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Abstract: This review is dedicated to self-healing silicone materials, which can partially or entirely
restore their original characteristics after mechanical or electrical damage is caused to them, such
as formed (micro)cracks, scratches, and cuts. The concept of self-healing materials originated from
biomaterials (living tissues) capable of self-healing and regeneration of their functions (plants, human
skin and bones, etc.). Silicones are ones of the most promising polymer matrixes to create self-healing
materials. Self-healing silicones allow an increase of the service life and durability of materials and
devices based on them. In this review, we provide a critical analysis of the current existing types
of self-healing silicone materials and their functional properties, which can be used in biomedicine,
optoelectronics, nanotechnology, additive manufacturing, soft robotics, skin-inspired electronics,
protection of surfaces, etc.

Keywords: self-healing; silicone materials; reversible interactions; protective coatings; sensors;
actuators; electroluminescent devices

1. Introduction

The concept of self-healing materials originated from biomaterials (living tissues)
capable of self-healing (SH) and regeneration of their functions at various levels: from
deoxyribonucleic acid repair (micro level) to the healing of broken bones, blood vessels,
plants (macro level), etc. Synthetic polymer materials are the most promising to create
materials with a SH ability [1,2]. SH polymer materials can partially or entirely restore
their original characteristics after mechanical damage (for example, formed (micro)cracks,
scratches, cuts and ruptures [3–5]) or electrical damage (electrical breakdown, cracks and
treeing [6–9]) is caused to them (Figure 1). The guiding principles for creating those
materials can be found in the SH behavior for various biological systems [1,2], which
includes a triggered actuation, transport of chemical agents and/or diffusion of polymer
chains to the damage, and chemical repair process dependent on healing mechanism [1].

SH can be triggered by damage (autonomous) or external stimulus (non-autonomous) [6,10].
The SH of non-autonomous materials occurs via external stimuli, such as high temperatures
or light. In the case of SH at high temperatures, the behavior of polymers is similar to
thermoplastics (reversible healing) and thermosetting plastics (irreversible healing). Some
authors [11] classify thermoplastics and thermosetting plastics as non-autonomous SH
materials. However, this aspect is still debatable. Autonomous materials do not require
external stimuli for their SH, and the damage itself is the stimulus to initiate the healing
process [12].

The SH polymers are in high demand due to the increased durability and service
life of materials and devices based on them. They can be applied to create SH coatings,
highly stretchable strain sensors, electronic skins, actuators and artificial muscles, which
are highly desirable for innovations in soft robotics, medicine, 3D printing, optoelectronics,
etc. [7,11,13–18].
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Figure 1. Demonstration of SH in SHSMs after mechanical damage [19,20] (a) and an electrical
breakdown [9] (b). Reprinted with permission from [19]. Copyright 2021, American Chemical Society.
Reprinted with permission from [9]. Copyright 2023, American Chemical Society. Copyright 2023,
Elsevier.

One of the most promising matrices among other elastomers [3] and hydrogels [21] to
create SH materials is polydimethylsiloxane (PDMS) and its derivatives [3,6,18]. PDMSs
exhibit high flexibility, stretchability, bioinertness, hydrophobicity, high chain mobility, high
thermal stability, frost resistance, and a low glass transition temperature (−123 ◦C) [22–24].
PDMS is also resistant to UV radiation and ozone [6,23,25]. The high mobility of func-
tionalized PDMS chains provides the SH properties of silicone materials, which results in
silicone materials belonging to the extremely high diffusion of polymer chains between the
damaged interfaces [23,25].

There are a number of reviews on PDMSs [18,22–28] and self-healing silicone materials
(SHSMs) [3,6,18] in which SH mechanisms are preferably described. However, over the
past five years, there was a revolutionary step in the development of functional SHSMs
aimed at expanding practical areas of their application. Therefore, the main purpose of
this review is a brief analysis of previously studied SHSMs (“looking back”), and those
developed over the past 5 years, especially from the point of view of the use of functional
SHSMs (“moving forward”).

2. Self-Healing Silicone Materials: Looking Back

In 2008, Cordier P. et al. pioneered the development of autonomous elastomers that
can self-heal at room temperature (RT) via reversible hydrogen bonds [29]. The reversible
chemical interactions used in such SH materials are classified as covalent and non-covalent
bonds [3,6,10,14,16,30–34].

The discovery of the siloxane equilibrium facilitates the reversibility of the silicone
cross-linking that opens up an opportunity to create SHSMs [8,35–37]. Thus, incorpora-
tion of anionic fragments into the three-dimensional (3D) polymer network by anionic
ring-opening copolymerization of mono- (D4) and bicyclic (bis-D4) or tricyclic (tris-D4)
oligosiloxanes provides a stable, dynamic restructuring of the silicone rubber’s structure
(Figure 2) [8,35,36].

During these synthetic routes, the changes in the concentration of cross-linkers and
initiators allowed for controlling of the cross-link density, tensile strength (σ), elongation at
break (ε) and SH properties (self-healing efficiency, η). The optimal choice of the parameters
allows materials to recover from damage in up to just a few seconds at RT. It should be
noted [8,35,36] that the obtained “living” reactive anionic SHSMs are air-stable (are stable
to water, oxygen, and CO2).
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Figure 2. Siloxane equilibrium anionic-type mechanism (a), its general form of chain rearrangement
(b) [35,36], and synthetic routes of SH polymer networks based on D4 and bis-D4 [35,36] (c) and
tris-D4 [8] (d). Ph—phenyl group, D4—octamethylcycloteterasiloxane.

2.1. SHSMs Based on Covalent Interactions

Figure 3 presents the SHSMs based on covalent interactions such as reversible Diels–
Alder interactions [38–46], disulfide [47–49], boronic ester [50], boroxine [51,52], imine [53–57],
hydrazine-based [58], thiourethane [59], hindered urea bonds [60], and metal–ligand inter-
actions [19,61–80]. Some examples of covalent SHSMs are shown in Table 1.
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2.1.1. Self-Healing by the Diels–Alder Cycloaddition

The Diels–Alder cycloaddition reaction is one of the first and most commonly used
reversible reactions to obtain SH polysiloxanes [38–46], and occurs at high temperatures
(>50 ◦C) without a catalyst (Figure 3). The well-known SHSMs are based on the maleimide
and furan groups. For instance, Nasresfahani A. and Zelisko P.M. proposed [43] the cross-
linking of siloxane chains with pendant maleimide groups using a furan-functionalized
polyhedral silsesquioxane [12].

In 2016, a method to prepare a SH polymer film via a thermally reversible interac-
tion between a furan-modified polyurethane and a maleimide-containing hyperbranched
polysiloxane was investigated by Fu G. et al. [39]. Modified carbon nanotubes were incor-
porated to the silicone matrix to obtain an electrostatic-dissipative SHSM with η = 93%
after healing at 130 ◦C for 5 min. The resulting films have been reported [39] to have
high opportunities for applications in the aerospace industry, electronics and other related
fields [12].

Gou Z. et al. [40] developed a simpler method to prepare SHSMs via a thiol-ene click
reaction of furan-functionalized tetravinyltetramethylcyclotetrasiloxane with bismaleimide.
The obtained material maintains a strong UV-induced photoluminescence, and is of great
potential for use as a glass binder [12].

A year later (2017), SH ladder structures based on polysilsesquioxanes were ob-
tained [41,42] by utilizing pyrrolyl and cyclohex-3-enyl substituents as diene and dienophile,
respectively. The presence of acrylic or epoxy groups in the material’s structure made it
possible to achieve a higher cross-linking degree, thereby facilitating the convergence of
polymer chains and results in highly efficient SH. According to the bibliography [41,42], the
obtained materials have high thermal stability (>400 ◦C), improved tensile characteristics
(Young’s modulus > 9 GPa), and a high optical transparency (up to 95%) [12].

Many SH silicone nanocomposites were prepared based on the Diels–Alder reaction
between maleimide-modified polysiloxanes and furan-modified graphene [45,46]. Such
materials exhibit σ = 0.25–1.09 MPa and η > 90%. It was noted [45,46] that these SHSMs
have great potential for use in SH pressure sensors with high sensitivity (0.765 kPa−1) [12].

2.1.2. Self-Healing by Imine and Hydrazone-Based Bonds

The introduction of imine bonds into a 3D silicone network cause non-autonomous
SH properties of SHSMs at RT induced by water [53–57]. Zhang B. et al. [53] synthesized
a PDMS elastomer cross-linked by imine bonds (Figure 3), which is characterized by
acceptable optical transmission (80%), high ε ≈ 700%, and good SH properties (η = 53
and 100% after SH during 1 min and 1 h, respectively). Although SH occurs in water, it
happens even at temperatures below −20 ◦C, which makes it suitable for optoelectronic
and biotechnology applications [12].

In 2023, Lee J.M. et al. [54] used reversible imine bonding of aminopropyl-terminated
PDMS and benzene-1,3,5-tricarboxaldehyde to fabricate corrosion-resistant coatings with
SH ability. Both unscratched and healed coatings maintained outstanding corrosion inhibi-
tion efficiencies of up to 99%. In the last few years, some imine-based functional SHSMs
have been prepared by some other authors [12,55–57].

Similar hydrazone-based bonds are formed by the reaction of an aldehyde group with
a hydrazide. The cleavage and formation of a hydrazine-based bonds are reversible and
induced by an acid catalyst. Roy N. et al. [58] suggested using benzaldehyde-terminated
PDMS for condensation with carbohydrazone to obtain an SHSM (Figure 4). In such
systems, SH occurs at RT along with reversible hydrogen bonding, due to the action of acid
catalysts (pentadecafluorooctanoic and adipic acid) incorporated into the silicone matrix.
According to the ref. [58], the η achieves 100% when the damaged material is stored for
more than 4 h [12].
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2.1.3. Self-Healing by Disulfide Bonds

The dynamic disulfide bonds dissociate into free radicals with an increase in tempera-
ture, and associate back when temperature declines. This fact allows for using of disulfide
bonds as reversible cross-links to create non-autonomous [47,48] and autonomous [49]
SHSMs (Figure 3). Wu X. et al. [48] obtained copolymers of PDMS and polyurethane by
introducing a low-molecular-weight aliphatic disulfide. The synthesized materials exhibit
high thermal stability (>300 ◦C), ε up to 1200%, and non-autonomous SH properties at
60–120 ◦C (η = 97%) [12].

In 2018, Lv C. et al. [47] reported a superstretchable PDMS-based SHSM capable of
SH by dynamic S–S and imine bonds at RT, with good reproducibility (complete SH in
4 h) and ε = 2200%. Thus, the elastomer can be processed many times without reducing its
mechanical properties, due to the presence of two reversible cross-links in the 3D polymer
network [12].

In 2023, hierarchical covalent cross-linked networks and reversible bonds for flexible
electronics were obtained by Zhang T. et al. [49]. The materials have σ = 0.87 MPa, ε = 410%,
and heal at RT for 12 h by reaching η = 83% [12].

2.1.4. Self-Healing by Boronic Ester and Boroxine Bonds

The boronic ester bonds are also used to create non-autonomous SHSMs, which heal
via reversible hydrolysis and esterification in the presence of water. Thus, Zuo Y. et al. [50]
introduced boric acid and glycol fragments into PDMS by hydrothiolation, developing SH
silicone rubbers with dynamic boron-based cross-links (Figure 3). It was reported [50] that
such materials achieved a η of up to 70% after 30 min under the influence of air moisture.
For example, if a small amount of water is added to such SHSMs, the time of SH can
be <10 min [12].

Lai J.-C. et al. [51] obtained a silicone rubber based on dynamic boroxine cross-linking
(Figure 3). Initially, the SHSM is solid (σ = 10 MPa), rigid (Young’s modulus reaches
182 MPa) and withstands a load more than 450 times its weight. According to the ref. [51],
SH is initiated by water or the addition of a Lewis base. In 2022, Liang H. et al. [52]
obtained similar SH polymer networks based on boroxine cross-links with good SH ability
(η = 98% after 4 h of water immersion), anti-icing performance, and superhydrophobic
properties [12].

2.1.5. Self-Healing by Thiourethane Bonds

In 2023, Qian Y. et al. [59] used a new type of reversible covalent cross-links to obtain
non-autonomous SHSM—thiourethane bonds (Figure 3). In this report, a series of water-
borne poly(thiourethane-urethane)s with dynamic thiourethane cross-links were prepared
by click reactions. The materials exhibit non-autonomous SH at >90 ◦C (η = 69% after



Biomimetics 2023, 8, 286 6 of 35

hot pressing at 140 ◦C). The authors noted [59] that incorporation of isobornyl acrylate
increases the σ value from 4.70 to 12.56 MPa, which was approximately three times that of
the original material.

2.1.6. Self-Healing by Urea Bonds

Dynamically hindered urea bonds were utilized [60] to create a smart insulating
material with non-autonomous SH ability for powered and electronic devices. According
to the ref. [60], such SHSMs were constructed by isocyanate–piperazine-based dynamic
bonds with a cross-linking degree adjusted by glycerol. It caused not only healing the
cut-damaged feature of the silicone, but also enabled dielectric property recovery after
electrical breakdown (Figure 5). The obtained materials exhibit a η of above 95% and a
recycling efficiency above 90%, based on insulation performance (after healing at 90 ◦C).
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2.1.7. Self-Healing Polymer-Metal Complexes Based on (Co)polysiloxanes

The metal–ligand coordination bonds are often dynamic, which makes it possible to
prepare cross-linked SHSMs based on them (Figure 3) [3]. The metal–ligand coordination
causes the formation of donor–acceptor bonds between a metal cationic center and donor
non-metallic atoms of a ligand with an electron pair. Since a covalent bond is formed by
two atoms sharing a pair of electrons, the metal–ligand coordination bonds belong to the
category of covalent interactions. Thus, a coordinate bond (also called a dative covalent
bond) is a covalent bond (a shared pair of electrons), in which both electrons come from the
same atom [79,81,82].

The conditions required for the formation of coordination bonds between a copolysilox-
ane ligand and metal ion are relatively mild, which causes coordination cross-linking of
polymer chains and the obtaining of polymer-metal complexes (PMCs). One of the im-
portant proses of this approach is that the mechanical and SH material’s properties can
be relatively easily controlled by changing (i) the structure of the copolysiloxane ligand
via changing the type of ligand-forming fragments (donor atoms—O, N, etc., carboxylate,
mono-, bi-, terpyridine fragments, etc.), (ii) the molecular weight of the copolysiloxane
ligand or PDMS chain length, (iii) the metal–polymer ligand ratio, and (iv) the metal ion
and counterion content [12].
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Bipyridinic PMCs. One of the first prepared PMCs based on PDMS and a metal
cation was bipyridine-containing SHSMs. In 2016, the scientific group of Bao Z. [61]
firstly obtained a SH dielectric elastomer by metal–polymer ligand coordination acting as
cross-links of PDMS chains (Figure 6). The polymer ligand was poly(2,2′-bipyridine-5,5′-
dicarboxamide-co-PDMS), and metal salts are Fe2+ and Zn2+ with different anions (BF4

−,
ClO4

−, CF3SO3
−). The flexibility of PDMS chains provides a sufficiently high mobility

in the 3D polymer network structure to enable reversible coordination of metal ions and
bipyridine at RT. The kinetically labile coordination between Zn2+ and bipyridine allows
the silicone rubber to SH rapidly and autonomously at RT. Thus, the η of Zn(CF3SO3)2-PMC
is ca. 76%, while the η of Zn(ClO4)2-PMC and ZnCl2-PMC are 55 and 21%, respectively.
Compared to the labile Zn2+-based PMCs, Fe2+-based bipyridinic PMCs demonstrated
non-autonomous SH upon heating to 90 ◦C for several hours, due to the kinetically inert
coordination of Fe2+–Nbipyridyl at RT, and the overall contribution of the higher mobility
of PDMS chains and the more labile coordination of Fe2+–Nbipyridyl at elevated tempera-
tures [61]. The described obtained SHSMs were used in flexible electronics, for example, to
produce artificial skin (“electronic skins”) and artificial muscles [12].
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Three years later, in 2017, similar redox-active PMCs based on bipyridine-containing
PDMS (with a number-average molecular weight Mn = 3300–50,000) and Fe2+ were synthe-
sized (Figure 6) [62]. In 2017 and 2022, non-autonomous bipyridine-based PMCs [65,80]
were prepared. These Eu3+-, Tb3+-, and Tm3+-containing PMCs (Figure 6) showed a
relatively high σ (1.5 MPa), ε ≈ 185%), and exhibited non-autonomous SH properties
(η ca. 90% on heating at 100 ◦C after 2 days) [12].

Monopyridinic PMCs. In 2016, Bao Z. et al. [66] partially completed the task of
obtaining materials that have the properties of biological muscles—superstretchability
and SH. PMCs, based on the coordination of poly(pyridine-2,6-dicarboxamide-co-PDMS)
(Py-PDMS) and FeCl3·6H2O, exhibit a record high ε (1000–10,000%), high dielectric strength,
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and autonomous SH properties (η = 92% after healing for 48 h) at RT (Figure 7). It was
reported [66] that the SH process occurs at low temperatures, down to −20 ◦C (η = 68%
after healing for 72 h). The authors suggested [66] applying these Fe3+-PMCs to fabricate
artificial muscles and electronic skins [12].
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As in the case of the above-considered Zn2+-based bipyridinic PMCs, the high lability
of Zn2+-containing monopyridine-based PMCs has allowed the synthesis of other elastic
PMCs based on Zn2+ (ε up to 400%, σ = 0.05–3.5 MPa) with η = 100% after SH at RT
(Figure 7) [12,67,68].

In 2015 and 2017, Jia X.-Y. and Liu L. et al. synthesized [63,69] an autonomous PMC
with Co2+ in their structure (Figure 7). As distinguished from Fe3+- and Zn2+-PMC [66–68],
Co2+-PMC exhibit solvatochromic properties—a color change on contact with polar solvents
(alcohols and acetonitrile). Some years later, in 2020–2021, Deriabin K. et al. [19,64] obtained
an autonomous PMC of Py-PDMS with Co2+ and Ni2+ (Figure 7). Despite the fact that these
PMCs had lower SH ability (self-healing efficiencies reaching 93% at RT after 72 h) and
were less elastic, they were more durable and exhibited higher σ (up to 0.8–1.8 MPa) [12].

Carboxylate-based PMCs. Lai J.-C. et al. [71] developed rigid non-autonomous PMCs
based on the labile interactions of Zn2+–carboxylate, which are sensitive to temperature.
These SHSMs incorporated large amounts of coordination cross-links (50 mol.% of total
polymer units) (Figure 8). It was shown [71] that σ values decline from 9 to 0.1 MPa with
an increasing temperature from 25 to 70 ◦C. In accordance with these characteristics, these
SHSMs exhibit rapid SH at elevated temperatures, making them suitable for additive
technology and orthopedic applications [12].

In 2022, Au-Duong A.-N. et al. [72] obtained a material with polyamic acid and Zn2+

in its structure, exhibiting high extensibility, toughness and spontaneous autonomous SH.
The described SHSMs are transparent, maintain a good σ of 0.27 MPa, and have high
stretchability (ε = 360%) [12].
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Subsequently, autonomous PMCs based on metal–carboxylate interactions with Al3+

metal centers were synthesized (Figure 8) [73]. The tensile (σ = 0.1–1.1 MPa, ε = 10–140%)
and SH characteristics of Al3+-based PMCs can be controlled by changing the polymer-
ization degree of cyclic oligosiloxanes, grafting density of carboxyl, and concentration of
Al3+ [12].

Triazole-, amino- and Schiff base-based PMCs. PMCs based on autonomous imidazole-
Zn2+- [76] and non-autonomous triazole-containing PDMS [77] are known. In 2016, Jia X.-Y.
et al. [77], by incorporating dynamic Fe3+ and Co2+-triazole coordination bonds into PDMS
chains, prepared a highly elastic SHSMs (ε = 3400%) (Figure 8). The polymers maintain
non-autonomous thermal SH properties (η = 90% after healing at 60 ◦C for 20 h).

In 2017, Yu D. et al. [74] used the metal center to Cu2+ to obtain PMCs by the
reaction between poly((3-aminopropyl)methylsiloxane-co-methylphenylsiloxane)s and
salicylaldehyde-forming imine groups, then complexation of the obtained ligand with
Cu(CH3COO)2 (Figure 8). The dynamic character of the metal–polymer ligand interactions
of copolysiloxanes with pendant Schiff base-groups with Cu2+ in a SHSM caused a high
ability for autonomous SH at 30 ◦C (η = 87% after healing for 1 h) [12].

In 2018, Tan H. et al. [75] utilized the simplest method to prepare a SHSM on the basis
of the complexation reaction between CeCl3 and an amino-terminated PDMS (Figure 8).
The obtained nanocomposites with SiO2 and carbon black exhibited non-autonomous SH
properties in combination with photonic, angle-independent color, and mechanochromic
characteristics [12].

Thus, PMCs incorporate multidentate ligands, including nitrogen-containing aromatic
rings [19,61–69,74,83], amines [75], imidazole [76], triazole [77], or carboxylates [71,73].
Mono- [63,66–69], bipyridine fragments [19,61–65], and Schiff bases [74] are used in most
ligands, and can improve the mechanical properties of materials. Iron [61,62,66,77,83],
cobalt [19,63,69,77,84], zinc [61,67,68,71,76,83], aluminum [73,85], nickel [64],
lanthanides [65,75,86], copper [74,83], and platinum [87] are mainly utilized as metal
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centers. The monopyridine-containing PMCs mostly maintain autonomous SH ability,
compared to bipyridine-containing ones [12].

In view of the foregoing, SHSMs based on covalent interactions exhibit predominantly
non-autonomous SH properties and require external action, which is associated with
stronger bonds in their structure and increased dissociation energy. For example, (i) heating
(in the case of Diels–Alder interactions [38–46], disulfide [47–49], thiourethane [59]), (ii) UV,
and (iii) the additional reaction agent (the addition of water in the case of imine [53–57],
boronic ester [50] and boroxine bonds [51,52]). This cannot be called an unambiguous
advantage or disadvantage since, in some cases, SHSMs may be in demand if they self-heal
only under special conditions. On the other hand, a number of autonomous SHSMs based
on non-covalent interactions have been developed to date.

2.2. SHSMs Based on Non-Covalent Interactions

Along with SHSMs based on covalent reversible cross-links, there are elastomers
with dynamic non-covalent interactions: hydrogen [88–107] and ionic bonding [108–111],
π–π-stacking [87,112,113], metal–metal [87], and host–guest interactions [114] (Figure 9).
Some examples of non-covalent SHSMs are shown in Table 1.
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2.2.1. Self-Healing by Hydrogen Bonds

Hydrogen bonding is the most common reversible interaction used to form SHSMs [88–107]
(Figure 10). The hydrogen bonds are chemical bonds between an electronegative atom (N,
O, or F) and a hydrogen atom covalently bonded to another electronegative atom. The
hydrogen bonds are characterized by their relatively low energy (an order of magnitude
lower) in comparison with the covalent bonds discussed before. The hydrogen bonds
occupy an intermediate position between chemical bonds and van der Waals forces. Since
hydrogen bonds are intermolecular bonds, they cause the formation of dynamic cross-links
between macromolecules, especially PDMSs containing polar groups. The hydrogen bonds
are highly directional and can initiate self-assembly of polymer chains [12].
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Zhang A. et al. [88] were the first to synthesize novel supramolecular SHSMs from
a mixture of PDMS derivatives containing multiple COOH-groups, diethylenetriamine
and urea. The obtained SHSMs have a low glass transition temperature of ca. −113 ◦C,
rubber-like behavior, and autonomous SH properties at temperatures lower than RT [12].

In 2013, Roy N. et al. [89] prepared supramolecular networks with multiple hydro-
gen bonds by polycondensation of isocyanate-terminated PDMS with carbonylhydrazine
(Figure 10a). This synthetic method can provide a wide range of materials with different
flexibility, by proper selection of the bis-isocyanate component forming the polymer back-
bone. Such samples autonomously heal within a few hours. However, the polymers lose
their SH properties if the cut samples are stored in the air for more than 10 min [12].

In 2016, P. Baek et al. [90] obtained conductive composite materials based on a PDMS-
urea block copolymers and poly(3-hexylthiophene). These SHSMs exhibited a mechanical
η = 55%, and the electrical conductivity was restored by 82%. The authors noted [90] that
simple mixing of PDMS-urea and poly(3-hexylthiophene) solutions is sufficient to obtain
composite materials, which are suitable for the creation of flexible electrodes [90].

Similar to the Baek P. work [90], Liu C. et al. [91] obtained SH silicone coatings via
polycondensation of bis-isocyanates and amino-terminated PDMS to protect marine vessels
from biofouling (Figure 10b). The resulting antifouling-containing composites exhibited
high η values (98–100%) and relatively good mechanical properties (σ = 0.81 MPa, ε of up
to 550%) [12].

In 2018, the scientific group of Bao Z. et al. [92] synthesized SH copolysiloxane com-
bining strong and weak hydrogen bonds via the reaction of amino-terminated PDMS with
4,4′-methylenebis(phenyl isocyanate) and isophorone diisocyanate (Figure 10e). The ob-
tained polymer network has very high fracture energy (≈12,000 J·m−2) and high σ values
(1.5 MPa) and ε = 1200–3000%. The authors propose [92] the use of such SHSM as a rigid
and elastic SH artificial skin for various electronic devices, opening new fields in soft
robotics and skin prostheses [12].

In the last five years (2018–2023), various hydrogen-bonded SHSMs and compos-
ites based on them have been obtained [93–107]. These SHSMs are based on PDMS
copolymers and urethanes, nitrogen-containing heterocyclic, and amine-containing moeties
(Figure 10c–n). They lead to relatively fast autonomous SH properties within 5–120 min
and have a wide range of mechanical properties (σ = 0.1–5.5 MPa) and η = 10–100%, which
depend on the structure of the 3D polymer network. A notable achievement [97] was the
synthesis of SHSMs by adding a “sliding” cross-linker (polirotaxanes) and hydrogen bonds
into the polymer network, resulting in high values of ε (2800%), σ (1.05 MPa), and η (93% at
55 ◦C). This excellent extensibility is explained by the “sliding” of the cyclodextrins along
the polysiloxane chains, and dynamic hydrogen bonding if deformation occurs [12].

2.2.2. Self-Healing by Ionic Bonds

Ionic bonding can promote reversible cross-link formation in polysiloxanes mainly
through interactions between amino groups and acid residues incorporated into the poly-
mer structure [108–111]. In 2016, Madsen F.B. et al. reported [108] an autonomous SH
dielectric elastomer consisting of an interpenetrating polymer PDMS network with a high
dielectric constant, which cross-linked by proton exchange with an ion-containing polysilox-
ane between NH2– and COOH-groups (Figure 9). Ion-cross-linked polysiloxanes exhibit
SH at RT after electrical breakdown or cleavage (up to 77% efficiency). The authors re-
ported [108] that such SHSMs pave the way to improve the lifetime of dielectric elastomers
and the ability to withstand millions of cycles under high voltage conditions, such as
rupture and electrical breakdown, in contrast to conventional dielectric elastomers [12].

In 2019, Li Z. et al. [109] investigated a novel type of SHSM, which is cross-linked
by irreversible covalent bonds and ionic interactions between Cl−/quartenized ammonia
groups, as well as exhibited relatively good tensile properties (σ = 0.2–0.4 MPa, ε = 50–135%),
SH (η ≈ 83% after being healed at RT for 12 h), and a high ionic conductivity (up to
1.19 mS·cm−1 at 25 ◦C). It was reported [109] that ionogel shows good adhesion to var-
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ious solid materials, and can retain its high ionic conductivity and SH even at tempera-
tures < 0 ◦C. Such SHSMs are expected to be useful in the construction of flexible elec-
tronic devices, including sensors and supercapacitors, even at low temperatures (from
−20 ◦C) [12].

In 2022, Boumezgane O. et al. [110] developed SH anticorrosive composite coatings
via modification of a commercial epoxy coating by adding microcapsules composed of
a poly(methyl methacrylate) shell and a core of ionic PDMS oligomers. The ionic-type
cross-linking was also used to obtain other dielectric composites including elastomer
generators [111].

2.2.3. Self-Healing by π–π-Stacking

π–π-stacking usually occurs between aromatic rings due to overlapping p-orbitals
in π-conjugated systems. This intermolecular interaction is dynamic, reversible and can
be used in the synthesis of SHSMs [87,112,113]. In 2010, Burattini S. et al. [112] prepared
SH copolymers via π–π-stacking between polyimide (with a deficiency of π-electrons)
and pyrenyl-terminated PDMS (with an excess of π-electrons) for the first time (Figure 9).
According to the ref. [112], as the temperature decreases, the π–π interactions cause the
formation of new 3D polymer networks [12].

2.2.4. Self-Healing by Intermolecular Metallophilic Interactions

In 2016, Mei J.-F. et al. [87] synthesized a SHSM based on intermolecular metallophilic
Pt–Pt interactions by incorporating a cyclometallated Pt(II) complex and 6-phenyl-2,2′-
bipyridyl into a PDMS backbone (Figure 11). The obtained elastic material can be stretched
to more than 20 times its original length (ε > 2000%, σ = 0.38 MPa) and exhibits autonomous
SH after damage at RT for 12 h. In this case, the SH of the SHSM is insensitive to changes
in surface aging; and the SH ability rises with increasing temperature.
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2.2.5. Self-Healing by Host-Guest Interactions

In 2023, Daichi Y. et al. [114] obtained copolydimethylsiloxane with fragments of
adamantane and beta-cyclodextrin methyl ether, the interaction between which formed
the basis of reversible cross-linking (Figure 12). The paper notes that the resulting silicone
material has a low ε (up to 76%), as well as a low η (30% at RT for 24 h).
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Table 1. Tensile and SH properties of some non-composite SHSMs based on covalent and non-
covalent dynamic bonds.

Type of Reversible
Interaction

Simplified Structure of SHSM 1
Maximal Values

SH
Conditions Refs.σ,

MPa ε, % η, % (Time
of SH)

Diels-Alder
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Table 1. Cont.

Type of Reversible
Interaction

Simplified Structure of SHSM 1
Maximal Values

SH
Conditions Refs.σ,

MPa ε, % η, % (Time
of SH)
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Table 1. Cont.
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Interaction

Simplified Structure of SHSM 1
Maximal Values
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Conditions Refs.σ,
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mean a siloxane (PDMS) chain and a linker, respectively; 2 the parameters have
not been mentioned.

2.3. SHSMs Based on Interactions between Nanoparticles and Polymers

Nanocomposites with a certain range of properties are very often created based on
SHSM with covalent (Diels–Alder reactions, coordination bonds, etc.) [38,115] and non-
covalent types of reversible bonds (hydrogen bonds, etc.) [20,116,117] between nanoparti-
cles (NPs) and polymer matrices in their structure.

In 2015, Schäfer S. et al. [38] prepared a SH nanocomposite consisting of polysiloxane
modified with a furan or maleimide group and SiO2 NPs functionalized with maleimide or
furan (Figure 13) [12]. It was reported [38] that when a damaged sample is heat-treated, the
rate of its SH will be low, but if CHCl3 is dropped on the damage or cut and then heated,
the cut will disappear completely.
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Figure 13. SH nanocomposites based on interactions between nanoparticles and poly-
mers [12,20,38,43,115–117]. The red and green circles in the scheme mean furan and maleimide
groups, respectively. Copyright 2015, Elsevier.

Jin K. et al. [117] obtained robust SH superhydrophobic surfaces by the design of
healable superhydrophobic micro/nano rough surface. To obtain the SH coating, the
silica-amino silicone oil (shell-core) particles (SiO2@NH2-PDMS) and PDMS were cross-
linked by the formation of hydrogen bonds on the PA@PDA/AgNPs surface (Ag NPs on
polydopamine-functionalized polyamide fabric). The interactions between Ag NPs and
thiol groups are also used to create non-covalently cross-linked SHSMs. For instance, Martín
R. et al. [116] have cross-linked thiol-modified polysiloxanes with Ag NPs (Figure 13).
The obtained composites maintain relatively good mechanical properties (σ = 0.35 MPa,
ε = 60–80%) and high autonomous SH properties within 24 h at RT [12].

Non-covalent bonds are weaker interactions compared to covalent ones that mainly
lead to autonomous SH (especially hydrogen and ionic bonds). However, it is necessary
to form a sufficiently large number of weak non-covalent bonds to form stable, mechani-
cally strong, and durable SH polymer structures. In this regard, SHSMs with combined
interaction are being developed.

2.4. SHSMs Based on Combination of Interactions

Current approaches to create SHSMs often use a combination of different interac-
tions (Figure 14); for instance, combinations of dynamic covalent and non-covalent bonds:
(1) boronic and hydrogen bonds [118], (2) boroxine and hydrogen bonds [119], (3) disulfide
and hydrogen bonds [120–123], (4) imine and hydrogen bonds [124–127], (5) phenol car-
bamate and hydrogen bonds [128], (6) coordination and hydrogen bonds [129–133], and
(7) metal–ligand interactions with various metals [70].

In the last few years, utilizing double combinations of non-covalent bonds is also
frequent, in the form of (1) ionic and hydrogen bonds [134,135] and (2) π–π-stacking and
hydrogen bonds [136]. In the case of double-cross-linked SHSMs using reversible imine
and coordination bonds [83], the mechanical properties of elastomers can be tuned by
adjusting the type and content of metal ions.

Interactions between NPs and functional groups were also used in combination with
hydrogen bonds [137–139], vinylogous urethane bonds [140], and coordination metal–
ligand bonds [115].
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boroxine and hydrogen bonds [119] (a), disulfide and hydrogen bonds [121] (b), imine and hy-
drogen bonds [125] (c), coordination and hydrogen bonds [130] (d), π–π-stacking and hydrogen
bonds [136] (e), coordination, disulfide bonds and interactions between Ag nanoparticles and disul-
fide groups [141] (f).

In addition, compared to single and some dual cross-linked elastomers, the use of
triple combinations of disulfide, coordination and hydrogen bonds [141,142], and of π–
π-stacking, disulfide and hydrogen bonds [143] leads to obtaining SHSMs with notably
enhanced mechanical properties (σ is up to 3.5 MPa and ε is up to 1800%). Thus, the mixing
of different interactions allows for giving the material a variety of properties, including
faster healing or improved mechanical characteristics.

3. Applications of Self-Healing Silicone Materials: Moving Forward

In the past five years, SHSMs have become one of the most promising field of in-
vestigation in materials science, which is confirmed by the huge publication activity.
In general, silicone rubbers with SH ability have broad applications in nanotechnol-
ogy, optoelectronics, biomedicine, soft robotics and human activity [11,13–17]. Various
protective coatings with a long service life [9,26,27,53,54,110,120,125,139,144,145], elec-
tromagnetic shielding films [57,99], triboelectric nanogenerators [126,130], sensors and
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skin-inspired electronics [49,101,118,124,127,129,131,134,136,141,143,144,146–149], actua-
tors and artificial muscles [8,44,66,107,118,126,147,148,150], separating membranes [151],
liquid crystals [152], and flexible and stretchable luminescent and electroluminescent de-
vices [18,55,56,65,78,83,105,132,146], as well as solar cells [113,137,138], are created based
on functional SHSMs depending on their additional properties, e.g., thermal and cold resis-
tance, redox-activity, luminescence, high dielectric properties or electrical conductivity, etc.
(Figure 15). Moreover, flexible, twistable and stretchable self-repairing silicone materials
can be used in additive manufacturing and for various applications, such as in orthopedic
immobilization, conductive composites/adhesives, and 3D printing [71,153].

Biomimetics 2023, 8, x FOR PEER REVIEW 19 of 37 
 

 

electronics [49,101,118,124,127,129,131,134,136,141,143,144,146–149], actuators and artifi-

cial muscles [8,44,66,107,118,126,147,148,150], separating membranes [151], liquid crystals 

[152], and flexible and stretchable luminescent and electroluminescent devices 

[18,55,56,65,78,83,105,132,146], as well as solar cells [113,137,138], are created based on 

functional SHSMs depending on their additional properties, e.g., thermal and cold re-

sistance, redox-activity, luminescence, high dielectric properties or electrical conductivity, 

etc. (Figure 15). Moreover, flexible, twistable and stretchable self-repairing silicone mate-

rials can be used in additive manufacturing and for various applications, such as in ortho-

pedic immobilization, conductive composites/adhesives, and 3D printing [71,153]. 

 

Figure 15. Main typical types of applications for known SHSMs. 

3.1. Recent Developments in Protective Coatings 

Industry utilization of protective coatings are many, and straddle the automotive, 

aerospace, marine, building, and fuel industries. For instance, in the automotive and aer-

ospace industries, protective coatings are used to prevent corrosion and weathering on 

car or aircraft surfaces and components. There are also several other types of protective 

coatings, including inhibitive coatings, which contain chemical substances that prevent 

corrosion, weathering, icing, fouling, and combination coatings, which are made up of 

two or more coatings. SHSMs create more potential to increase the service life and relia-

bility of protective coatings. Thus, SH silicone rubbers based on the covalent and non-

covalent reversible interactions (imine, disulfide, boroxine, carbamate, hydrogen, ionic 

and coordination bonds) were utilized to prepare various types of protection coatings, 

including anticorrosion films [53,54,110,120,125,139,144], antifouling and antimicrobial 

coatings [20,100,104,106,120,145], insulators [44,60,154], films with SH ability after electri-

cal breakdown [7–9,60,61,108], anti-icing [121], and superhydrophobic coatings 

[26,52,119,155]. Thus, there are no specific formulas related to protective coatings, as the 

composition and properties of the coating will vary depending on the specific application. 

3.1.1. Self-Healing Anticorrosion Coatings 

Figure 15. Main typical types of applications for known SHSMs.

3.1. Recent Developments in Protective Coatings

Industry utilization of protective coatings are many, and straddle the automotive,
aerospace, marine, building, and fuel industries. For instance, in the automotive and
aerospace industries, protective coatings are used to prevent corrosion and weathering
on car or aircraft surfaces and components. There are also several other types of pro-
tective coatings, including inhibitive coatings, which contain chemical substances that
prevent corrosion, weathering, icing, fouling, and combination coatings, which are made
up of two or more coatings. SHSMs create more potential to increase the service life and
reliability of protective coatings. Thus, SH silicone rubbers based on the covalent and
non-covalent reversible interactions (imine, disulfide, boroxine, carbamate, hydrogen, ionic
and coordination bonds) were utilized to prepare various types of protection coatings,
including anticorrosion films [53,54,110,120,125,139,144], antifouling and antimicrobial
coatings [20,100,104,106,120,145], insulators [44,60,154], films with SH ability after electrical
breakdown [7–9,60,61,108], anti-icing [121], and superhydrophobic coatings [26,52,119,155].
Thus, there are no specific formulas related to protective coatings, as the composition and
properties of the coating will vary depending on the specific application.
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3.1.1. Self-Healing Anticorrosion Coatings

One of the most recent developments in anticorrosion protective coatings was ref. [54]
from Lee J.M. et al. In this study, a combination of SH and fluorinated polymers was used
to develop an autonomous SH hydrophobic coating with excellent corrosion resistance
that allows protecting metal surfaces from scratches by a reproducible damage-healing
property. The authors used a Schiff-base-linkage-based PDMS (SC-PDMS) with the dynamic
imine bonds as a primary protection layer against corrosive media. The thin film of
polytetrafluoroethylene at the SC-PDMS surface quenches the reaction of the imine bond
with water and improves the long-term scratch-free corrosive resistance (Figure 16).
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A combination of dynamic imine and multiple hydrogen bonds allowed Mo P. et al.
in 2022 [125] to create anticorrosion coatings with additional self-cleaning performance.
In 2022, Wang T. et al. used [139] similar hydrogen bonds, combined with imine and
noticeable coordination bonds between nanofillers (Cu2O@Ag), and nitrogen atoms of
a PDMS matrix, to fabricate multiple cyclic and long-term SH silicone coating, which is
reinforced by Cu2O@Ag (Figure 17). At the same time, Ji X. et al. [144] obtained anticorro-
sion coating with wide pH-responsive and SH performance based on core–shell nanofiber
containers. The fiber-PDMS coating exhibits η = 96 and 97% in alkaline and acidic solutions,
respectively [144]. The SH epoxy coatings with microencapsulated ionic PDMS oligomers
were also used by Oussama B. et al. [110] for corrosion protection based on acid-base
ionic interactions.
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Some recent investigations led to the synthesis of anticorrosion films with specific
antifouling and antimicrobial properties [103,120]. The first polymer coating [103] featuring
multifaceted functionalities was prepared by facilely brush-coating isocyanate-modified
PDMS on various substrates, in which the adjacent polymer chains are physically cross-
linked by the hydrogen bonds between the urea moieties. The authors noticed [103] that
the coating can effectively prevent corrosion and biofouling on metal surfaces, implying
its great potential as a protective coating in practical engineering processes. In another
study [120], a smart SH silicone-based coating has been developed by a disulfide exchange
reaction of the functionalized monomer “lipoic acid-benzothiazole” (LA-BTZ) with LA-BTZ-
modified PDMS-based polyurea-urethane. The obtained SHSM maintains good toughness
(σ = 2.58 MPa), high stretchability (ε = 1000%), and SH properties. The authors noted that
the adhesion strength of these silicone-based coatings to epoxy resin and steel surfaces was
2.5 and 3.3 MPa, respectively.

3.1.2. Self-Healing Antifouling and Antimicrobial Coatings

Ongoing research [20,104,106,145] focuses on fabrication antibiofouling layers, which
can coat and protect substrates from the growth of organisms such as bacteria, mold,
mildew, or algae on substrates (e.g., marine structures). Thus, Sun J. et al. [104] fabricated a
novel silicone-based poly(urea-thiourea)/tannic acid composite with excellent mechanical
(σ = 2.47 MPa and high stretchability of 1000%), SH and antifouling properties. According
to ref. [104], laboratory bioassays against marine bacteria adhesion (96, 95, and 93% reduc-
tion for P. sp., E. coli, and S. aureus, respectively) and diatom attachment (84% reduction)
showed an antifouling property of such SH films. In another ref. [106], the antifouling per-
formance of polyurethane/fluorinated polysiloxane-microcapsules-silica was realized by
constructing a micro–nano-dual-scale surface formed by the microcapsules and nano-SiO2.

In 2023, Wang P. et al. [20] prepared zwitterionic-functionalized metal-based PDMS
antifouling coatings with SH properties. An interaction between vinyl-containing PDMS
and triisopropylsilyl methacrylate-functionalized gallium-based liquid metal nanodroplets
(TISM-GLM) with zwitterionic surfaces is the basis of the SH mechanism. According to
the ref. [20], the well-dispersed TISM-GLM nanodroplets equip the PDMS coating with SH
ability through the GLM nanodroplet-induced radical polymerization of vinyl groups in
PDMS. The prepared films showed high antifouling efficacy inhibiting bacterial and algae
adhesion (removing >96% of bacteria and >77% of algae).

In 2023, Guo R. et al. obtained a SH material based on N-acetyl-L-cysteine (NACL) [100].
This amino acid was grafted by hydrothyolation reaction to vinyl-containing PDMS ob-
tained by a ring-opening anionic polymerization of 1,3,5,7-tetravinyl-1,3,5,7-tetramethyl-
cyclotetrasiloxane (Figure 10i). Due to the presence of a hydrogen bond between the
fragments of the carboxyl and amide groups in the amino acid, the η reaches 97% with a
ratio of PDMS:NACL = 70:30. An interesting fact is the presence of antibacterial properties
of the obtained material due to amino acid residues. As in a previous case [100], almost
the same strategy was proposed [128] to prepare silicone elastomers with bio-based tannic
acid as cross-linkers and 2,2-bis(hydroxymethyl)propionic acid as an intermediate chain
extender. These materials exhibit not only an antimicrobial efficiency of over 90% and a
final oxygen index of 26%, but also flame retardant properties [128].

Thus, similar antibacterial self–healing materials are very promising in the field of
biomedicine [156] as, for example, antibacterial coatings and surfaces for operation hospi-
tals, veterinary clinics, as well as the food industry [145].

3.1.3. Self-Healing Anti-Icing Coatings

Anti-icing outdoor coatings definitely suffer from surface injuries such as extreme
weathering, e.g., freezing weather or acid rain. The production of anti-icing SH coatings
for extreme conditions is highly important. Thus, Li R. et al. [121] obtained an extreme-
environment-resistant SH anti-icing coating by incorporating fluorinated graphene into a
supramolecular polymeric matrix. The described coating can sustain its anti-icing/deicing
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performance after autonomous SH under harsh conditions, including low temperature
(−20 ◦C), strong acid (pH = 0), and strong alkali (pH = 14) environments.

3.1.4. Self-Healing Superhydrophobic Coatings

Special attention should be paid to obtaining superhydrophobic coatings [26,76,119,155]
as well as to corrosion protection [117] and anti-icing [52]. Since superhydrophobic coat-
ings are susceptible to stress due to the fragility of their structure, resulting in reduced
superhydrophobic and anti-icing performance, in 2022–2023 some reports proposed a
new insight to improve durability. It was implemented by introducing a thin layer of
self-healable silicone elastomer with dynamic networks, based on reversible boroxine and
hydrogen bonds [52,119,155]. In 2022, Kaili J. et al. [117] fabricated conductive and super-
hydrophobic silicone surfaces emerging a superior application potential in the outdoor
equipment deicing field, due to their outstanding electrothermal heating capacity. The
superhydrophobicity and conductivity kept unchanged when it was exposed to strong acid,
alkali and salt, maintaining superhydrophobicity (151.5◦) and conductivity (0.96 Ω·sq−1).

3.2. Recent Developments in Electromagnetic Interference Shielding Films

In the last few years, SH silicone composites began to be actively used to create elec-
tromagnetic shielding films and coatings [57,99], which prevent electromagnetic waves
or radiation, protect electronic information from leakage, and resist electromagnetic in-
terference. Thus, in 2021, a highly colorless, tear-resistant and compliant SHSM was
developed by Sun F. et al. [99], which was tailored for transparent electromagnetic interfer-
ence shielding films. The authors proposed a strategy to design a highly dynamic polyurea
elastomer characterized by high optical transparency of >94%, ultralow elastic modulus
(<1 MPa), high tear-resistant stretchability (ε = 800%), and ultrafast autonomous SH (100 s
for scratch-healing). Taking the polymer as a substrate for embedding Ag nanowires,
the first transparent, stretchable and self-healable electromagnetic interference shielding
materials were prepared.

A year later, Wu S. et al. [57] assembled an excellent photothermal-thermoelectric
PDMS/single-walled carbon nanotube@Fe3O4 composite film, owning superior electromag-
netic wave attenuation, SH and low temperature resistance. The SH caused by reversible
imine and hydrogen bonds (Figure 18). The optimized composite film delivered a strong
absorption and effective absorption of 3 GHz. The authors noticed that [57] the only indirect
solar power generation electromagnetic wave absorption material by thermoelectric and
photothermal effects with extreme environmental tolerance.
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3.3. Recent Developments in Flexible Sensors

Recently, SHSMs have been used as sensors, especially strain sensors and wear-
able electronic sensors [49,61,101,118,124,129–131,134,136,141,143,147,148,157], pressure
sensors [127,130], pH- and chemosensors [144,146].

3.3.1. Flexible Strain Sensors

Strain sensors detect occurring stresses, and are referred to as strain transducers or a
special form of force sensors. SH flexible and stretchable silicone rubbers can be utilized
as components for flexible electrodes, which are usually offered for use as a strain sensors
(“electronic skins”) to monitor human motions, including different bending angles of
fingers and elbows [147,148]. Strain sensors with long-term durability, high sensitivity, and
stretchability are required for the fabrication of flexible and wearable electronic devices.
Therefore, SHSMs as ideal substrates are widely used in flexible electronics.

In 2021, Yu T. et al. [101] designed and prepared a SH elastomer, in which a quadruple
hydrogen bonding network was constructed by introducing 2-ureido-4[1H]-pyrimidinones
into polysiloxane. A three-layer strain sensor with high sensitivity and durability was
fabricated using this twistable and highly stretchable (up to 2000%) silicone material as
the substrate that was able to monitor various activities of the human body accurately. In
2022, Zhang T. et al. [49] used “hierarchical” covalent cross-linked networks and reversible
disulfide covalent bonds to construct SH siloxane elastomers constructed for flexible elec-
tronics. Tang M. et al. [118] obtained ultrafast SH and self-adhesive polysiloxane towards
reconfigurable on-skin electronics using dynamic hydrogen and boronic ester bonds as
cross-links. The novel polysiloxane not only achieved a satisfactory tensile properties
(σ = 0.43 MPa, ε = 1500%), but also recovered 100% of its original strength at RT within
only 30 s after damage. In 2022, other robust SH elastomers [129] were created based
on competing non-covalent interactions, and can be used as a flexible substrate to easily
fabricate SH electrodes.

In 2023, SH, recyclable, mechanically tough transparent silicone elastomers based on
dynamic microphase separation for flexible sensors were reported [143]. The elastomers
include disulfide and hydrogen bonds, which enable strong microphase separation, pro-
viding this series of SHSMs with the σ = 1.89–3.33 MPa, ε = 350–1720%, and an extreme
fracture toughness of 28.6 MJ·m−3. A “sandwich-structure” flexible sensor device, which
can be cut and heal just like building blocks, was designed that can be utilized for detecting
human motions.

In order to fabricate strain sensors, the conductivity of polysiloxanes should be in-
creased by the preparation of nanocomposites with conductive fillers, especially multi-
walled carbon nanotubes (MWCNT), carboxyl-functionalized carbon nanotubes (CFCNT),
AgNPs, etc. Thus, in 2021, Mail D. et al. developed [134] a bilayer SH strain sensor
consisting of CFCNT and ionically cross-linked polysiloxane substrates, based on un-
saturated acid−amine interactions. The sensor exhibited self-adhesiveness, high sen-
sitivity, linearity, low hysteresis, and long-term durability with a gauge factor of 34 at
55% strain. In the same time, SH PDMS/AgNPs conductive elastomer with tunable
tensile properties and efficient antibacterial performances for a wearable sensor was de-
veloped (Figure 14f) [141]. The highly stretchable elastomer (ε = 1760%) can accurately
monitor the bending motion of human joints. In 2022, Zhang K. et al. [131] developed
hyperbranched-MWCNT/hyperbranched-PDMS self-healable conductive elastomers in-
spired by cephalopods, which were sensitive to the change of stress states and can be
used as a stable strain sensor. The prepared conductive elastomer exhibited autonomous
SH properties (η > 90%) at RT, excited by multiple reversible interactions (coordination
and hydrogen bonds) (Figure 19). The prepared elastomer also showed excellent anti-
fatigue ability.
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A high electrical SH flexible strain sensor (ESFSS) based on a nanocomposite of
MWCNT and PDMS elastomer (comprising reversible imine and hydrogen bonds) was
also proposed by Yu T. et al. [124]. The conductive fillers were incorporated into the sensor
in order to endow the ESFSS with high sensitivity and a wide measurement range. The
high electrical SH performance of the ESFSS was shown with an electrical η = 98%. The
proposed ESFSS also has high gauge factor values of 58 (0–85%), 993 (85–107%) and 5536
(107–136%), and a wide measurement range (0–136%).

3.3.2. Flexible Pressure Sensors

The creation of piezoresistive pressure sensors with SH ability has attracted much
attention, due to their potential applications in intelligent and soft robots, remote health
monitoring, and electronic skins [127,130]. Thus, Yang Z. et al. [127] designed a conductive
SH silicone (CSE) film with a ridge-like microstructure for flexible piezoresistive pressure
sensors. In order to obtain a CSE film, the PDMS-based elastomer with imine and ureido
groups was synthesized by a polycondensation of aminopropyl-terminated PDMS with
isophorone diisocyanate and 1,3,5-triformylbenzene, the solution of which was cast onto
a sandpaper pre-sprayed with ureido pyrimidinone-grafted carbon nanotubes/polyurea
mixed solution and dried. The piezoresistive pressure sensor was fabricated with two
single-electrode CSE films maintained a high sensitivity of 8.7 kPa−1 (0–6.1 kPa), low
detection limit (50 Pa), fast response capability (response/relaxation time of 40/117 ms),
and repeatability for 10,000 loading–unloading tests. The authors reported [127] that
this pressure sensor was applied not only to detect human motions (radial pulse, voice
recognitions and joint movements), but also to monitor health status wirelessly through
Bluetooth transmission.

3.4. Recent Developments in Actuators

Electroactive dielectric elastomers demonstrate great potential for a variety of minia-
ture transducers, due to their unique mechanical and electromechanical properties (i.e.,
high strain and energy density, fast response speed, and inherent environmental toler-
ance) [158]. Silicone rubbers satisfy these requirements [8,44,66,107,118,126,147,148,150].
One of the first and most notable results on the creation of actuators based on autonomous
PMCs of poly(2,6-pyridinedicarboxamide-co-PDMS) coordinated with Fe(III) was obtained
by Bao Z. et al. [66] in 2016. The ability of this SHSM to restore a high dielectric strength
after healing from mechanical damage, as well as ultrahigh stretchability (up to 10,000%),
provides its promising artificial muscle applications.

In 2022, Feng Z. et al. [44] reported a thermo-reversible furfuryl poly(thioether)-b-
polysiloxane-b-furfuryl poly(thioether) triblock copolymer with tunable dielectric and
mechanical performances. The resultant material maintains a mechanical strength of
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0.16–11.2 MPa), a high dielectric permittivity, self-heals by Diels–Alder bonds, and pos-
sesses outstanding shape memory and shape reconfiguration behavior with a fixing ratio
and recovery ratio of >90%. According to the authors’ opinion, preparation of such a
homogenous dielectric elastomer with improved electromechanical performance and shape
memory behavior leads to promising application prospects in actuated devices.

In the same year, Tao H.-T. [107] used magnetic effects for actuation by obtaining
autonomous SH magnetic nanocomposite using an environmentally friendly strategy. The
nanocomposite comprised a soft PDMS as the polymer matrix and Fe3O4 nanoparticles
as functional magnetic nanofillers in an optimal concentration of 15 wt.% (Figure 20). The
most optimized sample possessed σ = 0.44 MPa, a high ε = 400%, and η = 62% after healing
at 25 ◦C for 30 min. The nanocomposite material exhibits a healable magnetic actuation
performance, providing great potential for the magnetic actuation applications.
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Zang W. et al. [111] developed a dielectric elastomer generator (DEG), which is a kind
of deformable elastic capacitor composed of a thin dielectric elastomer film sandwiched
between two compliant electrodes. A DEG can convert the electrical energy into mechanical
energy under electrical excitation. According the ref. [111], the prepared conductive rubber
electrode had high electrical conductivity, high strain and high durability during cyclic
stretching, SH and recycling ability. The conductive rubber comprises a hydrogen-bond-
cross-linked network of silicone rubber and highly conductive carbon black and carbon
grease. Meanwhile, this electrode demonstrates high η of conductivity (92% after healing at
60 ◦C for 4 h), and can be recycled five times without negative effects on performance. Thus,
this DEG can be used as dielectric elastomer actuator that finds application in artificial
muscles, etc.

In 2023, Szczepanski J. [8] prepared a SH silicone elastomer with a large and tunable
permittivity by an anionic ring-opening copolymerization of cyanopropyl-substituted cyclic
and tricyclic (tris-D4) oligosiloxanes (Figure 2d). The silanolate end groups remain active
after preparation of the materials that cause SH by siloxane equilibrium. According to
the ref. [8], the high elasticity of the materials is essential for reversible actuation, and the
thermoreversible softening allows for SH and recycling. Fabricated single-layer actuators
on their basis showed 3.8% lateral actuation at 5.2 V·µm−1 and SH after an electrical
breakdown. Stack actuators reached an actuation strain of 5.4 ± 0.2% at electric fields of
3.2 V·µm−1, and thereby providing their applications as artificial muscles in soft robotics.

3.5. Recent Developments in Triboelectric Nanogenerators

In 2021–2022, along with the actuators, some triboelectric nanogenerators based on
SHSMs were fabricated [126,130]. They are an emerging powerful technology that converts
ambient mechanical energy into electrical energy via a triboelectric effect. These devices
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are very promising in the field of electronic skin. Thus, Jiang J. et al. [130] created an ultra-
stretchable triboelectric nanogenerator that simultaneously heals fractures and abrasions at
RT (100% efficiency), as well as exhibits ultrahigh stretchability (up to 10,000%). The SH in
this material occurs due to the incorporating of hydrogen bonds and dynamic metal-ligand
coordination into PDMS chains (Figure 14d). Working in contact-separation mode, the
electrical outputs with a 2 × 2 cm2 area can reach 140 V, 40 nC, and 1.5 µA, respectively.
According to the ref. [130], if the nanogenerator is stretched to break or scratched to wear
out, it can restore its electrical outputs in 20 min and 2 h at RT. Cai Y.-W. et al. [126] also
reported a nanogenerator consisted of a triboelectric layer (SH double-cross-linked PDMS
obtained by adjusting the ratio of imine bonds to hydrogen bonds) and an electrode layer
(SH conductive composite). This triboelectric nanogenerator exhibits shape adaptability,
and thereby can be perfectly attached on an uneven human skin surface, and can maintain
the original triboelectric performance after repeated damage.

Consequently, the application of the described nanogenerators as flexible power
sources and self-powered pressure sensors was also demonstrated, leading to the broad
applications of flexible and wearable electronics for long-term use [126,130].

3.6. Recent Developments in Luminescent and Electroluminescent Devices

The inclusion of lanthanides and other luminescent ions, as well as conjugated and
flat aromatic fragments, into the structure of SHSMs can give them an additional property
of photoluminescence, which contributes to the expansion of potential applications of
such materials, and their use in optoelectronics as flexible SH screens, fluorescent mosaics,
lighting design, etc. [18].

The first type of photoluminescent SH silicone rubbers are polymer-metal complexes
(PMC) of PDMS-containing polymer ligands and lanthanide ions, especially Eu3+ and
Tb3+ [65,80,86,132,146,159]. The presence of lanthanide ions in the structure of such poly-
mers causes their phosphorescence, and contributes to a sufficiently high photolumines-
cence quantum yield. Since characteristic 4f–4f electronic transitions have a forbidden
nature, the lanthanide ions have a long photoluminescence lifetime and sharp spectral lines.
Thus, to increase photoluminescent quantum yield (up to 30 and 40% for Eu- and Tb-PMC,
respectively, the “antenna effect” should be achieved by using sensitizer ligands including
2,6-pyridinedicarboxamide [86], bipyridinic fragments [65], terpyridinic fragments [132],
or β-diketone [146] (Figure 21).

The photoluminescence color can be controlled (i) by the Eu3+:Tb3+ ratio, leading to
obtaining a SHSM with an emission color close to white light, that can be applied as a phos-
phor for white light-emitting diodes [86], (ii) by making monolithic “sandwiches” using
non-autonomous SH at 100 ◦C [65], and (iii) by choosing the excitation wavelength [132].

Kim E. et al. [146] synthesized cross-linked luminescent polymers based on Eu3+ and
multiligand PDMS with grafted β-diketone fragments, which maintain tunable optical,
mechanical properties, and chemosensory properties to ammonia cation.

The second type of photoluminescent SH silicone rubbers contain flat conjugated aro-
matic fragments in a 3D polymer network [56,83]. In 2022, Wang N. et al. [56] obtained two
aldehyde-modified tetraphenylene derivatives, and incorporate them into PDMS networks
through reversible imine cross-linking. The prepared elastomers showed fluorescence prop-
erties, sufficient mechanical characteristics, thermal stability, and SH and recycle properties.
In this case, the SH process takes place quickly, and the recycling process can be carried out
by solution processing and hot pressing. In 2023, the same scientific group [83] prepared
SHSMs with excellent tunable mechanical and fluorescence properties based on structures
with dual cross-linking through reversible covalent imine and metal coordination bonds.
Thus, salicylaldehyde-modified tetraphenylene derivatives with aggregation-induced emis-
sion properties were included into the dual cross-linked network as cross-linking sites
(Figure 22). The mechanical properties and fluorescence of the considered SHSMs can be
tuned by adjusting the type and content of metal ions.
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Copyright 2022, Elsevier.
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SHSMs can be used not only to create flexible luminescent devices, but also self-
powered multi-color displays based on stretchable alternating current electroluminescent
(ACEL) devices [55] with the triboelectric nanogenerators. The obtained material has
superb stretchability (2500%) and a high η (96%) at RT, due to the reversible dynamic imine
bonds. The ACEL devices with such SH and stretchable PDMS as the substrate of electrodes
and the matrix of emission layers were constructed.

3.7. Recent Developments in Solar Cells

If perovskites are introduced into the structure of SHSMs by the interaction between
perovskite nanoparticles and polysiloxane functional groups, then it is possible to obtain a
material suitable for use as solar cells [137,138]. In 2022, Zhang K. et al. [137,138] designed
a brand-new SH polysiloxane with dynamic 2,6-pyridinedicarboxamide (PDCA) coordina-
tion units and plenty of hydrogen bonds, and incorporated it into perovskite films. Accord-
ing to the ref. [137], PDCA units, showing strong intermolecular Pb2+–Namido, I−–Npyridyl,
and Pb2+–Oamido coordination interactions, were expected to enhance crystallinity and
passivate the grain boundary (Figure 23). Reversible urea and thiourea hydrogen bonds in
a 3D silicone network afforded the SH of cracks at grain boundaries for fatigue perovskite
solar cells. This strategy of doping in perovskite solar cells opens up an opportunity to
realize efficient and durable crystalline semiconductors [137,138]. In summary, polymer
doping is an important approach to improve the electronic quality of perovskite solar cells
fabricated in air.
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In 2022, Sun J. et al. [113] fabricated a SH film for solar-thermal applications by
employing a diradical-featured organic small-molecule croconium derivative (CR-DPA-T)
as a solar harvester, loaded flexible SH H-PDMS film. The autonomous SH caused by
π–π-stacking of CR-DPA-T into dimer form.
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4. Conclusions

Thus, great steps in the development of SHSMs have been taken over the past few
years. If earlier, about 10–20 years ago, only the SH mechanisms in dynamic 3D polymer
networks were studied, then over the past five years, emphasis has been placed on the
combination of several types of reversible bonds into polysiloxanes, and the use of such
silicone materials in high-tech and significant areas of materials science.

The reversible chemical interactions used in SHSMs are classified as covalent and
non-covalent bonds. SHSMs based on covalent interactions exhibit predominantly non-
autonomous SH properties and require external action (heating, UV, the additional reaction
agent), which is associated with stronger bonds in their structure and increased dissociation
energy. This cannot be called an unambiguous advantage or disadvantage since, in some
cases, SHSMs can be applied if they self-heal only under special conditions.

One of the important features of the metal-ligand coordination bonds, which belongs
to the category of covalent interactions, is that the mechanical and SH material’s properties
can be relatively easily controlled by changing the structure and molecular weight of the
polysiloxane ligand, metal–polysiloxane ligand ratio, and metal ion and counterion content.

Non-covalent bonds are weaker interactions compared to covalent ones, that mainly
lead to autonomous SH (especially hydrogen and ionic bonds). However, it is necessary to
form a sufficiently large number of weak non-covalent bonds to form stable, mechanically
strong, and durable SH polymer structures.

Along with the huge benefits of self-healing materials [3], side effects can often lead
to many of these SHSMs being sticky and able to dissolve (completely or partially) in
contact with some solvents [19,50,51,64], which can lead to some issues for their potential
applications. In this regard, SHSMs with combined interactions and nanofillers are being
developed to solve the drawbacks mentioned before. Nanocomposites with a certain range
of properties (electrical conductivity, photoluminescence, electroluminescence, magnetic
properties, high mechanical strength, durability, etc.) are very often created based on
SHSMs with covalent (Diels–Alder reactions, coordination bonds, etc.) and non-covalent
type of reversible bonds (hydrogen bonds, etc.) between NPs and polysiloxane matrix in
their structure.

SHSMs can possess not only typical SH characteristics, but also some additional
properties, which are useful for their extension of application, including thermal and
cold-resistance, redox-activity, photoluminescence, high dielectric properties, electrical
conductivity, antifouling, antimicrobial, anti-icing properties, etc.

The application fields of SHSMs has expanded significantly. For instance, SH sili-
cone rubbers maintain broad applications in nanotechnology, optoelectronics, biomedicine,
additive manufacturing, soft robotics and human activity as self-repairing protective coat-
ings, electromagnetic shielding films, sensors and skin-inspired electronics, actuators and
artificial muscles, triboelectric nanogenerators, flexible or stretchable luminescent and
electroluminescent devices, and solar cells.

However, the application potential of SHSMs has not been fully disclosed. In this
regard, the development of this field of polymer chemistry and materials science poses
challenging tasks for the scientific community.
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