1 1.099927 1.084584 1.1 1.075

VG 13 1.0500 1.1 1.047568 1.099558 1.074647 1.1 1.071508

Ta 6-9 1.0780 1.064807 1.042502 0.976591 1.049704 1.044803 1.02662

Ta 6-10 1.0690 0.900035 1.1 1.016372 1.032416 0.929538 0.959426

Ta 4-12 1.0320 0.980145 1.066829 1.00762 1.063337 1.011769 1.003132

Ta 28-27 1.0680 0.980535 1.066162 0.994596 1.002449 1.023534 1.010488

Qr 10 0 5 5 4.482774 3.497458 5 2.03322

Qr 12 0 5 5 3.665279 0.832066 5 3.70069

Qr 15 0 0 5 3.945993 4.166941 4.987603 1.505697

Qr 17 0 5 5 4.659533 3.173012 5 3.098415

Qr 20 0 5 5 4.934657 0.851722 4.879124 2.663595

Qr 21 0 4.999997 5 2.590238 3.394242 5 1.928459

Qr 23 0 4.274824 4.567337 2.648497 1.978594 5 3.428343

Qr 24 0 5 4.920762 4.935695 1.815333 5 4.035329

Qr 29 0 2.352175 3.409656 2.42653 0.977867 5 1.656887

PG 1 99.2400 51.18843 51.50164 51.49365 62.3303 51.39525 63.56449

PG 2 80 80 80 79.80634 72.62864 80 75.34649

PG 5 50 49.99428 50 49.99955 49.966 50 50

PG 8 20 35 35 34.98885 32.48052 35 31.89516

PG 11 20 30 30 29.99324 29.75128 30 29

PG 13 20 40 40 39.98501 39.47006 40 40

First TCSC installed Lines - 28.27 6-28 6-9 6-8 10-17 26

First TCSC Compensation - −50.00% 3.72% 16.10% 24.83% −13.64% −50%

Second TCSC installed Lines - 6-28 23-24 4-12 16-17 6-28 15

Second TCSC Compensation - −50.00% 16.57% 49.90% −2.74% −44.06% 6.417%

Losses (MW) 5.832400 2.820 3.102 2.867 3.227 2.995 3.360665

Positive and negative signs indicate an addition or subtraction in the transmission line reactance installed with
a TCSC.

Figure 8 also displays the proposed ISAOA, standard SAOA, AEO, AQA, PSO, and
GWO convergence features. As demonstrated, the suggested ISAOA is highly and quickly
capable of identifying interesting locations. After just 75 iterations, it searches for a reduc-
tion in power loss below 2.83 MW with primacy over the others. In addition, Figure 9
shows the bus voltage after installing the candidate TCSC devices based on the suggested
ISAOA vs. the initial instance to demonstrate the range of voltage enhancements. As can
be seen, grid buses have made significant advancements.
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Figure 10 shows the features of the proposed ISAOA, conventional SAOA, AEO, AQA,
PSO, and GWO across the individual runs to evaluate their statistical assessment. It has
been demonstrated that the suggested ISAOA outperforms the competition. According
to the best losses, the proposed ISAOA acquires 2.82 MW losses with an improvement of
9.08%, 1.62%, 12.60%, 16.1%, and 5.85%, respectively compared to the standards SAOA,
AEO, AQA, PSO, and GWO. In addition, the suggested ISAOA, when compared to the
normal SAOA, AEO, AQA, PSO, and GWO, acquires 2.938 MW losses with improvements
of 6.39%, 1.66%, 16.08%, 18.8%, and 5.37%, respectively, in line with the mean losses. The
designed ISAOA acquires 3.168 MW losses in accordance with the worst losses, with
improvements of 0.41%, 1.43%, 24.21%, 21.3%, and 0.40%, respectively, compared to the
standard SAOA, AEO, AQA, PSO, and GWO.
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5.3. Application for Case 3

In this case, three TCSC devices may be connected to the electrical grid upon selecting
the right position and size. In order to reduce power losses, the suggested ISAOA is used in
place of the traditional SAOA, AEO, AQA, PSO, and GWO. Table 5 displays the associated
suitable control variables. As can be seen, the suggested ISAOA yields the best results
and the lowest power loss of 2.821 MW. It selects the transmission lines (6-28), (10-20), and
(28-27) with subtraction compensation values of 36.96%, 50%, and 50%, respectively. On
the other hand, the standard SAOA, AEO, GWO, PSO, and AQA suffer power losses of
3.036, 2.880, 3.187, 3.328, and 2.969 MW, respectively.

Figure 11 additionally shows the proposed ISAOA, standard SAOA, AEO, AQA, PSO,
and GWO convergence features. As demonstrated, the suggested ISAOA is highly and
quickly capable of identifying interesting locations. After just 79 iterations, it begins to hunt
to decrease the losses below 2.83 MW with precedence over the others.
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Table 5. TCSC device addition and their compensation levels for Case 3.

Initial Case ISAOA SAOA AEO GWO AQA PSO

VG 1 1.0500 1.1 1.093023 1.099981 1.086747 1.097922 1.075036

VG 2 1.0400 1.1 1.091724 1.095393 1.082197 1.097226 1.076742

VG 5 1.0100 1.082327 1.071226 1.076605 1.061782 1.082092 1.047007

VG 8 1.0100 1.08939 1.088734 1.083436 1.068615 1.091701 1.054737

VG 11 1.0500 1.1 1.059316 1.088431 1.081636 1.095909 1.082164

VG 13 1.0500 1.1 1.049747 1.099988 1.070184 1.088444 1.074414

Ta 6-9 1.0780 1.1 1.056802 0.996884 0.993708 1.01364 0.973067

Ta 6-10 1.0690 0.9 0.992325 0.949036 1.042592 1.045173 0.993484

Ta 4-12 1.0320 0.990567 1.066913 1.031631 1.018614 1.063428 1.058055

Ta 28-27 1.0680 0.989463 1.048915 0.976953 0.991104 1.020301 0.971079

Qr 10 0 5 5 4.374692 2.966956 5 2.932858

Qr 12 0 1.5 × 10−6 4.893785 4.366721 0.713832 3.430701 4.286213

Qr 15 0 5 4.830902 4.974559 1.657207 1.754133 1.763583

Qr 17 0 5 4.93972 0.865704 1.784874 4.858897 3.538395

Qr 20 0 4.40039 4.97807 2.802873 2.792935 5 2.196743

Qr 21 0 5 4.983362 4.07292 1.804884 5 0.760047

Qr 23 0 2.71585 5 1.849487 1.079345 5 1.500662

Qr 24 0 5 4.999963 4.716259 3.888447 5 2.947927

Qr 29 0 2.271475 4.99007 2.050629 2.454247 5 2.648181

PG 1 99.2400 51.18571 51.37345 51.43609 56.25298 51.36892 58.62718

PG 2 80 80 80 79.97287 78.58037 80 76

PG 5 50 50 50 49.99684 49.96991 50 50

PG 8 20 35 35 34.99919 33.73529 35 35

PG 11 20 30 30 29.97878 28.5719 30 30

PG 13 20 40 40 39.89602 39.47651 40 37.10127

First TCSC installed Lines - 6-28 6-28 28-27 9-11 10-17 9-10

First TCSC Compensation - −36.96% 2.06% −44.65% −0.62% −39.76% −8.80%

Second TCSC installed Lines - 10-20 - 6-7 12-13 6-28 12-14

Second TCSC Compensation - −50.00% - −5.97% −7.28% 6.83% 5.01%

Third TCSC installed Lines - 28-27 - 10-20 - 25-26 4-12

Third TCSC Compensation - −50.00% - −49.50% - −50.00% −24.71%

Losses (MW) 5.832400 2.821 3.036 2.880 3.187 2.969 3.3284477

Positive and negative signs indicate an addition or subtraction in the transmission line reactance installed with
a TCSC.

To illustrate the range of voltage enhancement, Figure 12 compares the bus voltages
before and after installing the proposed TCSC devices based on the indicated ISAOA. Grid
buses have progressed significantly, as is evident. The statistical evaluation of the proposed
ISAOA, standard SAOA, AEO, AQA, PSO, and GWO is also shown in Figure 13 in terms
of the best, mean, worst, and standard deviation (STD) over the individual runs. As it has
been demonstrated, the suggested ISAOA achieves the greatest performance by gaining the
smallest measurements for the best and mean worst losses, which are, respectively, 2.821
and 2.918.
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5.4. Analysis of Increasing the Maximum Compensation Level to 70%

As previously formulated in Equation (9), the TCSC reactance compensation has
to be satisfied and limited to 50%. In this section, an analysis of increasing the maxi-
mum compensation level to 70% is investigated instead of Equation (9) considering the
following constraint:

0.7× XLineTCSC,p ≤ XTCSC(α)p ≤ −0.7× XLineTCSC,p , ∀ p ∈ [1, NTCSC] (17)

For this analysis, to reduce power losses, the suggested ISAOA is used, considering
maximum compensation levels of 50% and 70%, respectively. The three cases are inves-
tigated based on the number of TCSC devices to be allocated, and the related results are
stated in Table 6.

As shown, considering the 70% compensation limit, the proposed ISAOA achieves
power losses of 2.80645 and 2.775199 for Cases 2 and 3, respectively. On the other side,
considering the 50% compensation limit, the proposed ISAOA achieves power losses
of 2.820 and 2.821 for Cases 2 and 3, respectively. This output assessment shows more
compensation derives more reduction in power losses. The compensation of 70% derives a
reduction in power losses of 0.5% and 1.62% for Cases 2 and 3, respectively.
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Table 6. TCSC device addition and their compensation levels based on ISAOA for the three
cases studied.

Control Variables Initial Case
Maximum Compensation of 50% Maximum Compensation of 70%

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

VG 1 1.0500 1.1 1.1 1.1 1.1 1.1 1.099999

VG 2 1.0400 1.09755 1.097584 1.1 1.097319 1.097956 1.097605

VG 5 1.0100 1.079716 1.079817 1.082327 1.078955 1.080331 1.07971

VG 8 1.0100 1.08684 1.087006 1.08939 1.086296 1.087668 1.087057

VG 11 1.0500 1.1 1.1 1.1 1.1 1.098732 1.1

VG 13 1.0500 1.1 1.1 1.1 1.1 1.099938 1.1

Ta 6-9 1.0780 1.067173 1.064807 1.1 1.063184 1.070089 1.067166

Ta 6-10 1.0690 0.9 0.900035 0.9 0.90001 0.9 0.956462

Ta 4-12 1.0320 0.986297 0.980145 0.990567 0.990751 0.98751 0.986089

Ta 28-27 1.0680 0.973996 0.980535 0.989463 0.988098 0.984445 0.983499

Qr 10 0 5 5 5 4.274806 5 0.108196

Qr 12 0 5 5 1.5 × 10−6 4.99999 4.956941 5

Qr 15 0 4.999997 0 5 5 4.709263 5

Qr 17 0 4.999982 5 5 5 4.996445 4.999989

Qr 20 0 4.081398 5 4.40039 3.702088 4.802683 4.877439

Qr 21 0 4.968112 4.999997 5 5 5 5

Qr 23 0 2.58453 4.274824 2.71585 5 2.494547 0

Qr 24 0 5 5 5 5 5 4.994352

Qr 29 0 2.275642 2.352175 2.271475 5 2.309083 2.443029

PG 1 99.2400 51.21077 51.18843 51.18571 51.22007902 51.22321 51.17528

PG 2 80 80 80 80 80 79.98913 80

PG 5 50 50 49.99428 50 50 50 50

PG 8 20 35 35 35 34.99961 35 35

PG 11 20 30 30 30 30 29.99852 30

PG 13 20 40 40 40 40 39.99559 39.99992

First TCSC installed Lines - 28-27 28-27 6-28 28-27 6-28 28.27

First TCSC Compensation - −49.998% −50.00% −36.96% −70.0% −70.0% −70.0%

Second TCSC installed Lines - - 6-28 10-20 - 28.27 8-28

Second TCSC Compensation - - −50.00% −50.00% - −57.6% 6.2%

Third TCSC installed Lines - - - 28-27 - - 6-10

Third TCSC Compensation - - - −50.00% - - −70.0%

Losses (MW) 5.832400 2.8217 2.820 2.821 2.82731 2.80645 2.775199

Positive and negative signs indicate an addition or subtraction in the transmission line reactance installed with
a TCSC.

6. Conclusions

This study proposes a novel, improved evolutionary method dubbed the Subtraction-
Average-based optimization algorithm. The proposed ISAOA incorporates a cooperative
learning strategy depending on the leader solution to enhance the searching capability. The
proposed ISAOA shows great superiority in enhancement compared with the standard
SAOA with experimental validation of 10 standard benchmarking functions. It beats the
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conventional SAOA for the best, mean, worst, and standard deviation measurements in
70% of the benchmark functions’ statistical indices regarding the benchmarks investigated.
The success rates attested demonstrate the considerable efficacy of the proposed ISAOA
combining the advised cooperative learning technique. Further, the TCSC allocation-based
loss reduction in electrical power grids is achieved through the development of the ISAOA
algorithm. In comparison to the conventional SOA, GWO, AEO, PSO, and AQA, the
suggested ISAOA is successfully implemented for the IEEE-30 bus power grid standard.
The suggested ISAOA’s simulated implementations assert significant power loss reductions
for the three examined cases studied compared to the others. On the basis of the suggested
ISAOA for all grid buses, significant improvement is also gained.

The proposed ISAOA derives the best performance by acquiring the smallest mea-
surements of the best power losses of 2.8217, 2.82, and 2.821 MW, respectively, for the
three cases studied. In addition, the voltage profiles of all buses are enhanced with an
improvement percentage of 15.74%. As a future area of study, the application of more
advanced algorithms can be developed and applied with statistical comparisons in order
to find highly robust and superior solution quality.
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