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Abstract: Robotic hands have the potential to perform complex tasks in unstructured environments
owing to their bionic design, inspired by the most agile biological hand. However, the modeling,
planning and control of dexterous hands remain unresolved, open challenges, resulting in the simple
movements and relatively clumsy motions of current robotic end effectors. This paper proposed a
dynamic model based on generative adversarial architecture to learn the state mode of the dexterous
hand, reducing the model’s prediction error in long spans. An adaptive trajectory planning kernel
was also developed to generate High-Value Area Trajectory (HVAT) data according to the control
task and dynamic model, with adaptive trajectory adjustment achieved by changing the Levenberg–
Marquardt (LM) coefficient and the linear searching coefficient. Furthermore, an improved Soft
Actor–Critic (SAC) algorithm is designed by combining maximum entropy value iteration and HVAT
value iteration. An experimental platform and simulation program were built to verify the proposed
method with two manipulating tasks. The experimental results indicate that the proposed dexterous
hand reinforcement learning algorithm has better training efficiency and requires fewer training
samples to achieve quite satisfactory learning and control performance.

Keywords: adaptive trajectory planning kernel; dynamic model; reinforcement learning; generative
adversarial architecture

1. Introduction

Dexterous hands are considered to be the most complex and diverse end effector
for robots. Compared to other end effectors, dexterous hands have more flexibility in
grasping objects [1], especially irregular objects. However, performing excellent grasping
and manipulation with dexterous hands remains a grand challenge.

Excellent grasping performance relies highly on interaction with the environment,
where reinforcement learning algorithms have been applied for decades to solved countless
sequential challenging problems [2]. In particular, deep reinforcement learning (DRL), a
combination of reinforcement learning and deep neural networks, has achieved fruitful
results in the field of deep learning [3,4] for robotics, such as robotic dogs, unmanned
vehicles and humanoid robots [5]. High-level, domain-specific knowledge for robotic
planning could be learned automatically. Moreover, the computational framework for
robotic tasks and automation have been developed to facilitate the study and development
of manipulation skills for robotic hand.

Transferring difficulties in robotics to reinforcement learning [6] has enabled robots
to address previously intractable problems [7], and DRL has provided a powerful means
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of representing complex policies in high-dimensional environments [8,9]. A consider-
able number of scholars have reported their achievements in applications on real-world
robots. For example, Tsurumine proposed a deep reinforcement learning network that
combines the nature of smooth policy to enhance stability and efficiency for robotic cloth
manipulation [10]. A path integration reinforcement learning algorithm was proposed to
solve the control problem of tendon-wired robotic actuators without modeling the dex-
terous hand or environment, inspired by the human brain’s muscle synergy to obtain
planning and control [11]. However, reinforcement learning in real-world robots is very
time-consuming [12]. For instance, a model-free reinforcement learning algorithm applied
to a three-finger dexterous hand system took seven hours of training time to complete
various control tasks in the real world [13]. This slow training efficiency remains a stum-
bling obstacle to real-time robotic control. To accelerate the training speed, researchers
have proposed various techniques. For example, a hierarchical planning method was
proposed to achieve the movement of turning small balls by learning the best strategies for
different levels in a decoupled manner [14]. Q-learning was applied to high-level discrete
motions, and an improved path integration strategy was used to learn Dynamic Movement
Primitives (DMPs) for low-level control. Adding a small amount of artificial demonstration
data was found to be effective. In order to improve the efficiency of data use, a DPG-R
algorithm was proposed based on the DDPG algorithm and Q-Learning algorithm. The
efficiency of learning data samples was improved by separating the update frequency
of the network from the environment [15]. Kumar designed a non-grasping five-finger
dexterous hand by learning the local linear time-varying model of the dexterous hand and
building a local trajectory planning controller for the model [16]. These controllers were
first initialized with manual demonstration data. Moreover, the control strategy could be
learned only through tactile and dexterous hand proprioceptive feedback without relying
on the visual feedback of the object. Nagabandi proposed planning with a deep dynamics
model (PDDM), a model-based reinforcement learning algorithm [17]. In contrast to the
local linear time-varying model, deep neural networks were used to learn a global model
of the system, and the learned model was used to plan motion based on the cross-entropy
method (CEM). The algorithm was applied to control the multi-fingered dexterous hand
to perform multiple tasks [18,19]. Andrychowicz from the OpenAI company proposed
a technique that uses domain randomization to pre-train dexterous hands in the virtual
world through reinforcement learning. The pre-trained model was then fine-tuned using
transfer learning to operate on a physical robotic hand. To estimate object poses from
visual information, multi-layer convolutional neural networks were commonly used [20].
Proximal policy optimization (PPO) was often employed to train dexterous hands in a
virtual environment using thousands of different parameters [21]. However, one difficulty
with PPO is that it may require a large amount of training data to achieve acceptable results.

To address this issue, Soft Actor–Critic (SAC) was proposed based on the maximum
entropy theory. Compared to algorithms such as Deep Deterministic Policy Gradient
(DDPG), SAC is more efficient in selecting initial network parameters. Additionally, due
to the adoption of maximum entropy, SAC can achieve better control performance for
different random seeds. Therefore, applying the SAC algorithm to the dexterous hand
system to improve data learning efficiency is a promising approach. Overall, in apply-
ing domain randomization, transfer learning, and multi-layer convolutional neural net-
works, SAC can improve the efficiency of dexterous hand learning in both virtual and
real-world environments.

In this paper, a dynamic model of the dexterous hand is proposed based on generative
adversarial architecture to learn the dynamic changing principle of the state of the dexterous
hand. The contributions of this paper are as follows:

• To address the problem of prediction error explosion over long spans, the state of
the dexterous hand is learned through generative adversarial architecture with high
prediction accuracy.
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• An adaptive trajectory planning method is proposed. Moreover, an adaptive trajectory
programming kernel is built to generate High Value Area Trajectory (HVAT) based
on the dexterous dynamic model and object. A smooth distance loss function and a
U-shaped loss function are designed to calculate the loss value of the dexterous hand
system at the reference point.

• A new Actor–Critic-based reinforcement learning algorithm is proposed for the control
of the dexterous hand.

This work enables the dexterous hand to explore high-value areas through a certain ex-
ecution sequence, thereby improving the learning speed and performance of reinforcement
learning algorithms.

2. Methodologies

The hybrid reinforcement learning strategy proposed in this paper is shown in
Figure 1, which mainly consists of the SAC network, physical model of the dexterous
hand and trajectory planning kernel. There are three networks in SAC, including CriticNet,
ValueNet and ActorNet. Firstly, the system state obtained by the sensor in the manipulating
environment is taken as the input of the SAC algorithm to the Actorφ network. Then the
output motion of the dexterous hand is generated by trajectory planning. As the dexterous
hand executes the motion, the environment state is updated and employed to renew Actorφ

to generate the subsequent motion.
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Figure 1. Schematic diagram of the proposed method.

2.1. Generative Adversarial Architecture

In this study, the dexterous manipulation scenario is composed of a robotic hand and
its operating target, which is a rotatable object such as a ball or blade. As shown in Figure 2,
the state of the system includes variables such as the joint angle, joint velocity, joint torque,
fingertip position, fingertip velocity, the position and velocity of the object, etc.

The state vector s = [s0, · · · , sN ]
T and output vector o are established for the kinematics

and dynamics of the dexterous hand:

s′ = f (s, a) (1)

where a is the input of the system.
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Traditionally, the dynamic model of the system is established through analyzing the
dynamic model. In some cases of collision and slide, the dynamic model is hard to establish
accurately. In this paper, a deep neural network is used to learn the dynamic model of
the dexterous hand. The state equation of the dynamic model is able to automatically be
designed. Another advantage is that the DynNN is applied to obtain the changing principle
of the system state. Therefore, when selecting the system state s, it only needs to satisfy
that the state s satisfies the model of the Markov decision, instead of mapping the system
state s into the observed value in traditional control methods.

The dynamic model of the system is obtained through the data-fitting method. More-
over, it can be used for model predictive control. Finally, a dynamic model of the system
can be obtained:

st+1 = f (st, at) ≈ DynNN(st, at) (2)

where DynNN represents a neural network model.
An improved generative adversarial nets (GAN) architecture is proposed for building

dexterous hand dynamic models. The improved generative adversarial architecture consists
of two modules, a generative network module and adversarial network module Discε,
which is represented by the network parameters ϑ and ε, respectively. The structure of
Dynϑ is shown in Figure 3.
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The input of Dynϑ is a two-dimensional vector
[

st
at

]
, composed of the state of the

dexterous hand at t-moment and the input of t-moment system. The output ∆st+1 of Dynϑ
is the difference between the predicted state st+1 of the dexterous hand at t-moment and
the system state st at t-moment.

When predicting the state of the dexterous hand system at the next moment, the
current tensor [st, at]

T first passes through a one-dimensional convolution layer with a
kernel size of 1, stride of 1 and out channels of 16. This convolutional layer is mainly used
to extract the polarity characteristics of each element in [st, at]

T , and the parameters of this
convolutional layer are initialized to a normal distribution with a mean of 0 and variance of
2
√

1/8. The tensor then passes through a linear and ReLu layer of 256 neurons for nonlinear
mapping. Then the tensor continues to pass through a one-dimensional convolutional
layer with a kernel size of 1, stride of 1 and out channels of 16. The parameters of this
convolutional layer are initialized in the same way as those of the above convolutional layer,
and are also used to extract the polar features of each element in the current layer. A basic
microarchitecture of Dynϑ is constructed by adjusting the polarity features of the extracted
tensor and the number of nonlinear mapping levels. Theoretically, the more times the
microarchitecture is reused, the more complex the dynamic model that can be learned by
the Dynϑ model. With the above structure, the final tensor passes through three mapping
layers composed of linear and ReLu layers, and outputs the predicted value ∆st+1.

The adversarial network module Dynϑ structure is shown in Figure 4. The Discε

donates the dexterous hand system state and the predicted dexterous hand system state
by True or False, respectively. If the input Discε of the tensor is a true dexterous hand
state, then the Discε should be 1, or True. On contrary, if the tensor entered by the Discε

is predicted by Dynϑ, the output of the Discε should be 0, or False. In practice, the
Discε outputs a value of [0, 1], and the larger the value, the more likely it is that the
current input state is a real dexterous hand system state. Discε also has the same structure
of one-dimensional convolutional layers and nonlinear mapping as Dynϑ for extracting
polarity features.
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In the dynamic model of a dexterous hand with a training model, the loss function of
Dynϑ is:

LDyn(ϑ) = Est ,at ,st+1∼Bu f f er[χlog(1− Discε(Dynϑ(st, at) + st))
+(1− χ)‖st+1 − st − Dynϑ(st, at)‖]

(3)
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The loss function of Discε is:

LDisc(ε) = −Est ,at∼Bu f f er[log(1− Discε(st)) + log(Discε(Dynϑ(st, at) + st))] (4)

It can be concluded from the Dynϑ network that the loss function consists of two
parts, ‖st+1 − st − Dynϑ(st, at)‖ and log(1− Discε(Dynϑ(st, at) + st)). The former is the
prediction performance of the Dynϑ, which reflects the difference of the real states before
and after the system under motion control input at. The latter can reflect the probability of
the true state in the state of next moment ŝt+1 = Dynϑ(st, at) + st predicted by Discε and
Dynϑ. For the Discε network, the loss function also consists of two parts, respectively, the
log(1− Discε(st)) and log(Discε(Dynϑ(st, at) + st)). The former reflects the real state of
the dexterous hand system for the possibility of True; and the latter reflects by the Dynϑ
prediction of the dexterous hand system status of the next moment ŝt+1 for the possibility
of False. It is used for training Discε by maximizing the loss function.

2.2. Theoretical Analysis of Trajectory Planning Algorithm

For a limited interval t = 0 : N, µ = {a0, a1, . . . , aN−1} represents the control input
sequence. A loss function l(st, at) satisfying concave function is used to calculate the system
loss value at t-moment. The loss function belongs to a part of the control system. The
loss value is calculated according to the target trajectory and the corresponding system
trajectory. Then the cumulative loss value of the system in the interval k = i : N − 1 can be
expressed as:

Ji(s, µ) =
N−1

∑
i

l(sk, ak) + l f (sN) (5)

Afterwards, the optimal control problem can be expressed as finding an optimal
trajectory sequence so that the loss accumulation value is a minimum within t = 0 : N:

µ∗(s) = argmin
µ

J0(s, µ) (6)

where µ∗ represents the optimal motion sequence.
The loss value function V(s, i) = min

µi
Ji(s, µi), represents the cumulative value of

system losses in the optimal motion subsequence µ∗i =
{

a∗i , a∗i+1, . . . , a∗N−1
}

, and it is
worth noting that the size of V(s, i) only depends on the system state s. According to the
memorylessness property, V(s, i) can be obtained:

V(s, i) = min
ai

[l(si, ai) + V(si+1, i + 1)] (7)

It can also be obtained from si+1 = f (si, ai):

V(s, i) = min
ai

[l(si, ai) + V( f (si, ai), i + 1)] (8)

given an initial trajectory τold : {s0, a0, . . . , sT} at t = 0 : N. In order to obtain the optimal
sequence of motion, the control contains two parts, dynamic programming and optimal con-
trol. The method of dynamic programming is backpropagation and forward propagation.

The optimal control under the linear system is discussed below, namely f (st, at) = F
[

st
at

]
.

In nonlinear systems, optimal control is obtained by iteration and local linearization.
Applying backpropagation, the Jacobian matrix and Hessian matrix of value function

can be obtained at t = i:
Vs(i) = Qs −QaQ−1

aa Qas (9)

Vss(i) = Qss −QsaQ−1
aa Qas (10)
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Qt, Kt, kt, Vs(t) and Vss(t) in t = N : 0 can be calculated according to the above
equations, and the expression of the motion increment δat with respect to the state change
δst at each time interval of t = 0 : N is obtained. The motion sequence is applied to the
forward propagation and the motion τnew is updated.

Applying forward propagation, the expressions of Ki and ki at t = i are:

Ki = −Q−1
aa Qas = −

(
laa + f T

a
(
V′ss + µI

)
fa + V′s faa

)−1(
las + f T

a
(
V′ss + µI

)
fs + V′s fas

)
(11)

ki = −Q−1
aa Qa = −

(
laa + f T

a
(
V′ss + µI

)
fa + V′s faa

)−1(
la + f T

a V′s
)

(12)

The detail of the backpropagation and forward propagation are in the
Supplementary Materials. Finally, in the nonlinear system, the optimal control is calcu-
lated by successive iterations, and each iteration includes the above backward propagation
and forward propagation.

2.3. Design of Loss Function

The dexterous hand system is a nonlinear system. In order to enhance the stability
of the controller by reducing the change gradient of the loss function, a smooth distance
function is designed to evaluate the state loss of the dexterous hand system:

ls(s) =
√

e2 + αs2 − αs (13)

where αs represents the smoothness parameter, as shown in Figure 5, and e = s− sgoal
representants the system error. Choosing different loss function αs, the linearity will
be regulated.
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In this paper, αs = 0.2 is adopted, and ls and lss are defined as follows:

ls =
e√

e2 + αs2
(14)

lss =
(

e2 + αs
2
)− 1

2 − e
(

e2 + αs
2
)− 3

2 (15)

For the dexterous hand control input, it is necessary to ensure that the system control
input has a small loss value within the allowable range. Moreover, after exceeding the
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system limit, the system loss value corresponding to the control input increases rapidly. In
this paper, a U-shaped loss function is designed as follows:

la(a) = αa
2
(

cosh
a

αa
− 1
)

(16)

where αa is a U-shaped coefficient.
When the control input is greater than 1 or less than −1, the loss value of the system

feedback is too large. Figure 6 shows the image of the loss function for different αa. In this
paper, αa = 0.3 is adopted. The loss function, la and laa are expressed as:

la = αasinh
a

αa
(17)

laa = cosh
a

αa
(18)Biomimetics 2023, 8, x FOR PEER REVIEW 9 of 21 
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2.4. Kernel Design of Adaptive Trajectory Planning

For nonlinear control systems, in order to obtain the optimal trajectory, there are
three steps, as shown in Figure 7. Firstly, the reference point system model should be
linearized, then the control feedback matrix K and k are obtained by backpropagation. As a
result, the reference trajectory is obtained by forward propagation. An adaptive trajectory
planning algorithm is built. By adjusting the linear search coefficient α and LM coefficient
µ, the deviation can be controlled between the newly generated trajectory and the original
reference trajectory. In the trajectory planning procedure, the existing control strategy is
applied to generate an initial reference trajectory according to the initial system state. Then
the program linearizes the reference points of the system at each moment of the reference
trajectory with respect to Dynϑ to obtain the local linear model, and obtains the Jacobian
matrix and Hessian matrix of the loss function according to Equations (14), (15), (17) and (18).

Backpropagation is applied to calculate Vs(t), Vss(t), Qt, Kt, kt and Vs(N) = ls,
Vss(N) = lss from time t = N: 0. A linear search is carried out. The linear search coefficient
is initialized as α = 1, and the new motion sequence A{a0, a1, . . . , aN−1} [22] is calculated
by Kt, kt to obtain the new trajectory. If the loss value obtained along the new system
trajectory is less than that of the original trajectory, it means that the program accepts
this iteration. However, if the loss value obtained along the trajectory is greater than that
corresponding to the original system trajectory under the current coefficient, the change
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value is reduced by dividing the linear search coefficient α by 1.1. Moreover, the motion
sequence is recalculated and the loss value is compared.
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Then, if the linear search coefficient α has reached the minimum value, the LM
coefficient µ is increased and Kt, kt are recalculated to impose greater constraints on the
deviation from the original trajectory. Afterwards, the linear search link is re-activated.
The process is repeated until a new trajectory is adopted. By adjusting the linear search
coefficient α and LM coefficient µ, the adaptive planning trajectory is generated.

2.5. Improved SAC Algorithm

In this paper, an improved SAC algorithm is proposed to generate the motion of the
dexterous hand, including Valueψ and TargetValueψ(st) networks to evaluate the value
of motions in the current state and Actorφ network. The improved Bellman equation is
obtained by incorporating the entropy of the control policy action distribution under the
current system state s_t.

Q(st, at) := r(st, at) + γEst+1∼p(st+1|st ,at)[V(st+1)] (19)

The data cache DataBuffer has an area for HVAT to store HVAT data generated through
trajectory planning. In addition, this part of the data is generated by trajectory planning in
the fitted dynamic model of the dexterous hand rather than obtained in the actual dexterous
hand environment by the control strategy π. The loss functions of Criticθ and Valueψ under
HVAT are obtained as follows:

JHVAT
Critic (θ) = E(st ,at ,EUCTNt)∼τ_Bu f f er

[
con f t

2
(
Criticθ(st, at)− Q̂(st, at)

)2
]

(20)

where con f t is the confidence value predicted by Dynϑ under st, at, con f = 1
EUCTN

Dynϑ
t

.

EUCTN represents the cognitive uncertainty and can be written as:

EUCTNDynϑ
t ≈ ∑ES

i
(
∆st+1i − ∆st+1

)2

ES
(21)

where ES = 3 is the model number of the ensemble, ∆st+1 is the output of the Dynϑ and
∆st+1 is the average predicted value.
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The loss function of Valueψ can be written as:

JHVAT
Value (ψ) = Est ,at∼HVAT_Bu f f er

[
1
2
(
Valueψ(st)

−
(

1
2
(
Ea′ t∼π [Criticθ(st, a′t)] + Criticθ(st, at)

)
−log π(a′t|st)))

2
] (22)

where at is sampled in the HVAT area. So the evaluation scope of Valueψ includes the
motion distribution space generated by trajectory planning.

At this point, the loss function gradient for Criticθ and Valueψ is defined as:

∇̂θ JHVAT
Critic (θ) = con f t∇θCriticθ(st, at)(Criticθ(st, at)− r(st, at)

−γTargetValue−
ψ
(st+1)

)
(23)

∇̂ψ JHVAT
Value (ψ) = ∇ψValueψ(st)

(
Valueψ(st)

−
(

1
2
(
Ea′ t∼π [Criticθ(st, a′t)] + Criticθ(st, at)

)
−log π(a′t|st)))

(24)

Different from the direct generation of the trajectory by the control strategy, this
method makes the high-value state region updated preferentially in the value iteration;
thus, it indirectly accelerates the learning of the control strategy and avoids the direct
influence of the low-value trajectory on the updating strategy of control.

Iteration of Control Policies

To maximize the entropy of actor–critic, the updating rule for the control policy π is
defined as:

πnew = argmin
φ

DKL

(
π(·|st)‖

exp(Qπold(st, ·))
Zπold(st)

)
(25)

where Zπold(st) is the sum of all exp(Qπold(st, ·)).
Since Critic is used to denote Q, the loss function for πφ can be expressed as follows:

Jπ(φ) = Est∼Bu f f er

[
DKL

(
πφ(st)‖

exp(Criticθ(st, ·))
Zθ(st)

)]
(26)

Meanwhile, Actorφ(εt; st) neural network is applied for reparameterization:

at = Actorφ(εt; st) (27)

where εt is the noise vector sampled from the Gaussian distribution.
Therefore, Equation (24) can be rewritten as:

Jπ(φ) = Est∼Bu f f er,εt∼N
[
log πφ

(
Actorφ(εt; st)

∣∣st
)
− Criticθ

(
st, Actorφ(εt; st)

)]
(28)

It is worth noting that Actorφ identifies a unique control strategy πφ. Its gradient can
be approximated as:

∇̂φ Jπ(φ) = ∇φlog πφ(at|st) +
(
∇at log πφ(at|st)−∇at Criticθ(st, at)

)
∇φ Actorφ(εt; st) (29)

Finally, the parameters of the Actorφ network are updated using gradient descent:

φ← φ− λπ∇̂φ Jπ(φ) (30)

where λπ is the learning rate of the control strategy π.
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3. Experiments
3.1. Model-Fitting Experiments for Dynamic Processes

The dynamic model-fitting experiment of the dexterous hand is performed in a cus-
tomized two-fingered hand simulation environment, as shown in Figure 8.
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The hyperparameters used in this experiment are shown in Tables 1 and 2. The cycle
in the experimental simulation environment is 0.02 s, and the time step used in each
simulation is 500.

Table 1. Parameters of the improved SAC algorithm.

Parameter Symbol Value

Learning rate lr 0.0003
Hidden layer deep 2

Number of monolayer
neurons 256

The entropy coefficient tmp 10
Discount factor γ 0.99

Batch size 256

Table 2. Parameters of the dynamic model of the dexterous hand.

Parameter Symbol Value

Learning rate lr 0.0001
Number of monolayer

neurons 256

Number of polar layers 2
Adversarial coefficient χ 0.4

Weight decay 0.0001

We designed two types of prediction errors as performance indexes for the dynamic
model of the dexterous hand based on the number of predicted steps; that is, short-span
and long-span prediction errors. These indexes are used to analyze the variation principle
of prediction errors and the phenomenon of error explosion with an increase in learning
times. To do so, we initialized the dexterous hand system status and used the same control
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strategy for both types of prediction errors. The short-span prediction error is calculated
based on the dynamic model and is obtained by predicting the state change of the dexterous
hand system according to the reference trajectory in the next moment. The calculation for
the short-span prediction error is:

δ = mean

(
Est ,at∼τ

[
T−1

∑
i=0
|si+1 − ŝi+1|

])
(31)

where ŝi+1 = si − Dynϑ(si, ai).
The long-span prediction error is used to predict the complete state trajectory of the

dexterous hand system based on its initial state and motion sequence, and the prediction
error is calculated by comparing it with the reference state trajectory. Unlike the short-span
prediction error, the long-span prediction error can better reflect the model’s ability to learn
the overall trend of the system state. The calculation for the long-span prediction error is:

δ = mean

(
Es0,(st ,at)∼τ

[
T−1

∑
i=0
|si+1 − ŝi+1|

])
(32)

ŝi+1 = si + Dynϑ(ŝi, ai)
ŝi = ŝi−1 + Dynϑ(ŝi−1, ai−1)
ŝ0 = s0

(33)

Then, the fixed state of the transfer dataset was utilized to train the dynamic model
of the dexterous hand. Initially, the SAC algorithm was employed to generate motion
sequence, and the control strategy was updated according to the control task to obtain the
system state transfer dataset, which includes 10,000 system state transfer tuples. The dataset
was then used to train the two models the same number of times. After each training, the
prediction performance was tested five times, and the average value was computed to
obtain the model’s prediction error. Moreover, after each training, the dynamic model’s two
different span prediction errors, with and without the generative adversarial architecture,
were recorded, and the error trend chart was obtained, as shown in Figure 9. In the figure,
the horizontal direction represents an increase in the predicted time, the vertical direction
represents the state size of the dexterous hand system and the red curve represents the real
system state, while the blue curve represents the system state predicted by the dynamic
model.

Figure 9a illustrates the trend of short- and long-span prediction errors in the dynamic
model with increasing training times. The red curve indicates that the generative adver-
sarial architecture was adopted, while the blue curve indicates that the architecture was
not adopted. The smaller the value in the figure, the higher the prediction accuracy. The
lower part of the figure is divided into four subgraphs, respectively, based on the dynamic
model of generative adversarial architecture in training, to reach 50(I), 100(II), 150(III),
200 times(IV) of full long-span prediction, forecasting the state change curve and the true
state graph.

As can be seen in Figure 9, with the increase in the number of dynamic model trainings,
the overall prediction accuracy of the model for the state change of the environment
was gradually improved. The model without the generative adversarial architecture
was gradually stabilized after 120 trainings on the short-span prediction error, which is
slightly better than that using the generative adversarial architecture mode. The short-span
prediction error using the generative adversarial architecture model shows an upward
trend at the initial stage of training, and eventually falls back to a smaller value, which is
due to the fact that the generative adversarial architecture was used for training. Because
the loss function of Dynϑ in Equation (3) contains adversarial loss items, the error value in
the graph experienced an upward and then a downward trend during the training progress.
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Regarding long-span prediction performance, the use of the generative adversarial
architecture significantly reduced the prediction error compared to the model without the
architecture. The prediction error of the former eventually stabilized at the same order of
magnitude as the short-span prediction error, while the latter exhibits the phenomenon of
error explosion. These results demonstrate that the dynamic model using the generative
adversarial architecture can capture the overall trend of the system state change without sig-
nificant loss in short-span prediction performance. Thus, when the control strategy remains
unchanged, the prediction performance of the model for long spans can be significantly
improved, thereby enhancing the model’s overall prediction accuracy.

3.2. Adaptive Trajectory Planning Experiments of the Dexterous Hand

In order to verify the performance of the trajectory planning kernel, experiments
with the dexterous hand were conducted. The experimental hyperparameters are listed in
Table 3:
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Table 3. Kernel hyperparameters of adaptive trajectory planning.

Parameter Symbol Value

Initial LM coefficient µ0 0.1
Maximum LM coefficient MAXµ 10

Gain coefficient ∆∗ 1.2
Initial gain coefficient ∆0 1.5
Maximum number of

iterations 20

Predicted steps to control 15

In order to reduce the computational complexity, the nimble fingers space was selected
as an important condition. A total of 100 rounds of dexterous hands’ state transfer data
were collected firstly, with a total number of 100 steps for each round. Then, the dynamic
model was fitted. Moreover, the dynamic model and the trajectory planning kernel were
used for model predictive control. Then, 10 steps were predicted forward at each time, and
the spatial coordinates of the fingertips of dexterous hands were randomly generated as
target positions for trajectory planning experiments.

Figure 10 shows the fingertip trajectory of the dexterous hand under a total of
400 times of dynamic model training and under different training times with the dy-
namic model, where green and red represent finger 1 and finger 2, respectively, the dot
represents the initial coordinate of the fingertip, the asterisk is the target coordinate of the
fingertip and the curve is the actual trajectory of the corresponding fingertip. Figure 9
selected the dynamic model under different training times using adaptive kernel trajectory
planning; in the fingertip trajectory graph, we can see that with the increase in dynamic
model training, at the same time and steps, the tip of the finger position with respect to the
target movement shows a trend of gradually ascending, and the trajectory planning effect
also was improved.
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According to the experiment, in the early stage of the dynamic model training, due
to the large cognitive deviation of the model in the state change of the environment, the
dynamic model error occurred in the fingertip trajectory planning near the start point,
which led the trajectory planning into local minimum, wrong direction and other problems,
resulting in the fingertip’s mismatch with the desired position. Although the method of
model predictive control can reduce the trajectory error caused by the dynamic model to a
certain extent, the performance of the dynamic model had a major impact on the trajectory
planning within a certain number of control steps. In the later stages of dynamic model
training, a high-value fingertip trajectory, namely HVAT data, could be obtained through
adaptive trajectory planning due to the improved accuracy of the model.

3.3. Controlling Experiments of the Dexterous Hand

The HVAT data are obtained via the above method and the dexterous hand control
experiment was carried out by combining the SAC algorithm. The pseudo-code of the
specific algorithm in the experiment is shown in Table 4.

Table 4. Reinforcement learning algorithm for dexterous hand manipulation.

01: Initialize these network parameters and DataBuffer, such as Dynϑ, Discε, Actorφ,
Criticθ, Valueψ
02: Collect transfer data for the initial system state −→ DataBuffer
03: Each episode executes in the iteration loop
04: Sample control targets randomly
05: The number of steps at each time t is executed in the iteration loop
06: Obtain (st, at, st+1, rt) −→ DataBuffer, with the Actorφ sampling motion
07: Policy updates in the iteration loop
08: Sample batch data from DataBuffer
09: Update the network parameters of Criticθ, Valueψ, Actorφ, TargetValue−

ψ
(st)

10: Dynamic model updates in the iteration loop:
11: Sample batch data from DataBuffer
12: Update Dynϑ and Discε
13: The HVAT sample is taken from the iteration loop
14: Sample the initial data from DataBuffer
15: The optimal trajectory planning is carried out to generate HVAT data −→ DataBuffer

The experimental platform is shown in Figure 11, which includes a two-fingered hand
and its sensing and controlling units, a camera and the ROS program.
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The experimental results of fingertip controlling are shown in Figure 12, in which
the algorithm proposed in this paper (the green one) is compared with the model-free
reinforcement learning algorithms SAC [22], PPO [23], DDPG [24], Policy Gradient [24–26]
and Actor–Critic [25]. A total of 250 sets of training, which contain 5000 simulation time
units, are adopted. From Figure 12, it can be concluded that the exploration ability of
the model-free reinforcement learning algorithm is improved. By applying the maximum
entropy control strategy, the experimental curve can achieve the maximum reward in the
shortest time. Therefore, the overall learning speed of the algorithm is faster than that of
the others.
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For the task of rotating the pointer, the proposed control algorithm achieved the
expected motion to a specified angle locally on the experimental platform by learning
the relationship between the dexterous hand movements and the state changes of the
pointer. Figure 13 shows the captured image by the camera of the experimental platform
during the experiment, in which the blue numbers at the top of the image represent the
randomly generated desired angle and the white numbers represent the current angle of
the pointer. It can be seen from the photos that the dexterous hand can change the angle of
the pointer by touching it. Figure 14 shows the curve of the angle changes of the pointer in
this experiment.

Meanwhile, comparative experiments were conducted on different reinforcement
learning algorithms for the same experimental environment, as shown in Table 5, which
indicates the number of sample collection times required by different algorithms to achieve
the same reward value. Compared with the others, it can be found that the control algorithm
proposed in this paper requires fewer data samples to achieve the same control effect; i.e.,
the average reward value is in the same range in each round of the control experiment. It
should be noted that the reward size of each round is related to the duration of the control
steps. The control time steps of each round are set to be 5000.

The experimental results once again proved that the model-based reinforcement
learning algorithm proposed in this paper for dexterous hand control can significantly
improve the efficiency of training and enhance the learning speed compared to other
model-free reinforcement learning algorithms.
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Table 5. Comparison of training sample efficiency of different algorithms.

Methodology Reward-10,000 Reward-8000 Reward-6000 Reward-4000

Ours 6 10 20 25
SAC 7 12 21 30
PPO 135 151 162 N.A.

DDPG 7 18 63 N.A.

4. Conclusions

Controlling both dexterous hand motion and in-hand manipulation in an unstructured
environment with multiple tasks remains a great challenge. To address this issue, one
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feasible solution is to allow dexterous hands to interact with the environment and learn to
achieve control goals through interaction, similar to that of humans.

In this paper, we proposed a dynamic model of dexterous hands based on generative
adversarial architecture, which is capable of learning the dynamic change principle of the
dexterous hand system state. To solve the problem of prediction error explosion over long
spans, the generative adversarial architecture was employed to learn the entire change rule
of the dexterous hand system state while maintaining local prediction accuracy. Then, an
iterative optimal control theory of trajectory planning was proposed. An adaptive trajectory
planning kernel was built based on this theory to generate the HVAT trajectory according to
the dynamic model of the dexterous hand. The kernel can adjust the linear search coefficient
α and LM coefficient µ to constrain the change of trajectory, so as to achieve the purpose of
self-adaptation. Subsequently, a U-shaped loss function was designed to calculate the loss
value of the dexterous hand system at the reference point. Finally, the SAC algorithm was
improved and a new Actor–Critic-based reinforcement learning algorithm was proposed
for the end-to-end control of dexterous hands, including two critic networks for evaluating
the value of motions in the current state. A Valueψ and TargetValue−

ψ
(st) network was

used to assess the value of the current state, and an Actorφ network was used to generate
motions. For random data in the cache, the algorithm adopts the update strategy of the
maximum entropy framework, while for HVAT data in the cache, the algorithm adopted
the hybrid update strategy.

The proposed algorithm can be used to enable dexterous hands to explore in high-
value areas through a certain execution sequence, thereby improving the learning speed
and performance of reinforcement learning algorithms. The dexterous hand was en-
abled to explore high-value areas through a specific execution sequence, thereby im-
proving learning speed and performance. The above contributions provide a robust
framework for end-to-end control of dexterous hands in unstructured environments with
multitasking capabilities.
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