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Abstract: Wind patterns can change due to climate change, causing more storms, hurricanes, and
quiet spells. These changes can dramatically affect wind power system performance and predictabil-
ity. Researchers and practitioners are creating more advanced wind power forecasting algorithms
that combine more parameters and data sources. Advanced numerical weather prediction models,
machine learning techniques, and real-time meteorological sensor and satellite data are used. This pa-
per proposes a Recurrent Neural Network (RNN) forecasting model incorporating a Dynamic Fitness
Al-Biruni Earth Radius (DFBER) algorithm to predict wind power data patterns. The performance of
this model is compared with several other popular models, including BER, Jaya Algorithm (JAYA),
Fire Hawk Optimizer (FHO), Whale Optimization Algorithm (WOA), Grey Wolf Optimizer (GWO),
and Particle Swarm Optimization (PSO)-based models. The evaluation is done using various metrics
such as relative root mean squared error (RRMSE), Nash Sutcliffe Efficiency (NSE), mean absolute
error (MAE), mean bias error (MBE), Pearson’s correlation coefficient (r), coefficient of determination
(R2), and determination agreement (WI). According to the evaluation metrics and analysis presented
in the study, the proposed RNN-DFBER-based model outperforms the other models considered.
This suggests that the RNN model, combined with the DFBER algorithm, predicts wind power
data patterns more effectively than the alternative models. To support the findings, visualizations
are provided to demonstrate the effectiveness of the RNN-DFBER model. Additionally, statistical
analyses, such as the ANOVA test and the Wilcoxon Signed-Rank test, are conducted to assess the
significance and reliability of the results.

Keywords: forecasting wind power; Al-Biruni Earth Radius; metaheuristic algorithm; artificial
intelligence

1. Introduction

Wind energy generation has grown 17% year since 2021. Power grid stability depends
on wind speed. Wind variability complicates predictions. New technologies have im-
proved wind speed forecasting with hybrid models and methods. Statistical and artificial
intelligence technologies, particularly artificial neural networks, have improved results.
Identifying the fundamental aspects affecting forecasting and providing a basis for estima-
tion with artificial neural network models are concerns. The study in [1] classifies modern
forecasting models by input model type, pre-and post-processing, artificial neural network
model, prediction horizon, steps ahead number, and assessment metric. The research shows
that artificial neural network (ANN)-based models can accurately anticipate wind speeds
and pinpoint a power plant’s prospective wind use site.
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The electricity grid has been faced with obstacles due to the randomness and instability
of wind energy, and the connected amount of wind energy poses difficulty in network
distribution. For a long time, artificial intelligence has been utilized to anticipate variables
in a wide variety of applications, including water desalination [2], transformer faults [3],
T-shape antennas [4], engineering problems [5], direct normal irradiation [6], and most
notably wind speed forecasting [7].

Utilizing the Deep Neural Networks’ Temporal Convolutional Network (TCN) algo-
rithm, the purpose of the investigation in [8] was to make a long-term (24–72-h ahead)
prediction of wind power with a MAPE that was less than 10%. In our experiment, they
carried out TCN model pretraining by using historical data on the weather in addition to
the power generation outputs of a wind turbine located at a Scada wind power facility in
Turkey. The results of the experiments showed that the MAPE for predicting wind power
over 72 h was 5.13%, which is sufficient given the limitations of our research. Ultimately,
they compared the efficiency of four different DLN-based prediction models for power
forecasting. These models were the recurrent neural network (RNN), the gated recurrence
unit (GRU), the TCN, and the long short-term memory (LSTM). According to the results of
our validation, the TCN is superior to the other three models for predicting wind power in
terms of the volume of data input, the consistency of error reduction, and the accuracy of
the forecast.

Wind energy is promising. Wind power generation forecasting is essential for smart
grid supply-demand balancing. Wind power’s significant variability and intermittent
nature make forecasting difficult. The work in [9] develops data-driven wind power gener-
ation models. Importantly, the following elements list this work’s important contributions.
First, they test upgraded machine learning models for univariate wind power time-series
forecasting. We used Bayesian optimization (BO) to optimize hyperparameters of Gaus-
sian process regression (GPR), Support Vector Regression (SVR) with different kernels,
and ensemble learning (ES) models (Boosted trees and Bagged trees) and examined their
forecasting performance. Second, dynamic information has been added to the models to
improve prediction. Lagged measures capture time evolution in model design. More input
factors like wind speed and direction increase wind prediction performance. Three wind
turbines in France, Turkey, and Kaggle are utilized to test model efficiency. Lagged data
and input variables improve wind power forecasts. Optimized GPR and ensemble models
also outperformed other machine learning models.

Wind energy has many installations worldwide. Wind speed data power generation
prediction accuracy seriously challenges power system regulation and safety. Power system
dispatching has various time points relating to area conditions. Power grid dispatching
relies on precise wind turbine generation capacity predictions. Wind speed is erratic
and intermittent, affecting data quality. The research in [10] proposes a neural network
approach that processes wind speed data and predicts electricity generation using BP
and Newton interpolation mathematical function methods. BP neural networks handle
the hidden layer connection weight learning problem in multi-layer feedforward neural
networks. This research examines wind speed data at different heights in the same area
at a space scale. The proposed method is 3.1% more accurate than the standard support
vector machine method.

On the other hand, models that are based on ANN are able to operate with nonlinear
models and do not require prior knowledge of a mathematical model in order to function
properly. In addition, some hybrid models forecast wind speed with the use of artificial
intelligence applied to time series [11,12]. These models are beneficial because they provide
essential information on how to utilize the wind potential of a particular place for the
probable construction of a wind power plant by gaining an understanding of future wind
speed values [13]. In addition, these models have a fault tolerance and an adaptation
of inline measurements. As a result, it is recommended that a substantial amount of
data be used in the time series to train the network and produce better results in wind
forecasting [14].
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The rapid growth of wind power installations has led to increased integration of wind
power into the grid [15]. However, this integration brings challenges related to power
quality, grid stability, dispatching, and overall power system operation. These challenges
are further amplified by the uncertainties associated with wind power generation [16,17].
To ensure the reliable functioning of the power grid, it is crucial to regulate the time
series distribution of energy. However, wind power’s nonlinear and unpredictable nature
makes achieving this goal difficult. To overcome these challenges, researchers are working
towards making wind energy supply more predictable and improving the efficiency and
reliability of wind power forecasting. By reducing the unpredictability of wind power,
the impact on the power system during the integration of wind power can be minimized.
Achieving this requires a solid theoretical foundation and technological advancements that
can optimize the operation of the power system, grid dispatching and enhance overall
security [18,19]. Through these efforts, it is possible to mitigate the challenges posed by
wind power integration and ensure a more stable and secure power grid in the future.

Bio-inspired optimization algorithms handle complex optimization issues by mimick-
ing nature. Evolution, swarm intelligence, and natural selection inspire these strategies.
Bio-inspired optimization algorithms solve complicated engineering issues by mimick-
ing nature’s adaptive and efficient solutions [20]. Genetic Algorithm (GA) is a popular
bio-inspired optimization algorithm. GA iteratively evolves optimal or near-optimal so-
lutions by selecting, crossover, and mutating a population of candidate solutions. GA
has successfully optimized engineering designs and scheduled and estimated parameters.
The intelligent technique GA was combined with the Chinese FDS team’s nuclear reactor
physics Monte Carlo (MC) code SuperMC for optimal reactor core refilling design in [21].
Particle Swarm Optimization (PSO), another bio-inspired optimization technique, is also
prominent. Inspired by bird flocking and fish schooling, PSO uses a population of particles
traveling through a problem space, altering their placements based on their experience and
other particles. Neural network training, power system optimization, and feature selection
use PSO. A hybrid method, such as Aquila Optimizer (AO) with PSO, named IAO, was
presented in [22]. Another optimal Ethanol-based method concentration was obtained
from the artificial neural network (ANN)-PSO [23]. A complete learning particle swarm
optimizer (CLPSO) coupled with local search (LS) is presented to maximize performance by
leveraging CLPSO’s robust global search and LS’s fast convergence [24]. Other bio-inspired
optimization algorithms include Artificial Bee Colony (ABC) methods, Firefly Algorithm
(FA), and Grey Wolf Optimizer (GWO). These algorithms solve optimization problems
in image processing, robotics, data mining, and renewable energy systems. Bio-inspired
optimization solves complex optimization issues well. By leveraging nature’s wisdom,
these algorithms provide new and efficient solutions for various technical applications.

Optimizing parameters in LSTM models for time series prediction is crucial for achiev-
ing optimal performance. While LSTM has shown impressive results in this domain, finding
the best global solution can be challenging due to the complexity of parameter optimization
during model training. As a result, researchers have been studying various methods to
improve parameter optimization [25]. One such method is the sparrow search algorithm
(SSA), a population intelligence optimization technique introduced in 2020 [26]. SSA is
part of a group of emerging metaheuristic algorithms that have gained recognition for
their effectiveness in machine learning parameter optimization. It models the behavior of a
flock of sparrows as they search for food and avoid predators, aiming to find the optimal
solution for a given objective function [27]. Applying SSA optimization to set up network
parameters has shown promising results, surpassing the performance of other models in
terms of accuracy [28]. For example, SSA has been utilized in estimating ultra-short-term
wind power, enhancing the input weight and other parameters of the Dynamic Ensemble
Learning Model (DELM) [29]. In another study, short-term wind speed prediction was
developed using LSTM and BPNN, and SSA was employed to optimize the prediction
model for various complexities in the input sequence [30].
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This study suggests a Recurrent Neural Network (RNN) forecasting model based
on a proposed Dynamic Fitness Al-Biruni Earth Radius (DFBER) algorithm for capturing
and predicting data patterns. We compare its performance with popular models such as
BER [31], Jaya Algorithm (JAYA) [32], Fire Hawk Optimizer (FHO) [33], Whale Optimization
Algorithm (WOA) [34], Grey Wolf Optimizer (GWO) [35], Particle swarm optimization
(PSO) [36], Firefly algorithm (FA) [37], and Genetic Algorithm (GA) [35] based models,
utilizing a comprehensive range of evaluation metrics. The evaluation includes metrics like
relative root mean squared error (RRMSE), Nash Sutcliffe Efficiency (NSE), mean absolute
error (MAE), mean bias error (MBE), Pearson’s correlation coefficient (r), coefficient of
determination (R2), and determine agreement (WI), along with considerations of dataset
size, estimated and observed values, and arithmetic means of bandwidths. The DFBER-
based model demonstrates superior performance compared to the other models, as evident
from the evaluation metrics and analysis. Visualizations, including box plots, histograms,
residual plots, and heat maps, further validate the model’s ability to capture data patterns.
Statistical analyses, such as the ANOVA test and the Wilcoxon Signed-Rank test, strengthen
the reliability and significance of the findings.

The main contributions of this research are as follows:

• Providing machine learning-based methodologies to Wind Power time-series forecasting.
• Introducing the optimization-based Recurrent Neural Network (RNN) forecasting

model incorporating a Dynamic Fitness Al-Biruni Earth Radius (DFBER) algorithm to
predict the wind power data patterns.

• Currently developing an optimized RNN-DFBER-based regression model to enhance
the accuracy of predictions using the evaluated dataset.

• Conducting a comparison among different algorithms to determine which one yields
the most favorable outcomes.

• Employing Wilcoxon rank-sum and ANOVA tests to assess the potential statistical
significance of the optimized RNN-DFBER-based model.

• The RNN-DFBER-based regression model’s flexibility allows it to be tested and cus-
tomized for various datasets, thanks to its adaptability.

2. Materials and Methods
2.1. Recurrent Neural Network

A Recurrent Neural Network (RNN) is a type of neural network that addresses the
need to remember previous information. Unlike traditional neural networks, where inputs
and outputs are independent, an RNN utilizes a Hidden Layer to retain and recall previous
information. The crucial aspect of an RNN is its Hidden state, which serves as a memory
state, storing information about a sequence. By using the same parameters for each input
and hidden layer, the RNN simplifies the complexity of parameters compared to other
neural networks [38]. Figure 1 shows the RNN architecture. In an RNN, the State matrix
(S) contains elements (si) representing the state of the network at each time step (i). The
RNN calculates a hidden state (Hi) for every input (Xi) by utilizing the information stored
in the State matrix.
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Figure 1. Recurrent neural network architecture.

2.2. Al-Biruni Earth Radius (BER) Algorithm

The first version of the Al-Biruni Earth Radius (BER) optimizes the situation by
segmenting the population into groups for exploration and exploitation. Altering the
composition of the agent subgroups can help strike a balance between exploitative and
exploratory actions. Exploration accounts for 70 percent of the population, denoted as n1,
while exploitation accounts for 30 percent, denoted as n2. The worldwide average levels of
the exploration and exploitation groups’ agents’ fitness have improved as a result of the
increased number of agents in those groups. The mathematical skills of the exploring crew
enable them to locate potentially fruitful places nearby. This can be achieved by persistently
looking for more suitable alternatives [31].

Optimization algorithms discover the best agent given constraints. The BER algorithm
indicates the population agents as S = S1, S2, . . . , Sd ∈ R (search space) for feature d. The
objective function, denoted as F, is recommended for assessing the agent’s performance.
Agents are optimized to find the best agent, denoted as S∗. The BER algorithm will
optimize using the fitness function, as well as the lower and higher limits for each solution,
the dimension, and the population size. The original BER algorithm is presented in
Algorithm 1.

The solitary explorer in the group will utilize this strategy to look for potentially
fruitful new regions to research in the region where they are now situated in order to
go closer to the most optimally viable answer. In order to accomplish this objective, one
must do research into the numerous options that are available in the surrounding area and
choose the alternative that is superior to the others with regard to the effect it has on one’s
physical well-being. In order to accomplish this objective, the research that BER has carried
out has made use of the equations that are as follows:

S(t + 1) = S(t) + D(2r2 − 1) (1)

where S(t) is a solution at iteration t. With a circle with a diameter of D = r1(S(t)− 1),
the agent will search for promising spots. The h parameter is selected within [0, 2], and
0 < x ≤ 180. The terms h and x are random variables and follow a uniform distribution.
Examples of coefficient vectors include r1 and r2, and their values can be decided using
r = h cos(x)

1−cos(x) .
In order to make the most of opportunities, the group responsible for doing so needs

to find ways to make the solutions that are already in place even more effective. The
BER determines at the end of each round which individuals have achieved the highest
levels of fitness and then awards them appropriately. The BER accomplishes its mission of
exploitation through the use of two distinct approaches, both of which are detailed in this
article. By applying the following equation to help us progress in the right direction, we
will be able to move closer to the optimal answer.
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S(t + 1) = r2(S(t) + D), D = r3(L(t)− S(t)) (2)

where r3 is a random vector calculated based on r = h cos(x)
1−cos(x) , which controls the moving

to the best solution. L(t) represents the best solution and D is the distance vector.

Algorithm 1: AL-Biruni Earth Radius (BER) algorithm
1: Initialize BER population and parameters, t = 1
2: Calculate objective function Fn for each agent Si
3: Find best agent S∗

4: while t ≤ Tmax do
5: for (i = 1 : i < n1 + 1) do
6: Update r1 = h1

cos(x)
1−cos(x) , r2 = h2

cos(x)
1−cos(x)

7: Move to best agent as in Equation (1)
8: end for
9: for (i = 1 : i < n2 + 1) do

10: Update r = h cos(x)
1−cos(x) , r3 = h3

cos(x)
1−cos(x)

11: Elitism of the best agent as in Equation (2)
12: Investigating area around best agent as in Equation (3)
13: Select best agent S∗ by comparing S(t + 1) and S’(t + 1)
14: if The best fitness value with no change for two iterations. then
15: Mutate solution as in Equation (4)
16: end if
17: end for
18: Update objective function Fn for each agent Si
19: Find best agent as S∗

20: Update BER parameters, t = t + 1
21: end while
22: Return best agent S∗

Examining the region reveals that the region surrounding the best solution offers the
most exciting potential solution. Consequently, several agents hunt for ways to better
circumstances by contemplating alternate options that are relatively comparable to the best
option. Using the equation that is provided below, the BER completes the procedure that
was just described.

S’(t + 1) = r(S∗(t) + k), k = 1 +
2× t2

Max2
iter

(3)

where S∗(t) indicates the best solution. The best solution in this case is determined based
on comparing S(t + 1) and S’(t + 1). In the event that the optimal level of fitness has
remained unchanged throughout the course of the previous two iterations, the solution
will be modified in line with the equation that is presented below.

S(t + 1) = k ∗ z2 − h
cos(x)

1− cos(x)
(4)

where z has a random value within [0, 1] and follow a uniform distribution.
To provide the highest possible level of quality, the BER will select the most suitable

alternative for the subsequent cycle. The effectiveness of elitism may hasten the process
of multimodal functions converging on one another. By utilizing a mutational strategy
and thoroughly assessing all of the members of the exploration group, the BER is able to
provide great capabilities for mineral exploration. Exploration allows for a delay in the
BER’s convergence. Algorithm 1 has BER pseudo-code. To begin, please provide the size
of the BER population, the mutation rate, and the number of iterations. The BER then
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separates the agents into two distinct groups: the exploratory and the exploitative. The
BER method iteratively searches for the best response and automatically modifies the size
of each group as it does so. When iterating, the BER will rearrange the responses to ensure
that they are diverse and have sufficient depth. In the subsequent cycle, a solution that was
developed by the exploration group might be passed on to the exploitation group. During
the rigorous and exclusive selection process that is the BER, the leader cannot be replaced.

3. Proposed Dynamic Fitness BER Algorithm

This section introduces the innovative Dynamic Fitness Al-Biruni Earth Radius (DF-
BER) algorithm. This novel algorithm builds upon the original BER algorithm by incorpo-
rating it into an adaptable framework. The specifics of the proposed algorithm can be found
in Algorithm 2, and further elaboration on its intricacies is provided within this section.

Algorithm 2: The proposed DFBER algorithm
1: Initialize population and parameters, t = 1
2: Calculate fitness function Fn for each agent Si
3: Find first, second, and third best agents
4: while t ≤ Tmax do
5: if (For three iterations, the best fitness value is the same ) then
6: Increase agents in exploration group (n1)
7: Decrease agents in exploitation group (n2)
8: end if
9: for (i = 1 : i < n1 + 1) do

10: Update r1 = h1
cos(x)

1−cos(x) , r2 = h2
cos(x)

1−cos(x)
11: Update positions of agents as

S(t + 1) = S(t) + D(2r2 − 1)
12: end for
13: for (i = 1 : i < n2 + 1) do
14: Update r = h cos(x)

1−cos(x) , r3 = h3
cos(x)

1−cos(x)

15: Update Fitness FL1 =
FL1

FL1+FL2+FL3

16: Update Fitness FL2 =
FL2

FL1+FL2+FL3

17: Update Fitness FL3 =
FL3

FL1+FL2+FL3
18: Calculate D = r3(FL1 × L1(t) + FL2 × L2(t) + FL3 × L3(t)− S(t)
19: Elitism of the best agent as

S(t + 1) = r2(S(t) + D)
20: Investigating area around best agent as

S’(t + 1) = r(S∗(t) + k), k = 1 + 2×t2

Max2
iter

21: Select best agent S∗ by comparing S(t + 1) and S’(t + 1)
22: if The best fitness value with no change for two iterations. then
23: Mutate solution as

S(t + 1) = k ∗ z2 − h cos(x)
1−cos(x)

24: end if
25: end for
26: Update fitness function Fn for each agent
27: Find best three agents
28: Set first best agent as S∗

29: Update parameters, t = t + 1
30: end while
31: Return best agent S∗
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3.1. Motivation

Optimization problems use populations to represent viable solutions. Each agent in
the search space has a parameter vector. Exploitation and exploration groups comprise the
prospective solution. An objective function helps the exploitation group enhance the best
solution. The exploration group uses the search space to find new places where the best
solution may be. In the proposed optimization technique, these two groups share roles and
information to quickly find the optimum solution. This partnership avoids local optima
and explores the search space efficiently. The suggested optimization technique maintains
the balance between exploitation and exploration groups and avoids steady regions in the
search space through a dynamic mechanism.

3.2. Dynamic Feature of DFBER Algorithm

The proposed DFBER algorithm achieves a balance between exploration and exploita-
tion within the population’s subgroups. It adopts a 70/30 approach, where the population
is divided into two groups: exploration, denoted as n1, and exploitation, denoted as n2.
Initially, a larger number of participants in the exploration group facilitates the discovery
of new and interesting search regions. As the optimization progresses and individuals in
the exploitation group improve their fitness, the overall fitness of the population increases,
resulting in a rapid reduction of individuals in the exploration group from 70% to 30%. To
ensure convergence, an elitism method is employed, retaining the leader of the process in
subsequent populations if a better solution cannot be found. Additionally, if the leader’s
fitness remains relatively unchanged for three consecutive iterations, the DFBER algorithm
has the flexibility to increase the number of members in the exploration group at any point
in time.

The DFBER algorithm balances subgroup exploration and exploitation. Wind power
prediction equality and inequality limitations require this balance. Exploration involves
searching the solution space broadly to find better solutions, whereas exploitation involves
refining and improving the best-known answers in optimization issues. The DFBER
algorithm uses exploration and exploitation in population subgroups. This balanced
method lets the DFBER algorithm analyze genuine wind power prediction equalities and
inequalities. Wind power generating has physical, system, and operational constraints.
The DFBER algorithm efficiently navigates the solution space by balancing exploration
and exploitation. This method improves wind power estimates by realistically modeling
restrictions. The DFBER algorithm’s ability to solve equality and inequality restrictions in
wind power projections helps align the optimization process with wind power systems’
real-world limits and requirements.

3.3. Fitness Al-Biruni Earth Radius Algorithm

The fitness of the proposed DFBER is formulated as follows. Equation (2) will be
updated in the proposed algorithm to include the fitness function property. The fitness
functions of FL1 , FL2 , and FL3 will be calculated for the first best solutions, denoted as L1(t),
L2(t), and L3(t), respectively. The final fitness values will be updated as in the following
equation to be involved in the proposed algorithm.

Fitness FL1 =
FL1

FL1 + FL2 + FL3

(5)

Fitness FL2 =
FL2

FL1 + FL2 + FL3

(6)

Fitness FL3 =
FL3

FL1 + FL2 + FL3

(7)
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Equation (2) of the original BER algorithm will be updated by Equations (8) and (9) in
the proposed DFBER algorithm based on the fitness function is as follows.

S(t + 1) = r2(S(t) + D) (8)

For the modified distance vector, D, calculated using FL1 , FL2 , and FL3 as.

D = r3(FL1 × L1(t) + FL2 × L2(t) + FL3 × L3(t)− S(t)) (9)

where r3 is a random vector calculated based on r = h cos(x)
1−cos(x) , which controls the moving

to the best solution. L1(t) represents the first best solution, L2(t) represents the second best
solution, and L3(t) indicates the third best solution. The proposed DFBER algorithm is
shown in Algorithm 2 step-by-step.

3.4. Complexity Analysis

The DFBER algorithm’s computational complexity, shown in Algorithm 2, can be de-
scribed using the following expression. We will define the time complexity for a population
size of n, and a maximum number of iterations denoted as Tmax.

• Initialize population and parameters, t = 1 : O(1).
• Calculate fitness function for each agent: O(n).
• Finding best three solutions: O(n).
• Updating agents in exploration and exploitation groups: O(Tmax).
• Updating position of current agents in exploration group: O(Tmax × n).
• Updating position of current agents in exploitation group by fitness functions:

O(Tmax × n).
• Updating fitness function for each agent: O(Tmax)× n.
• Finding best fitness: O(Tmax).
• Finding best three solutions: O(Tmax).
• Set first best agent as S∗: O(Tmax).
• Updating parameters: O(Tmax).
• Updating iterations: O(Tmax).
• Return the best fitness: O(1).

Based on the analysis, the computational complexity of the algorithm can be sum-
marized as follows. The time complexity is estimated to be O(Tmax × n) for the case of a
population size of n. Additionally, the algorithm employs the k-nearest neighbors (kNN)
within a fitness function, and the computational complexity of kNN is primarily deter-
mined by the number of training samples and the dimensional of the feature space (d).
Thus, the time complexity becomes O(Tmax × n× d).

3.5. Fitness Function

The fitness equation, Fn, helps the DFBER approach assess a solution’s quality. The
expressions for selected features (v), the total number of features (V), and a classifier’s error
rate (Err) employ Fn as a variable.

Fn = h1Err + h2
|v|
|V| (10)

where h2 = 1− h1 indicates the population’s importance of the specified trait, and h1 might
be any number between [0,1]. If a selection of features may reduce classification error, the
strategy is acceptable. The simple classification method k-nearest neighbor (kNN) is used
often. The k-nearest neighbors classifier ensures high-quality attributes in this strategy. The
only classifier criterion is the shortest distance between the query instance and the training
instances. This experiment uses no K-nearest neighbor models.
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4. Experimental Results

In the study, the investigation’s findings are thoroughly examined, focusing on the
DFBER algorithm. This algorithm is analyzed and compared to other state-of-the-art algo-
rithms including BER [31], Jaya Algorithm (JAYA) [32], Fire Hawk Optimizer (FHO) [33],
Whale Optimization Algorithm (WOA) [34], Grey Wolf Optimizer (GWO) [35], Parti-
cle swarm optimization (PSO) [36], Firefly algorithm (FA) [37], and Genetic Algorithm
(GA) [35]. The DFBER algorithm’s configuration is presented in Table 1. This table details
the algorithm’s parameters, which are crucial for understanding its behavior and perfor-
mance in optimization. The presented parameters include the population size (number of
agents), termination criterion (number of iterations), and other important characteristics
for selecting significant features from the input dataset.

Table 1. The DFBER algorithm’s configuration settings.

Parameter (s) Value (s)

Agents 10
Iterations 80
Runs 10
Exploration percentage 70%
K (decreases from 2 to 0) 1
Mutation probability 0.5
Random variables [0, 1]

By comparing the DFBER algorithm with other state-of-the-art algorithms and pre-
senting its configuration, the investigation aims to evaluate its effectiveness and potential
advantages. Table 2 presents the setup of the comparative algorithms used in the evaluation.
Several factors are considered to ensure a fair evaluation of optimization techniques and
parameters. The problem’s search space size, constraints, and objective function are consid-
ered. The choice of algorithm parameters can greatly influence its performance. Factors
such as convergence speed and the exploration-exploitation trade-off should be considered
when tuning parameters for both the problem and the chosen algorithm. The evaluation
is conducted over ten runs with different random seeds to ensure fair comparisons. This
helps account for the variability in the optimization process and provides a more robust sta-
tistical analysis. Furthermore, an appropriate dataset is selected for testing the algorithms.
The choice of the dataset should represent the problem domain and provide meaningful
insights into the performance of the algorithms. The number of function calls made during
optimization is considered to establish a fair computational budget. Each optimizer is run
ten times for 80 iterations, with the number of search agents set to 10. Setting a specific
computational budget ensures that all compared algorithms have an equal opportunity to
explore and exploit the search space within the given limitations. Adopting this approach
enables a fair and standardized evaluation, enabling meaningful comparisons between the
optimization algorithms and facilitating informed decision-making.

Table 2. Compared algorithms various configuration parameters.

Algorithm Parameter (s) Value (s)

BER Mutation probability 0.5
Exploration percentage 70%
k (decreases from 2 to 0) 1
Agents 10
Iterations 80

JAYA Population size 10
Iterations 80

FHO Population size 10
Iterations 80
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Table 2. Cont.

Algorithm Parameter (s) Value (s)

FA Gamma 1
Beta 2
Alpha 0.2
Agents 10
Iterations 80

GWO a 2 to 0
Wolves 10
Iterations 80

PSO Acceleration constants [2, 2]
Inertia Wmin, Wmax [0.6, 0.9]
Particles 10
Iterations 80

GA Cross over 0.9
Mutation ratio 0.1
Selection mechanism Roulette wheel
Agents 10
Iterations 80

WOA r [0, 1]
a 2 to 0
Whales 10
Iterations 80

4.1. Dataset

The dataset in this context is focused on analyzing energy generation from solar and
wind sources in different operating areas. The data used in the analysis is sourced from the
National Renewable Energy Laboratory (NREL) and provides information on solar and
wind energy generation over specific periods. The dataset includes monthly average wind
speeds 50 m above the Earth’s surface regarding wind energy. This wind speed data is
collected over 30 years, specifically from January 1984 to December 2013. The wind speed
measurements help assess the wind energy potential in different areas [39]. The data is
further categorized based on different operating areas:

• Central Operating Area (COA): This refers to a specific region or area where the central
energy generation operations occur.

• Eastern Operating Area (EOA): This refers to a specific region or area where energy
generation operations are concentrated in the eastern part.

• Southern Operating Area (SOA): This refers to a specific region or area where energy
generation operations are concentrated in the southern part.

• Western Operating Area (WOA): This refers to a specific region or area where energy
generation operations are concentrated in the western part.

The dataset is sourced from NREL and associated with the “wind-solar-energy-data
identifier”. Figure 2 shows the map of the wind power forecasting dataset. It falls under
the theme of Renewable & Alternative Fuels and contains keywords related to wind and
solar energy. The dataset is in English and was last modified on 14 October 2020. The
publisher of the dataset is the King Abdullah Petroleum Studies and Research Center in
Saudi Arabia. The dataset’s availability and classification indicate that it is public data.
However, it is noted that the dataset has been discontinued. The dataset specifically focuses
on energy generation in Saudi Arabia, as the country’s information indicates. The ISO
region associated with the dataset is EMEA (Europe, the Middle East, and Africa).

The seasonal decomposition of the wind power forecasting dataset provides insights
into the individual components of the dataset, namely COA, EOA, SOA, and WOA. Each
of these components represents a specific aspect or pattern within the dataset. Figures 3–6
offer a visual representation of the seasonal decomposition for each component. This
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decomposition helps in understanding the variations and trends associated with the COA,
EOA, SOA, and WOA over time. By isolating these components, it becomes easier to
analyze and interpret the dataset.

Figure 2. Map of the wind power forecasting dataset.

Figure 3. The seasonal decompose for COA of the wind power forecasting dataset.
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Figure 4. The seasonal decompose for EOA of the wind power forecasting dataset.

Figure 5. The seasonal decompose for SOA of the wind power forecasting dataset.

Additionally, Figures 7–10 display the histogram and box plot for each component.
These plots provide a graphical representation of the distribution and statistical properties
of the COA, EOA, SOA, and WOA. The histogram gives an overview of the frequency dis-
tribution of the values, while the box plot illustrates the median, quartiles, and any outliers
present. Together, these figures provide a comprehensive understanding of the wind power



Biomimetics 2023, 8, 321 14 of 24

forecasting dataset, allowing for a detailed analysis of the COA, EOA, SOA, and WOA
components in terms of their seasonal patterns, variations, and statistical characteristics.

Figure 6. The seasonal decompose for WOA of the wind power forecasting dataset.

Figure 7. The histogram and box plot for COA of the wind power forecasting dataset.
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Figure 8. The histogram and box plot for EOA of the wind power forecasting dataset.

Figure 9. The histogram and box plot for SOA of the wind power forecasting dataset.
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Figure 10. The histogram and box plot for WOA of the wind power forecasting dataset.

4.2. Regression Results and Discussions

To assess the effectiveness of the suggested RNN forecasting model based on the
DFBER algorithm, various metrics are employed. These metrics encompass relative root
mean squared error (RRMSE), Nash Sutcliffe Efficiency (NSE), mean absolute error (MAE),
mean bias error (MBE), Pearson’s correlation coefficient (r), coefficient of determination
(R2), and determine agreement (WI). The dataset size is denoted by the parameter N,
while the nth estimated and observed bandwidth values are represented by V̂n and Vn,
respectively. The arithmetic means of the estimated and observed values are denoted as ¯̂Vn
and V̄n. The evaluation criteria for predictions can be found in Table 3. The outcomes of
the proposed optimizing RNN-DFBER-based model are displayed in Table 4. The results
reveal an RMSE value of 0.0028426034752477.

Table 3. Evaluation criteria for predictions.

Metric Formula

RMSE
√

1
N ∑N

n=1(V̂n −Vn)2

RRMSE RMSE
∑N

n=1 V̂n
× 100

MAE 1
N ∑N

n=1 |V̂n −Vn|

MBE 1
N ∑N

n=1(V̂n −Vn)

NSE 1− ∑N
n=1(Vn−V̂n)2

∑N
n=1(Vn− ¯̂Vn)2

WI 1− ∑N
n=1 |V̂n−Vn |

∑N
n=1 |Vn−V̄n |+|V̂n− ¯̂Vn |

R2 1− ∑N
n=1(Vn−V̂n)2

∑N
n=1(∑N

n=1 Vn)−Vn)
2

r ∑N
n=1(V̂n− ¯̂Vn)(Vn−V̄n)√(

∑N
n=1(V̂n− ¯̂Vn)2

)
(∑N

n=1(Vn−V̄n)2)
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Table 4. Proposed RNN-DFBER-based model results.

RMSE MAE MBE r R2 RRMSE NSE WI

RNN-DFBER 0.002843 0.000230 0.000596 0.999325 0.999106 0.301785 0.999106 0.998771

To evaluate the effectiveness of the proposed RNN-DFBER-based model, its regression
results are compared with those of other models such as BER, JAYA, FHO, FA, GWO, PSO,
GA, and WOA-based models. Table 5 offers a comprehensive statistical description of
the RNN-DFBER-based model and presents the RMSE results of all models based on ten
independent runs. The description includes information about the minimum, median,
maximum, and mean average errors, standard (Std.) Deviation, Std. Error of Mean, the
required time in seconds. The Number of values to run the models is ten times.

Table 5. Statistical description of the proposed RNN-DFBER-based model and other models’ results
from RMSE.

RNN-
DFBER RNN-BER RNN-

JAYA
RNN-
FHO

RNN-
WOA

RNN-
GWO RNN-PSO RNN-FA

Number of values 10 10 10 10 10 10 10 10
Minimum 0.002643 0.006966 0.008195 0.00815 0.01146 0.03041 0.03624 0.04138
Maximum 0.002943 0.008897 0.009595 0.009498 0.02395 0.04634 0.0524 0.06138
Range 0.0003 0.001931 0.0014 0.001348 0.01249 0.01593 0.01616 0.02
Mean 0.002823 0.007959 0.00894 0.009263 0.0191 0.0344 0.04268 0.05138

Std. Deviation 7.89 ×
10−5 0.000455 0.000331 0.000502 0.003035 0.004299 0.003918 0.004714

Std. Error of Mean 2.49 ×
10−5 0.000144 0.000105 0.000159 0.00096 0.001359 0.001239 0.001491

Time(S) 17.85 23.56 29.15 31.24 33.68 35.45 37.87 38.17

Figure 11 illustrates a box plot generated using the root-mean-squared error (RMSE)
for the proposed RNN-DFBER-based model, as well as the BER, JAYA, FHO, FA, GWO, PSO,
GA, and WOA-based models. The effectiveness of the optimized RNN-DFBER-based model
is assessed using the fitness function described in Equation (10), as depicted in the figure.
Additionally, Figure 12 presents a histogram of the RMSE values for both the presented
RNN-DFBER-based model and the other models. Furthermore, Figure 13 showcases the
ROC curve comparing the presented DFBER algorithm with the BER algorithm. Lastly,
Figure 14 showcases QQ plots, residual plots, and a heat map for both the provided RNN-
DFBER-based model and the compared models, based on the analyzed data. These figures
collectively demonstrate the potential of the given optimized RNN-DFBER-based model to
outperform the compared models.

Figure 15 illustrates the statistical distribution of the COA compared to the EOA
components of the wind power forecasting dataset. This distribution provides insights
into the relationship and variability between these two components. Figure 16 presents the
statistical distribution of the EOA in relation to the SOA components of the wind power
forecasting dataset. This distribution offers a visualization of the statistical properties and
potential correlations between these two components. Lastly, Figure 17 showcases the
statistical distribution of the SOA in comparison to the WOA components of the wind power
forecasting dataset. This distribution enables an analysis of the statistical characteristics
and potential dependencies between these two components. By examining these statistical
distributions, one can gain a deeper understanding of the relationships, variations, and
patterns present in the wind power forecasting dataset between COA and EOA, EOA and
SOA, and SOA and WOA.
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Figure 11. The box plot of the proposed RNN-DFBER-based model and BER, JAYA, FHO, FA, GWO,
PSO, GA, and WOA-based models based on the RMSE.

Figure 12. Histogram of RMSE for both the presented RNN-DFBER-based model and the other models.

Figure 13. ROC curve of the presented RNN-DFBER algorithm versus the BER algorithm.
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Figure 14. For both the models that were compared and the model that was presented using RNN-
DFBER, there were QQ plots, residual plots, and heat maps.

Figure 15. The statistical distribution for COA versus EOA of the wind power forecasting dataset.
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Figure 16. The statistical distribution for EOA versus SOA of the wind power forecasting dataset.

Figure 17. The statistical distribution for SOA versus WOA of the wind power forecasting dataset.

The results of the ANOVA test conducted on the proposed RNN-DFBER-based model
and the compared models are presented in Table 6. This statistical analysis provides insights
into the significance of differences between the models. Additionally, Table 7 presents a
comparison between the proposed optimized RNN-DFBER-based model and the compared
models using the Wilcoxon Signed-Rank test. By conducting ten independent iterations
of each algorithm, the statistical analysis ensures accurate comparisons and enhances the
reliability of the study’s findings.

Table 6. The outcomes of the ANOVA test for the comparison models and the suggested RNN-DFBER.

SS DF MS F (DFn, DFd) p Value

Treatment (between columns) 0.04257 8 0.005321 F (8, 81) = 290.7 p < 0.0001
Residual (within columns) 0.001483 81 0.0000183 - -
Total 0.04405 89 - - -
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Table 7. Comparison between the models that were compared using the Wilcoxon Signed-Rank test
and the proposed RNN-DFBER.

DFBER BER JAYA FHO WOA GWO PSO FA GA

Theoretical median 0 0 0 0 0 0 0 0 0
Actual median 0.002843 0.007966 0.008951 0.009498 0.01946 0.03341 0.0424 0.05138 0.06938
Number of values 10 10 10 10 10 10 10 10 10
Wilcoxon Signed Rank Test
Sum of signed ranks (W) 55 55 55 55 55 55 55 55 55
Sum of positive ranks 55 55 55 55 55 55 55 55 55
Sum of negative ranks 0 0 0 0 0 0 0 0 0
p value (two tailed) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Exact or estimate? Exact Exact Exact Exact Exact Exact Exact Exact Exact
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.002843 0.007966 0.008951 0.009498 0.01946 0.03341 0.0424 0.05138 0.06938

5. Discussion

The presented results demonstrate the effectiveness of the proposed optimized RNN-
DFBER-based model. It outperforms the compared models based on various evaluation
metrics, visual representations, and statistical tests. These findings highlight the poten-
tial and superiority of the presented RNN-DFBER-based model in accurately predicting
and modeling the data. The model exhibits lower RMSE values, indicating better overall
performance in capturing the observed values compared to other models. Furthermore,
the comprehensive evaluation using multiple metrics such as RRMSE, NSE, MAE, MBE,
r, R2, and WI provides a holistic assessment of the proposed RNN-DFBER-based model.
The model’s ability to closely match the observed values, as reflected in the high correla-
tion coefficient (r) and coefficient of determination (R2), demonstrates its effectiveness in
capturing the underlying patterns in the data.

The visual comparisons, including the box plot, histogram, ROC curve, QQ plots, resid-
ual plots, and heat map, further support the superiority of the proposed RNN-DFBER-based
model. These visualizations provide insights into the distribution of errors, discrimination
ability, conformity to assumptions, and the relationship between variables, ultimately
highlighting the model’s strengths and advantages over the other models. The statistical
analyses conducted, including the ANOVA test and the Wilcoxon Signed-Rank test, re-
inforce the significance and reliability of the findings. By conducting multiple iterations
of each algorithm, the comparisons are robust, ensuring that the observed differences in
performance are statistically significant.

The results and analyses collectively demonstrate that the proposed optimized RNN-
DFBER-based model outperforms the compared models in terms of accuracy, predictive
capability, and reliability. These findings contribute to the validation and efficacy of
the suggested algorithm for the given dataset and underline its potential for practical
applications in similar domains.

6. Conclusions and Future Work

In conclusion, the proposed optimized RNN-DFBER-based model has been shown to
be highly effective in predicting and modeling the given dataset. The model outperformed
other compared models based on various evaluation metrics, including RRMSE, NSE, MAE,
MBE, r, R2, and WI. The low RMSE value indicates a close match between the model’s
predictions and the observed values. Visual comparisons, such as box plots, histograms,
ROC curves, QQ plots, residual plots, and heat maps, further supported the superiority of
the RNN-DFBER-based model. These visualizations demonstrated its ability to accurately
capture the underlying patterns and relationships in the data. Statistical analyses, including
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the ANOVA test and the Wilcoxon Signed-Rank test, provided additional evidence of the
model’s significance and reliability. By conducting multiple iterations of each algorithm,
the statistical comparisons ensured the robustness of the results. The findings indicate that
the proposed RNN-DFBER-based model offers a powerful and effective approach for the
given dataset. Its strong performance, supported by comprehensive evaluations and statis-
tical analyses, suggests its potential for practical applications in similar domains. Future
directions for research in this area could include conducting further research and validation
using diverse datasets and scenarios to evaluate the generalizability and robustness of
the RNN-DFBER-based model. This would help determine the model’s effectiveness in
different contexts and ensure its reliability across various conditions.
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