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Abstract: The objective of this paper is to present a novel design of intelligent neuro-supervised
networks (INSNs) in order to study the dynamics of a mathematical model for Parkinson’s disease ill-
ness (PDI), governed with three differential classes to represent the rhythms of brain electrical activity
measurements at different locations in the cerebral cortex. The proposed INSNs are constructed by
exploiting the knacks of multilayer structure neural networks back-propagated with the Levenberg–
Marquardt (LM) and Bayesian regularization (BR) optimization approaches. The reference data for
the grids of input and the target samples of INSNs were formulated with a reliable numerical solver
via the Adams method for sundry scenarios of PDI models by way of variation of sensor locations
in order to measure the impact of the rhythms of brain electrical activity. The designed INSNs for
both backpropagation procedures were implemented on created datasets segmented arbitrarily into
training, testing, and validation samples by optimization of mean squared error based fitness function.
Comparison of outcomes on the basis of exhaustive simulations of proposed INSNs via both LM
and BR methodologies was conducted with reference solutions of PDI models by means of learning
curves on MSE, adaptive control parameters of algorithms, absolute error, histogram error plots, and
regression index. The outcomes endorse the efficacy of both INSNs solvers for different scenarios
in PDI models, but the accuracy of the BR-based method is relatively superior, albeit at the cost of
slightly more computations.

Keywords: Parkinson’s disease; neuro-supervised networks; intelligent computing; Bayesian
regularization; Levenberg–Marquardt

1. Introduction

Parkinson’s disease illness (PDI) is a neurological disorder normally caused by an
early significant death of dopaminergic neurons, and the resulting deficiency of dopamine
within the basal ganglia results in movement disorders [1]. PDI patients may suffer from
tremors/shaking, kinetic problems, postural instability, and rigidity and anxiety, as high-
lighted in Part 1 of the graphical abstract provided in Figure 1. In 2016, around 6.1 million
people were affected by the PDI [2], and a rapid increase in PDI patients has been observed
in the past two decades [3,4]. The current therapeutic treatments for PDI are based on restor-
ing dopamine levels. These remedies are helpful in providing symptomatic relief to PDI
patients, but they are not disease modifying, and, therefore, PDI has remained incurable [5].
Mathematical modeling of PDI may help in better understanding the dynamics of the
disease and, thus, improved treatments for its recovery. Different mathematical models of
PDI have been proposed [6]. For instance, in [7], Anninou et al. developed a mathematical
model for PDI by exploiting the concept of fuzzy cognitive maps, and a generic algorithm

Biomimetics 2023, 8, 322. https://doi.org/10.3390/biomimetics8030322 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8030322
https://doi.org/10.3390/biomimetics8030322
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0001-9476-8130
https://orcid.org/0000-0001-9953-822X
https://doi.org/10.3390/biomimetics8030322
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8030322?type=check_update&version=1


Biomimetics 2023, 8, 322 2 of 24

was proposed based on nonlinear Hebbian learning techniques. Recently, a wide use of
artificial intelligence methodologies for modeling different diseases has emerged [8–10],
but, as per our exhaustive search, these methodologies are not yet exploited to study the
dynamics of PDI. Thus, it seems promising to exploit the well-established strength of
machine learning and artificial intelligence techniques to study the dynamics of PDI.
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Figure 1. Graphical abstract of the PDI study using INSNs. 

The objectives of the current investigation are as follows:  

• Study the dynamics of a mathematical model for PDI, governed with three differen-
tial classes to represent the rhythms of brain electrical activity that are measured at 
different locations of the cerebral cortex. 

Figure 1. Graphical abstract of the PDI study using INSNs.

The objectives of the current investigation are as follows:

• Study the dynamics of a mathematical model for PDI, governed with three differen-
tial classes to represent the rhythms of brain electrical activity that are measured at
different locations of the cerebral cortex.

• Construct intelligent neuro-supervised networks (INSNs) by exploiting the knacks of
multilayer structure neural networks backpropagated with the Levenberg–Marquardt
(LM) and the Bayesian regularization (BR) approaches.
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• Optimize the mean squared error based fitness function for sundry scenarios of PDI
models by the variation of sensor locations to measure the impact of the rhythms of
brain electrical activity.

• Compare the outcomes on the basis of exhaustive simulations of the proposed INSNs
via both LM and BR methodologies with reference solutions of PDI models by means
of learning curves on MSE, adaptive control parameters of algorithms, absolute error,
histogram error plots, and regression index.

The structure of the remaining paper is as follows: Section 2 presents the details of the
related works; Section 3 provides the mathematical model of PDI along with a description
of the proposed INSNs; Section 4 discusses the simulation results for different scenarios of
PDI; and Section 5 concludes the study by noting some potential future research directions.

2. Related Works

In PDI, the freezing of gait of patients is a common problem, referring to sudden/temporary
inability to initiate or continue walking, and the PDI patient feels as if his or her feet
are glued to ground when this occurs [11]. The freezing episodes often occur in PDI
patients during the gait initiation or when turning, and they may considerably affect
mobility/independence. Although the exact reason for freezing in PDI is not yet fully
understood, it is widely believed that it results from a combination of motor/cognitive
factors, such as (i) motor fluctuations, where the person experiences periods of good
mobility—on periods and periods of poor mobility i.e., only off periods; (ii) dual-task
interference, i.e., performing dual tasks, such as talking when walking or carrying an object,
can enhance the risk of freezing; and (iii) emotional factors, such as anxiety and stress,
can trigger or may worsen the freezing of gait. Parakkal et al. investigated the freezing
of gait in PDI patients and suggested an ankle push off model [11], where a simplified
neuromechanical model of gait is used for observing the variability and freezing in PDI.
The mathematical model presented in [11], composed of the stance-leg, demonstrated an
inverted pendulum (IP) operated by the ankle, and pushes off forces through the trailing-
leg and pathological forces from the plantar flexors of the stance-leg. Further, the effect on
walking of the swing-leg is modeled in a biped model (BM), while freezing and irregular
walking is studied in both the BM and IP model. The plantar flexors (PF) correspond to
the swing-leg pushing the center-of-mass forward, and the PF correspond to the stance-leg
producing opposing torque. The study conducted in [8] demonstrated that the opposing
forces produced by PF can persuade freezing, and it also explained the gait irregularities
that are closer to freezing, such as step length reduction and irregular walking patterns.

Heyete et al. [12] presented the Bayesian mathematical model (BMM) to identify
predictors of long-term motor/cognitive results and the progression rate in PDI. A BMM
of motor/cognitive outcomes in PDI may aid understanding of the complex interactions
among various factors and predict the progression of the disease. BMM exploits the
concepts of probability and integrates data from multiple sources, including clinical assess-
ments, demographic details, and neuroimaging results, to predict the different motor and
cognitive outcomes. Belozyotov et al. [13] presented a mathematical model to study the
behavior of PDI through the EEG signal of the patient taken at three different locations of
the cerebral cortex (CC), considered as a three-time series describing the behavior of the
disease curve in a three-dimensional phase-space, and then the 3D system of quadratic
differential equations was constructed, whose solution provides the disease curve. Further,
in [13], chaotic dynamics have been observed in the PDI mathematical model that can
capture the complex interactions among the neurons and how their activity evolves over
time. The chaotic attractors formed by the CC signals give information about the normal
process or disease progression, depending on the nature of the chaotic graph.

Borah et al. [14] presented the fractional order model of PDI by exploiting the strong
mathematical foundations of fractional calculus that allow real order differentiation or
integration to be taken through generalizing the conventional integer order calculus. The
design of appropriate controllers to control the chaos in the bio-mathematical models,
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including the PDI presented, enables stable performance to be attained. Further, the design
of anti-controllers is also demonstrated in [14] for generating chaos when turbulence is
required. Detailed analyses of the fractional order PDI model involving chaos are conducted
in [14], where absence of chaos reflects the onset of the disease, and where anti-control
schemes through linear state feedback, sliding mode, and single-state sinusoidal feedback
are developed.

The intelligent computing approaches are introduced to effectively model or optimize
different engineering, mathematical, and applied sciences problems [15–18]. In [19], a
convolutional neural network (CNN) framework is introduced for emotion recognition that
takes input from the extracts of mel scale spectrogram, chromagram, Tonnetz representation,
mel frequency cepstral coefficients, and spectral contrast features through speech files.
In [20], the estimated yield of soya bean crops under drought conditions is studied through
imagery from an unmanned aerial vehicle and CNN. Further, it is demonstrated that the
fusion of 1-D and 2-D inputs in a CNN-based deep learning model enhances the estimated
accuracy. In [21], an improved denoising autoencoder (DAE) is developed that integrates
the concept of confidence level in conventional DAE for fast and accurate recommendations
in recommender systems, which are required in the E-commerce industry to provide reliable
recommendations to the users. The DAE structure proposed in [21] is effectively applied
to Movie Lens 100 K and 1 M datasets with outstanding performance compared to the
standard DAE structures in terms of precision, recall, and MAP metrics. In [22], swarm
intelligence is exploited for the identification of fractional order nonlinear autoregressive
exogenous systems through established strength of particle swarm optimization (PSO).
In [23], a hybrid bi-directional gated recurrent unit (BiGRU) and bi-directional long-term
short-term memory (BiLSTM) are presented for electricity theft detection in smart grids
with preprocessing through feature engineering. Before using the BiGRU and BiLSTM for
classification, the data imbalance issue is solved using a K-means minority oversampling
scheme such that the balanced data are given as an input to the BiGRU and BiLSTM
models for better classification accuracy. In [24], the fractional calculus concepts are
incorporated in the optimization mechanism of PSO to enhance its optimization strength
for effective parameter estimation of nonlinear Hammerstein autoregressive exogenous
systems. Further, the key term separation principle is introduced in the PSO to accurately
estimate the actual parameters of the Hammerstein nonlinear system by avoiding the
redundant parameters. [25] present marine predators based optimization heuristics for
a parameter estimation of Hammerstein output error systems. The marine predator is a
recently introduced swarm intelligence optimization approach that mimics the behavior of
predators for catching prey through Brownian and Levy distributions for estimating the
optimum communication between predator and prey. In [26], the weather classification
model through the hybrid CNN and generative adversarial network is developed for
photovoltaic power forecasting. In [27], knacks of feedforward artificial neural networks
(FANN) optimized with the Levenberg–Marquardt algorithm are presented for analysis
of the power law fluidic problem of moving wedge and flat plate model. In [28], FANN
optimized with the Bayesian regularization algorithm are exploited for peristaltic motion
of a third grade fluid in the planar channel. In [29], FANN optimized with the Levenberg–
Marquardt algorithm are proposed to study the dynamics of multi-walled carbon nanotubes
coated with gold nanoparticles with a different velocity slip in curved channel peristaltic
motion. In [30], the efficacy of ANN optimized with the Levenberg–Marquardt and the
Bayesian regularization algorithms is analyzed for the Cattaneo–Cristov heat flux model
with biconvection nanofluid flow. In [31], intelligent algorithms and control schemes are
presented for battery management in electric vehicles with details of current advancement,
major challenges, and future prospects in the domain of battery management systems.
In [32], a comprehensive survey of the applications of the intelligent transportation systems
is presented in the context of big data, with identification of the research gaps and potential
future research directions in the domain of intelligent transportation systems. In [33], a
variety of issues related to interoperability in the Internet of Things (IoT) are discussed,
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such as searching/processing IoT, implementing, modeling event, and workflow processes.
In [34,35], automatic detection of motor imagery EEG signals is obtained for robust brain
computer interface systems. In [36], the recognition of alcoholic EEG signals is performed
using CNN and the concept of geometrical features. The graphical features are one of the
newest approaches for identifying underlying patterns of EEG signals, and they are used
for effective depression detection [37] as well as seizure recognition [38].

There are a few intelligent computation algorithms. These include a chimp-inspired
optimization scheme [39], i.e., an intelligent optimization algorithm effectively exploited to
solve different problems with reasonably accuracy through providing a good balance in the
exploration and exploitation phases; a Kohonen neural network [40], i.e., an unsupervised
self-organizing (SO) competitive neural network that performs automatic clustering and
that updates the weights of the network through SO feature mapping with effective applica-
tion to intrusion detection of the network virus; and a Mayfly algorithm [41], i.e., a swarm
intelligence-based heuristic approach, applied to successfully solve different engineering
optimization problems, including the asymmetric traveling salesman problem, due to the
features of population diversity and enhanced local search capability. Others include a
simplified slime mould algorithm [42], i.e., a modified version of the slime mould heuristic,
with an introduction of enhanced adaptive oscillation for better exploration capability
during the early search phase, with application to wireless sensor network optimization
problems; a code pathfinder algorithm [43], i.e., a discrete complex code pathfinder heuris-
tic for an efficient solution to the optimization problem of wind farm layout through an
improved exploration capability; and a firefighting strategy based marine predators ap-
proach [44], i.e., an improved variant of marine predator heuristic through an introduction
of opposition-based learning for more uniform initial population and adaptive weight fac-
tor for creating balance between exploration/exploitation capabilities to effectively handle
the forest fire rescue issues. More of these intelligent computer algorithms include a chaotic
grey wolf optimizer [45], i.e., a modified grey wolf optimizer by incorporating the con-
cepts of chaotic maps and adaptive convergence factor for robust and accurate parameter
estimation of control autoregressive systems; a subtraction average based optimizer [46],
i.e., an optimization approach inspired by the subtraction average of searchers agents
for the position updates of the particles in the search space; and an enhanced dragonfly
heuristic [47], i.e., enhanced version of dragonfly algorithm with an improved mechanism
of global search and a local search for the four color map problem. There are also two
others: a non-dominated sorting genetic algorithm [48], i.e., a modified variant of genetic
algorithm with special congestion approach and adaptive crossover scheme to effectively
solve multi objective and multi modal optimization problems, and, lastly, a green anaconda
optimizer [49], i.e., an optimization heuristic that mimics the natural behavior of the green
anacondas to solve various benchmark optimization challenges.

The intelligent computing-based methodologies have been proposed for bioinformat-
ics and biotechnology applications as well. These include a combination of a graph neural
network and CNN for efficient breast cancer classification [50]; deep learning and transfer
learning through regional CNN for white blood cell detection [51]; and a fine-tuned neural
network and long-term short-term memory-based neural network for skin disease [52].
They also include a convolutional autoencoder and transfer learning-based scheme for
Alzheimer’s disease visualization [53]; a perceptron neural network for bacterial behavior
programming [54]; and a deep neural architecture with generative adversarial network for
brain tumor classification [55]. In addition, they include a deep neural network for epidemic
prediction of COVID disease [56]; deep learning for sequential analysis of biomolecules [57];
elastic net and neural networks for the identification of plant genomics [58]; data mining
and machine learning algorithms based on spectral clustering, random forest, and neural
networks for cancer diagnosis through gene data [8]; and a stacking ensemble model based
on an auto-regressive integrated moving average, exponential smoothing, a neural network
autoregressive, a gradient-boosting regression tree, and extreme gradient boost models for
infectious diseases [9]. Finally, there are supervised machine learning algorithms for lung
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disease detection, respiratory sound analyses, and so on [10]. Motivated by the widespread
applications of the artificial intelligence methodologies, this study investigates exploiting
the artificial intelligence techniques to study the dynamics of PDI.

3. Proposed Methodology

Before developing the INSNs, first the mathematical model of the PDI is introduced in
this section. Let the rhythms x1(ti), x2(ti), . . . , xk(ti), i = 1, 2, . . . , N of cerebral activity at k
point of cerebral cortex be measured by EEG and defined as [13]:

x1(ti) = y1(ti) + ε1(ti),
x2(ti) = y2(ti) + ε2(ti),

...
xk(ti) = yk(ti) + εk(ti),

(1)

where y1(ti), y2(ti), . . . , yk(ti) shows the discrete approximation of
y(t) = [y1(t), y2(t), . . . , yk(t)]

T and ε1(ti), ε2(ti), . . . , εk(ti) represent the white Gaussian
noise. The accurate acquisition of the EEG signals is of great significance, and denoising
of the signal is required before further processing. The multiscale principle component
analysis (MSPCA) plays vital role in the denoising of a signal, which is a combination
of principle component analyses and wavelet [59], and which is used for robust motor
imagery brain computer interface classification [60,61]. The system of differential equations
are constructed as [13]:

.
y1(t) =

k
∑

m=1
a1mym(t) + yT(t)B1y(t) + c1,

.
y2(t) =

k
∑

m=1
a2mym(t) + yT(t)B2y(t) + c2,

...
.
yk(t) =

k
∑

m=1
akmym(t) + yT(t)Bky(t) + ck.

(2)

The (k × j) matrix of unknown coefficients D, matrix Y, and matrix
.

Y are introduced
in (3), (4), and (5), respectively:

D =


c1 a11 · · · a1k b1

11 · · · b1
kk 2b1

12 · · · 2b1
k−1,k

c2 a21 · · · a2k b2
11 · · · b2

kk 2b2
12 · · · 2b2

k−1,k
...

... · · ·
...

... · · ·
...

... · · ·
...

ck ak1 · · · akk bk
11 · · · bk

kk 2bk
12 · · · 2bk

k−1,k

 (3)

Y =


1 y11 · · · yk1 y2

11 · · · y2
k1 y11y21 · · · yk−1,1yk,1

1 y12 · · · yk2 y2
12 · · · y2

k2 y12y22 · · · yk−1,2yk,2
...

... · · ·
...

... · · ·
...

... · · ·
...

1 y1N · · · ykN y2
1N · · · y2

kN y1Ny2N · · · yk−1,Nyk,N

 (4)

.
Y =


.
y11

.
y21 · · · .

yk1.
y12

.
y22 · · · .

yk2
...

... · · ·
...

.
y1N

.
y2N · · · .

ykN

 (5)
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Considering k = 3 and c = [c1, c2, . . . , ck]
T = 0 [13]:

.
y1(t) = a11y1(t) + a12y2(t) + a13y3(t) + b1

11y2
1(t) + b1

22y2
2(t) + b1

33y2
3(t)

+2b1
12y1(t)y2(t) + 2b1

13y1(t)y3(t) + 2b1
23y2(t)y3(t)

.
y2(t) = a21y1(t) + a22y2(t) + a23y3(t) + b2

11y2
1(t) + b2

22y2
2(t) + b2

33y2
3(t)

+2b2
12y1(t)y2(t) + 2b2

13y1(t)y3(t) + 2b2
23y2(t)y3(t)

.
y3(t) = a31y1(t) + a32y2(t) + a33y3(t) + b3

11y2
1(t) + b3

22y2
2(t) + b3

33y2
3(t)

+2b3
12y1(t)y2(t) + 2b3

13y1(t)y3(t) + 2b3
23y2(t)y3(t)

(6)

For practical application, let the EEG signal of the subject be taken at three different
points of his cerebral cortex and considered as a three-time series describing the behavior in
the three-dimensional space. In standard medical procedure, measuring sensors are placed
on some defined points of the cerebral cortex. For this study, we considered the magnitude
of electrical impulses at points P3, P4, and O1, as well as C3, C4, and T5, designated by
coordinate y1(t), y2(t), and y3(t). A three-dimensional system based on these time series
was constructed as:

.
y1(t) = −20.93 + 1.55y1(t) + 6.20y2(t)− 7.05y3(t) + 0.016y2

1(t) + 0.17y2
2(t)

−0.16y2
3(t)− 0.10y2(t)y1(t) + 0.13y3(t)y1(t)− 0.08y3(t)y2(t)

.
y2(t) = 3.87− 2.60y1(t) + 2.12y2(t)− 2.62y3(t)− 0.01y2

1(t) + 0.034y2
2(t)

−0.13y2
3(t)− 0.17y2(t)y1(t) + 0.32y3(t)y1(t) + 0.025y3(t)y2(t)

.
y3(t) = −12.12 + 1.36y1(t) + 3.20y2(t)− 3.56y3(t) + 0.03y2

1(t) + 0.06y2
2(t)

−0.14y2
3(t)− 0.14y2(t)y1(t) + 0.09y3(t)y1(t) + 0.08y3(t)y2(t)

(7)

The system (7) simulated the impulses at C3, C4, and T5, while the system of the
differential equation presented in (8) and (9) simulated the impulse at the P3, P4, and
O1 points:

.
y1(t) = −3.11 + 0.19y1(t) + 0.72y2(t)− 1.19y3(t) + 0.022y2

1(t)− 0.04y2
2(t)

+0.045y2
3(t) + 0.04y2(t)y1(t)− 0.01y3(t)y1(t)− 0.06y3(t)y2(t)

.
y2(t) = −4.58− 1.69y1(t) + 0.39y2(t) + 1.37y3(t)− 0.03y2

1(t)− 0.09y2
2(t)

+0.05y2
3(t) + 0.11y2(t)y1(t) + 0.08y3(t)y1(t)− 0.06y3(t)y2(t)

.
y3(t) = −7.88 + 6.91y1(t)− 5.69y2(t)− 0.71y3(t) + 0.23y2

1(t) + 0.025y2
2(t)

+0y2
3(t)− 0.17y2(t)y1(t)− 0.1y3(t)y1(t) + 0.06y3(t)y2(t)

(8)

.
y1(t) = −1.24− 1.15y1(t) + 2.34y2(t)− 0.83y3(t)− 0.04y2

1(t) + 0y2
2(t)

+0.02y2
3(t) + 0.235y1(t)y1(t)− 0.015y3(t)y1(t)− 0.12y3(t)y2(t)

.
y2(t) = 3.68− 3.91y1(t) + 1.01y2(t) + 2.54y3(t)− 0.16y2

1(t)− 0.08y2
2(t)

+0.02y2
3(t) + 0.15y2(t)y1(t) + 0.10y3(t)y1(t)− 0.04y3(t)y2(t)

.
y3(t) = −5.9 + 5.22y1(t)− 6.15y2(t)− 0.31y3(t) + 0.13y2

1(t) + 0.022y2
2(t)

+0y2
3(t)− 0.13y2(t)y1(t)− 0.28y3(t)y1(t) + 0.05y3(t)y2(t)

(9)
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Now, the details regarding the implementation of the proposed intelligent neuro
supervised networks are presented. The proposed scheme is implemented in two steps:

• Reference dataset generation: First, the reference dataset for the INSNs is generated
through determining the numerical results of the PDI models presented in (7) to (9).
The state of the art Adams procedure is used to determine the numerical results of
the PDI models of (7) to (9) through the ‘NDSolve’ routine of Mathematica software
for finding the solution of the systems represented by the differential equations for
t ∈ [0, 5], with a step size 0.2, i.e., total 251 input (time instances), and, accordingly,
a 753 output (number of measurements) with 251 discrete instances for each y1, y2,
y3. The value of the parameters of the quantities of interest and initial population
representing the location of sensors for electrical rhythms of the brain are taken
from the reported study [13]. Further information regarding the justification of the
parameter on the basis of theoretical analyses, i.e., global and local stability and
population dynamics, can be seen in the reported study [13].

• Developing neuro-supervised networks: The INSNs are constructed through a neu-
ral networks structure with logistic activation function to solve the PDI models of
(7) to (9). For backpropagation, two different optimization algorithms are used,
i.e., Levenberg–Marquardt (LM) and Bayesian regularization (BR). In LM, the number
of hidden neurons is taken as 20 for all three PDI models of (7) to (9), while in the
case of BR, the number of hidden neurons for the PDI model of (7) are 50, and for
remaining two PDI models of (8) and (9), the neurons are 100.

The optimizers based on LM and BR adjust the weights of the neural networks through
minimizing the deviation from the reference numerical solution in the mean square error
(MSE) sense. The MSE, absolute error (AE), to assess the performance of the proposed
INSNs is defined as:

MSEy1 = mean(y1 − ỹ1)
2; MSEy2 = mean(y2 − ỹ2)

2; MSEy3 = mean(y3 − ỹ3)
2 (10)

AEy1 = abs(y1 − ỹ1); AEy2 = abs(y2 − ỹ2); AEy3 = abs(y3 − ỹ3) (11)

The proposed INSNs may play a significant role in solving the PDI mathematical
models. As PDI is a complex neurological disorder, its accurate mathematical modeling
can help understand the underlying mechanisms, its progression prediction, and devel-
oping effective treatment strategies. The proposed INSNs are capable of analyzing the
complex data, identifying patterns, and making predictions, and they thus may contribute
in advancing the knowledge of PDI and improving patient care. Therefore, in this study,
the authors proposed a neural networks-based intelligent framework for solving the PDI
mathematical model. However, this framework can be extended for clinical contributions
in terms of early and efficient diagnosis as well as the prediction of PDI. Moreover, the
proposed INSNs can assist in optimizing PDI treatment strategies by considering various
factors, such as age, symptoms, and medication history. The proposed INSNs can help
predict the most effective treatment options and dosages for individual patients. This can
help in enhancing personalized medicine approaches and improved patient outcomes.

The INSNs normally demand more computational requirements, especially when
dealing with large datasets. Training and optimizing INSNs for PDI models may require
significant computational resources and time. This may affect the practical implementation
of the INSNs, particularly for researchers with limited computing resources.

4. Performance Analyses

The simulation results of the proposed INSNs for PDI models 1, 2, and 3 presented in
(7), (8), and (9), respectively, are provided in this section by considering both the BR and
LM optimization algorithms.
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In order to analyze the performance of the proposed INSNs, first, a reference dataset
through the Adams solver is generated for PDI models 1, 2, and 3 that are presented in
(7), (8), and (9), respectively, for inputs [0, 5] with a step size of 0.025. The dataset for all
three PDI models is arbitrarily segmented into training, testing, and validation, with a
proportion of 80, 10, and 10, respectively. The block diagram representation of the proposed
INSN layer structure is presented in part 3 in Figure 1, and is implemented in the Matlab
fitting tool.

The results of INSNs with BR (INSN-BR) are given in Figures 2–5, and the results
of INSNs with LM (INSN-LM) are provided in Figures 6–9. The results of INSN-LM are
provided in Figures 2–4 for PDI models 1, 2, and 3, respectively. Figures 2a, 3a, and 4a
provide the state transition values; Figures 2b, 3b, and 4b provide the learning curves;
Figures 2c, 3c, and 4c present the histogram analyses; Figures 2d, 3d, and 4d provide the
regression results; and Figures 2e, 3e, and 4e present the fitting results.

The best training performance of the proposed INSN-BR is 1.2819 × 10−10 at
1000 epochs, 4.9609 × 10−10 at 1000 epochs, and 1.531 × 10−9 at 33 epochs for PDI models
1, 2, and 3, respectively. The corresponding gradient and learning rates are [5.0029 × 10−5,
2.5064 × 10−5, 3.7703 × 10−8] and [50, 5 and 500,000], respectively. Further, it is observed
from the histogram analyses that the bin with a reference value of zero error value has
error values of around 3.29 × 10−6, −1.1 × 10−5, and −3.7 × 10−6 for PDI models 1, 2,
and 3, respectively. Moreover, the regression results show that the value for the coefficient
of determination is R = 1 for all three PDI models, which confirms the correctness of the
proposed INSN-BR.

In order to further demonstrate the accuracy/correctness of the proposed ISNS-BR,
the absolute error is calculated for all three PDI models, and the results are presented
in Figure 5 along with the comparison of the proposed solutions obtained through the
INSN-BR with the reference numerical solutions. The results presented in Figure 5 endorse
the efficacy of the proposed INSN-BR.

The results of the proposed INSN-LM are provided in Figures 6–8 for PDI mod-
els 1, 2, and 3, respectively. Figures 6a, 7a, and 8a provide the state transition values;
Figures 6b, 7b, and 8b provide the learning curves; Figures 6c, 7c, and 8c present the histogram
analyses; Figures 6d, 7d, and 8d provide the regression results; and Figures 6e, 7e, and 8e
present the fitting plots.

The best validation performance of the proposed INSN-LM is 5.0059 × 10−3 at
1000 epochs, 7.8394 × 10−5 at 1000 epochs, and 4.0022 × 10−3 at 466 epochs for PDI
models 1, 2, and 3, respectively. The corresponding gradient and the learning rates are
[0.0010, 0.0011, 0.0030] and [1 × 10−6, 1 × 10−5 and 1 × 10−6], respectively. Further, it
is observed from the histogram analyses that the bin with a reference value of zero error
has error values of around −7.7 × 10−4, −4.25 × 10−3, and 1.29 × 10−2 for PDI models
1, 2, and 3, respectively. Moreover, the regression results show the value for coefficient
of determination is R = 1 for all three PDI models, which confirms the correctness of the
proposed INSN-LM. In order to further demonstrate the accuracy/correctness of the pro-
posed ISNS-LM, the absolute error is calculated for all three PDI models, and the results
are presented in Figure 9 along with the comparison of the proposed solutions obtained
through the INSN-LM with the reference numerical solutions. The results presented in
Figure 9 endorse the efficacy of the proposed INSN-LM.

The comparison of the INSN-BR and ISNS-LM is also conducted with respect to the
MSE-based fitness values, the number of epochs, the time consumed in the computation,
and the BR/LM parameters, such as gradient and learning rate, for all three PDI models,
and the results are presented in Figure 10.
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Figure 2. Results of INSN-BR for PDI model 1: (a) State transition values; (b) Learning curve; (c) 
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Figure 3. Results of INSN-BR for PDI model 2: (a) State transition values; (b) Learning curve; (c) 
Histogram; (d) Regression results; (e) Fitting results. 
Figure 3. Results of INSN-BR for PDI model 2: (a) State transition values; (b) Learning curve;
(c) Histogram; (d) Regression results; (e) Fitting results.
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Figure 4. Results of INSN-BR for PDI model 3: (a) State transition values; (b) Learning curve; (c) 
Histogram; (d) Regression results; (e) Fitting results. 

Figure 4. Results of INSN-BR for PDI model 3: (a) State transition values; (b) Learning curve;
(c) Histogram; (d) Regression results; (e) Fitting results.
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Figure 5. Comparative results of the proposed INSN-BR with the reference numerical solution: (a) 
PDI model 1; (b) PDI model 1; (c) PDI model 2; (d) PDI model 2; (e) PDI model 3; (f) PDI model 3. Figure 5. Comparative results of the proposed INSN-BR with the reference numerical solution:

(a) PDI model 1; (b) PDI model 1; (c) PDI model 2; (d) PDI model 2; (e) PDI model 3; (f) PDI model 3.
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Figure 6. Results of INSN-LM for PDI model 1: (a) State transition values; (b) Learning curve; (c) 
Histogram; (d) Regression results; (e) Fitting results. Figure 6. Results of INSN-LM for PDI model 1: (a) State transition values; (b) Learning curve;
(c) Histogram; (d) Regression results; (e) Fitting results.
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Figure 7. Results of INSN-LM for PDI model 2: (a) State transition values; (b) Learning curve; (c) 
Histogram; (d) Regression results; (e) Fitting results. 
Figure 7. Results of INSN-LM for PDI model 2: (a) State transition values; (b) Learning curve;
(c) Histogram; (d) Regression results; (e) Fitting results.
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Figure 8. Results of INSN-LM for PDI model 3: (a) State transition values; (b) Learning curve; (c) 
Histogram; (d) Regression results; (e) Fitting results. Figure 8. Results of INSN-LM for PDI model 3: (a) State transition values; (b) Learning curve;
(c) Histogram; (d) Regression results; (e) Fitting results.
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Figure 9. Comparative results of the proposed INSN-LM with the reference numerical solution: (a) 
PDI model 1; (b) PDI model 1; (c) PDI model 2; (d) PDI model 2; (e) PDI model 3; (f) PDI model 3. 

The best validation performance of the proposed INSN-LM is 5.0059 × 10−3 at 1000 
epochs, 7.8394 × 10−5 at 1000 epochs, and 4.0022 × 10−3 at 466 epochs for PDI models 1, 2, 
and 3, respectively. The corresponding gradient and the learning rates are [0.0010, 0.0011, 

Figure 9. Comparative results of the proposed INSN-LM with the reference numerical solution:
(a) PDI model 1; (b) PDI model 1; (c) PDI model 2; (d) PDI model 2; (e) PDI model 3; (f) PDI model 3.
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Figure 10a–c provides the results of INSN-BR for PDI models 1, 2, and 3, respectively, 
while the respective results of INSN-LM are given in Figure 10d–f, where the # means 
number. The INSN-BR attains the performance of 1.2819 × 10−10, 4.9609 × 10−10, and 1.531 × 
10−9 in times of 0:02:08, 0:06:44, and 0:00:02 with 1000, 1000, and 34 epochs. The INSN-LM, 

Figure 10. Performance comparison of INSN-BR and INSN-LM for PDI models: (a) INSN-BR for PDI
model 1; (b) INSN-BR for PDI model 2; (c) INSN-BR for PDI model 3; (d) INSN-LM for PDI model 1;
(e) INSN-LM for PDI model 2; (f) INSN-LM for PDI model 3.

Figure 10a–c provides the results of INSN-BR for PDI models 1, 2, and 3, respectively,
while the respective results of INSN-LM are given in Figure 10d–f, where the # means
number. The INSN-BR attains the performance of 1.2819 × 10−10, 4.9609 × 10−10, and
1.531 × 10−9 in times of 0:02:08, 0:06:44, and 0:00:02 with 1000, 1000, and 34 epochs.
The INSN-LM, meanwhile, attains the performance of 3.12 × 10−4, 6.54 × 10−5, and
1.10 × 10−4 in times of 0:00:08, 0:00:08, and 0:00:01 with 1000, 1000, and 472 epochs. The
results clearly indicate that the INSN-BR provides more accurate results than the ISNS-LM
but at the cost of bit more computation.

In order to further analyze the behavior of the PDI models presented in (7) to (9), the
parametric plots are also drawn and presented in Figures 11–13 for PDI model 1, 2, and
3, respectively.
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Figures 11a, 12a and 13a show the parametric plot of y1 and y2 for PDI model 1, 2,
and 3, respectively. Similarly, Figures 11b, 12b and 13b provide the parametric plots of y1
and y2 for PDI model 1, 2, and 3, respectively, and Figures 11c, 12c and 13c provide the
parametric plots of y2 and y3 for PDI models 1, 2, and 3. To further deepen the analyses,
the 3D parametric plots are also constructed and presented in Figures 11d, 12d and 13d for
PDI models 1, 2, and 3, respectively. The parametric plots of Figures 11–13 further establish
the stability of the PDI models.

5. Conclusions

• This study presented intelligent neuro-supervised networks, INSNs, in order to study
the dynamics of Parkinson’s disease illness (PDI) through the rhythms of brain electri-
cal activity measured at different locations on the cerebral cortex, represented with
three differential classes. Two types of INSNs are constructed by neural networks mul-
tilayer architecture backpropagated with the Levenberg–Marquardt and the Bayesian
regularization algorithms, i.e., INSN-LM and INSN-BR. The Adams solver is used
to generate the reference data for grids of input and target samples of INSNs for
different PDI models obtained by varying the sensor locations in order to measure
the impact of rhythms of brain electrical activity. The dataset for all three PDI models
is arbitrarily segmented into training, testing, and validation, with a proportion of
80, 10, and 10, respectively, by optimizing the fitness function based on the mean
squared error criterion. The values of mean square error and absolute error endorse
the accuracy and the correctness of the proposed INSN-LM and INSN-BR for all
three of the PDI models. Further, the analyses by means of histogram error plots,
learning curves, control parameters, and regression index all confirm the efficacy
of the proposed INSNs for the PDI models, although the accuracy of INSN-RB is
relatively superior to the INSN-LM, albeit at the cost of slightly more computational
budget requirements.

• In future, it looks promising to incorporate the fractional gradient-based algorithms [62,63]
for backpropagation in INSNs for analyzing PDI models, and to investigate early and
efficient diagnosis as well as prediction of PDI through the proposed INSNs.
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