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Abstract: The reptile search algorithm is an effective optimization method based on the natural
laws of the biological world. By restoring and simulating the hunting process of reptiles, good
optimization results can be achieved. However, due to the limitations of natural laws, it is easy to fall
into local optima during the exploration phase. Inspired by the different search fields of biological
organisms with varying flight heights, this paper proposes a reptile search algorithm considering
different flight heights. In the exploration phase, introducing the different flight altitude abilities of
two animals, the northern goshawk and the African vulture, enables reptiles to have better search
horizons, improve their global search ability, and reduce the probability of falling into local optima
during the exploration phase. A novel dynamic factor (DF) is proposed in the exploitation phase to
improve the algorithm’s convergence speed and optimization accuracy. To verify the effectiveness of
the proposed algorithm, the test results were compared with ten state-of-the-art (SOTA) algorithms
on thirty-three famous test functions. The experimental results show that the proposed algorithm
has good performance. In addition, the proposed algorithm and ten SOTA algorithms were applied
to three micromachine practical engineering problems, and the experimental results show that the
proposed algorithm has good problem-solving ability.

Keywords: reptile search algorithm; engineering optimization design; northern goshawk optimization;
artificial vulture optimization algorithm

1. Introduction

With the deeper exploration of natural laws by humans, more and more practical
problems have emerged in fields such as control [1,2], manufacturing [3,4], economics [5,6],
and physics [7]. Most of these problems have characteristics such as a large scale, multiple
constraints, and discontinuity [8]. Traditional algorithms often optimize the objective
function results through the gradient of the objective function, a deterministic search
method that makes it difficult for people to use existing traditional methods to solve
such problems.

Basically, the characteristic of most heuristic algorithms is random search, and through
this characteristic, higher global optimal possibilities are obtained [9]. Due to their in-
dependence from utilizing function gradients, heuristic algorithms do not require the
objective function to have continuously differentiable conditions, providing optimization
possibilities for some objective functions that cannot be optimized through gradient descent.
Heuristic algorithms can be roughly divided into three categories based on the different
ideas of imitation: simulating biological habits [10,11], cognitive thinking [12,13], and phys-
ical phenomena [14,15]. Among these, due to the abundance of natural organisms, heuristic
algorithms that simulate bodily patterns are primarily used, such as the genetic algorithm
(GA) [16], particle swarm optimization (PSO) [17], ant colony optimization (ACO) [18],

Biomimetics 2023, 8, 305. https://doi.org/10.3390/biomimetics8030305 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8030305
https://doi.org/10.3390/biomimetics8030305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0009-0001-8322-5357
https://orcid.org/0000-0003-0227-020X
https://doi.org/10.3390/biomimetics8030305
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8030305?type=check_update&version=1


Biomimetics 2023, 8, 305 2 of 33

Grey wolf optimizer (GWO) [19], etc. However, no free lunch globally exists, and no single
algorithm is suitable for solving all optimization problems [20]. In recent years, in pursuit
of the effectiveness of heuristic algorithms, many improved algorithms have emerged,
mainly consisting of strategy-based improvement and algorithm combinations. In recent
years, our research team has been committed to obtaining better-performing heuristic
algorithms through algorithmic combinations, such as the beetle antenna strategy based
on grey wolf optimization [21], grey wolf optimization based on the Aquila exploration
method (AGWO) [22], hybrid golden jackal optimization and the golden sine algorithm [23],
enhanced snake optimization [24], etc.

The reptile search algorithm (RSA) is a novel intelligent optimization algorithm based
on crocodile hunting behavior that was proposed by Laith et al. in 2022 [25]. The RSA has
the characteristics of fewer parameter adjustments, strong optimization stability, and easy
implementation, achieving excellent results in optimization problems. Ervural and Hakli
proposed a binary RSA to extend the RSA to binary optimization issues [26]. Emam et al.
proposed an enhanced reptile search algorithm for global optimization. They selected the
optimal thresholding values for multilevel image segmentation [27]. Xiong et al. proposed
a dual-scale deep learning model based on ELM-BiLSTM and improved the reptile search
algorithm for wind power prediction [28]. Elkholy et al. proposed an AI-embedded FPGA-
based real-time intelligent energy management system using a multi-objective reptile search
algorithm and a gorilla troops optimizer [29].

However, due to the physiological limitations of any animal, there are corresponding
drawbacks to algorithms that simulate biological habits. This also leads to the RSA, like
other algorithms that simulate physical patterns, having a slow convergence speed, low
optimization accuracy, and being prone to falling into local optima. This article aims to
solve this problem by studying the natural patterns of organisms inspired by natural laws.
Crocodiles have good hunting ability as land animals but need a better observation field
due to height constraints. Therefore, in the search section, the performance could be better
(in line with the RSA’s slow convergence speed, low optimization accuracy, and quick fall
into local optima). Inspired by the different flight heights and search horizons of natural
organisms, this article introduces the African vulture optimization algorithm (AVOA) [30]
and northern goshawk optimization (NGO) [31], utilizing the high-altitude advantages of
birds to explore accordingly. Considering the sizeable spatial range, the northern goshawk
algorithm is used in the high-altitude field, and African vulture optimization is used in the
mid- to high-altitude range. In the exploration phase, the hunting advantages of crocodiles
are utilized. On this basis, a reptile search algorithm considering different flight heights
(FRSA) is proposed.

To verify the effectiveness of the FRSA, a comparison was made with ten SOTA
algorithms on two function sets (thirty-three functions) and three engineering design
optimization problems, demonstrating significant improvements in both the algorithm’s
performance and its practical problem-solving capabilities. The highlights and contribu-
tions of this paper are summarized as follows: (1) The reptile search algorithm considering
different flight heights is proposed. (2) Wilcoxon rank sum and Friedman tests are used to
analyze the statistical data. (3) The FRSA is applied to solve three constrained optimization
problems in mechanical fields and compared with ten SOTA algorithms.

The rest of this article is arranged as follows: Section 2 reviews the RSA, and Section 3
provides a detailed introduction to the FRSA, including all the processes of exploration
and exploitation. Section 4 describes and analyzes the results of the FRSA and other
comparative algorithms on the two sets of functions. Section 5 represents the FRSA’s
performance on three practical engineering design issues. Finally, Section 6 provides a
summary and the outlook of the entire article.
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2. RSA

The RSA is a novel, naturally inspired meta-heuristic optimizer. It simulates the
hunting behavior of crocodiles to optimize problems. Crocodiles’ hunting behavior is
divided into two phases: implement encirclement (exploration) and hunting (exploitation).
The implementation of hunting is achieved through high walking or belly walking, and
hunting is achieved through hunting coordination or hunting cooperation.

In each optimization process, the first step is to generate an initial population. In the
RSA, the initial population of crocodiles is randomly generated, as described in Equation (1),
and the rules for randomly generating populations are shown in Equation (2).

P =


p1
p2
...

pm


m×n

=


p1,1 p1,2 . . . p1,n
p2,1 p2,2 . . . p2,n

...
...

...
...

pm,1 pm,2 . . . pm,n


m×n

(1)

where P denotes randomly generated initial solutions, and pm,n represents the position of
the m-th solution in the n-th dimension. m denotes the number of candidate solutions, and
n denotes the dimension of the given problem.

pi,j = rand1 × (ub− lb) + lb, j = 1, 2, · · ·, n (2)

where rand1 denotes a random value between 0 and 1, and lb and ub denote the lower and
upper bounds of the given problem, respectively.

The RSA can transition between encirclement (exploration) and hunting (exploitation),
and each phase can be divided into two states according to different situations. Therefore,
the RSA can be divided into four other parts.

During the exploration phase, there are two states: high-altitude walking and abdomi-
nal walking. When t ≤ T/4, the crocodile population enters a high-altitude walking state,
and when T/4 < t ≤ T/2, the crocodile population enters an abdominal walking state.
Different conditions during the exploration phase benefit the population by conducting
better searches and finding better solutions. The position update rules of the population
during the exploration phase are shown in Equation (3).

pt+1
i,j =

{
Bestt

j × δt
i,j × 0.1− Rt

i,j × rand2 t ≤ T
4

Bestt
j × pr1,j × ESt × rand3

T
4 < t ≤ T

2
(3)

where Bestt
j denotes the position of the optimal solution at time t in the j-th dimension, T is

the maximum number of iterations per experiment, and rand2 and rand3 denote a random
value between 0 and 1. δt

i,j denotes the hunting operator for the j-th dimension of the i-th
candidate solution, which can be calculated by Equation (4). Rt

i,j is a scaling function used
to reduce the search area, which can be calculated by Equation (5). r1 is a random number
between 1 and m, and ESt is an evolutionary factor, with a randomly decreasing value
between 2 and −2, which can be calculated by Equation (6).

δt
i,j = Bestt

j × di,j (4)

Rt
i,j =

Bestt
j − pr2,j

Bestt
j + θ

(5)

ESt = 2× rand4 × (1− t
T
) (6)

where θ is a near-zero minimum, which is to prevent cases where the denominator is zero,
rand4 is an integer between −1 and 1, and di,j represents the percentage difference between
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the best solution and the current solution in the j-th dimension position, which can be
calculated by Equation (7).

di,j = 0.1 +

pi,j − 1
n

n
∑

j=1
pi,j

Bestt
j × (ubj − lbj) + θ

(7)

In the exploitation phase, there are two states based on the hunting behavior of
crocodiles: hunting coordination and hunting cooperation. Crocodile hunting coordination
and cooperation enable them to approach their target prey easily, as their reinforcement
effect differs from the surrounding mechanism. Therefore, exploitation search may discover
near-optimal solutions after several attempts. When T/2 < t ≤ 3T/4, the crocodile popu-
lation enters a hunting coordination state, when 3T/4 < t ≤ T, the crocodile population
enters a hunting cooperative state. Different states during the exploitation phase are benefi-
cial in avoiding optimization from falling into local optima and helping to determine the
optimal solution during the exploitation phase. The location update rules of the population
during the exploration phase are shown in Equation (8).

pt+1
i,j =


Bestt

j × dt
i,j × rand5

T
2
< t ≤ 3T

4

Bestt
j − δt

i,j × θ − Rt
i,j × rand6

3T
4

< t ≤ T
(8)

where Bestt
j denotes the position of the optimal solution at time t in the j-th dimension, and

rand5 and rand6 denote random values between 0 and 1. Rt
i,j is a scaling function used to

reduce the search area, which can be calculated by Equation (5). θ is a minimal value.
The pseudo-code of the RSA is shown in Algorithm 1.

Algorithm 1. Pseudo-code of RSA

1. Define Dim, UB, LB, Max_Iter(T), Curr_Iter(t), α, β, etc
2. Initialize the population randomly pi(i = 1, 2, . . . , m)
3. while (t < T) do
4. Evaluate the fitness of each pi(i = 1, 2, . . . , m)
5. Find Best solution
6. Update the ES using Equation (6).
7. for (i = 1 to m) do
8. for (j = 1 to n) do
9. Update the η, R, P and values using Equations (4), (5) and (7), respectively.
10. If (t ≤ T/4) then
11. Calculate pt+1

i,j using Equation (3)
12. else if (t ≤ 2T/4 and t > T/4) then
13. Calculate pt+1

i,j using Equation (3)
14. else if (t ≤ 3T/4 and t > 2T/4) then
15. Calculate pt+1

i,j using Equation (8)
16. else
17. Calculate pt+1

i,j using Equation (8)
19. end if
20. end for
21. end for
22. t = t+1
23. end while
24. Return the best solution.
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3. Proposed FRSA

As a heuristic algorithm, the RSA has achieved good results in solving optimization
problems due to its novel imitation approach. However, due to the limitations of natural
biological behavior, this algorithm still has some drawbacks. In the process of individual
optimization, multiple complex situations may be encountered, and the steady decrease
in evolutionary factors does not conform to the nonlinear optimization law of algorithms
when dealing with complex optimization problems. The team collaboration, search scope,
and hunting mechanism of the crocodile population are all updated around the current
optimal value. The iterative updating process of individuals lacks a mutation mechanism.
Suppose the present optimal individual falls into a local optimum. In that case, it is easy
for the population to aggregate quickly, resulting in the algorithm being unable to break
free from the constraints of the local extremum.

In this section, based on the shortcomings of the RSA, the FRSA is proposed by intro-
ducing different search mechanisms (based on the exploration altitude) in the exploration
phase of the algorithm and introducing fluctuation factors in the exploration phase.

3.1. High-Altitude Search Mechanism (Northern Goshawk Exploration)

The northern goshawk randomly selects prey during the prey identification stage of
hunting and quickly attacks it. Due to the random selection of targets in the search space,
this stage increases the exploration capability of the NGO algorithm. This stage conducts a
global search of the search space to determine the optimal region. At this stage, the behavior
of northern goshawks in prey selection and attack is described using Equations (9) and (10).

pt+1
i,j =

 pt
i,j +

(
yt

i,j − I × pi,j

)
× rand7 Fyi < Fi

pt
i,j +

(
pi,j − yt

i,j

)
× rand8 Fyi ≥ Fi

(9)

Pt+1
i =

{
Pt+1

i Fnew
i < Fi

Pt
i Fnew

i ≥ Fi
(10)

where yi is the prey position of the i-th northern hawk, Fyi is the objective function value of
the prey position of the i-th northern hawk, Pt+1

i is the position of the i-th northern hawk,
pt+1

i,j is the position of the i-th northern hawk in the j-th dimension at time t, Fnew
i is the

updated objective function value of the i-th northern hawk, I is a random integer of 1 or 2.

3.2. Low-Altitude Search Mechanism (African Vulture Exploration)

Inspired by the speed at which vultures feed or starve, mathematical modeling is per-
formed using Equation (11), which can be used to simulate the exploration and exploration
phases. The satiety rate shows a decreasing trend, and this behavior is simulated using
Equation (12).

τ = h×
(

sinθ

(
π

2
× t

T

)
+ cos

(
π

2
× t

T

)
− 1
)

(11)

η = (2× rand9 + 1)× z×
(

1− t
T

)
+ τ (12)

where η represents the hunger level of vultures, t is the current number of iterations, T
is the maximum number of iterations, z denotes a random value between −1 and 1, and
h denotes a random value between −2 and 2. When |η| > 1, the vultures are in the
exploration phase. Based on the living habits of vultures, there are two different search
methods in the exploration phase of the African vulture optimization algorithm, as shown
in Equation (13).

pt+1
i,j =

{
Bestt

j −
∣∣∣2× rand10 × Bestt

j − pt
i,j

∣∣∣× η δ ≤ 0.6
Bestt

j − η + rand11 × ((ub− lb)× rand + lb) δ > 0.6
(13)
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3.3. Novel Dynamic Factor

In the exploration phase of the RSA, due to the lack of the random walkability of the
algorithm, the convergence speed of the algorithm is slow, and the optimization accuracy
is low at this stage. Therefore, this paper proposes a new DF on the original basis to
add disturbance factors and to improve the random walkability of the algorithm in the
exploration stage, enable the population to explore local regions in small steps, reduce the
probability of individuals falling into the local extremum under the influence of fluctuations,
and improve the optimization accuracy of the algorithm. The new DF is calculated by
Equation (14). The DF graph for 500 iterations is shown in Figure 1.

DF = 0.4× (2× r− 1)× e(−t/T)2
(14)

where t is the current number of iterations, T is the maximum number of iterations, and r
denotes a random value between 0 and 1.

pt+1
i,j =


ES× Bestt

j × dt
i,j × rand5

6T
10

< t ≤ 8T
10

Bestt
j − ES× δt

i,j × θ − Rt
i,j × rand6

8T
10

< t ≤ T
(15)
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After adding disturbance factors, the position update rules of the FRSA during the
exploration phase are shown in Equation (15).

By utilizing the proposed strategy to improve the RSA, the optimization ability and
efficiency of RSA can be effectively improved. The cooperative hunting mode of the FRSA
is shown in Figure 2. The pseudocode of the FRSA is shown in Algorithm 2. And the
flowchart of FRSA is shown in Figure 3.

3.4. Computational Time Complexity of the FRSA

In the process of optimizing practical problems, in addition to pursuing accuracy,
time is also an essential element [32]. The time complexity of an algorithm is an important
indicator for measuring the algorithm. Therefore, it is necessary to analyze the time
complexity of the improved algorithm compared to the original algorithm. The time
complexity is mainly reflected in the algorithm’s initialization, fitness evaluation, and
update solution.

When there are N solutions, the time complexity of the initialization phase is O (N),
and the time complexity of the update phase is O (T × N) + O(T × N × D). Therefore,
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the algorithm complexity of the RSA can be obtained as O (N × (T × D + 1)). Compared
to the RSA, the time complexity of the FRSA only increases the part of the evolution
factor. Assuming the time of the evolution factor is t, the time complexity of the FRSA is
O (N × (T × D + 1) + t) = O(N × (T × D + 1)). From this, the FRSA proposed in this
article does not increase the time complexity.
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Algorithm 2. Pseudo-code of FRSA

1. Define Dim, UB, LB, Max_Iter(T), Curr_Iter(t), α, β, etc
2. Initialize the population randomly pi(i = 1, 2, . . . , m)
3. while (t < T) do
4. Evaluate the fitness of each pi(i = 1, 2, . . . , m)
5. Find Best solution
6. Update the ES using Equation (6).
7. for (i = 1 to m) do
8. for (j = 1 to n) do
9. Update the η, R, P and values using Equations (4), (5) and (7), respectively.
10. if (t ≤ 3T/10) then
11. Calculate pt+1

i,j using Equation (10)
12. else if (t ≤ 6T/10 and t > 3T/10) then
13. Calculate pt+1

i,j using Equation (14)
14. else if (t ≤ 8T/10 and t > 6T/10) then
15. Calculate pt+1

i,j using Equation (15)
16. else
17. Calculate pt+1

i,j using Equation (15)
18. end if
19. end for
20. end for
21. t = t + 1
22. end while
23. Return best solution.
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
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 Figure 3. Flowchart of FRSA.

4. Analysis of Experiments and Results
4.1. Benchmark Function Sets and Compared Algorithms

This section uses the classic function set and the CEC 2019 set as the benchmark test
functions for this article. There are 33 functions, including 7 unimodal, 6 multimodal, and
20 fixed-dimensional multimodal functions. Unimodal functions were used to test the
exploration ability of the optimization algorithms due to having only one extreme value.
Multimodal functions were used to test the exploration ability of optimization algorithms
due to the existence of multiple extreme values. Finally, fixed dimensional parts were used
to evaluate the algorithm’s total capacity for exploration and exploration. The details of
the classic function set are shown in Table 1. The details of the CEC 2019 set are shown in
Table 2.

To better compare the results with other algorithms, this study used ten well-known
algorithms as benchmark algorithms, including the GA [16], PSO [17], ACO [18], GWO [19],
GJO [33], SO [34], TACPSO [35], AGWO [36], EGWO [36], and the RSA [25]. These
benchmark algorithms have achieved excellent results in function optimization and are
often used as benchmark comparison algorithms. The details of the parameter settings for
the algorithms are shown in Table 3. To be fair, the setting information for these parameters
was taken from the original literature that proposed these algorithms.

To fairly compare the results of the benchmark algorithms, all algorithms adopted the
following unified parameter settings: the number of independent continuous runs of the
algorithm was 30, the number of populations was 50, the number of algorithm iterations
was 500, and the comparison indicators included the mean, the standard deviation, the
p-value, the Wilcoxon rank sum test, and the Friedman test [37,38]. The best results of
the test are displayed in bold. This simulation testing environment was carried out on a
computer with the following features: Intel(R) Core (TM) i5-9400F CPU @ 2.90 GHz and
16 GB RAM, Windows 10, 64-bit operating system.
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Table 1. The classic function set.

Function Dim Range Fmin Type

f1(x) =
n
∑

i=1
x2

i
30,100,500 [−100, 100] 0 Unimodal

f2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | 30,100,500 [−1.28, 1.28] 0 Unimodal

f3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
30,100,500 [−100, 100] 0 Unimodal

f4(x) = maxi{|xi |, 1 6 i 6 n} 30,100,500 [−100, 100] 0 Unimodal

f5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

30,100,500 [−30, 30] 0 Unimodal

f6(x) =
n
∑

i=1
[xi + 0.5]2 30,100,500 [−100, 100] 0 Unimodal

f7(x) =
n
∑

i=1
ix4

i + random[0, 1] 30,100,500 [−1.28, 1.28] 0 Unimodal

f8(x) =
n
∑

i=1
−xi sin(

√
|xi |) 30,100,500 [−500, 500] −418.9829 × n Multimodal

f9(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 30,100,500 [−5.12, 5.12] 0 Multimodal

f10(x) = −20 exp(−0.2

√
1
n

n
∑

i=1
x2

i )−

exp
(

1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e

30,100,500 [−32, 32] 0 Multimodal

f11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30,100,500 [−600, 600] 0 Multimodal

f12(x) = π
n

 10 sin(πyi) +
n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+(yn − 1)2

+

n
∑

i=1
u(xi, 10, 100, 4)

yi = 1 + xi+1
4

u(xi, a, k, m) =

 k(xi − a)m, xi > a
0,−a < xi < a
k(−xi − a)m, xi < −a


30,100,500 [−50, 50] 0 Multimodal

f13(x) = 0.1

 sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+(xn − 1)2[1 + sin2(2πxn)

]
+

n
∑

i=1
u(xi , 5, 100, 4)

30,100,500 [−50, 50] 0 Multimodal

f14(x) =

 1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)

6


−1

2 [−65.536, 65.536] 1 Multimodal

f15(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.0003 Multimodal

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316 Multimodal

f17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5, 5] 0.398 Multimodal

f18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] 2 [−2, 2] 3 Multimodal

f19(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij
(

xj − pij
)2

)
3 [0, 1] −3.86 Multimodal

f20(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij
(

xj − pij
)2

)
6 [0, 1] −3.32 Multimodal

f21(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0, 10] −10.1532 Multimodal

f22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0, 10] −10.4029 Multimodal

f23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0, 10] −10.5364 Multimodal
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Table 2. The CEC 2019 set.

No. Functions Dim Range F*
i =Fi(X*)

F1 Storn’s Chebyshev Polynomial Fitting Problem 9 [−8192, 8192] 1
F2 Inverse Hilbert Matrix Problem 16 [−16,384, 16,384] 1
F3 Lennard–Jones Minimum Energy Cluster 18 [−4, 4] 1
F4 Rastrigin’s Function 10 [−100, 100] 1
F5 Griewangk’s Function 10 [−100, 100] 1
F6 Weierstrass Function 10 [−100, 100] 1
F7 Modified Schwefel’s Function 10 [−100, 100] 1
F8 Expanded Schaffer’s F6 Function 10 [−100, 100] 1
F9 Happy Cat Function 10 [−100, 100] 1
F10 Ackley Function 10 [−100, 100] 1

Table 3. Parameter settings for algorithms.

Algorithms Parameters and Assignments

GA α ∈ [−0.5, 1.5]
PSO c1 = 2, c2 = 2, Wmin = 0.2, Wmax = 0.9
ACO α = 1, β = 2, ρ = 0.05
GWO a = 2(linearly decreases over iterations), r1 ∈ [0, 1], r2 ∈ [0, 1]
GJO a = 1.5(linearly decreases over iterations)
SO a = 2(linearly decreases over iterations)
TACPSO c1 = 2, c2 = 2, Wmin = 0.2, Wmax = 0.9
AGWO B = 0.8, a = 2(linearly decreases over iterations)
EGWO a = 2(linearly decreases over iterations), r1 ∈ [0, 1], r2 ∈ [0, 1]
RSA ε = 0.1, ω = 0.1
FRSA ε = 0.1, θ = 2.5, L1 = 0.8, L2 = 0.2,

4.2. Results Comparison and Analysis

To fully validate the robustness and effectiveness of the algorithm for different di-
mensional problems, this study adopted three dimensions (30, 100, 500) for the non-fixed
dimensional functions (unimodal and multimodal functions).

Table 4 shows the results of the non-fixed dimensional functions in 30 dimensions,
including the mean (Mean), standard deviation (Std), and Friedman test of 11 algorithms.
Figure 4 shows the iterative curves of these 11 algorithms for solving 13 non-fixed dimen-
sional functions. Figure 5 is a boxplot of the results obtained by these 11 algorithms after
solving 13 functions with non-fixed dimensions. The boxplot results were analyzed from
five perspectives: the minimum, lower quartile, median, upper quartile, and maximum.
By convergence curves and boxplots, the algorithm can be more intuitively and compre-
hensively characterized for solving functional problems. Out of 13 non-fixed dimensional
functions, the FRSA achieved ten optimal values, with the highest number among all
11 algorithms. The Friedman value shows the overall results obtained by each algorithm
in 13 functions. In the Friedman value, the FRSA achieved the mark of 2.2115, ranking
first in the Friedman rank, indicating that the FRSA achieved better results than the other
algorithms in 30 dimensions.

Table 5 shows the results of the non-fixed dimensional functions in 100 dimensions,
including the Mean, Std, and Friedman test of 11 algorithms. Figure 6 shows the iterative
curves of these 11 algorithms for solving 13 non-fixed dimensional functions. Figure 7 is a
boxplot of the results obtained by these 11 algorithms after solving 13 functions with non-
fixed dimensions. The boxplot results were analyzed from five perspectives: the minimum,
lower quartile, median, upper quartile, and maximum. By convergence curves and boxplots,
the algorithm can be more intuitively and comprehensively characterized for solving
functional problems. Out of the 13 non-fixed dimensional functions, the FRSA achieved
11 optimal values, with the highest number among all 11 algorithms. The Friedman value
shows the overall results obtained by each algorithm in the 13 functions. For the Friedman
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value, the FRSA achieved a mark of 2.0192, ranking first in the Friedman test, and indicating
that the FRSA achieved better results than the other algorithms in 100 dimensions.
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Table 4. Results and comparison of 11 algorithms on 13 classic functions with Dim = 30.

F(x) GA PSO ACO GWO GJO SO TACPSO AGWO EGWO RSA FRSA

F1
Mean 2.0706 × 104 3.3853 × 102 4.5737 × 10−3 1.0329 × 10−27 1.7311 × 10−54 3.9891 × 10−94 1.5111 × 10−1 3.2767 × 10−317 1.2009 × 10−30 0.0000 × 100 0.0000 × 100

Std 7.1489 × 103 1.6168 × 102 6.7589 × 10−3 1.0808 × 10−27 4.1785 × 10−54 1.0339 × 10−93 2.3348 × 10−1 0.0000 × 100 3.8756 × 10−30 0.0000 × 100 0.0000 × 100

F2
Mean 5.6471 × 101 1.7592 × 101 2.5207 × 10−3 1.0724 × 10−16 2.0077 × 10−32 1.8981 × 10−42 1.5195 × 100 6.1333 × 10−175 8.6619 × 10−20 0.0000 × 100 0.0000 × 100

Std 9.9694 × 100 9.9392 × 100 1.9247 × 10−3 8.1353 × 10−17 2.6567 × 10−32 7.8124 × 10−42 3.0452 × 100 0.0000 × 100 2.0027 × 10−19 0.0000 × 100 0.0000 × 100

F3
Mean 5.2325 × 104 8.7587 × 103 3.2509 × 104 1.0617 × 10−5 8.0928 × 10−18 8.5384 × 10−56 1.1348 × 103 5.2178 × 10−264 1.2199 × 10−3 0.0000 × 100 0.0000 × 100

Std 1.5868 × 104 5.3330 × 103 7.1037 × 103 2.7063 × 10−5 2.6301 × 10−17 3.6611 × 10−55 1.1917 × 103 0.0000 × 100 4.0506 × 10−3 0.0000 × 100 0.0000 × 100

F4
Mean 7.0290 × 101 1.0057 × 101 8.3925 × 101 7.6327 × 10−7 5.5119 × 10−16 5.6706 × 10−40 9.7094 × 100 8.5240 × 10−155 3.5666 × 10−1 0.0000 × 100 0.0000 × 100

Std 7.2884 × 100 2.6342 × 100 1.1652 × 101 8.4243 × 10−7 1.3025 × 10−15 1.9765 × 10−39 3.4154 × 100 4.3706 × 10−154 1.3297 × 100 0.0000 × 100 0.0000 × 100

F5
Mean 2.1143 × 107 1.3458 × 104 6.3852 × 102 2.6950 × 101 2.7744 × 101 2.0242 × 101 4.2784 × 102 2.8334 × 101 2.7928 × 101 1.7547 × 101 9.0588 × 10−29

Std 1.5073 × 107 9.7957 × 103 9.3899 × 102 7.1489 × 10−1 7.5092 × 10−1 1.1160 × 101 9.0541 × 102 3.9161 × 10−1 8.8237 × 10−1 1.4272 × 101 1.3586 × 10−29

F6
Mean 2.2120 × 104 3.3844 × 102 2.8991 × 10−3 6.9336 × 10−1 2.5998 × 100 7.4686 × 10−1 2.8608 × 10−1 5.1108 × 100 3.1744 × 100 6.9887 × 100 9.3967 × 10−3

Std 8.1756 × 103 1.3189 × 102 4.3952 × 10−3 3.2769 × 10−1 4.5246 × 10−1 7.2966 × 10−1 7.1367 × 10−1 3.2531 × 10−1 6.9967 × 10−1 4.0996 × 10−1 7.3219 × 10−3

F7
Mean 1.4246 × 101 1.4084 × 100 9.2893 × 10−2 2.1075 × 10−3 5.1434 × 10−4 2.9363 × 10−4 8.4275 × 10−2 1.2253 × 10−4 7.9773 × 10−3 1.2720 × 10−4 3.2019 × 10−4

Std 6.4862 × 100 5.8085 × 100 3.6308 × 10−2 1.4913 × 10−3 3.3543 × 10−4 2.2856 × 10−4 3.3336 × 10−2 9.7020 × 10−5 4.0919 × 10−3 1.4087 × 10−4 3.1313 × 10−4

F8
Mean −2.1820 × 103 −8.0517 × 103 −7.2210 × 103 −5.8586 × 103 −4.3233 × 103 −1.248 × 104 −8.6030 × 103 −2.7317 × 103 −6.5965 × 103 −5.4035 × 103 −1.1553 × 104

Std 4.0040 × 102 9.6639 × 102 1.0003 × 103 7.5792 × 102 1.2048 × 103 2.3899 × 102 4.6512 × 102 4.6201 × 102 7.6715 × 102 3.1866 × 102 1.6853 × 103

F9
Mean 2.5863 × 102 2.0098 × 102 2.4292 × 102 1.8876 × 100 0.0000 × 100 5.2470 × 100 7.3533 × 101 0.0000 × 100 1.5967 × 102 0.0000 × 100 0.0000 × 100

Std 4.5208 × 101 2.1856 × 101 2.2226 × 101 2.5924 × 100 0.0000 × 100 1.2881 × 101 1.8901 × 101 0.0000 × 100 3.8336 × 101 0.0000 × 100 0.0000 × 100

F10
Mean 1.9867 × 101 5.3154 × 100 1.2859 × 101 1.0297 × 10−13 7.2831 × 10−15 2.8853 × 10−1 2.2423 × 100 1.7171 × 10−15 1.9107 × 10−1 8.8818 × 10−16 8.8818 × 10−16

Std 4.6960 × 10−1 1.0010 × 100 9.8810 × 100 1.8565 × 10−14 1.4454 × 10−15 7.5143 × 10−1 7.3942 × 10−1 1.5283 × 10−15 7.3243 × 10−1 0.0000 × 100 0.0000 × 100

F11
Mean 1.8735 × 102 4.0848 × 100 1.7211 × 10−1 4.9998 × 10−3 0.0000 × 100 9.1944 × 10−2 1.3227 × 10−1 0.0000 × 100 1.1550 × 10−2 0.0000 × 100 0.0000 × 100

Std 6.6774 × 101 1.8224 × 100 2.7165 × 10−1 8.7540 × 10−3 0.0000 × 100 1.7896 × 10−1 1.5411 × 10−1 0.0000 × 100 2.1161 × 10−2 0.0000 × 100 0.0000 × 100

F12
Mean 1.7475 × 107 5.9962 × 100 3.2016 × 100 4.7372 × 10−2 2.1168 × 10−1 1.2141 × 10−1 1.7178 × 100 6.7014 × 10−1 3.1555 × 100 1.2588 × 100 6.1299 × 10−4

Std 2.4583 × 107 3.0819 × 100 5.8093 × 100 3.6729 × 10−2 6.8287 × 10−2 2.4035 × 10−1 1.6616 × 100 1.4300 × 10−1 3.1014 × 100 3.4982 × 10−1 4.8674 × 10−4

F13
Mean 5.7420 × 107 2.8474 × 101 2.2313 × 100 6.8191 × 10−1 1.7212 × 100 4.8266 × 10−1 4.1897 × 100 2.5629 × 100 2.6787 × 100 4.1579 × 10−1 3.8688 × 10−31

Std 4.5158 × 107 2.9526 × 101 5.0535 × 100 2.5619 × 10−1 2.4044 × 10−1 6.9409 × 10−1 4.8206 × 100 8.7892 × 10−2 5.8772 × 10−1 8.3308 × 10−1 2.0585 × 10−31

Friedman value 1.0423 × 101 9.2692 × 100 8.3846 × 100 5.1538 × 100 4.6923 × 100 4.7308 × 100 7.5385 × 100 3.5385 × 100 6.8077 × 100 3.2500 × 100 2.2115 × 100

Friedman rank 11 10 9 6 4 5 8 3 7 2 1
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Table 5. Results and comparison of 11 algorithms on 13 classic functions with Dim =100.

F(x) GA PSO ACO GWO GJO SO TACPSO AGWO EGWO RSA FRSA

F1
Mean 2.2803 × 105 4.8382 × 103 1.1718 × 105 1.2883 × 10−12 7.5690 × 10−28 7.3577 × 10−82 6.3258 × 103 2.3337 × 10−244 2.9059 × 10−16 0.0000 × 100 0.0000 × 100

Std 2.6407 × 104 2.6614 × 103 1.2634 × 104 7.2714 × 10−13 2.0721 × 10−27 1.6214 × 10−81 1.9044 × 103 0.0000 × 100 4.3702 × 10−16 0.0000 × 100 0.0000 × 100

F2
Mean 1.3878 × 103 7.9551 × 101 1.0183 × 1024 4.0761 × 10−8 1.7716 × 10−17 1.1687 × 10−35 1.0765 × 102 3.5171 × 10−127 2.1585 × 10−10 0.0000 × 100 0.0000 × 100

Std 6.1674 × 103 2.0688 × 101 4.2616 × 1024 1.2357 × 10−8 1.9050 × 10−17 1.1341 × 10−35 2.4822 × 101 1.9264 × 10−126 2.7251 × 10−10 0.0000 × 100 0.0000 × 100

F3
Mean 6.4151 × 105 1.2058 × 105 5.4194 × 105 5.4654 × 102 1.1960 × 100 1.9856 × 10−27 7.9658 × 104 9.4366 × 10−220 2.3095 × 104 0.0000 × 100 0.0000 × 100

Std 1.8635 × 105 7.0068 × 104 5.8785 × 104 5.7433 × 102 5.0520 × 100 1.0876 × 10−26 1.7856 × 104 0.0000 × 100 1.5626 × 104 0.0000 × 100 0.0000 × 100

F4
Mean 9.4654 × 101 2.1438 × 101 9.7253 × 101 1.3792 × 100 5.4031 × 100 1.1115 × 10−36 4.4837 × 101 1.4570 × 10−130 7.1629 × 101 0.0000 × 100 0.0000 × 100

Std 1.8813 × 100 4.9340 × 100 1.1638 × 100 1.5201 × 100 8.6012 × 100 1.6885 × 10−36 3.1827 × 100 5.4253 × 10−130 8.6435 × 100 0.0000 × 100 0.0000 × 100

F5
Mean 8.5046 × 108 5.2446 × 105 1.0445 × 109 9.7690 × 101 9.8283 × 101 6.4281 × 101 3.2768 × 106 9.8749 × 101 9.8175 × 101 9.8988 × 101 3.8975 × 10−28

Std 1.4410 × 108 4.6652 × 105 2.9092 × 108 7.8639 × 10−1 4.8343 × 10−1 4.1497 × 101 2.0490 × 106 2.4079 × 10−1 6.4582 × 10−1 3.7169 × 10−3 2.2620 × 10−29

F6
Mean 2.1753 × 105 3.9481 × 103 1.1119 × 105 1.0013 × 101 1.6765 × 101 1.4058 × 101 6.3639 × 103 2.2476 × 101 1.4930 × 101 2.4607 × 101 4.1033 × 10−2

Std 2.1653 × 104 1.5048 × 103 1.1425 × 104 1.2537 × 100 7.1104 × 10−1 1.0657 × 101 2.8579 × 103 3.1181 × 10−1 1.0606 × 100 2.0760 × 10−1 2.9663 × 10−2

F7
Mean 1.2316 × 103 5.3044 × 101 8.4073 × 102 7.4525 × 10−3 1.2061 × 10−3 2.2315 × 10−4 8.4554 × 100 2.5098 × 10−4 2.9401 × 10−2 1.1850 × 10−4 2.4755 × 10−4

Std 2.2446 × 102 8.5484 × 101 3.3353 × 102 2.8388 × 10−3 5.1273 × 10−4 2.4369 × 10−4 4.9534 × 100 2.3744 × 10−4 1.2773 × 10−2 9.1632 × 10−5 2.2133 × 10−4

F8
Mean −4.1683 × 103 −1.5010 × 104 −1.5812 × 104 −1.6026 × 104 −9.1616 × 103 −4.1583 × 104 −2.2513 × 104 −5.0509 × 103 −1.7702 × 104 −1.7056 × 104 −3.6466 × 104

Std 9.7178 × 102 2.6230 × 103 2.7296 × 103 2.4537 × 103 4.2288 × 103 5.2761 × 102 1.9590 × 103 9.0114 × 102 1.4842 × 103 7.6478 × 102 7.1490 × 103

F9
Mean 1.5280 × 103 8.7473 × 102 1.3949 × 103 1.0982 × 101 1.5158 × 10−14 1.4159 × 101 4.6367 × 102 0.0000 × 100 8.3312 × 102 0.0000 × 100 0.0000 × 100

Std 6.4386 × 101 8.6547 × 101 4.5366 × 101 8.3224 × 100 5.7687 × 10−14 3.0090 × 101 5.1780 × 101 0.0000 × 100 1.4958 × 102 0.0000 × 100 0.0000 × 100

F10
Mean 2.0786 × 101 9.0803 × 100 2.0778 × 101 1.1377 × 10−7 5.0271 × 10−14 4.4409 × 10−15 1.2679 × 101 4.2040 × 10−15 8.4006 × 10−2 8.8818 × 10−16 8.8818 × 10−16

Std 1.0176 × 10−1 2.4931 × 100 4.0391 × 10−2 3.5782 × 10−8 9.8451 × 10−15 0.0000 × 100 1.0867 × 100 9.0135 × 10−16 4.6012 × 10−1 0.0000 × 100 0.0000 × 100

F11
Mean 1.9914 × 103 3.5916 × 101 1.0510 × 103 5.6641 × 10−3 0.0000 × 100 0.0000 × 100 5.5387 × 101 0.0000 × 100 5.0051 × 10−3 0.0000 × 100 0.0000 × 100

Std 2.1758 × 102 1.3366 × 101 1.1905 × 102 1.2302 × 10−2 0.0000 × 100 0.0000 × 100 1.6313 × 101 0.0000 × 100 8.8528 × 10−3 0.0000 × 100 0.0000 × 100

F12
Mean 1.7624 × 109 2.4562 × 103 3.1606 × 109 2.5960 × 10−1 6.0942 × 10−1 1.7964 × 10−1 1.4874 × 105 1.0179 × 100 1.0922 × 101 1.2477 × 100 2.3383 × 10−4

Std 4.3233 × 108 1.3099 × 104 3.0994 × 108 5.0711 × 10−2 7.7430 × 10−2 3.7770 × 10−1 4.4671 × 105 6.5885 × 10−2 8.0541 × 100 8.0783 × 10−2 2.0208 × 10−4

F13
Mean 3.4134 × 109 4.4552 × 104 5.6359 × 109 6.8948 × 100 8.3742 × 100 2.1756 × 100 2.4624 × 106 9.6505 × 100 2.6571 × 101 9.6741 × 100 6.2822 × 10−31

Std 6.5988 × 108 8.5336 × 104 5.0013 × 108 4.6552 × 10−1 2.3595 × 10−1 3.7113 × 100 2.2076 × 106 6.1528 × 10−2 3.9839 × 101 5.8643 × 10−1 1.8088 × 10−31

Friedman value 1.0077 × 101 8.4615 × 100 9.6923 × 100 5.4231 × 100 5.0769 × 100 3.8077 × 100 8.3077 × 100 3.5385 × 100 6.6923 × 100 2.9038 × 100 2.0192 × 100

Friedman rank 11 9 10 6 5 4 8 3 7 2 1
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Table 6 shows the results of non-fixed dimensional functions at 500 dimensions,
including the Mean, Std, and Friedman test of 11 algorithms. Figure 8 shows the iterative
curves of these 11 algorithms for solving 13 non-fixed dimensional functions. Figure 9 is a
boxplot of the results obtained by these 11 algorithms after solving 13 functions with non-
fixed dimensions. The boxplot results were analyzed from five perspectives: the minimum,
lower quartile, median, upper quartile, and maximum. By convergence curves and boxplots,
the algorithm can be more intuitively and comprehensively characterized for solving
functional problems. Out of the 13 non-fixed dimensional functions, the FRSA achieved 11
optimal values, with the highest number among all 11 algorithms. The Friedman value
shows the overall results obtained by each algorithm in the 13 functions. For the Friedman
value, the FRSA achieved a mark of 1.9615, ranking first in the Friedman test, and indicating
that the FRSA achieved better results than the other algorithms in 500 dimensions.



Biomimetics 2023, 8, 305 15 of 33

Table 6. Results and comparison of 11 algorithms on 13 classic functions with Dim = 500.

F(x) GA PSO ACO GWO GJO SO TACPSO AGWO EGWO RSA FRSA

F1
Mean 1.5128 × 106 3.9219 × 104 1.5590 × 106 1.8644 × 10−3 9.6545 × 10−13 7.1375 × 10−71 2.9775 × 105 1.9542 × 10−16 6.1307 × 10−6 0.0000 × 100 0.0000 × 100

Std 3.6434 × 104 1.3201 × 104 3.6597 × 104 7.6449 × 10−4 9.7800 × 10−13 2.4182 × 10−70 1.9178 × 104 1.0703 × 10−15 6.2289 × 10−6 0.0000 × 100 0.0000 × 100

F2
Mean 6.0554 × 10226 4.5845 × 102 4.1585 × 10268 1.0881 × 10−2 6.4312 × 10−9 1.2654 × 10−31 6.3084 × 1017 9.6613 × 10−12 1.8407 × 10−4 0.0000 × 100 0.0000 × 100

Std Inf 1.2379 × 102 Inf 1.7840 × 10−3 4.2103 × 10−9 1.7875 × 10−31 3.4548 × 1018 5.2623 × 10−11 1.4881 × 10−4 0.0000 × 100 0.0000 × 100

F3
Mean 2.1316 × 107 2.8293 × 106 1.3418 × 107 3.1425 × 105 5.1301 × 104 8.2145 × 102 2.0650 × 106 1.2415 × 10−5 1.5987 × 106 0.0000 × 100 0.0000 × 100

Std 6.9901 × 106 1.4370 × 106 1.3908 × 106 7.7943 × 104 5.3267 × 104 4.4993 × 103 4.4012 × 105 4.9557 × 10−5 2.9634 × 105 0.0000 × 100 0.0000 × 100

F4
Mean 9.9161 × 101 3.5159 × 101 9.9451 × 101 6.5006 × 101 8.2792 × 101 1.4350 × 10−33 7.0229 × 101 9.2608 × 101 9.6997 × 101 0.0000 × 100 0.0000 × 100

Std 2.3489 × 10−1 5.2254 × 100 1.9881 × 10−1 4.1463 × 100 4.3209 × 100 1.9441 × 10−33 2.9160 × 100 2.5175 × 101 9.6498 × 10−1 0.0000 × 100 0.0000 × 100

F5
Mean 6.7974 × 109 8.5251 × 106 7.3446 × 109 4.9803 × 102 4.9826 × 102 3.3551 × 102 4.1692 × 108 4.9892 × 102 2.0683 × 105 4.9899 × 102 2.3167 × 10−27

Std 2.6217 × 108 5.6668 × 106 3.3600 × 108 3.5404 × 10−1 1.4870 × 10−1 2.1069 × 102 3.9772 × 107 6.8551 × 10−2 3.5928 × 105 6.2629 × 10−3 6.3915 × 10−29

F6
Mean 1.5114 × 106 3.5914 × 104 1.5648 × 106 9.1100 × 101 1.1002 × 102 6.6077 × 101 2.9553 × 105 1.2326 × 102 1.0553 × 102 1.2463 × 102 2.6280 × 10−1

Std 3.8311 × 104 1.7013 × 104 3.9734 × 104 1.8331 × 100 1.2181 × 100 5.6041 × 101 1.6752 × 104 4.2145 × 10−1 1.6851 × 100 2.1010 × 10−1 2.2051 × 10−1

F7
Mean 5.6877 × 104 2.2092 × 103 5.9688 × 104 5.1280 × 10−2 6.5673 × 10−3 2.4772 × 10−4 5.5137 × 103 4.1447 × 10−3 2.2992 × 100 1.6209 × 10−4 2.8637 × 10−4

Std 1.7801 × 103 1.1383 × 103 2.5418 × 103 1.2074 × 10−2 3.9213 × 10−3 1.6724 × 10−4 1.0697 × 103 2.4388 × 10−3 2.0536 × 100 1.9236 × 10−4 2.5568 × 10−4

F8
Mean −8.6802 × 103 −3.6383 × 104 −3.1971 × 104 −5.3591 × 104 −2.6579 × 104 −2.0786 × 105 −6.3227 × 104 −1.0502 × 104 −4.6206 × 104 −6.1323 × 104 −1.8676 × 105

Std 1.6314 × 103 5.2307 × 103 6.0899 × 103 1.3793 × 104 1.4002 × 104 3.1591 × 103 2.8055 × 103 1.2858 × 103 2.9204 × 103 5.3327 × 103 3.2489 × 104

F9
Mean 8.6929 × 103 4.4339 × 103 8.8775 × 103 7.5607 × 101 7.3063 × 10−12 7.3183 × 100 4.4337 × 103 3.0028 × 10−10 5.0232 × 103 0.0000 × 100 0.0000 × 100

Std 1.2985 × 102 5.4177 × 102 1.0714 × 102 2.1468 × 101 2.8809 × 10−12 3.9910 × 101 1.3537 × 102 1.6447 × 10−9 1.1423 × 103 0.0000 × 100 0.0000 × 100

F10
Mean 2.1105 × 101 1.1398 × 101 2.1018 × 101 1.8561 × 10−3 3.1785 × 10−8 4.9146 × 10−15 1.8242 × 101 2.6645 × 10−15 1.5959 × 10−4 8.8818 × 10−16 8.8818 × 10−16

Std 2.8935 × 10−2 3.5690 × 100 1.0087 × 10−2 3.7330 × 10−4 1.5956 × 10−8 1.2283 × 10−15 1.9259 × 10−1 1.8067 × 10−15 9.5884 × 10−5 0.0000 × 100 0.0000 × 100

F11
Mean 1.3426 × 104 3.0914 × 102 1.4057 × 104 2.0278 × 10−2 1.0707 × 10−13 0.0000 × 100 2.6951 × 103 0.0000 × 100 1.6181 × 10−2 0.0000 × 100 0.0000 × 100

Std 3.5235 × 102 9.0526 × 101 3.4112 × 102 4.1331 × 10−2 9.3215 × 10−14 0.0000 × 100 1.5936 × 102 0.0000 × 100 3.4848 × 10−2 0.0000 × 100 0.0000 × 100

F12
Mean 1.7068 × 1010 2.0914 × 105 1.8490 × 1010 7.6115 × 10−1 9.3858 × 10−1 5.1918 × 10−2 3.4826 × 108 1.1681 × 100 5.9375 × 107 1.2016 × 100 2.1631 × 10−4

Std 7.0596 × 108 3.1495 × 105 6.2478 × 108 7.5436 × 10−2 2.6207 × 10−2 2.0980 × 10−1 7.1676 × 107 1.0173 × 10−2 6.2911 × 107 2.9273 × 10−3 2.1681 × 10−4

F13
Mean 3.1399 × 1010 6.4059 × 106 3.3112 × 1010 5.0441 × 101 4.7911 × 101 7.2088 × 100 1.1450 × 109 4.9797 × 101 1.1536 × 107 4.9921 × 101 2.0996 × 10−30

Std 1.3772 × 109 8.1295 × 106 1.3777 × 109 1.4970 × 100 3.2400 × 10−1 1.4763 × 101 1.5104 × 108 4.1931 × 10−2 1.7631 × 107 3.9674 × 10−2 9.4926 × 10−32

Friedman
value

9.6346 × 100 8.0385 × 100 9.9808 × 100 5.9231 × 100 5.1154 × 100 3.5000 × 100 8.1538 × 100 4.3077 × 100 6.7692 × 100 2.6154 × 100 1.9615 × 100

Friedman rank 10 8 11 6 5 3 9 4 7 2 1
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Table 7 shows the results of the fixed dimensional functions, including the Mean,
Std, and Friedman test of 11 algorithms. Figure 10 shows the iterative curves of these 11
algorithms for solving 10 fixed dimensional functions. Figure 11 is a boxplot of the results
obtained by these 11 algorithms after solving 13 functions with non-fixed dimensions.
The boxplot results were analyzed from five perspectives: the minimum, lower quartile,
median, upper quartile, and maximum. By convergence curves and boxplots, the algorithm
can be more intuitively and comprehensively characterized for solving functional problems.
The FRSA achieved 8 optimal values out of the 10 fixed dimensional functions, with the
highest number among all 11 algorithms. The Friedman value shows the overall results
obtained by each algorithm in the 13 functions. For the Friedman value, the FRSA achieved
a mark of 1.9615, ranking first in the Friedman test, and indicating that the FRSA achieved
better results than other algorithms in 500 dimensions.
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Table 7. Results and comparison of 11 algorithms on 10 classic functions with fixed dimensions.

F(x) GA PSO ACO GWO GJO SO TACPSO AGWO EGWO RSA FRSA

F14
Mean 1.1036 × 100 9.9800 × 10−1 2.8537 × 100 5.0796 × 100 5.3036 × 100 1.0022 × 100 1.0311 × 100 6.4801 × 100 7.7381 × 100 4.1376 × 100 9.9823 × 10−1

Std 3.3201 × 10−1 2.1481 × 10−10 3.8575 × 100 4.1695 × 100 4.4384 × 100 2.0981 × 10−2 1.8148 × 10−1 4.3221 × 100 4.4611 × 100 3.1646 × 100 1.2224 × 10−3

F15
Mean 1.3902 × 10−2 1.0272 × 10−2 5.3931 × 10−3 3.0739 × 10−3 8.5798 × 10−4 6.0445 × 10−4 5.2544 × 10−4 1.4132 × 10−3 1.0979 × 10−2 1.7245 × 10−3 4.1525 × 10−4

Std 1.0043 × 10−2 1.0209 × 10−2 8.4021 × 10−3 6.8994 × 10−3 2.0507 × 10−3 3.3346 × 10−4 4.1271 × 10−4 2.7639 × 10−3 2.3937 × 10−2 1.4282 × 10−3 8.1372 × 10−5

F16
Mean −9.4538 × 10−1 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0316 × 100 −1.0306 × 100 −1.0316 × 100 −1.0305 × 100 −1.0316 × 100

Std 1.1796 × 10−1 1.5212 × 10−5 6.7752 × 10−16 1.8976 × 10−8 2.5177 × 10−7 5.2964 × 10−16 5.9036 × 10−16 5.7742 × 10−3 5.6187 × 10−9 1.4232 × 10−3 1.8373 × 10−13

F17
Mean 4.0005 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9794 × 10−1 3.9789 × 10−1 4.1970 × 10−1 3.9789 × 10−1

Std 4.0846 × 10−3 1.4541 × 10−5 0.0000 × 100 7.2876 × 10−7 9.0667 × 10−6 0.0000 × 100 0.0000 × 100 5.3183 × 10−5 5.9598 × 10−7 2.4368 × 10−2 0.0000 × 100

F18
Mean 1.0596 × 101 3.0002 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100 3.0000 × 100 3.9001 × 100 4.0014 × 100 3.0000 × 100

Std 1.1443 × 101 2.8621 × 10−4 6.6995 × 10−16 4.8544 × 10−5 8.5395 × 10−6 2.7088 × 10−15 2.1599 × 10−15 1.8450 × 10−6 4.9295 × 100 5.4822 × 100 3.7510 × 10−15

F19
Mean −3.2754 × 100 −3.8614 × 100 −3.8628 × 100 −3.8612 × 100 −3.8581 × 100 −3.8370 × 100 −3.8628 × 100 −3.8569 × 100 −3.8618 × 100 −3.7992 × 100 −3.8628 × 100

Std 3.2324 × 10−1 2.9771 × 10−3 2.7101 × 10−15 2.6343 × 10−3 3.7740 × 10−3 1.4113 × 10−1 2.6117 × 10−15 2.6408 × 10−3 2.6029 × 10−3 6.3061 × 10−2 2.0748 × 10−15

F20
Mean −1.4764 × 100 −3.0759 × 100 −3.2467 × 100 −3.2796 × 100 −3.0914 × 100 −3.2982 × 100 −3.2665 × 100 −3.1263 × 100 −3.2177 × 100 −2.7566 × 100 −3.3213 × 100

Std 4.8085 × 10−1 1.9536 × 10−1 5.8273 × 10−2 6.9288 × 10−2 1.3582 × 10−1 4.8370 × 10−2 6.0328 × 10−2 1.0519 × 10−1 9.9155 × 10−2 3.4506 × 10−1 2.7018 × 10−3

F21
Mean −8.5022 × 10−1 −9.0585 × 100 −5.9936 × 100 −9.0574 × 100 −7.7219 × 100 −1.0138 × 101 −6.8143 × 100 −7.3462 × 100 −6.2985 × 100 −5.0552 × 100 −1.0105 × 101

Std 5.1246 × 10−1 2.0337 × 100 3.7255 × 100 2.2621 × 100 2.9320 × 100 3.4059 × 10−2 3.4941 × 100 2.9488 × 100 3.1346 × 100 3.1204 × 10−7 7.9343 × 10−2

F22
Mean −1.0336 × 100 −9.0891 × 100 −7.4926 × 100 −1.0401 × 101 −9.8499 × 100 −1.0290 × 101 −7.1316 × 100 −8.5041 × 100 −7.1293 × 100 −5.0877 × 100 −1.0402 × 101

Std 4.4156 × 10−1 2.6893 × 100 3.6556 × 100 1.2043 × 10−3 1.6359 × 100 2.5749 × 10−1 3.4330 × 100 2.5694 × 100 3.6624 × 100 8.0616 × 10−7 4.1384 × 10−3

F23
Mean −1.2002 × 100 −9.0372 × 100 −7.2815 × 100 −9.9938 × 100 −9.6040 × 100 −1.0469 × 101 −9.4877 × 100 −8.6658 × 100 −6.4546 × 100 −5.1314 × 100 −1.0525 × 101

Std 3.9772 × 10−1 2.6192 × 100 3.8049 × 100 2.0583 × 100 2.4090 × 100 1.4991 × 10−1 2.4300 × 100 2.5916 × 100 3.8996 × 100 1.6091 × 10−2 3.3992 × 10−2

Friedman
value

9.2000 × 100 6.4000 × 100 5.8250 × 100 5.1500 × 100 6.2000 × 100 3.4250 × 100 4.5250 × 100 7.3000 × 100 7.8500 × 100 7.8000 × 100 2.3250 × 100

Friedman rank 11 7 5 4 6 2 3 8 10 9 1
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To compare the results of the FRSA with 10 benchmark algorithms more compre-
hensively, this article introduces another statistical analysis method, the Wilcoxon rank
sum test.

As a non-parametric rank sum hypothesis test, the Wilcoxon rank sum test is frequently
used in statistical practice for the comparison of measures of location when the underlying
distributions are far from normal or not known in advance [39]. The purpose of the
Wilcoxon rank sum test is to test whether there is a significant difference between two
populations that are identical except for the population mean. In view of this, this article
uses the Wilcoxon rank sum test to compare the differences among the results of various
algorithms.

For the Wilcoxon rank sum test, the significance level was set to 0.05, and the symbols
“+”, “=”, and “-” indicate that the performance of the FRSA was superior, similar, and
inferior to the corresponding algorithm, respectively. In Table 8, no underline represents
“+”, and “=” and “-” are represented by different underlines: “

:
” and “ ”. Thus, it is possible

to evaluate the adopted algorithms from multiple perspectives. Table 8 shows the rank
sum test results between the FRSA and the ten benchmark algorithms.

In order to better demonstrate the comparison of the results between the RSA and the
FRSA, this study added a comparative analysis of the convergence of the two algorithms, as
shown in Figure 12. There are five columns in Figure 12, which represent three dimensional
plots of the benchmark function, the conversion curves of the RSA and FRSA, and the
search histories, average fitness values, and trajectories. According to Figure 12, compared
to the RSA, the FRSA proposed in this article had better exploration and development
capabilities, and achieved higher exploration accuracy.
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Table 8. Statistical analysis results of Wilcoxon rank sum test of classic functions.

F(x) Dim GA PSO ACO GWO GJO SO TACPSO AGWO EGWO RSA Total

F1
30 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12

:::
NaN 9/1/0

100 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.9346 × 10−10
:::
NaN 9/1/0

500 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12
:::
NaN 9/1/0

F2
30 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12

:::
NaN 9/1/0

100 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12
:::
NaN 9/1/0

500 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12
:::
NaN 9/1/0

F3
30 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12

:::
NaN 9/1/0

100 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 4.5736 × 10−12
:::
NaN 9/1/0

500 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 NaN 9/1/0

F4
30 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12

:::
NaN 9/1/0

100 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12
:::
NaN 9/1/0

500 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12
:::
NaN 9/1/0

F5
30 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 10/0/0
100 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 10/0/0
500 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 10/0/0

F6
30 3.0199 × 10−11 3.0199 × 10−11 2.3168 × 10−6 3.0199 × 10−11 3.0199 × 10−11 1.0937 × 10−10 3.1573 × 10−5 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 9/0/1
100 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 8.9934 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 10/0/0
500 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 4.9752 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 10/0/0

F7
30 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.2057 × 10−10 1.0315 × 10−2

:::::
9.8231

::
×

:::
10−1 3.0199 × 10−11 3.3384 × 10−11 3.5010 × 10−3 1.7666 × 10−3 7/1/2

100 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 7.3803 × 10−10
:::::
6.7350

::
×

:::
10−1 3.0199 × 10−11

::::
3.0199

::
×
:::::
10−11 7.0617 × 10−1 2.4157 × 10−2 7/2/1

500 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11
:::::
9.8231

::
×

:::
10−1 3.0199 × 10−11 3.0199 × 10−11 3.4742 × 10−10 4.3584 × 10−2 8/1/1

F8
30 3.0199 × 10−11 1.2541 × 10−7 2.1947 × 10−8 4.1997 × 10−10 7.3891 × 10−11 1.3017 × 10−3 3.3681 × 10−5 2.2273 × 10−9 3.0199 × 10−11 2.6099 × 10−10 9/0/1
100 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 3.0161 × 10−11 4.5146 × 10−2 1.4110 × 10−9 3.0199 × 10−11 3.0199 × 10−11 2.9878 × 10−11 9/0/1
500 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 4.0595 × 10−2 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 9/0/1

F9
30 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.1378 × 10−12

:::
NaN 1.9457 × 10−9 1.2118 × 10−12 1.2118 × 10−12 NaN

:::
NaN 7/3/0

100 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12
:::::
1.6074

::
×

:::
10−1 5.3750 × 10−6 1.2118 × 10−12 1.2118 × 10−12

:::
NaN

:::
NaN 7/3/0

500 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.0956 × 10−12 4.1926 × 10−2 1.2118 × 10−12
::::
1.2118

::
×
:::::
10−12 3.3371 × 10−1

:::
NaN 8/2/0

F10
30 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.1001 × 10−12 1.5479 × 10−13 1.2003 × 10−13 1.2118 × 10−12 5.3025 × 10−13 5.4660 × 10−3

:::
NaN 9/1/0

100 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.0171 × 10−12 1.6853 × 10−14 1.2118 × 10−12 1.2118 × 10−12 7.1518 × 10−13
:::
NaN 9/1/0

500 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 8.6442 × 10−14 1.2118 × 10−12 1.2118 × 10−12 9.6506 × 10−6
:::
NaN 9/1/0

F11
30 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 2.7880 × 10−3 NaN 1.3702 × 10−3 1.2118 × 10−12 2.9343 × 10−5 NaN

:::
NaN 8/2/0

100 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12
:::

NaN
:::

NaN 1.2118 × 10−12 5.8153 × 10−9
:::
NaN

:::
NaN 6/4/0

500 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12
:::

NaN 1.2118 × 10−12 1.2118 × 10−12
:::
NaN

:::
NaN 7/3/0
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Table 8. Cont.

F(x) Dim GA PSO ACO GWO GJO SO TACPSO AGWO EGWO RSA Total

F12
30 1.5099 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 2.3897 × 10−8 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 10/0/0
100 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 6.5183 × 10−9 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 10/0/0
500 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 2.0338 × 10−9 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 10/0/0

F13
30 3.0029 × 10−11 3.0029 × 10−11 3.0029 × 10−11 3.0029 × 10−11 3.0029 × 10−11 3.0029 × 10−11 3.0029 × 10−11 3.0029 × 10−11 3.0029 × 10−11 3.0029 × 10−11 10/0/0
100 3.0142 × 10−11 3.0142 × 10−11 3.0142 × 10−11 3.0142 × 10−11 3.0142 × 10−11 3.0142 × 10−11 3.0142 × 10−11 3.0142 × 10−11 3.0142 × 10−11 3.0142 × 10−11 10/0/0
500 3.0123 × 10−11 3.0123 × 10−11 3.0123 × 10−11 3.0123 × 10−11 3.0123 × 10−11 3.0123 × 10−11 3.0123 × 10−11 3.0123 × 10−11 3.0123 × 10−11 3.0123 × 10−11 10/0/0

F14 2
:::::
1.4532

::
×

:::
10−1 1.3853 × 10−6

:::::
1.8070

::
×

:::
10−1 6.2828 × 10−6 2.8790 × 10−6 1.7486 × 10−4 1.4435 × 10−10 5.4485 × 10−9 3.8202 × 10−10 3.0199 × 10−11 5/2/3

F15 4 3.0199 × 10−11 3.0199 × 10−11 3.0180 × 10−11
:::::
8.4180

::
×

:::
10−1

:::::
5.5546

::
×

:::
10−2

:::::
6.3533

::
×

:::
10−2 3.9874 × 10−4 6.1452 × 10−2

::::
1.6813

::
×

::::
10−4 3.0199 × 10−11 5/4/1

F16 2 1.2624 × 10−11 1.2624 × 10−11
::::
7.2549

::
×
:::::
10−11 1.2624 × 10−11 1.2624 × 10−11

:::::
1.3070

::
×

:::
10−2

:::::
1.0374

::
×

:::
10−4 1.2624 × 10−11 1.2624 × 10−11 1.2624 × 10−11 7/3/0

F17 2 1.2118 × 10−12 1.2118 × 10−12
:::

NaN 1.2118 × 10−12 1.2118 × 10−12
:::

NaN
:::

NaN 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 7/3/0
F18 2 2.9561 × 10−11 2.9561 × 10−11 9.1184 × 10−12 2.9561 × 10−11 2.9561 × 10−11 1.6701 × 10−2 5.1977 × 10−7 2.9561 × 10−11 2.9561 × 10−11 2.9561 × 10−11 7/0/3
F19 3 1.2007 × 10−11 1.2007 × 10−11 3.6197 × 10−13 1.2007 × 10−11 1.2007 × 10−11 3.7428 × 10−5 1.1707 × 10−9 1.2007 × 10−11 1.2007 × 10−11 1.2007 × 10−11 7/0/3
F20 6 3.0199 × 10−11 1.7769 × 10−10

:::::
7.2389

::
×

:::
10−2 4.0840 × 10−5 5.4941 × 10−11 8.0429 × 10−5

:::::
6.5763

::
×

:::
10−1 9.8329 × 10−8 3.0199 × 10−11 3.0199 × 10−11 7/2/1

F21 4 3.0199 × 10−11
:::::
1.6225

::
×

:::
10−1

:::::
3.7558

::
×

:::
10−1

:::::
7.9782

::
×

:::
10−2 4.0840 × 10−5 3.4362 × 10−5

::::
1.0000

::
×

:::
100 2.2780 × 10−5 9.7555 × 10−10 3.0199 × 10−11 5/4/1

F22 4 3.0199 × 10−11 4.6558 × 10−7
:::::
1.8361

::
×

:::
10−1 1.1937 × 10−6 4.1997 × 10−10

:::::
2.6947

::
×

:::
10−1

::::
1.0000

::
×

:::
100 3.3520 × 10−8 3.3384 × 10−11 3.0199 × 10−11 7/3/0

F23 4 3.0199 × 10−11 1.0154 × 10−6
:::::
3.7432

::
×

:::
10−1 7.2208 × 10−6 3.0103 × 10−7

:::::
3.2458

::
×

:::
10−1 7.7028 × 10−6 2.8314 × 10−8 3.3384 × 10−11 3.0199 × 10−11 7/2/1
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All functions in the CEC 2019 are fixed dimensions. The design of this function
set is more complex and can be used to demonstrate the robustness and universality of
the proposed FRSA. Table 9 shows the results of solving the CEC 2019 using the FRSA
and benchmark algorithms, including the Mean, Std, and Friedman test of 11 algorithms.
Table 10 shows the FRSA’s Wilcoxon rank sum test results and those of the ten benchmark
algorithms. According to Table 9, in the CEC 2019, the FRSA achieved optimal values
for 4 functions, with the highest number among all 11 algorithms, in the Wilcoxon rank
sum test and Friedman test. Wilcoxon’s rank sum test compared the FRSA with other
algorithms, achieving a result of 58/18/24. The Friedman value showed the overall results
of each algorithm in 10 functions. In the Friedman value, the FRSA achieved a result of
3.5500, ranking first in the Friedman rank. Both statistical methods proved that the FRSA
achieved better results than the other algorithms in the CEC 2019 function. Figure 13 shows
the iterative curves of the 11 algorithms in solving CEC 2019. Figure 14 presents a more
comprehensive representation of the results of the 11 algorithms on the CEC 2019 function
in the form of a boxplot.

This section compares the non-fixed dimensional and fixed dimensional functions
from two different sets of functions with ten advanced algorithms to verify the performance
of the FRSA. It is proved that the improvement strategies proposed in this article can
effectively improve the performance of the original RSA and obtain better solutions. The
proposed FRSA algorithm has a strong exploration ability and efficient space exploration
ability and can effectively solve optimization problems in different dimensions.
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Figure 12. Convergence analysis between RSA and FRSA. 
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Table 9. Results and comparison of CEC 2019 benchmark functions.

F(x) GA PSO ACO GWO GJO SO TACPSO AGWO EGWO RSA FRSA

F1
Mean 8.8777 × 107 1.4936 × 107 1.0333 × 106 2.7611 × 104 7.4643 × 103 7.7800 × 104 2.1715 × 105 1.0000 × 100 4.8953 × 104 1.0000 × 100 1.0000 × 100

Std 9.8039 × 107 3.0138 × 107 8.6424 × 105 8.1437 × 104 3.0692 × 104 1.4879 × 105 2.3490 × 105 0.0000 × 100 1.3274 × 105 0.0000 × 100 0.0000 × 100

F2
Mean 7.7940 × 103 4.1175 × 103 2.6302 × 103 4.7378 × 102 1.6396 × 102 2.8924 × 102 3.3182 × 102 8.2891 × 102 1.6188 × 103 4.9991 × 100 4.9473 × 100

Std 2.5938 × 103 2.4895 × 103 1.7641 × 103 2.2747 × 102 2.7699 × 102 1.7559 × 102 1.3204 × 102 1.7985 × 103 6.1388 × 102 5.0323 × 10−3 1.0717 × 10−1

F3
Mean 1.1095 × 101 8.7904 × 100 5.9218 × 100 2.9330 × 100 4.4288 × 100 4.4866 × 100 2.9652 × 100 5.9654 × 100 9.0727 × 100 8.0766 × 100 4.9149 × 100

Std 9.1758 × 10−1 1.2335 × 100 2.1958 × 100 2.0613 × 100 2.5341 × 100 1.9873 × 100 1.8614 × 100 1.1606 × 100 1.9015 × 100 7.9195 × 10−1 7.9953 × 10−1

F4
Mean 3.6379 × 101 4.0010 × 101 2.7100 × 101 1.9449 × 101 3.2685 × 101 2.0590 × 101 1.8148 × 101 5.8095 × 101 5.6902 × 101 8.9836 × 101 3.4525 × 101

Std 1.3237 × 101 7.7174 × 100 1.1349 × 101 1.1020 × 101 1.1314 × 101 6.0431 × 100 7.9248 × 100 1.0062 × 101 2.6763 × 101 1.3727 × 101 8.6094 × 100

F5
Mean 6.4731 × 100 3.9550 × 100 1.4494 × 100 2.1800 × 100 3.8695 × 100 1.1470 × 100 1.1306 × 100 1.3549 × 101 1.3395 × 101 8.1605 × 101 1.6984 × 100

Std 5.5146 × 100 3.9669 × 100 2.2462 × 10−1 1.1006 × 100 2.6155 × 100 1.5675 × 10−1 7.2699 × 10−2 7.7538 × 100 1.6464 × 101 1.8506 × 101 1.8171 × 10−1

F6
Mean 7.8132 × 100 6.6746 × 100 2.9025 × 100 2.7449 × 100 4.5758 × 100 3.8464 × 100 2.5324 × 100 7.6616 × 100 7.7690 × 100 1.0850 × 101 2.4455 × 100

Std 1.6857 × 100 2.3143 × 100 1.3796 × 100 1.2443 × 100 1.1042 × 100 1.2605 × 100 1.2228 × 100 1.1028 × 100 2.1973 × 100 9.5171 × 10−1 7.5682 × 10−1

F7
Mean 1.1598 × 103 1.2966 × 103 7.5342 × 102 8.1406 × 102 1.2074 × 103 6.9743 × 102 7.4926 × 102 1.5199 × 103 1.2985 × 103 1.7713 × 103 1.3839 × 103

Std 3.7858 × 102 3.3549 × 102 4.9219 × 102 3.2861 × 102 4.4397 × 102 2.1649 × 102 3.1405 × 102 2.4732 × 102 3.4208 × 102 1.8725 × 102 2.8138 × 102

F8
Mean 5.1737 × 100 4.5708 × 100 3.9766 × 100 3.8578 × 100 4.2642 × 100 3.9505 × 100 3.8528 × 100 4.7386 × 100 4.4702 × 100 4.8492 × 100 4.2121 × 100

Std 2.7203 × 10−1 3.3748 × 10−1 4.1346 × 10−1 4.8374 × 10−1 3.3761 × 10−1 3.3910 × 10−1 3.0223 × 10−1 2.7315 × 10−1 4.2299 × 10−1 2.4832 × 10−1 2.6721 × 10−1

F9
Mean 1.4357 × 100 1.5591 × 100 1.2542 × 100 1.2314 × 100 1.2813 × 100 1.3432 × 100 1.1940 × 100 1.5505 × 100 1.3960 × 100 3.2085 × 100 1.2964 × 100

Std 1.9960 × 10−1 3.5904 × 10−1 5.2841 × 10−2 7.6053 × 10−2 7.8476 × 10−2 8.8253 × 10−2 8.5805 × 10−2 3.4225 × 10−1 1.3667 × 10−1 6.4471 × 10−1 6.0916 × 10−2

F10
Mean 2.1548 × 101 2.1479 × 101 2.1494 × 101 2.1445 × 101 2.1172 × 101 2.1477 × 101 2.0500 × 101 2.1011 × 101 2.1279 × 101 2.1425 × 101 2.0393 × 101

Std 1.1314 × 10−1 1.5156 × 10−1 1.0565 × 10−1 9.7992 × 10−2 1.7941 × 100 8.0458 × 10−2 3.4673 × 100 1.3787 × 100 1.1003 × 10−1 1.2053 × 10−1 2.2190 × 100

Friedman value 8.4500 × 100 8.0000 × 100 6.3000 × 100 4.7500 × 100 5.7500 × 100 4.4500 × 100 3.8500 × 100 6.5500 × 100 7.9000 × 100 6.4500 × 100 3.5500 × 100

Friedman rank 11 10 6 4 5 3 2 8 9 7 1

Table 10. Statistical analysis results of Wilcoxon rank sum test of CEC 2019 functions.

F(x) Dim GA PSO ACO GWO GJO SO TACPSO AGWO EGWO RSA Total

F1 9 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12
:::
NaN

:::
NaN 8/2/0

F2 16 2.5206 × 10−11 2.5206 × 10−11 2.5206 × 10−11 2.5206 × 10−11 6.2862 × 10−8 2.5206 × 10−11 2.5206 × 10−11
:::::
2.5206

:
×
:::::
10−11 9.0983 × 10−2 3.0922 × 10−4 9/1/0

F3 18 3.0199 × 10−11 3.0199 × 10−11 3.3386 × 10−3 2.1327 × 10−5 3.2651 × 10−2
::::

2.2823
::
×

:::
10−1 4.7445 × 10−6 2.4386 × 10−9 5.2640 × 10−4 3.6897 × 10−11 6/1/3

F4 10
::::

9.7052
::
×

:::
10−1

::::
3.4029

::
×

:::
10−1

::::
2.3985

::
×

:::
10−1 4.1127 × 10−7 4.3584 × 10−2 3.5201 × 10−7 1.5964 × 10−7 2.3885 × 10−4 3.4971 × 10−9 3.0199 × 10−11 3/3/4

F5 10 3.0199 × 10−11 3.3384 × 10−11 7.1988 × 10−5
::::

5.2978
::
×

:::
10−1 2.3768 × 10−7 3.4742 × 10−10 3.0199 × 10−11 4.4440 × 10−7 3.0199 × 10−11 3.0199 × 10−11 6/1/3

F6 10 3.0199 × 10−11 8.9934 × 10−11
::::

3.5545
::
×

:::
10−1

::::
6.9522

::
×

:::
10−1 3.4971 × 10−9 2.4327 × 10−5

::::
6.6273

::
×

:::
10−1 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 7/3/0

F7 10 1.0315 × 10−2
::::

3.2553
::
×

:::
10−1 5.8587 × 10−6 1.0666 × 10−7

::::
1.3732

::
×

:::
10−1 8.8910 × 10−10 7.7725 × 10−9

::::
1.9073

::
×

:::
10−1

::::
7.4827

::
×

:::
10−2 1.2541 × 10−7 1/4/5

F8 10 3.3384 × 10−11 7.2951 × 10−4 1.8916 × 10−4 2.8389 × 10−4
::::

2.8378
::
×

:::
10−1 6.3772 × 10−3 4.4272 × 10−3 9.0688 × 10−3 8.1200 × 10−4 1.3289 × 10−10 5/1/4

F9 10 4.2259 × 10−3 2.0283 × 10−7 6.0971 × 10−3 1.8575 × 10−3 5.9969 × 10−1
::::

4.8413
::
×

:::
10−2 6.2828 × 10−6 1.2362 × 10−3 1.4110 × 10−9 3.0199 × 10−11 6/1/3

F10 10 6.2027 × 10−4 9.5207 × 10−4 1.6813 × 10−4 4.4272 × 10−3 2.4157 × 10−2 2.2360 × 10−2 1.0188 × 10−5
::::

2.7548
::
×

:::
10−3 1.0547 × 10−1 3.3874 × 10−2 7/1/2
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5. Real-World Engineering Design Problems

In this section, the FRSA solves three engineering design problems: pressure vessel
design [40,41], corrugated bulkhead design [42,43], and welded beam design [44]. Includ-
ing multiple variables and multiple constraints, these problems are significant practical
problems and are often used to verify the performance of heuristic algorithms. These
engineering design problems have become a vital aspect of the practical application of
meta-heuristic algorithms. To verify the performance of the FRSA more fairly, this section
used ten advanced algorithms (GA, PSO, ACO, GWO, GJO, SO, TACPSO, AGWO, EGWO,
and RSA) similar to the function testing section for testing.

5.1. Pressure Vessel Design

A pressure vessel is a closed container that can withstand pressure. The use of pressure
vessels is pervasive, and they have an important position and role in many sectors, such as
industry, civil service, military industry, and many fields of scientific research. In the design
of a pressure vessel, under the constraints of four conditions, it is required to meet the
production needs while maintaining the lowest total cost. The problem has four variables:
the thickness of the shell Ts(= x1), the thickness of the head Th(= x2), the inner radius
R(= x3), and the length of the cylindrical section of the vessel, not including the head
L(= x4). The mathematical model of the pressure vessel design is as follows:

Min f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3

Subject to
g1(x) = −x1 + 0.0193x3 ≤ 0
g2(x) = −x2 + 0.00954x3 ≤ 0
g3(x) = −πx2

3x4 − 4
3 πx2

3 + 1296000 ≤ 0
g4(x) = x4 − 240 ≤ 0

where,
0 ≤ x1 ≤ 99
0 ≤ x2 ≤ 99
10 ≤ x3 ≤ 200
10 ≤ x4 ≤ 200

The FRSA and ten other advanced algorithms proposed in this article were solved
for the pressure vessel design problem. The minimum cost values required for pressure
vessel production obtained by the 11 algorithms are shown in Table 11. According to the
Table 11, the result obtained by the FRSA is

→
x = {0.77817, 0.38465, 40.32, 200, 5885.4},

which is the optimal result achieved among all 11 algorithms. To better demonstrate
the optimization process of 11 algorithms in pressure vessel design problems, Figure 15
shows the convergence curves of the 11 algorithms, including the FRSA. It provides the
corresponding change angles for each variable to reflect the trend of differences among the
parameters during multi-parameter design. To verify the robustness of the algorithm on
this issue, statistical analysis was also conducted, and the relevant statistical analysis data
are shown in Table 12. Among them, the unit of time was seconds per experiment, that is,
the average running time of each algorithm in a single experiment. The Wilcoxson rank
sum test counted the results of the FRSA compared with other algorithms, and the FRSA
achieved a result of 9/1/0. Through the corresponding convergence curve and statistical
analysis, the FRSA converged faster and had higher accuracy and obvious advantages
compared to the other algorithms.



Biomimetics 2023, 8, 305 27 of 33

Table 11. Comparison results of pressure vessel design problem.

Algorithms x1 x2 x3 x4 Best Value

GA 1.1943 × 100 5.6359 × 10−1 5.6935 × 101 5.4332 × 101 7.4044 × 103

PSO 7.7876 × 10−1 3.8637 × 10−1 4.0333 × 101 2.0000 × 102 5.8969 × 103

ACO 7.8298 × 10−1 3.8703 × 10−1 4.0569 × 101 1.9656 × 102 5.8936 × 103

GWO 7.7826 × 10−1 3.8541 × 10−1 4.0323 × 101 1.9996 × 102 5.8878 × 103

GJO 7.8054 × 10−1 3.8666 × 10−1 4.0404 × 101 1.9884 × 102 5.8972 × 103

SO 7.7817 × 10−1 3.8482 × 10−1 4.0320 × 101 2.0000 × 102 5.8858 × 103

TACPSO 7.8287 × 10−1 3.8697 × 10−1 4.0563 × 101 1.9664 × 102 5.8934 × 103

AGWO 8.0092 × 10−1 4.5311 × 10−1 4.1339 × 101 1.8843 × 102 6.1686 × 103

EGWO 7.7834 × 10−1 3.8642 × 10−1 4.0325 × 101 1.9995 × 102 5.8915 × 103

RSA 1.0018 × 100 5.1922 × 10−1 4.2327 × 101 1.7775 × 102 7.7528 × 103

FRSA 7.7817 × 10−1 3.8465 × 10−1 4.0320 × 101 2.0000 × 102 5.8854 × 103

Table 12. Statistical analysis of pressure vessel design problem.

Algorithms Best Mean Std Worst Time p-Value

GA 7.4044 × 103 8.8011 × 103 8.6900 × 102 1.1360 × 104 1.7213 × 10−1 3.0199 × 10−11 +
PSO 5.8969 × 103 6.4337 × 103 6.7244 × 102 7.5156 × 103 1.2070 × 10−1 3.7704 × 10−4 +
ACO 5.8936 × 103 6.3715 × 103 4.8457 × 102 7.3190 × 103 5.0267 × 10−1 1.4733 × 10−7 +
GWO 5.8878 × 103 6.0336 × 103 3.2292 × 102 7.2513 × 103 1.3380 × 10−1 3.6322 × 10−1 =
GJO 5.8972 × 103 6.3251 × 103 5.9094 × 102 7.3194 × 103 2.1300 × 10−1 2.2658 × 10−3 +
SO 5.8858 × 103 6.2189 × 103 3.3475 × 102 7.1860 × 103 1.4087 × 10−1 9.2113 × 10−5 +

TACPSO 5.8934 × 103 6.3585 × 103 3.8150 × 102 7.2734 × 103 1.2773 × 10−1 1.8500 × 10−8 +
AGWO 6.1686 × 103 7.2195 × 103 4.6584 × 102 7.7575 × 103 6.5110 × 10−1 3.0199 × 10−11 +
EGWO 5.8915 × 103 6.3177 × 103 3.7542 × 102 7.3258 × 103 1.6837 × 10−1 3.0939 × 10−6 +

RSA 7.7528 × 103 1.2201 × 104 3.2025 × 103 2.0883 × 104 3.1713 × 10−1 3.0199 × 10−11 +
FRSA 5.8854 × 103 5.9418 × 103 7.0609 × 101 6.1543 × 103 4.0080 × 10−1
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5.2. Corrugated Bulkhead Design

A corrugated bulkhead is made of a pressed steel plate, and then it is bent to replace
the function of the stiffener. In the corrugated bulkhead design problem, the minimum
weight is required under the constraints of six conditions. The issue has four variables,
which are the width (x1), depth (x2), length (x3), and plate thickness (x4). The mathematical
model of the corrugated bulkhead design is as follows:

Min f (x) = 5.885x4(x1+x3)

x1+
√
|x2

3−x2
2|

Subject to

g1(x) = −x4x2
(
0.4x1 +

x3
6
)
+ 8.94

(
x1 +

√∣∣x2
3 − x2

2

∣∣) ≤ 0

g2(x) = −x4x2
2
(
0.3x1 +

x3
12
)
+ 2.2

(
8.94

(
x1 +

√∣∣x2
3 − x2

2

∣∣)) 4
3 ≤ 0

g3(x) = −x4 + 0.0156x1 + 0.15 ≤ 0
g4(x) = −x4 + 0.0156x3 + 0.15 ≤ 0
g5(x) = −x4 + 1.05 ≤ 0
g6(x) = −x3 + x2 ≤ 0

where,
0 ≤ x1, x2, x3 ≤ 100 0 ≤ x4 ≤ 5

The FRSA and ten other advanced algorithms proposed in this article were solved for
the corrugated bulkhead design problem. The corrugated bulkhead design values obtained
by the 11 algorithms are shown in Table 13. According to the Table 13, the result obtained
by the FRSA is

→
x = {57.692, 34.148, 57.692, 1.05, 6.8430}. Among all 11 algorithms, the

FRSA achieved the best result. To better demonstrate the optimization process of the 11
algorithms in the corrugated bulkhead design problem, Figure 16 shows the convergence
curves of the 11 algorithms, including the FRSA. It provides the corresponding change
angles for each variable to reflect the trend of differences among the parameters during
multi-parameter design. To verify the robustness of the algorithm on this issue, statistical
analysis was also conducted, and the relevant statistical analysis results are shown in
Table 14. The Wilcoxson rank sum test counted the results of the FRSA compared with the
other algorithms, and the FRSA achieved a result of 9/0/1. Through the corresponding
convergence curve and statistical analysis, the FRSA converged faster, had higher accuracy,
and had obvious advantages compared to the other algorithms.

Table 13. Comparison of the results for the corrugated bulkhead design problem.

Algorithms x1 x2 x3 x4 Best Value

GA 4.9344 × 101 3.4325 × 101 5.3525 × 101 1.0744 × 100 7.1939 × 100

PSO 5.6734 × 101 3.4160 × 101 5.7676 × 101 1.0502 × 100 6.8516 × 100

ACO 5.7692 × 101 3.4148 × 101 5.7692 × 101 1.0500 × 100 6.8430 × 100

GWO 5.7597 × 101 3.4138 × 101 5.7631 × 101 1.0500 × 100 6.8446 × 100

GJO 5.7444 × 101 3.4160 × 101 5.7589 × 101 1.0502 × 100 6.8486 × 100

SO 5.7692 × 101 3.4148 × 101 5.7692 × 101 1.0500 × 100 6.8430 × 100

TACPSO 5.7692 × 101 3.4148 × 101 5.7692 × 101 1.0500 × 100 6.8430 × 100

AGWO 5.6150 × 101 3.4178 × 101 5.7086 × 101 1.0514 × 100 6.8776 × 100

EGWO 5.7645 × 101 3.4159 × 101 5.7672 × 101 1.0500 × 100 6.8444 × 100

RSA 1.0786 × 101 3.4025 × 101 5.0382 × 101 1.0613 × 100 7.9687 × 100

FRSA 5.7692 × 101 3.4148 × 101 5.7692 × 101 1.0500 × 100 6.8430 × 100
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Table 14. Statistical analysis of corrugated bulkhead design problem.

Algorithms Best Mean Std Worst Time p-Value

GA 7.1939 × 100 8.0055 × 100 6.3630 × 10−1 1.0132 × 101 1.0340 × 10−1 1.4157 × 10−9 +
PSO 6.8516 × 100 6.8989 × 100 3.1823 × 10−2 6.9810 × 100 4.4200 × 10−2 1.4157 × 10−9 +
ACO 6.8430 × 100 7.4451 × 100 8.3118 × 10−1 1.0239 × 101 4.1200 × 10−1 2.5585 × 10−2 +
GWO 6.8446 × 100 6.8501 × 100 5.4757 × 10−3 6.8650 × 100 5.8440 × 10−2 1.4157 × 10−9 +
GJO 6.8486 × 100 7.2569 × 100 6.4078 × 10−1 8.2682 × 100 1.3556 × 10−1 1.4157 × 10−9 +
SO 6.8430 × 100 6.8432 × 100 7.1300 × 10−4 6.8460 × 100 6.1040 × 10−2 1.2780 × 10−3 +

TACPSO 6.8430 × 100 6.9001 × 100 2.8554 × 10−1 8.2707 × 100 4.8960 × 10−2 2.1634 × 10−8 -
AGWO 6.8776 × 100 7.0434 × 100 2.5644 × 10−1 8.1805 × 100 4.8984 × 10−1 1.4157 × 10−9 +
EGWO 6.8444 × 100 6.9353 × 100 2.8175 × 10−1 8.1632 × 100 8.8400 × 10−2 1.4157 × 10−9 +

RSA 7.9687 × 100 9.1028 × 100 8.3088 × 10−1 1.0716 × 101 2.1428 × 10−1 1.4157 × 10−9 +
FRSA 6.8430 × 100 6.8430 × 100 1.0000 × 10−7 6.8430 × 100 1.8084 × 10−1

5.3. Welded Beam Design

A welded beam is a simplified model obtained for the convenience of calculation and
analysis in material mechanics. One end of a cantilever beam is fixed support, and the
other is free. This problem is a structural engineering design problem related to the weight
optimization of square-section cantilever beams. The beams consist of five hollow blocks
with constant thickness. The mathematical description of the welded beam design problem
is as follows:

Min f (x) = 0.0624(x1 + x2 + x3 + x4 + x5)
Subject to

g1(x) = 61
x3

1
+ 37

x3
2
+ 19

x3
3
+ 7

x3
4
+ 1

x3
5
≤ 0

where,
0.01 ≤ x1, x2, x3, x4, x5 ≤ 100

The FRSA and ten other advanced algorithms proposed in this article were solved
for the welded beam design problem. The values of the welded beam design obtained by
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the 11 algorithms are shown in Table 15. According to the Table 15, the result obtained
by the FRSA is

→
x = {0.20573, 3.4705, 9.0366, 0.20573, 1.7249}. Among all 11 algorithms,

the FRSA achieved the best result. To better demonstrate the optimization process of
the 11 algorithms in the welded beam design problem, Figure 17 shows the convergence
curves of the 11 algorithms, including the FRSA. It provides the corresponding change
angles for each variable to reflect the trend of differences among the parameters during
multi-parameter design. To verify the robustness of the algorithm on this issue, statistical
analysis was also conducted, and the relevant statistical analysis results are shown in
Table 16. The Wilcoxson rank sum test counted the results of the FRSA compared with
the other algorithms, and FRSA achieved a result of 9/1/0. Through the corresponding
convergence curve and statistical analysis, the FRSA converged faster, had higher accuracy,
and had obvious advantages compared to the other algorithms.

Table 15. Comparison of the results for the welded beam design problem.

Algorithms x1 x2 x3 x4 Best Value

GA 1.7200 × 10−1 4.7314 × 100 8.7256 × 100 2.2693 × 10−1 1.9390 × 100

PSO 2.0560 × 10−1 3.4728 × 100 9.0405 × 100 2.0588 × 10−1 1.7268 × 100

ACO 2.0632 × 10−1 3.4629 × 100 9.0235 × 100 2.0633 × 10−1 1.7270 × 100

GWO 2.0547 × 10−1 3.4781 × 100 9.0365 × 100 2.0574 × 10−1 1.7256 × 100

GJO 2.0557 × 10−1 3.4733 × 100 9.0418 × 100 2.0573 × 10−1 1.7259 × 100

SO 2.0573 × 10−1 3.4705 × 100 9.0368 × 100 2.0573 × 10−1 1.7249 × 100

TACPSO 2.0573 × 10−1 3.4705 × 100 9.0366 × 100 2.0573 × 10−1 1.7249 × 100

AGWO 2.0261 × 10−1 3.5867 × 100 9.0420 × 100 2.0573 × 10−1 1.7366 × 100

EGWO 2.0538 × 10−1 3.4793 × 100 9.0370 × 100 2.0573 × 10−1 1.7256 × 100

RSA 2.0413 × 10−1 3.3786 × 100 1.0000 × 101 2.0723 × 10−1 1.8881 × 100

FRSA 2.0573 × 10−1 3.4705 × 100 9.0366 × 100 2.0573 × 10−1 1.7249 × 100
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Figure 17. Convergence curves for the welded beam design problem.
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Table 16. Statistical analysis of welded beam design problem.

Algorithms Best Mean Std Worst Time p-Value

GA 1.9390 × 100 3.2100 × 100 9.8809 × 10−1 5.6391 × 100 2.0927 × 10−1 3.0199 × 10−11 +
PSO 1.7268 × 100 1.8233 × 100 2.1321 × 10−1 2.4983 × 100 1.5083 × 10−1 3.0199 × 10−11 +
ACO 1.7270 × 100 2.1779 × 100 4.3684 × 10−1 3.7688 × 100 5.3960 × 10−1 3.0199 × 10−11 +
GWO 1.7256 × 100 1.7281 × 100 2.9589 × 10−3 1.7368 × 100 1.6927 × 10−1 3.0199 × 10−11 +
GJO 1.7259 × 100 1.7303 × 100 4.2440 × 10−3 1.7429 × 100 2.4570 × 10−1 3.0199 × 10−11 +
SO 1.7249 × 100 1.7278 × 100 6.9340 × 10−3 1.7533 × 100 1.7103 × 10−1 1.8608 × 10−6 +

TACPSO 1.7249 × 100 1.7504 × 100 5.3535 × 10−2 1.9215 × 100 1.5860 × 10−1 4.2039 × 10−1 =
AGWO 1.7366 × 100 1.7725 × 100 1.8314 × 10−2 1.8307 × 100 6.9630 × 10−1 3.0199 × 10−11 +
EGWO 1.7256 × 100 1.7305 × 100 4.7509 × 10−3 1.7462 × 100 2.0027 × 10−1 3.0199 × 10−11 +

RSA 1.8881 × 100 2.1518 × 100 1.6396 × 10−1 2.6872 × 100 3.5377 × 10−1 3.0199 × 10−11 +
FRSA 1.7249 × 100 1.7249 × 100 5.6900 × 10−5 1.7252 × 100 4.8907 × 10−1

6. Conclusions and Future Work

To improve the global optimization ability of the RSA, inspired by the different search
horizons of different flying heights of natural creatures, this paper proposes a reptile algo-
rithm considering different flying sizes based on the original RSA. In the exploration phase,
introducing the different flight altitude abilities of two animals, the northern goshawk
and the African vulture, enables reptiles to have better search horizons, improve their
global search ability, and reduce the probability of falling into local optima during the
exploration phase. In the exploration phase, a new DF is proposed to improve the algo-
rithm’s convergence speed and optimization accuracy. To evaluate the effectiveness of the
proposed FRSA, 33 benchmark functions were used for testing, including 13 non-fixed
dimensional functions and 20 fixed dimensional functions. Among them, three different
dimensions (30, 100, 500) were selected for the non-fixed dimensional functions for testing.
The experimental and statistical results indicate that the FRSA has excellent performance
and has certain advantages in accuracy, convergence speed, and stability compared to
the ten most advanced algorithms. Furthermore, the FRSA was applied to solve three
engineering optimization problems, and the results and comparison proved the algorithm’s
effectiveness in solving practical problems.

In summary, the FRSA proposed in this article has good convergence accuracy, fast
convergence speed, and good optimization performance. Through the testing of fixed and
non-fixed dimensional functions and the validation of practical optimization problems,
it has been proven that the proposed method can adapt to a wide range of optimization
problems, and the algorithm’s robustness has been verified. In later research, the focus
will be on evolving the proposed algorithm towards multi-objective optimization, such as
path planning, workshop scheduling, and other fields, so that the proposed algorithm can
generate more excellent value in practical life.
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