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Abstract: About 8% of the Ecuadorian population suffers some type of amputation of upper or lower
limbs. Due to the high cost of a prosthesis and the fact that the salary of an average worker in the
country reached 248 USD in August 2021, they experience a great labor disadvantage and only 17%
of them are employed. Thanks to advances in 3D printing and the accessibility of bioelectric sensors,
it is now possible to create economically accessible proposals. This work proposes the design of a
hand prosthesis that uses electromyography (EMG) signals and neural networks for real-time control.
The integrated system has a mechanical and electronic design, and the latter integrates artificial
intelligence for control. To train the algorithm, an experimental methodology was developed to
record muscle activity in upper extremities associated with specific tasks, using three EMG surface
sensors. These data were used to train a five-layer neural network. the trained model was compressed
and exported using TensorflowLite. The prosthesis consisted of a gripper and a pivot base, which
were designed in Fusion 360 considering the movement restrictions and the maximum loads. It was
actuated in real time thanks to the design of an electronic circuit that used an ESP32 development
board, which was responsible for recording, processing and classifying the EMG signals associated
with a motor intention, and to actuate the hand prosthesis. As a result of this work, a database with
60 electromyographic activity records from three tasks was released. The classification algorithm was
able to detect the three muscle tasks with an accuracy of 78.67% and a response time of 80 ms. Finally,
the 3D printed prosthesis was able to support a weight of 500 g with a safety factor equal to 15.

Keywords: bionic hand; electromyography; artificial intelligence; real-time classification; neural
network

1. Introduction

The development of prostheses is necessary to improve the quality of life of people
who have lost limbs. These artificial devices play a crucial role in replacing missing
parts of the body, allowing for the restoration of functionality, mobility, and autonomy of
affected individuals [1–3]. Additionally, prosthesis provide long-term health benefits, drive
technological advancements, and enable adaptation. Continuous research and development
in this field are fundamental to further improving the lives of those who depend on
these devices.

The hand is one of the most developed organs of the body. It allows humans to interact
with their environment through complex movements due to the considerable number of
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degrees of freedom in its structure (27 in total: four in each finger, five in the thumb and
six in the wrist). In addition, it is a fundamental part of physical and social interactions.
The upper extremities depend on the hand, so losing one implies a reduction in autonomy,
limitations in the development of work and daily activities, and a drastic change in the
lifestyle of people [4].

In Ecuador, more than 8% of the population has some need in their upper and/or lower
limbs. The cost of a prosthesis, which is around 8000 USD, is excessively high compared to
the income of the average Ecuadorian, which, according to Encuesta Nacional de Empleo,
Desempleo y Subempleo (Enemdu), reached 248 USD in August 2021 [5]. In addition, of
the people with physical disabilities, only 17% are employed and most of them are in
vulnerable economic situations. Despite several initiatives dedicated to the design and
manufacture of prostheses, the needs of existing patients have not been met. The “Las
Manuelas” mission, founded in 2007, acquired machinery in 2012 to produce 300 prostheses
per month. Until 2019, the prostheses produced did not exceed 10% of the target.

Considering the aforementioned information, it is vital to develop systems that can
adjust and optimize gripping patterns and gripping capacity [1] and hand movements
according to the needs and preferences of each individual. This will allow for greater
customization and comfort in the use of prostheses. Bionic hands, powered by electromyo-
graphic (EMG) signals, can interpret and translate the electrical signals generated by
residual muscles into precise commands for finger and hand movement [6]. This provides
a higher degree of control and a more natural experience when using the prosthesis.

Furthermore, advances in artificial intelligence (AI) have played a crucial role in
the design and creation of bionic hands capable of interpreting EMG signals for precise
movement control. These techniques use machine learning algorithms, artificial neural
networks (ANNs), and computer vision techniques to process EMG signals and enhance
prostheses [3], which play a key role in the design of bionic hands [7]. AI has also improved
the bionic hands’ ability to learn and adapt as they interact with the environment. By
collecting and analyzing real-time data, bionic hands can adjust their movements and grip
strength more precisely and efficiently. These advancements have allowed bionic hands to
provide better and more sophisticated functionality.

Several studies have focused on the design and manufacture of hand prosthetics that
utilize EMG signals and AI for real-time control. For example, Amsüss et al. [8] propose a
pattern recognition system for surface EMG signals to control upper limb prosthetics using
a trained ANN. Other researchers [9] present a study based on EMG signals acquired from
muscles and motion detection through a Human–Machine Interface, designing an upper
limb prosthesis using an AI-based controller. In another work [10], hardware design for
hand gesture recognition using EMG is developed and implemented on a Zynq platform,
processing the acquired EMG signals with an eight-channel Myo sensor. Furthermore,
in [11], various methods are applied to detect and classify muscle activities using sEMG
signals, with ANNs showing the highest accuracy in recognizing movements among and
within subjects. Additionally, in [12], a woven band sensor is manufactured for myoelectric
control of prosthetic hands based on single-channel sEMG signals.

The use of artificial intelligence techniques, especially ANNs, has revolutionized the
design of bionic hands by allowing control through EMG signals, providing a higher degree
of control, functionality, and adaptability. These advancements have had a significant
impact on the quality of life of people with amputations or disabilities in their upper limbs.
However, despite the progress and promising applications of artificial intelligence in EMG
signal processing and other fields, there are still challenges and considerations that need
to be addressed. In this regard, this work proposes the design and manufacture of an
accessible hand prosthesis powered by EMG signals and controlled by an online neural
network. The system demonstrates accuracy in classification and load capacity.

The rest of this manuscript is structured as follows: Section 2 presents some notable
related works and provides general information on the types of prosthesis, techniques,
and EMG signals and their applications using artificial intelligence. Section 3 describes the
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system design, the mechanical and control circuit design, data acquisition and analysis,
and system integration for controlling a bionic hand. Section 4 gathers the experimental
results and presents the discussion. Finally, Section 5 presents the conclusions of this study
and states the future work.

2. Background and Related Works

This section provides a background and a review of the works related to the main
topics addressed in the research.

2.1. Types of Prostheses

Upper limb prostheses can be classified into two types according to their functionality.

2.1.1. Passive Prostheses

Passive prostheses can be classified into cosmetic or functional prostheses. The cos-
metic ones, as seen in Figure 1, are intended to be an aesthetic replacement, simulating
the patient’s missing limb section as best as possible [13]; while the functional ones, are
intended to assist the subject in very specific activities, which limits the user’s capabilities.

Figure 1. Passive prosthesis [14].

2.1.2. Active Prostheses

Active prostheses, as seen in Figure 2a, have mobile joints and can be activated by
two types of systems: mechanical actuation and external power supply [4]. Mechanical
actuation involves the use of cables and harnesses connected to the available upper limb
parts as well as other torso muscles to open, close, or move the prosthesis. The functionality
achieved with this method is limited to simple grips and support, with the disadvantage
that it requires a considerable amount of effort from the user, fatiguing him or her. On
the other hand, externally powered prostheses use batteries to obtain the energy required
for movement, as shown in Figure 2b. Additionally, in this type of prosthesis, both the
mechanisms that make up the hand and the motion control system are considerably more
complex, involving microprocessors and sensors that detect electromyographic signals
from the user [15].

Figure 2. Types of prostheses: (a) Active mechanical prosthesis [16] (b) Electronic active prosthesis [17].
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2.2. Electromyography

Electromyography or EMG is the discipline that deals with the collection and analysis
of electrical signals present during muscle contraction [18]. Ideally, the movement of a joint
is by voluntary control of the individual and is achieved by motor neurons. This begins in
the upper motor neurons found in the cerebral cortex [19]. These send an ionic flux to the
lower motor neurons, which start in the spinal cord [19] and are responsible for sending the
signal across the membranes of the muscle fibers in question [18]. This generated current is
usually in the range of 0 to 10 mV [20].

EMG signals can be used to detect a range of neuromotor diseases, such as muscle
atrophy or weakness, chronic denervation, muscle twitching, among others. In turn, they
can be used for the voluntary control of robots, computers, machines, and prostheses [21].
In addition, the amplitude of the sEMG signal can be used to examine the timing of
muscle activity and the relative intensity or interaction between actively engaged muscles
simultaneously [22].

2.2.1. Noise in EMG Signals

EMG signals present certain vulnerabilities, as they travel through different tissues
and are affected by various types of noise.

• Inherent noise: Measuring instruments, being electronic equipment, can introduce
noise due to their very nature [18]. This can be eliminated with high quality instru-
ments [20].

• Environmental noise: Any electromagnetic device can generate signal noise. In turn,
the human body itself contains electromagnetic radiation.

• Movement: When there is any kind of movement, the electrodes—both their pads
(which make contact with the skin) and their wires—may add noise to the signals.

• Inherent signal instability: The anatomical and physiological properties of muscles
are a type of noise that is impossible to avoid [18]. For this reason, it is important to
clean up the noise at a processing stage [20].

2.2.2. EMG Techniques

EMG signals are recorded by means of electrodes, which record their speed and
amplitude. For this purpose, there are two types of techniques [23,24].

Invasive techniques, as shown in Figure 3b, require the introduction of electrodes to
make contact with the inner musculature in order to record minimal current flows.

Advantages: By having electrodes that make direct contact with the muscle membrane,
more precise signals are obtained.

Disadvantages: The complexity of the procedure, the discomfort it implies for the user,
the requirement of a professional to carry out the process, and the care required to perform
any movement. Therefore, oriented to a daily life application, several factors prevent a
comfortable integration between the individual and the prosthesis.

On the other hand, non-invasive or surface techniques, as shown in figure Figure 3a,
use surface electrodes placed on the skin.

Advantages: It provides much more comfort and freedom to the user, since it does not
represent any significant risk in case any pad becomes detached or any electrode becomes
disconnected.

Disadvantages: They are vulnerable to more sources of noise, such as skin impurities.
At the same time, the electrode pads can easily wear out within a few hours.
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Figure 3. EMG techniques (a) Surface EMG technique [25] (b) Invasive EMG technique [26].

2.2.3. Sampling Frequency

These signals contain relevant information in the 50–150 Hz range. However, some
research corroborates the use of higher sampling frequencies to obtain better results [27].
Using a high-pass filter with a cutoff frequency of 120 Hz allows for the elimination of
electrical line noise, among others [28].

2.3. Anatomy of the Hand

The human hand is made up of four fingers and a thumb. Each finger is composed of
four bones. The three segments that protrude from the palm are called phalanges: distal,
middle and proximal from the tip to the base of the finger respectively. The fourth bone
of each finger is called the metacarpus, these connect each group of phalanges to a group
of bones called carpals located at the base of the palm. The carpals allow the wrist to
rotate and move using the radius and ulna as a pivot [29]. This structure gives the hand
27 degrees of freedom: four in each finger, five in the thumb, and six in the wrist. Generally,
prosthesis manufacturers limit movement to considerably fewer degrees of freedom due to
power, space, weight, and control considerations.

2.4. Grip Types

Gripping an object involves grasping or holding it between two surfaces of the hand.
While the ways in which objects of different shapes and sizes can be grasped are extremely
diverse, there is a general system by which grasping can be classified according to the
muscular function required to perform and maintain them [30].

Under the previously mentioned system, the grip can be classified as either a power
grip or a precision grip. The power grip usually results in flexion of all finger joints. It may
include the thumb to stabilize the object to be grasped, which is held between the fingers
and the palm. On the other hand, the precision grip positions an object between one or
more fingers and the thumb without involving the palm.

2.5. Artificial Intelligence

Artificial intelligence (AI) is the scientific field dedicated to developing intelligent
systems that can operate autonomously with minimal human intervention [31]. With the
advancements in EMG signal recording techniques and the rapid increase in computational
power worldwide, the utilization of AI in processing biological signals is experiencing
significant growth [32,33]. Moreover, significant progress has been made in the develop-
ment of applications for engineering, technology, and medicine, mainly aimed at creating
novel solutions that enable innovation and early detection of diseases [34–37]. Additionally,
AI algorithms have been successfully employed in hand gesture recognition [38,39] and
pattern recognition in EMG signals for the control of robotic prostheses [40].
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While artificial intelligence offers significant potential in EMG signal processing and
various domains, addressing challenges related to dataset availability, interpretability, and
ethical considerations remains crucial for the responsible and effective use of AI in these
applications. It is important to note that in critical applications such as medical diagnostics,
transparent and interpretable AI models are essential to build confidence and ensure the
reliability of the results.

Within the concept of AI, there is Machine Learning (ML) and, within this, there is
Deep Learning (DL).

2.5.1. Machine Learning

Machine learning is based on using algorithms based on mathematics and statistics
that are capable of finding patterns in a given set of data [31,41].

There are three types of ML: the first is supervised learning, which requires the use
of labeled data in order to extract patterns and associate them to their respective label.
Classification and regression are two types of supervised learning, in which the discrete
and continuous variables are predicted, respectively.

Unsupervised learning: It does not require labeled data, but rather consists of re-
structuring the input data and grouping them into subsets of data containing similar
characteristics. Clustering and association are two types of unsupervised learning.

Reinforcement learning consists of rewarding or punishing an agent for performing
on a certain way within an environment. The agent explores the environment, interacts
with it, and learns from the feedback provided.

2.5.2. Deep Learning

Deep learning is based on artificial neural networks, which try to simulate the bio-
logical behavior of the human brain. They learn from large amounts of data, which are
processed by a set of neurons, to finally yield predictions [31].

2.5.3. Tensorflow Lite

There are several libraries designed for the development of AI models, such as Pytorch,
Keras, Tensorflow, etc. However, it was necessary to select a library that would allow
the model to be easily deployed on the selected microcontroller (see Section 3.2.3). For
this reason, Tensorflow Lite was considered as the best option, since it is specifically
designed to deploy pre-trained neural networks on microcontrollers [42]. It has a set of
tools developed for the deployment of machine learning models in embedded systems.
Among the advantages [43] are

• Latency: no need to access a server; the inference is made on device.
• Connectivity: no internet connection is needed, so it can be used in remote sites.
• Privacy: there is no data exchange, preventing the system from being prone to attacks.
• Size: the models are compressed and their size is reduced.

2.6. Design Specifications

The average weight of a hand is 400 g or 0.6 percent of total body weight for men
and 0.5 percent for women. However, existing prostheses of similar weight are considered
too heavy by users. In a comparative study of myoelectric prostheses, a range of 350 g to
615 g was observed for commercial prostheses and 350 g to 2200 g for research prototypes.
However, this range does not represent consistent comparisons because in some cases
researchers include the actuation and control system in the total weight, while others
consider only the weight of the structure that makes up the hand. While there is no
maximum weight specification for prostheses, the consensus is that weight should be
minimized, with some groups of researchers defining a limit of up to 500 g [44].

The opening distance of commercial prostheses ranges from 35 to 102 degrees with an
average closing speed of 78.2 degrees/s. The average grip force is 7.97 N with a maximum
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of 16.1 N and a minimum of 3 N. Additionally, the flexibility of the finger mechanism in
the bending direction is an important factor in avoiding breakage. [44].

2.7. Mechanisms

The main mechanisms are separated into central and individual actuation systems.
Central systems actuate all five fingers simultaneously with a single actuator, while indi-
vidual systems dedicate one actuator to each finger and, in some cases, two actuators for
thumb rotation and flexion–extension.

Fingers usually include a proximal joint similar to the metacarpophalangeal joint and
a distal joint that encompasses the function of the distal interphalangeal and proximal
interphalangeal joints. This type of mechanism can be seen in the Vincent, iLimb, and
Bebionic prostheses in the Figure 4. Other variants consist of a single segment as a finger
with a metacarpophalangeal joint as can be seen in the Michelangelo prosthesis in Figure 4
and in the SensorHand Speed prosthesis shown in Figure 5.

Figure 4. From left to right: mechanisms of the Vincent, iLimb, Bebionic and Michelangelo prostheses [44].

Regardless of the number of joints, the links forming the fingers have a fixed motion
relative to each other rather than each joint acting independently. This allows flexion–
extension to be achieved by employing various four-bar mechanisms as can be seen in
Figure 4. Alternatives for flexion–extension include: ropes as tendons; a set of fingers
connected by a link to form a gripper actuated by a single motor as shown in the Figure 5;
and a combination of ropes for flexion and springs for extension as seen in the Figure 6.

Figure 5. Ottobock’s sensorhand speed [45].
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Figure 6. OLYMPIC research prototype [46].

2.8. Sensors

Pancholi and Agarwal [47] developed a low-cost EMG system for arm activity recogni-
tion (AAR) acquisition. They found that about 80% of EMG signals were captured efficiently
and the overall accuracy for AAR was about 79%. EMG data can be collected from various
upper extremity actions, namely HO (open hand), HC (closed hand), WE (wrist extension),
WF (wrist flexion), SG (soft grip), MG (medium grip), and HG (hard grip).

2.9. Preprocessing

It is important to note that despite the challenges and ongoing research in the field of
preprocessing EMG signals, significant progress has been made. Researchers have been
able to develop techniques and methodologies to mitigate the effects of noise and improve
the quality of acquired signals. Reaz et al. [20] not only identified obstacles in EMG signal
acquisition but also proposed methods for detecting and classifying these signals. Their
work provides valuable insights into the preprocessing techniques that can be employed to
enhance the reliability and accuracy of EMG data analysis. Similarly, other authors [48]
conducted a comparative analysis of different configurations for acquiring hand motion
EMG signals, achieving a considerable acquisition efficiency of 54%. This demonstrates
the effectiveness of their preprocessing approaches in optimizing the signal acquisition
process. Furthermore, Fang et al. [49] highlighted the challenges associated with pattern
recognition and classification of EMG signals, including issues related to data quality and
interpretation. Their research sheds light on the complexities involved in preprocessing
EMG data and emphasizes the need for further advancements in this area. In summary,
while there are challenges to be addressed in preprocessing EMG signals, researchers have
made significant strides in developing techniques and methodologies to overcome these
obstacles. Continued research and development in this field are crucial for advancing the
accuracy and reliability of EMG signal processing and analysis.

2.10. Feature Extraction and Classification

It is worth noting that the selection and utilization of feature extraction and clas-
sification techniques for EMG signals depend on various factors, including the specific
application, the complexity of the task, and the available computational resources.

While artificial neural networks have shown promising results in EMG signal classifi-
cation [21,50], other machine learning algorithms, such as Support Vector Machine [51,52],
K Nearest Neighbors [53,54], and Multilayer Perceptron [55], have also been successfully
employed in this domain [56]. The choice of algorithm often depends on the specific
requirements and characteristics of the classification task.

In addition, the emergence of deep learning approaches has facilitated more complex
and automated analysis of EMG signals [32,57,58]. These deep neural networks can lever-
age the hierarchical representation learning capabilities to extract discriminative features
directly from the raw EMG data, thereby simplifying the preprocessing stage.
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However, regardless of the chosen technique, it is crucial to ensure the quality of the
EMG signals. This involves employing appropriate signal cleaning and filtering techniques
to remove noise and remove any external disturbances that could interfere with accurate
classification [20].

The use of artificial neural networks, along with other machine learning algorithms
and deep learning approaches, has achieved excellent results and proven to be effective
in the classification of EMG signals. The selection of techniques should be adapted to the
specific requirements of the task. Additionally, signal quality and preprocessing steps play
a vital role in obtaining reliable and accurate results.

2.11. Actuators

Due to space, weight, and energy consumption restrictions, motors are limited to small
DC models with high gear reductions.

The prosthesis approach determines the number of actuators included in the prosthesis.
Highly functional prostheses are designed with only one or two actuators connected
to a transmission system that allows them to assume the main grasping positions with
considerable force. On the other hand, anatomically correct prostheses have reduced grip
force but are able to mimic a greater number of natural gestures and perform tasks that
require greater precision [44].

Additionally, the number of actuators considerably influences the weight of the pros-
thesis. To counteract this, they are commonly placed on the fingers near the metacarpopha-
langeal joint or in the center of the palm depending on the choice of main mechanism,
as close as possible to each other and other components of considerable weight since the
weight distribution influences the weight perceived by the user [44].

3. System Design
3.1. Mechanical Design

The mechanical design steps are detailed below, starting with the design of the prosthetic
fingers whose dimensions are used as the basis for establishing other system parameters.

3.1.1. Finger Design

In order to ensure ideal positions for gripping, the angles between the sections repre-
senting the distal, medial, and proximal phalanges of the fingers were defined according to
Table 1. These are based on the angular difference established for abduction and adduction
at the metacarpophalangeal joint [59] and the angle in functional position established for
the proximal and distal interphalangeal joint [30]. Additionally, an empirical analysis of
the angles between the phalanges observed in the Variplus Speed prosthesis model offered
by Ottobock, which resembles the information collected, is presented in Figure 7.

Table 1. Interphalangeal angles.

Finger Proximal Phalanx Medial Phalanx Distal Phalanx

Thumb 30◦ 35◦ 5◦

Index/Middle 70◦ 30◦ 5◦

The length of the phalanges was established proportionally to comply with the em-
pirically determined length of the corresponding fingers: 85 mm for the index finger and
60 mm for the thumb. To simplify the design, the index and middle fingers were set to be
the same length; only the medial and distal phalanges of the thumb were modeled since
they are the ones that protrude from the palm and participate in the grip. Table 2 shows
the established dimensions.
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Figure 7. Empirical analysis of interphalangeal angles.

Table 2. Phalanx length.

Finger Proximal Phalanx
Length [mm]

Medial Phalanx
Length [mm]

Distal Phalanx
Length [mm]

Thumb - 35 25
Index/Middle 40 25 20

3.1.2. Flexion–Extension Mechanism Synthesis

The flexion–extension mechanism was designed using the two-position synthesis
method since the abduction and adduction of the fingers can be classified as a coupler
output. Based on the desired output, it was known that a four-bar triple rocker would be
obtained that could be motor driven by the addition of two intermediate links between the
motor coupler and the fingers, resulting on a six-bar Watt’s chain in which the four-bar
subchain describes the desired motion [60]. To reduce the unknown variables in the design,
lengths for the links that will form part of the fingers were defined from the known length
of the selected motor metal coupling, as shown in Table 3.

Table 3. Established dimensions for links.

Link Name Length [mm]

2 Coupling 35
4 Index 20.5
6 Thumb 16

From these dimensions, the missing links were synthesized graphically using Au-
todesk Fusion 360. In this program, the separation distance of the links forming part of the
index finger and thumb was defined based on the dimensions of the cover designed for the
selected engine. Finally, the lengths of the remaining links were adjusted to describe the
desired movement and maximum opening, obtaining the lengths shown in Table 4.
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Table 4. Dimensions determined through graphic synthesis.

Link Name Length [mm]

3 Crank 1 25
5 Crank 2 52

In Figures 8 and 9, the links of the mechanism obtained and their position limits
are presented.

Figure 8. Resulting links.

Figure 9. Maximum extension (left) and flexion (right).

3.1.3. Motor Selection

Based on the required torque, the servomotors shown in Table 5 were considered. After
analyzing the characteristics of these models and determining that they are in similar ranges
in terms of weight, dimensions, and stall current, the DS3218MG model was chosen because
the stall torque is double that required for the maximum load, which would provide an
additional safety factor to counteract potential losses in the links of the mechanism.
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Table 5. Motor characteristics.

Model MG995R DS3218MG DS3225MG

Imagen

Brand TowerPro DSSERVO DSSERVO
Stall torque [kgf·cm] 9.4–11 18–21 21–24.5
Weight [g] 55 60 60
Operating voltage [V] 4.8–7.2 4.8–6.8 5–6.8
Dimmensions [mm] 40.7 × 19.7 × 42.9 40 × 20 × 40.5 40 × 20 × 40.5
Stall current [A] 1.2 1.8–2.3 1.9–2.3

3.1.4. Covers and Turning Base

Based on the dimensions of the selected servomotor, three covers were designed, as
shown in the Figure 10, capable of housing it and holding fixed the flexion–extension
mechanism to which it would be coupled.

Figure 10. From Left to Right: front cover, rear cover, upper cover.

Finally, to allow the prosthesis to rotate, a simple shaft connected to the rear cover was
designed. This is attached to the rotation base shown in the Figure 11 by means of guide
rails and a bearing placed between the top of it and the motor.

Figure 11. From left to right: Axis, pivot base, perspective pivot base.

3.2. Electronic Design

For the design of the control circuit, consecutive stages were established in order to
adequately structure both the data recording step and the control of the system in real time.
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3.2.1. Sensor

As a first step, a review of the sensors used in similar projects was made. It was found
that the MyoWare sensor was the most widely used, due to its accessibility in the market
and its low price; its characteristics are shown in Table 6.

Table 6. Technical characteristics of the MyoWare sensor.

Supply voltage 2.9–5.7 [V]

Power supply current 9 [mA]

Various features -Raw signal
-Filtered signal
-Adjustable gain

3.2.2. Sampling Frequency

Nyquist’s theorem is shown in Equation (1). This states that the sampling frequency
of a signal must be at least twice the highest frequency present in the signal. This is the
only way to accurately reconstruct the signal.

fs ≥ 2 fmax (1)

Applying that theorem to electromyography, a sampling frequency of at least 300 Hz
should be established, since the relevant information is in the range of 50–150 Hz [27].
However, it has been proven that the application of higher sampling frequencies manages
to capture substantial information that allows for improved classification [27]. For this
reason, a sampling frequency of 1 kHz was chosen.

3.2.3. Development Board Selection

The following characteristics were considered when choosing the development board.
Communication requirement: Communication between the development board and

the computer was crucial, since both times had to be synchronized. For this reason,
Bluetooth Low Energy (BLE) was chosen. This communication architecture has been used
by several myoelectric signal collection systems [61].

Storage requirement: For the data collection stage, the data had to be stored in the
most optimal way without affecting the signal sampling rate. This was high, so the data
packets were not small. For this reason, it was decided to store the data locally, using a
micro SD card reader module.

The development board must have had Bluetooth Low Energy for communication and
GPIO pins, the connection of sensors and motors, SPI communication for the ESP32 card
reader, and I2C communication for a gyroscope. Among the options was one offered
by one of the most recognized manufacturers of AIoT (Artificial Intelligence of Things)
chips, Espressif. We chose the development board Esp32 C3 DevKit-M1, which has the
characteristics presented in the Table 7.

Table 7. Features of Esp32 DevKit-M1.

Bluetooth LE Yes

I2C Yes

SPI Yes

GPIO 22 pins

ADC 6 pins

Price $15

Flash 4 MB

Processor architecture RISC-V (single core)
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3.2.4. Printed Circuit Board

Due to the multiple existing connections, it was decided to design a PCB board that
would allow a more compact electronic system. The first step was to create a schematic dia-
gram representing all the connections of the electronic elements, as shown in the following
Figure 12.

Figure 12. Preliminary electronic circuit design.

The board was designed in Altium Designer software, as shown in Figure 13.

Figure 13. Electronic circuit design. (a) Bottom layer (b) Top layer.

The electronic circuit was organized on the PCB board; the result is shown on the
Figure 14.
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Figure 14. Bakelite printed PCB board.

Finally, a case was designed to encapsulate the circuit. This allowed decreasing of the
noise in the recorded signals and at the same time prevented the circuit from being exposed
to factors that could damage it such as shocks, water, external particles, etc.

3.3. Data Adcquisition
3.3.1. Experimental Organization

Due to the variability of EMG signals between test subjects (associated with the
anatomical and physiological properties of each human being), a single test subject was
called for data acquisition. The test subject was received by the personnel in charge of
the experiment. This was carried out in a clean, organized space, with natural light and a
temperature of around 25 degrees Celsius. We tried to eliminate any type of stimulus that
could divert the attention of the test subject, such as intense lights, loud sounds, and people
entering/leaving the room. The test subject was asked to sign an informed consent form,
detailing that the data recorded would be used strictly for research purposes and would
remain anonymous. Then, the procedure of the experiment was explained, as well as how
the system worked and that it would not affect the test subject’s health for any reason.
The test subject was asked to sit in a reclining chair, which had support for both arms (at
145 degrees) and legs (at 90 degrees). The electrodes were then placed on the patient’s
brachioradialis, flexor carpi ulnaris, and common extensor digitorum muscles, as shown in
Figure 15. According to the MyoWare sensor manufacturer’s instructions [62], each sensor
was placed in the center of the muscle. Finally, the screen showing the experiment was
placed at a distance of 20 inches from the test subject.

Figure 15. MyoWare sensors positions.
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3.3.2. Experimental Methodology

One run of the experiment lasted 7 min, during which visual signals associated with
each of the three muscle tasks were displayed: extension and flexion of the wrist and
closing of the hand. Each action appeared 10 times on the screen. Initially, a welcome
screen was displayed, in which the test subject was told to start the experiment whenever
he was ready by pressing the Space key. Each muscle task lasted 5 s, during which the
subject had to contract the muscle and hold it. After the 5 s, 10 rest seconds were given
to avoid the risk of muscle fatigue. The process was iterative until the defined time was
reached, see Figure 16. The actions were randomly displayed on the screen. Each of the
three muscle tasks were recorded at a sampling rate of 1 kHz.

Figure 16. Experimental design.

3.4. Dataset

The test subject is an Ecuadorian national man who is 31 years old. He has amputation
in both upper limbs. The dataset contains 20 files for each muscle task. In total it contains
60 .csv files. Each file has three columns, one for each MyoWare sensor, and another six
columns that record the reading of a gyroscope, during the experiment. The dataset can be
found at the following link: https://ieee-dataport.org/documents/emg1k-dataset.

All recorded .csv files were stored with class 1, 2 and 3 tags, as detailed below.

• Class 1: wrist flexion
• Class 2: fist
• Class 3: wrist extension

3.5. Preprocessing

The data obtained were preprocessed using frequency decreasing techniques, data
normalization, and feature extraction. All codes can be found at the following link: The
data obtained were preprocessed for use during neural network training, using frequency
decreasing techniques, data normalization, and feature extraction. All code can be found at
the following link: https://github.com/kaviles22/EMG_SignalClassification.git.

3.5.1. Decrease Frequency

EMG signals are noise sensitive, which is why efforts must be made to smoothen and
clean them. For this purpose, the RMS envelope technique was used in Equation (2), which
proposes to calculate the quadratic mean in fixed time windows. The objective of this
method is to smooth the signal without loosing representative information. This is why the
size of the moving window cannot be too large, because a lot of information would be lost,
nor too small, because the resulting signal will still present a lot of noise.√

∑N
n=1 x2

n
N

(2)

Several tests were performed, and it was observed that with very large or very small
time window values, the features were not representative; therefore, the time window that
yielded the best classification results was chosen, which was 50 ms, as shown in Figure 17.

https://ieee-dataport.org/documents/emg1k-dataset
https://github.com/kaviles22/EMG_SignalClassification.git
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Figure 17. Rms envelope.

3.5.2. Normalization

This process was used in order to keep all data within the same range, so that the AI
model did not assign a greater importance to some samples rather than others. The peak
dynamic method, described in Equation (3), was used, which represents the values of a
time window as a division between the value obtained and the maximum value of that
time window [63].

Xnorm =
X

Xpeak
(3)

With this equation, all values remained within the range of [0, 1].

3.6. Feature Extraction

At this stage, we kept the features in the time domain, because the established pipeline
had to be deployed in real time. Thus, it should not represent a high computational cost for
the development board. Two approaches for feature extraction from electromyographic
signals were analyzed. Both were tested and the best method was chosen.

3.6.1. Statistical Features

There are different types of features that can be used to represent a biological signal. In
this case, six statistical measures were used as features: Mean Absolute Value, Mean Absolute
Value Weight I, Mean Absolute Value Weight II, Median Absolute Value, Variance, and Standard
Deviation [64].

3.6.2. Root Mean Square

Obtain the root mean square in time windows of predefined duration. In this case, a
window of 500 ms was chosen from the original window. That is, four RMS values were
obtained for each time window (in Section 4.2, it is explained why a final 2-second duration
window was chosen).

To evaluate both methods, the classifier (described in more detail in Section 3.7) was
used. Its metrics were evaluated using the method 10-fold cross validation, obtaining the
results shown in Table 8.
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Table 8. Evaluation of feature extraction methods.

Rms Features Custom Features

Training time [s] 23.29 22.12

Accuracy 78.13% 71.87%

Recall 75% 68.75%

Precision 80% 76.49%

Based on the results obtained, the rms features were chosen, and it was concluded that
the speed of computation of this type of features in real time would represent an advantage
over the other method described.

3.7. Classification

The capabilities of neural networks have been extensively studied in classification
applications using bioelectrical signals, such as visual stimulus detection using EEG-SSVEP
signals [65]; detection of imaginative-motor intentions of both hands and both feet, obtain-
ing up to 93.7% of accuracy [66]; analysis of EMG signals to facilitate real-time, off-line
monitoring of a prosthetic hand [67]; and EMG signal classification using the Wavelet
transform in combination with neural networks, obtaining up to 90.7% accuracy [68].

3.7.1. Model

The following model provides a general representation of the bionic hand control
system. This hand is powered by EMG signals and controlled through an online neural
network. The model begins by explaining how the EMG signals and hand movements are
acquired and their relationship. It then illustrates the signal acquisition process and how
they are processed before entering the artificial neural network. Subsequently, the model
describes the artificial neural network training process, including adjusting weights and
connections to achieve proper control of the bionic hand. In real-time, the artificial neural
network receives EMG signals and generates control commands to activate the hand’s
motors and actuators, enabling desired movements. Specific implementation details such
as activation functions, artificial neural network architecture, and other parameters are
discussed in the subsequent subsection (described in more detail in Section 3.7.2). The
model’s development involves the following steps:

• Acquisition and preprocessing of EMG signals.
• Feature extraction: relevant features describing muscle activation patterns are ex-

tracted from preprocessed EMG signals.
• Training dataset: the dataset consists of pairs of EMG signal features and correspond-

ing movements of the bionic hand. We use 60% of the data for training.
• Artificial neural network structure: input, hidden, and output layers.
• Artificial neural network training: the neural network is fed with the features of EMG

signals. It is trained to learn the correspondence between EMG signals and desired
movements of the bionic hand.

• Validation and adjustment: after training the neural network, its performance is
validated using a test dataset. 20% of the data is allocated for validation, and another
20% is used for testing.

• Implementing the model in the bionic hand.

Below are the inputs and outputs of the model:
Inputs: EMG signals

X = [x1, x2, . . . , xn] (4)

Outputs: movements of the bionic hand

Y = [y1, y2, . . . , yn] (5)
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Weights and biases:

P = [P1, P2, . . . , Pn]; b = [b1, b2, . . . , bn] (6)

Hidden layer:

S =
n

∑
i=1

X ∗ Pi + bi (7)

where

• xi: represents the EMG signal recorded.
• yi: represents the corresponding movement of the bionic hand.
• Pi and bi: weights and biases of the layers of the neural network.

Feature extraction:
F = [ f1, f2, . . . , fn] (8)

where

• fi: represents the extracted features from segments of EMG signals.

Training dataset:
T = [(F1, y1), (F2, y2) . . . , (Fn, yn)] (9)

where

• Fi: is a feature vector.

Output:

Y =
n

∑
i=1

S ∗ P + b (10)

where

• P and b: weights and biases of the output layer of the artificial neural network.

The mathematical model establishes a relationship between the input EMG signals
and the output joint movements of the bionic hand. The artificial neural network is trained
to learn this relationship and is used to generate the necessary control signals for the
movement of the bionic hand.

3.7.2. Model Training

The Tensorflow library, which provides multiple facilities for developing, training,
and deploying machine learning models, was used to design the model. Since we needed
an online system that would fit on a hardware with limited resources, we decided to go
with a simple and small model that could reach high performance and would fit in the
microchip. For this reason, a multilayer perceptron of five layers was used; as shown in
Figure 18, intermediate dropout layers with a 20% ratio were used to avoid overfitting
the model.

The model was trained with 60% of the data, while the remaining 40% was divided
equally between test and validation data. The training parameters are presented in Table 9.
The final activation function and the loss function were chosen, given that the task was
a multiclass classification. The Softmax function yields a probabilistic distribution of N
different classes. The loss or cost function, categorical cross-entropy, measures the precision
of the results with respect to an expected value for categorical variables. We tested them
out, and the results were stable, so we decided to proceed doing a random search to find
the optimal hyperparameters. We used a range from 0.01 to 0.0001 for learning rate, epochs
were bounded by [100, 200, 300], and the batch size was constant.
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Figure 18. Neural network architecture.

Table 9. Hyperparameters and functions used in model training.

Activation function Softmax

Loss function Categorical cross-entropy

Optimization algorithm Adam

Learning rate 0.001

Epochs 300

Batch size 8

After analyzing results, it was decided to train a binary classifier using only tasks 1
and 3, which corresponded to flexion and extension of the wrist, respectively. The training
parameters are shown in Table 10.

Table 10. Hyperparameters and functions used in binary model training.

Activation function Sigmoid

Loss function Categorical cross-entropy

Optimization algorithm Adam

Learning rate 0.001

Epochs 300

Batch size 8

3.7.3. System Integration

The trained model was integrated into the electromechanical system, allowing the
motors to be controlled as follows (see Figure 19):

• When class 1, the wrist flexion task, is detected, the microcontroller moves the axis
of the gripper motor 20 degrees clockwise. In this way, the prosthesis gripper closes,
simulating the gripping movement of a hand.

• When class 2, the muscle task of closing the hand (making a fist), is detected, the
microcontroller moves the axis of the swing motor 30 degrees clockwise. In this way,
the base of the prosthesis rotates.

• When class 3 is detected, the wrist extension task, the microcontroller moves the
axis of the gripper motor 20 degrees counterclockwise. In this way, the prosthesis
gripper opens.
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Figure 19. Muscular tasks. (a) Class 1 (b) Class 2 (c) Class 3.

4. Results and Discussion
4.1. Real Time Classification

The trained model was converted into a C++ source file using the Tensorflow Lite
library converter. Finally, a 4756 bytes matrix was obtained. This was stored in the
development board in order to be able to carry out the classification.

Once the model was deployed on the development board, the firmware was capable
of sampling, storing, processing, and classifying the data in real time was developed, as
shown in Figure 20. The code was written in C++ (https://github.com/kaviles22/EMG_
SignalClassification.git).

• EMG data register using MyoWare sensors: data logging using three MyoWare sensors
and a microcontroller, at 1 kHz in 2-second windows.

• Signal Filtering: filter the signal noise using the RMS envelope technique.
• Signal Normalization: normalize the three EMG signals to avoid bias during training.
• Feature extraction: extract features (RMS value in this case) in 500 ms windows.
• Three classes classification: make predictions using the compiled and reduced model,

previously loaded in the microcontroller.
• Drive Motors: depending on the result of the classification, activate the motors to

perform the three actions, depending on the muscle task:

– Wrist Flexion: closes the prosthesis clamp.
– Wrist extension: opens the prosthesis clamp.
– Making a fist: rotates the prosthesis clamp.

https://github.com/kaviles22/EMG_SignalClassification.git
https://github.com/kaviles22/EMG_SignalClassification.git
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Figure 20. Real time classification flow chart.

4.2. Temporal Window

The system had to have a response time fast enough to be employed in the user’s daily
routine. To find this optimal time, all processing steps were run, changing the size of the
time window of the EMG signals. Finally, a graph showing the different temporal window
sizes vs. the accuracy of the model was obtained, as shown in Figure 21. After analyzing
the graph, it was concluded that the most optimal time window duration was 2 s. This
complies with a relatively short response time and a relatively high accuracy.

Figure 21. Window size vs. model accuracy.

4.3. Machine Learning Model Testing

To evaluate the artificial intelligence model, the 10-fold cross validation technique was
used. The results are shown in Table 11.

The model classified approximately 78.67% of the classes correctly. When testing
the model in real time on the microcontroller, it was preferred not to have many false
positives, since in this case, the hand would perform movements without the client’s
consent. For these cases in particular, the model had a high performance, since about
80.21% of the positive predictions were correct (precision), meaning that most of the
movements performed were voluntary. Approximately 75.67% of the actions were correctly
detected (recall).

Table 11. Model evaluation metrics (multiclass model).

Accuracy 78.67%

Precision 80.21%

Recall 75.67%

Loss 0.61

Training Time 13.68 [s]

Inference Time 0.09 [s]
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Despite having a high accuracy, the loss was high and the model made large errors
a few times. As can be seen in Figure 22b, there was both bias and variance in the model.
To attack this problem, it was necessary to train the model using more data or to use
regularization techniques in the intermediate layers. However, as a first instance, it was
decided to analyze the behavior of the model in the different classes.

Figure 22. Model performance graphs (a) accuracy graph (b) loss graph.

From the results obtained in Figure 23, it was concluded that the model failed to
accurately identify class 2. On the other hand, the accuracies of classes 1 and 3 were
relatively high.

Figure 23. Confusion matrix (multiclass model). Task 1: wrist flexion, Task 2: fist, Task 3: wrist extension.

For this reason, it was decided to analyze the behavior of a binary classification model
using only classes 1 and 3. Accuracy and loss during training of the binary model are shown
in Figure 24a and Figure 24b, respectively. The loss plot shows that the error during training
and testing remained close, thus ruling out any possibility of overfitting or underfitting. In
turn, this indicates that the bias and variance of the model were low, resulting in a model
capable of generalizing effectively. The accuracy reached 100% in less than 300 epochs,
while the loss was approximately 0.07. The results are shown in Table 12.
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Figure 24. Model performance graphs (binary model). (a) Accuracy graph (b) Loss graph.

Table 12. Model evaluation metrics (binary model).

Accuracy 95.13%

Precision 88.37%

Recall 99.85%

Loss 0.07

Training Time 13.12 [s]

Inference Time 0.08 [s]

Class 2, associated with the action of making a fist, was not classified efficiently. Unlike
the other two tasks, which are opposite actions, flexion and extension, they activate two
different muscles. However, class 2 could have been confused with one of the other two
muscular actions. Although the action was not the same, it was noticed that the activation
of the muscles was very similar.

4.4. FirmWare Analysis

The firmware deployed on the ESP32 C3 development board took up 49% of program
storage (650 Kb) in memory. The Tensorflow Lite model occupied 4.75 Kb.

4.5. Mechanical Analysis

The designed prototype is shown in Figure 25. This consists of the flexion–extension
mechanism formed by the group of links connected to a servomotor and a turning base
that houses another servomotor for rotation. The turning base also functions as a support
for the aforementioned assembly.

Figure 25. Renderings of the robotic prosthesis: (1) Flexion–extension mechanism (2) Turning base.
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4.5.1. Dynamic Analysis

Prior to 3D printing the prototype, a dynamic analysis was performed to observe
the behavior of the torque when the prosthesis is subjected to the maximum load during
the retraction process. For this, the flexion–extension mechanism was isolated, since this
part of the prosthesis is the one that interacts directly with the load. This sub-assembly
was imported to Autodesk Inventor 2022 to prepare the joints and forces for the dynamic
simulation as can be seen in Figure 26.

Figure 26. Flexion–extension mechanism in Autodesk Inventor 2022 dynamic simulation environment.

Forces 1 and 2 observed in Figure 26 were located at the fingertips, as shown in
Figure 27. The joints of interest for the analysis were the coupling joint connected to
the motor shaft and the link connected to the coupling directly, defined as Crank #1 in
Chapter 2, since these could be used to test whether the required torque would exceed that
established during the design stage.

Figure 27. Points of interest: (1) Location of loads (2) Link joints connected to the motor coupling (3)
Motor coupling joint. Source: Own elaboration.

As final step prior to simulation, the displacement curve for the motion that would be
imposed on the motor coupling joint was defined. Limits were defined according to the
angular positions for the maximum opening and closing, while the slope was approximated
to the speed specifications presented in the motor data sheet as shown in Figure 28.
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Figure 28. Displacement curve for the imposed movement.

The simulation results are presented in Figure 29. As can be seen, in no joints are
the starting moments considerably higher than the required moment; it is assumed that
the servomotor will be able to overcome the initial conditions and move the mechanism.
Consequently, for the calculation of the safety factor, the starting moment was considered
since it represents the maximum moment required to maintain the coupling in equilibrium.
This is presented in Table 13 together with the safety factor obtained based on the motor
torque (20 kgfcm or 1.961 Nm).

Figure 29. Moment curve for Crank #1 (left) and coupling (right).

Table 13. Dynamic simulation results.

Moment [Nm] Part Safety Factor

0.02347 Coupling 83.55

4.5.2. FEA

Once the dynamic analysis was completed, the resulting reactions on the joints of
Crank #1 at the beginning of the movement were exported, as shown in the figure, since
at this point they reached their maximum value and would allow establishing the safety
factor of the link for the worst operating scenario.
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With these reactions, displacements due to the load were observed in the order of
10−4 mm and a safety factor of 15 along the entire body of the link (see Figure 30), so no
deformations or fatigue failures are expected due to the maximum load during operation.
However, in the event that the hand is subjected to a load above that expected and beyond
that allowed by the safety factor, failures would be expected to occur in the lower right side
of the link.

Figure 30. Safety factor (left) and link displacement (right).

4.5.3. Load Tests

The prosthesis was subjected to different load tests—see Figure 31—to observe the
functioning of the mechanism and to check that it was capable of holding the established
maximum load of 500 g, as well as holding delicate and small objects.

Figure 31. Load tests.

4.5.4. Prototype Weight

To verify that the maximum weight was not exceeded, the printed prototype was
placed on a digital scale as shown in the Figure 32, obtaining a total weight of 429 g.
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Figure 32. Prototype weight.

5. Conclusions and Future Works

The design of a three-finger prosthesis capable of performing precision and strength
grips was presented. This design utilizes a six-bar mechanism to alternate between its
position limits and is capable of holding the target load of 500 g, as well as gripping small
objects that require greater precision such as pens or screwdrivers. In terms of gripping
force, it was estimated that based on the selected motor and the length of the fingers, it
is capable of holding the target load of 500 g. It would reach 23 N, which is within the
average range of research prototypes.

Additionally, this design was validated by a dynamic simulation of the opening and
closing of the gripper and a finite element analysis on the most important link, both carried
out using Autodesk Inventor 2022. Based on the resulting starting torque from the dynamic
simulation, it was determined that the selected motor was adequate, ensuring that the
mechanism will not suffer unforeseen displacements due to the load. On the other hand,
the connecting link between the motor coupling and the finger link did not show any
significant deformations or fatigue failures, so its design is adequate for the target load.
To reduce the weight of the prototype, as well as the cost of printing while maintaining
structural integrity, we plan to simplify the covers and turning base in future iterations
using the shape optimization tool available in Fusion 360.

The gyroscope, which was used during data collection, did not provide relevant
information to the problem. This is due to the fact that during the recording it was ensured
that the arm maintained a single position and angle. Therefore, the sensor did not register
significant movement changes. Its integration could be useful to explore future topics.

The sampling frequency used in the experiment (1 kHz) stood out compared to
commercial EMG signal collection systems, which oscillate at around 128 Hz. This allowed
us to work with smaller time windows during preprocessing, to filter the signal without
losing representative information, and to characterize the signal efficiently by calculating
the RMS values. Additionally, the latter technique allowed us to maintain the temporality
of the signals.

Although the overall accuracy of the algorithm was 80.21%, the performance of the
model with respect to the action of making a fist was specifically poor compared to the
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other actions, with an accuracy of 70%. Based on observations, in healthy subjects, this
particular action involves both the inner and outer forearm muscle. However, in the test
subject, this same action involved only the inner muscle. For example, the wrist flexion
and extension actions are opposite actions that activate mostly opposite muscles of the
arm: brachioradialis muscle and flexor carpi ulnaris. Therefore, it is easier to discriminate
between them. As a solution to this challenge, it is proposed to train the algorithm using
more data for it to generalize better across actions.

Since the hardware designed uses the ESP32-C3, its RISC-V based architecture presents
advantages in the storage and reading of data in memory, allowing us to obtain a sampling
rate of 1kHz for each of the nine variables of interest (three EMG sensors, three acceleration
axes, three gyroscope axes). The designed electronic circuit was able to collect data for the
training stage and in turn, was used for real-time operation to control the gripper. The
ESP32-C3 development board was able to process the EMG signals and drive the gripper
servomotors according to the outputs of the AI model.

Unlike EMG systems that may use signal intensity as a trigger, this system is based on
an analysis of signal behavior; this provides robustness to the system. If a user presents any
symptom of muscle fatigue due to prolonged use, the system would be able to characterize
the shape of the signal, regardless of its relative intensity.

Through the analysis of the accuracy in different time windows, it was concluded
that using a larger one during data recording does not necessarily represent a significant
increase in the accuracy of the model. This is due to the fact that EMG MyoWare sensors
have an active filter which prevents the signal from remaining active for a long period of
time. Therefore, the most relevant gait is found in the activation of the muscle and not in
its deactivation. Thus, reducing the time window could help to reduce the amount of not
representative data.

The inference algorithm was able to efficiently classify 95.13% of two of the classes
using data collected from one subject. The online classification time of the system was 0.08 s,
while a data recording of 2 s of duration was needed, giving a total prosthesis reaction
time of 2.18. By using a threshold to consider only predictions with an accuracy greater
than 70%, we were able to reduce the number of erroneous predictions between classes.
The priority was to reduce false positives as much as possible. In other words, when the
subject performed an action, he preferred to keep the gripper still rather than having it
move incorrectly. In this case, bias or variance phenomena was not detected in the model
as training and testing errors were low.

The project was framed by certain specific objectives and met all the requirements.
However, we recognize that the applications are limited to the framework of the project.
The hand design could be improved to endure more weight, particularly on the wrist.
Regarding the portability, as a future work, it is proposed to design a much more light and
compact circuit that can be easily carried on the subject’s arm. Additionally, it is proposed
to redesign the connections of the development board in order to reduce the noise generated
in the EMG signals, due to physical factors, as much as possible. Regarding the artificial
intelligence model used, it is proposed to evaluate the use of deep neural networks capable
of generalizing between data from different test subjects, reducing the preprocessing time,
and increasing the accuracy of the model. In addition use of recurrent neural networks to
explore the capability of expanding the time window analysis can be studied.

For more reality-oriented implementations, it is proposed to analyze the use of the
gyroscope. In addition, since the test subject does not remain static, but requires the use of
the prosthesis while in motion, it is proposed to use dry electrodes, since adhesive sensors
tend to cause skin irritation.
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