
Citation: Nourse, W.R.P.; Jackson, C.;

Szczecinski, N.S.; Quinn, R.D.

SNS-Toolbox: An Open Source Tool

for Designing Synthetic Nervous

Systems and Interfacing Them with

Cyber–Physical Systems. Biomimetics

2023, 8, 247. https://doi.org/

10.3390/biomimetics8020247

Academic Editor: Mingguo Zhao

and Biao Hu

Received: 21 April 2023

Revised: 2 June 2023

Accepted: 9 June 2023

Published: 10 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

SNS-Toolbox: An Open Source Tool for Designing Synthetic
Nervous Systems and Interfacing Them with
Cyber–Physical Systems
William R. P. Nourse 1,* , Clayton Jackson 2 , Nicholas S. Szczecinski 3 and Roger D. Quinn 2

1 Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University,
Cleveland, OH 44106, USA

2 Department of Mechanical and Aerospace Engineering, Case Western Reserve University,
Cleveland, OH 44106, USA

3 Department of Mechanical and Aerospace Engineering, West Virginia University,
Morgantown, WV 26506, USA

* Correspondence: nourse@case.edu

Abstract: One developing approach for robotic control is the use of networks of dynamic neurons
connected with conductance-based synapses, also known as Synthetic Nervous Systems (SNS). These
networks are often developed using cyclic topologies and heterogeneous mixtures of spiking and
non-spiking neurons, which is a difficult proposition for existing neural simulation software. Most
solutions apply to either one of two extremes, the detailed multi-compartment neural models in small
networks, and the large-scale networks of greatly simplified neural models. In this work, we present
our open-source Python package SNS-Toolbox, which is capable of simulating hundreds to thousands
of spiking and non-spiking neurons in real-time or faster on consumer-grade computer hardware.
We describe the neural and synaptic models supported by SNS-Toolbox, and provide performance on
multiple software and hardware backends, including GPUs and embedded computing platforms. We
also showcase two examples using the software, one for controlling a simulated limb with muscles in
the physics simulator Mujoco, and another for a mobile robot using ROS. We hope that the availability
of this software will reduce the barrier to entry when designing SNS networks, and will increase the
prevalence of SNS networks in the field of robotic control.

Keywords: synthetic nervous system; conductance-based modeling; neural simulator; GPU; CUDA;
neurorobotics; Python; software; open-source

1. Introduction

A common goal of neuroscientists and roboticists is to understand how animal ner-
vous systems interact with biomechanics and their environment and generate adaptive
behavior [1]. By understanding and modeling aspects of the nervous system, it is hoped
that robots will be able to exhibit embodied intelligence [2] and exhibit animal-like robust-
ness and adaptability [3]. One approach is to design Synthetic Nervous Systems (SNS),
networks of conductance-based neurons and synapses which can be used to model an-
imal nervous systems [4,5] and control robots [6–8]. Some strengths of SNS networks
include that they can be tuned using analytic design rules [9,10] and that results obtained
controlling robotic hardware can propose neurobiological hypotheses [11,12].

In order to design SNS networks for robotic control, software tools are needed. Soft-
ware for simulating SNS networks should support conductance-based modeling of neurons
and synapses, as there are elements of neural behavior in conductance-based models which
are incompatible with current-based models [9,13]. Bidirectional synaptic links, such as
electrical synapses, should also be supported [14]. Simulators should also support networks
with heterogeneous neural models, potentially containing both spiking and non-spiking

Biomimetics 2023, 8, 247. https://doi.org/10.3390/biomimetics8020247 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8020247
https://doi.org/10.3390/biomimetics8020247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0002-1437-026X
https://orcid.org/0000-0001-5429-5906
https://orcid.org/0000-0002-6453-6475
https://orcid.org/0000-0002-8504-7160
https://doi.org/10.3390/biomimetics8020247
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8020247?type=check_update&version=2


Biomimetics 2023, 8, 247 2 of 24

neurons [7]. While individual spiking neurons can be more computationally powerful
than non-spiking neurons [15], non-spiking neurons are capable of capturing much of
the dynamics of populations of spiking neurons while being more amenable to real-time
simulation [16]. Networks should be able to be constructed in a programmatic way, in order
to aid the design of large but formulaic networks [17]. SNS networks should be able to be
simulated with faster than real-time performance using CPUs and GPUs, and the same
networks should be easily interfaced with physics simulation engines and robotic hardware.
Additionally, for accessibility and ease of use in laboratory and educational settings, a
simulator software should be cross-platform compatible with the Windows (trademark
Microsoft Corporation, Redmond, WA, USA), MacOS (trademark Apple Corporation, Cu-
pertino, CA, USA), and Linux operating systems. A selected survey of available simulation
software is presented in Table 1.

Table 1. Neural Simulator ∗ Feature Comparison.

Software Animat-
Lab NRP Nengo SnnTorch Spyke-

Torch
Binds-
NET Brian2 NEU-

RON NEST ANN-
Archy

SNS-
Toolbox

GUI
Required X X

Real-Time
Capable X X X X X X X

Synaptic
Reversal

Potentials
X X † X † X X X X

Non-
Spiking

and
Spiking

X X X X X X X

Electrical
Synapses X X † X † X X X X X

GPU
Support X † X † X X X X X ‡ X ‡ X

Cross
Platform

§
X X X X X X X X X

* Due to the many simulators available, not all are presented in this table. † To implement some features, custom
code must be implemented which is incompatible with the rest of the Nengo ecosystem. ‡ Limited GPU support
is currently available. § To be considered cross-platform compatible, the software must be easily run on Linux,
MacOS, and Windows.

Software for simulating conductance-based neural dynamics have long been avail-
able, with the most popular options being NEURON [18], NEST [19], GENESIS [20], and
Brian [21]. These simulators are capable of simulating highly detailed and biologically accu-
rate neural models, however they were originally designed for the purpose of performing
digital experiments and collecting data over a long simulation run. As such, interfacing
with external software and systems can be challenging [22] and often requires dedicated
software for memory management [23]. Additionally, these simulators are limited to be-
ing run on conventional CPUs, although some have begun to be adapted for use with
GPUs [24].

Other simulators are capable of designing large networks of neurons using principles
from machine learning, such as snnTorch [25], SpykeTorch [26], and BindsNET [27]. These
simulators are capable of executing at high speed on both CPUs and GPUs, but they do so
at the cost of limiting simulations to reduced models of spiking neurons and current-based
synapses. Simulators have also been designed to simulate the Izhikevich neuron [28] and
other spiking neurons at scale, including CARLSim [29], NEMO [30], GeNN [31], CNS [32],
and NCS6 [33]; however they typically do not support hybrid networks of spiking and
non-spiking neurons.

Multiple solutions have been developed which combine a neural dynamics simulator
with a physics engine. One approach is to combine an existing neural simulator with an



Biomimetics 2023, 8, 247 3 of 24

existing physics engine using a middleware memory management software. This has been
used to combine Brian [21] and SOFA [34] using CLONES [35], as well as NEST [19] with
Gazebo [36] using MUSIC [23]. This approach allows users who are comfortable with a
specific neural simulator to interface their networks with physics objects. However, it leads
to complicated software dependencies which are difficult to translate to other systems.
The first integrated system was AnimatLab [37], which allows networks consisting of either
a non-spiking or spiking neural model to control user-definable physics bodies. It also
comes with an integrated plotting engine, allowing users to run experiments and analyze
data within a single application. Numerous models have successfully been controlled with
AnimatLab, both in simulation [4,38,39] and with robotic hardware [6,7], however networks
cannot be designed in a programmatic way and are difficult to scale to larger networks [17].
The Neurorobotics Platform (NRP) is a large software suite which integrates multiple
neural simulators, including Nengo [40] and NEST [19], with Gazebo [36] in a cloud-based
simulation environment. The NRP is a comprehensive toolbox which comes with a variety
of advanced visualization tools, and has been used successfully for multiple neurorobotic
controllers in simulation [41,42]. However, the NRP comes with much overhead and, as
such, is unsuited for real-time control of robotic hardware.

In recent years, high-performance robots have been developed which are controlled
using networks of spiking neurons [43,44]. These networks achieve state-of-the-art perfor-
mance, but rely on specialized neuromorphic hardware, such as Intel’s Loihi processors [45],
which are not yet widely available. Lava [46] is a relatively recent and promising software
solution for designing spiking networks, but it is primarily designed for use with CPUs
and Loihi. Currently, the most widely used software for implementing spiking networks
and controlling real hardware is Nengo [40], which has achieved impressive results [44].
However, Nengo is optimized for networks designed using the Neural Engineering Frame-
work [47], and can have reduced performance without the use of neuromorphic hardware.
One simulator which can simulate networks with a mixture of spiking and non-spiking
neurons in real-time or faster is ANNarchy [16], which does so using a C++ code generation
system. However, this code generation system which enables high performance comes at
the cost of incompatibility with the Microsoft Windows operating system, which reduces
its level of accessibility.

Here, we present SNS-Toolbox, an open-source Python package for the design and
simulation of synthetic nervous systems. SNS-Toolbox allows users to design SNS networks
with a simple interface and simulate them using established numerical processing libraries
on consumer-grade hardware. We focus on simulating a specified set of neural and synaptic
dynamics, without dedicated ties to a GUI or a physics simulator. This focus allows the SNS-
Toolbox to be easily interfaced with other systems, and for a given network design to be able
to be reused without modification in multiple contexts. In previous work [48], we presented
an initial version of SNS-Toolbox with reduced functionality. Here we explain in detail
the expanded neural and synaptic dynamics supported in the toolbox, and describe the
workflow for designing and simulating networks. We provide results which demonstrate
comparative performance with other neural simulators, and we showcase the use of SNS-
Toolbox in two different applications, motor control of a muscle-actuated biomimetic
system in Mujoco [49], and navigation control of a robotic system in simulation using the
Robotic Operating System (ROS) [50].

2. Materials and Methods

Herein we describe the internal functionality of the SNS-Toolbox, how different neu-
rons and synapses are simulated, designed, and compiled by the user. Section 2.1 defines
the neural models which are supported in the toolbox, and Section 2.2 does the same for
connection types. Section 3.2.3 describes the design process using SNS-Toolbox, and how a
network is compiled and simulated.

All software described is written in Python [51], which was chosen due to its ease
of development and wide compatibility. Unless otherwise specified, the units for all



Biomimetics 2023, 8, 247 4 of 24

quantities are as follows, current (nA), voltage (mV), conductance (µS), capacitance (nF),
and time (ms).

2.1. Neural Models

SNS-Toolbox is designed to simulate a small selection of neural models, which are
variations of a standard leaky integrator. In this section, we present the parameters and
dynamics of each neural model which can be simulated using SNS-Toolbox.

2.1.1. Non-Spiking Neuron

The base model for all neurons in SNS-Toolbox is the non-spiking leaky integrator,
as has been used in continuous-time recurrent neural networks [52]. This neural model
can be used to model non-spiking interneurons, as well as approximate the rate-coding
behavior of a population of spiking neurons [9]. The membrane potential V behaves
according to the differential equation

Cm ·
dV
dt

= −Gm · (V −Vrest) + ∑ Isyn + Ibias + Iapp, (1)

where Cm is the membrane capacitance, Gm the membrane conductance, and Vrest is the
resting potential of the neuron. Ibias is an injected current of constant magnitude, and Iapp
is any external applied current. Isyn is the current induced via synapses from presynaptic
neurons, the forms of which are defined in Section 2.2.

During simulation, the vector of membrane potentials ~V is updated at each step t by
representing Equation (1) in a forward-Euler step:

~V[t]← ~V[t− ∆t] + ~Tm �
(
−~Gm �

(
~V[t− ∆t]− ~Vrest

)
+~Ib +~Isyn +~Iapp

)
, (2)

where � denotes the element-wise Hadamard product, and ∆t represents the simulation
timestep. Tm is the membrane time factor, which is set as Tm ← Gm ·∆t

Cm
.

2.1.2. Spiking Neuron

Spiking neurons in SNS-Toolbox are represented as expanded leaky integrate-and-fire
neurons [53], with the membrane depolarization dynamics described in Equation (1) and
an additional dynamical variable for a firing threshold θ [10],

τθ
dθ

dt
= −θ + θ0 + m · (V −Vrest) (3)

where τθ is a threshold time constant, and θ0 is the initial threshold voltage. m is a propor-
tionality constant which describes how changes in V affect the behavior of θ, with m = 0
causing θ to always equal θ0. When the neuron is subjected to a constant stimulus, m > 0
results in a firing rate which decreases over time, and m < 0 causes a firing rate which
increases over time. Spikes are represented using a spiking variable δ,

δ =

{
1, V ≥ θ

0, otherwise,
(4)

which also triggers the membrane potential to return to rest:

if δ = 1, V ←← Vrest. (5)

The vector of firing thresholds~θ is updated as

~θ[t]← ~θ[t− ∆t] + ~Tθ [t]�
(
−~θ[t− ∆t] +~θ0 + ~m�

(
~V[t− ∆t]− ~Vrest

))
, (6)



Biomimetics 2023, 8, 247 5 of 24

where Tθ = ∆t
τθ

is the threshold time factor. Based on the threshold states, the spiking states
are updated as

~δ[t]← sign
(

min
(

0,~θ − ~V
))

. (7)

Note that for simplified implementation, all spikes with SNS-Toolbox are internally
represented as impulses of magnitude−1. Using these spike states, the membrane potential
of each neuron which spiked is reset to Vrest

~V[t]←
(
~V[t]− ~Vrest

)
�
(
~δ[t] + 1

)
+ ~Vrest. (8)

2.1.3. Neuron with Voltage-Gated Ion Channels

The other neural model available within SNS-Toolbox is a non-spiking neuron with ad-
ditional Hodgkin–Huxley [54] style voltage-gated ion channels. The membrane dynamics
are similar to Equation (1), with the addition of an ionic current Iion [55]:

Cm ·
dV
dt

= −Gm · (V −Vrest) + ∑ Isyn + Ibias + Iapp + Iion. (9)

This ionic current is the sum of multiple voltage-gated ion channels, all obeying the
following structure:

Iion = ∑
j

Gion,j · a
pa,j
∞,j(V) · bpb,j

j · cpc,j
j ·

(
Eion,j −V

)
. (10)

Any neuron within a network can have any number of ion channels. Gion,j is the
maximum ionic conductance of the jth ion channel, and Eion,j is the ionic reversal potential.
b and c are dynamical gating variables, and have the following dynamics

dzj

dt
=

z∞,j(V)− zj

τz,j(V)
, (11)

where functions of the form z∞,j are a voltage-dependent steady-state

z∞,j(V) =
1

1 + Kz,j · exp
(
Sz,j ·

(
Ez,j −V

)) , (12)

and τz,j is a voltage-dependent time constant

τz,j(V) = τmax,z,j · z∞,j(V) ·
√

Kz,j · exp
(
Sz,j ·

(
Ez,j −V

))
. (13)

p denotes an exponent, and Ez,j is the gate reversal potential. Kz,j and Sz,j are parameters
which shape the z∞,j and τz,j functions. τmax,z,j is the maximum value of τz,j. Note that
depending on the desired ion channel, the exponent for various sections can be set to 0 in
order to effectively remove it from Equation (10). One particular example of this is a neuron
with a persistent sodium current, which is also available as a preset in SNS-Toolbox,

Iion = ∑
j

GNa,j ·m∞,j(V) · hj ·
(
ENa,j −V

)
, (14)

which is the same as Equation (10) with one dynamic variable disabled and some vari-
able renaming.

2.2. Connection Models

Within SNS-Toolbox, neurons are connected using connection objects. These can either
define links between individual neurons, or structures of connectivity between neural
populations (see Section 2.2.4).



Biomimetics 2023, 8, 247 6 of 24

2.2.1. Non-Spiking Chemical Synapse

When connecting non-spiking neurons, non-spiking chemical synapses are typically
used. The amount of synaptic current I ji

syn to post-synaptic neuron i from presynaptic
neuron j is

I ji
syn = Gji

syn(Vj) ·
(

Eji
syn −Vi

)
, (15)

where Eji
syn is the synaptic reversal potential. Gji

syn(Vj) is the instantaneous synaptic con-
ductance, which is a function of the presynaptic voltage Vj:

Gji
syn(Vj) = max

(
0, min

(
Gji

max,non ·
Vj − Elo

Ehi − Elo
, Gji

max,non

))
. (16)

Gji
max,non is the maximum synaptic conductance, and voltages Elo and Ehi define the range of

presynaptic voltages where the synaptic conductance depends linearly on the presynaptic
neuron’s voltage.

When simulating, Equation (15) is expanded to use matrices of synaptic parameters
(denoted in bold),

~Isyn[t]←∑
j

Gsyn
i,j[t] · Ei,j − ~V[t− ∆t]�∑

j
Gsyn

i,j, (17)

and each term is summed column-wise to generate the presynaptic current for each neuron.
Synaptic parameter matrices have an NxN structure, with the columns corresponding to the
presynaptic neurons and the rows corresponding to the postsynaptic neurons. Equation (16)
is also expanded to use parameter matrices,

Gnon[t]← max

(
0, min

(
Gmax,non ·

~U[t− ∆t]− Elo
Ehi − Elo

, Gmax,non

))
. (18)

2.2.2. Spiking Chemical Synapse

Spiking chemical synapses produce a similar synaptic current as non-spiking chemical
synapses (Equation (15)), but a key difference is that Gji

syn is a dynamical variable defined as

τ
ji
syn

dGji
syn

dt
= −Gji

syn. (19)

if δ = 1, Gji
max,spike ← Gji

syn. (20)

The conductance is reset to Gji
max,spike, the maximum value, whenever the presynaptic

neuron spikes. Otherwise, it decays to zero with a time constant of τ
ji
syn. When simulated,

these dynamics are represented as

Gspike[t]← Gspike[t− 1] ·
(
1− Tsyn

)
, (21)

where Gspike is the matrix of spiking synaptic conductances, and Tsyn is the synaptic time
factor matrix.

An additional feature available with spiking synapses is a synaptic propagation delay.
This sets the number of simulation steps it takes for a spike to travel from one neuron to
another using a specific synapse, a feature which is useful for performing some aspects
of temporal computation [17]. If the synapse between neurons j and i has a delay of d
timesteps, the delayed spike is represented as

δ
ji
delay[t] = δji[t− d · ∆t]. (22)



Biomimetics 2023, 8, 247 7 of 24

For simulation, this propagation delay is implemented using a buffer matrix δbuffer
with N columns and D rows, where D is the longest delay within the network. The rows
of δbuffer are shifted down at each timestep, and the first row is replaced with current
spike state vector ~δ[t]. δbuffer is then transformed into a matrix of delayed spikes δdelay
by rearranging based on the delay of each synapse in the network. δdelay is then used to
simulate the synaptic reset dynamics from Equation (20),

Gspike[t]← max
(
Gspike[t],−δdelay[t]�Gmax,spike

)
. (23)

2.2.3. Electrical Synapses

Electrical synapses, or gap junctions, are resistive connections between neurons that do
not use synaptic neurotransmitters. As a result, the neurons exchange current proportional
to the difference between their voltage values. Their current is defined as

I ji
syn = Gsyn,electrical ·

(
Vj −Vi

)
, (24)

where Gsyn,electrical is the synaptic conductance. Electrical synapses are simulated in SNS-
Toolbox using a similar formulation as Equation (17),

~Isyn[t]←∑
j

Gelec
i,j · ~V j

last − ~V[t− ∆t]�∑
j

Gelec
i,j. (25)

SNS-Toolbox simulates electrical synapses as bidirectional by default, where current
can flow in either direction between the connected neurons. Rectified connections are also
supported, where current only flows from the presynaptic to the postsynaptic neuron and
only if Vpre > Vpost. When simulating with rectified electrical synapses, a binary mask M
is generated,

M← H
((

~Vlast 	 ~Vlast

)T
)

, (26)

where 	 denotes outer subtraction. The voltage of each neuron is subtracted in a pairwise
fashion, with the result processed by the heaviside step function H. This generates a matrix
where each element is 1 if current is allowed to flow in that direction, and 0 otherwise. This
binary mask is then applied to a synaptic conductivity matrix Grec to obtain the masked
conductance MG,

MG ←M�Grec. (27)

To generate the opposite current flow in rectified synapses, the masked conductance is
then added to its transpose with the diagonal entries removed,

MD ← MG + MG
T − diag(MG). (28)

This final masked, transformed conductance matrix MD is substituted for Gelec
in Equation (25)

~Isyn[t]←∑
j

MD
i,j · ~V j

last − ~V[t− ∆t]�∑
j

MD
i,j. (29)

2.2.4. Matrix and Pattern Connections

In their base form, each of the preceding connection models defines the connection
between two individual neurons. However, the connections’ behavior can be extended
to defining connections between populations of neurons. Following the model presented
in [10], in the simplest form of population-to-population connection all neurons become
fully connected and the synaptic conductance is automatically scaled such that the total
conductance into each postsynaptic neuron is the same as the original synapse.



Biomimetics 2023, 8, 247 8 of 24

For more complex desired behavior, more types of population-to-population connec-
tions are available. Matrix connections allow the user to specify the exact matrices for
each synaptic parameter, and one-to-one connections result in each presynaptic neuron
to be connected to exactly one postsynaptic neuron, with all synapses sharing the same
properties. Pattern connections are also available, modeled after convolutional connections
in ANNs [56]. In pattern connections, a kernel matrix K can be given,

K =

a b c
d e f
g h i

, (30)

where the indices are values for a single synaptic parameter (Gmax, Esyn, etc.). If K describes
the connection pattern between two 3× 3 neural populations, then the resulting synaptic
parameter matrix P will present the following structure:

P =



e f 0 h i 0 0 0 0
d e f g h i 0 0 0
0 d e 0 g h 0 0 0
b c 0 e f 0 h i 0
a b c d e f g h i
0 a b 0 d e 0 g h
0 0 0 b c 0 e f 0
0 0 0 a b c d e f
0 0 0 0 a b 0 d e


(31)

2.3. Inputs and Outputs

In order for an SNS to interact with external systems, it must be capable of receiving
inputs and sending outputs. For applying external stimulus to a network, input sources
can be added. These sources can be either individual elements or a one-dimensional vector,
and are applied to the network via~Iapp,

~Iapp[t]← Cin ·~Iext[t], (32)

where Cin is an LxN binary masking matrix which routes each input to the correct target
neuron. L is the number of input elements, and N is the number of neurons in the network.
This external input vector is varied from step to step and could come from any source
(e.g., static data, real-time sensors).

Output monitors can also be added, both for sending signals to other systems and
for observing neural states during simulation. These outputs are assigned one-to-one to
each desired neuron, meaning one output applied to a population of five neurons results
in five individual outputs. Output monitors can be voltage-based or spike-based, where
the output is the direct voltage or spiking state of the source neuron. During simulation,
the output vector is computed as

~Out[t]← Cout,voltage · ~V[t] + Cout,spike ·~δ[t], (33)

where Cout,voltage and Cout,spike are connectivity matrices for the voltage and spike-based
monitors, respectively.

2.4. Software Design and Workflow

Using SNS-Toolbox, the design and implementation of an SNS is split across three
phases, a design phase, a compilation phase, and a simulation phase.



Biomimetics 2023, 8, 247 9 of 24

2.4.1. Design

To design a network, users first define neuron and connection types. These describe
the parameter values of the various neural and synaptic models in the network, which can
be subsequently reused. Once the neuron and connection presets are defined, they can be in-
corporated into a Network object (for a complete inventory of the different elements which
can be added to a Network, refer to Sections 2.1–2.3). First, the user can add populations of
neurons by giving the neuron type, the size or shape of the population, and a name to refer
to the population. When simulated, all populations will be flattened into a one-dimensional
vector, but during the design process they can be represented as a two-dimensional matrix
for ease of interpretation (e.g., working with two-dimensional image data). After popula-
tions are defined and labeled, the user can add synapses or patterns of synapses between
neurons/populations, giving an index or character-string corresponding to the source and
destination neurons or populations and the connection preset.

Once a network is designed, it can also be used as an element within another net-
work. In this way, a large network can be designed using large collections of predefined
subnetworks, in a methodology referred to as the Functional Subnetwork Approach (FSA).
Available within the SNS-Toolbox is a collection of subnetworks which perform simple
arithmetic and dynamic functions. For a complete explanation of these networks, as well
as the FSA, please refer to [9].

2.4.2. Compilation

While it describes the full structure of an SNS, a Network object is merely a dictionary
which contains all of the network parameters. In order to be simulated, it must be compiled
into an executable state. Given a Network, the SNS-Toolbox can compile a model capable
of being simulated using one of the four software backends, NumPy [57], PyTorch [58],
a PyTorch-based sparse matrix library (torch.sparse), and an iterative evaluator which
evaluates each synapse individually. These backends are all built on well-established
numerical processing libraries, with PyTorch bringing native and simple GPU support.
Each backend has different strengths and weaknesses, which are illustrated in Section 3.2.2.
Although each is different, all backends are compiled following the general procedure
described in Algorithm 1. Once a network is compiled, it can either be immediately used
for simulation or saved to disk for later use.

Algorithm 1 General compilation procedure.

function COMPILE(net, ∆t)
Get network parameters
Initialize state and parameter vectors and matrices
Set parameter values of each neuron in each population
Set input mapping and connectivity parameter values
Set connection synaptic parameter values
Calculate time factors
Initialize propagation delay buffer
Set output mapping and connectivity parameter values
return model

end function

2.4.3. Simulation

Since the SNS-Toolbox focuses on smaller networks which are connected with varying
levels of feedback loops [6,7,52,59,60] instead of multiple massively connected layers [61],
we optimize our computations by representing all networks as single-layer, fully-connected
recurrent networks. During simulation, the neural dynamics are evaluated by unfolding
the network through time. This is similar to the method developed by Werbos et al., for
training recurrent ANNs [62]. See Figure 1 for a visual representation of this strategy.
At each timestep, every neuron can receive input from any neuron at the previous step



Biomimetics 2023, 8, 247 10 of 24

(including itself via an autapse [63]). Although the SNS-Toolbox only acts as a neural
dynamics simulator, it is extensible to interact with other systems for controlling robot
(Section 3.3) or musculoskeletal (Section 3.4) dynamics.

0

1 2 O0

O1 O2

Iapp
A. B.

t

t-dt

t+dt

Iapp

Iapp

Iapp

Figure 1. Simulation method for a small example network using the SNS-Toolbox. (A) Overall
network diagram generated within the toolbox. (B) Diagram of the general computational flow when
simulating the network. The network is unfolded in time, and neural voltages are propagated in
feedforward layers from one time-step to another.

3. Results

In this Section, we provide results showcasing the capabilities of SNS-Toolbox. We
first provide quantitative benchmarks which characterize the performance of the software,
and conclude with two application examples.

3.1. Specifications

Unless otherwise specified, all of the following results were obtained using the soft-
ware and hardware presented in Table 2.

Table 2. Software and hardware specifications.

Item CPU GPU RAM Python NumPy PyTorch CUDA

Version
AMD

Ryzen 9
3900X

NVIDIA
RTX2060

32 GB
DDR4
2400
MHz

3.8.10 1.21.1 1.9.0 11.5

3.2. Performance Benchmarking

For evaluating the performance of the SNS-Toolbox, we present benchmarking results
for varying network size, structure, and type. In these benchmarks, networks consist
entirely of either spiking or non-spiking neurons, and are either densely or sparsely con-
nected. In densely connected networks, every neuron is synaptically connected to every
other neuron. For sparse networks, the neurons are connected with the following structure;
8% of neurons receive external input, 12% of neurons are recorded for output, and the
number of neurons and synapses is equal. This structure is based on general principles
observed in previous large-scale synthetic nervous systems [6,7].



Biomimetics 2023, 8, 247 11 of 24

3.2.1. Maximum Network Size

Networks were constructed following the structure described in Section 3.2, and in-
creased in size until one of the following two termination conditions were met, either the
network parameter matrices could not fit in memory or network synthesis took an excessive
amount of time (≥10 h). These experimental results are shown in Table 3. The limiting
factors of whether a network can successfully be synthesized are the synaptic parameter
matrices, as these increase in size quadratically as the size of the network increases. CPU-
based backends are able to achieve the highest network sizes, which is expected due to
the increased volume of memory available to the CPU. The iterative backend is able to
achieve the highest sizes of network, since its neural and synaptic dynamics are computed
by iterating over one-dimensional arrays instead of vector and matrix operations on two-
dimensional arrays. All of the sparse networks took significantly longer to synthesize,
resulting in termination of their testing before running out of memory.

Table 3. Maximum network size.

Backend Iterative NumPy Torch
(CPU)

Torch
(GPU)

Sparse
(CPU)

Sparse
(GPU)

Max
Dense 11,010 20,010 22,000 7865 151 ∗ 2510 ∗

Max
Sparse 15,8010 23,010 24,010 7639 17,510 ∗ 11,120 ∗

* Larger networks can be simulated, but compilation takes excessive time.

3.2.2. Backend Performance

We show that SNS-Toolbox is capable of simulating thousands of non-spiking neurons
in real-time or faster, with slower performance when simulating spiking neurons. In total,
100 networks, which varied in size from 10 to 5000 neurons in a logarithmic spacing, were
generated and simulated for 1000 steps in each backend. A simulation step of ∆t = 0.1 ms
was used. The elapsed time to simulate each step was recorded, and the results are shown
in Figure 2. Each of the available backends exhibit different strengths and weaknesses.
For networks with less than 100 neurons, the Numpy [57] backend runs the fastest, followed
by the PyTorch [58] backend running on the CPU. Once networks increase in size beyond
200–300 neurons, the PyTorch backend running on a GPU becomes the fastest. While
this backend is the fastest, the exchange of data between the CPU and GPU results in a
higher degree of temporal variability than the CPU-based backends. Further investigation
is needed to reduce this variability in performance.

The exact threshold for what could be considered real-time performance is dependent
on the simulation step size, which, in turn, is dependent on the membrane properties of
neurons within the network. While all networks in this test were simulated with the same
step size for consistency, accurately simulating spiking networks will generally require a
finer simulation step than non-spiking networks. In this test, an elapsed time of 0.1 ms per
step is considered real-time for the spiking networks. A step size of 1 ms would suffice for
the non-spiking networks tested in this section, so their real-time limit is 1 ms. For non-
spiking networks, this means that networks up to about 3000 neurons can be simulated in
real-time, and for spiking networks the threshold is about 100–200 neurons.



Biomimetics 2023, 8, 247 12 of 24

101 102 103

10 1

101

103

105

St
ep

 T
im

e 
(m

s)

Dense Non-SpikingA

Numpy
Torch (CPU)
Torch (GPU)
Iterative
Real-Time

101 102 103

10 1

100

101

102

St
ep

 T
im

e 
(m

s)

Sparse Non-SpikingB

101 102 103

Number of Neurons

10 1

100

101

102

103

104

St
ep

 T
im

e 
(m

s)

Dense SpikingC

101 102 103

Number of Neurons

10 1

100

101

102

St
ep

 T
im

e 
(m

s)

Sparse SpikingD

Figure 2. Comparison of wall-clock times to simulate a network for one simulation time-step over
varying network sizes, using the six software backends provided in SNS-Toolbox. (A,B): Networks of
non-spiking neurons, (C,D): networks of spiking neurons. Left: Fully-connected networks, Right:
Sparsely connected networks, following the structure described in Section 3.2. Lines denote the
mean over 1000 steps, shaded region denotes the area between the fifth and ninety-fifth percentiles.
The real-time limit is denoted with a horizontal dashed black line.

3.2.3. Benchmarking Alternative Software

The SNS-Toolbox is faster than the majority of similar neural simulators. We perform
the same testing procedure presented in Section 3.2.2, and compare against the behavior of
similar simulators, namely Brian2 [21], Nengo [40], and ANNarchy [16]. For these other
simulators, the neural and synaptic dynamics for basic spiking and non-spiking neurons
within SNS-Toolbox (see Sections 2.1 and 2.2) were implemented and verified to match the
behavior in SNS-Toolbox. In Brian2 and ANNarchy, this was completed via their built-in
interfaces for interpreting custom behavioral strings. This process was less straightforward
in Nengo, requiring a custom Nengo process object which re-implemented the equations
as performed in SNS-Toolbox. As such, while the networks are able to successfully run in
Nengo, they are not fully compatible with the rest of the Nengo ecosystem. Since these
benchmarks are not being compared against biological recordings, validation is completed
by comparing the behavior of the neural models across simulators and verifying that the
simulation recordings are identical.

Results are shown in Figure 3. For clarity, simulators with multiple backends or vari-
ants are condensed to show the best performing version for each network size. The variants
tested in Brian2 are the normal version on CPU, and the GPU-accelerated Brian2CUDA [24],
and ANNarchy was compiled using the CPU and GPU paradigms. All SNS-Toolbox back-
ends were tested. Across all network sizes and structures, SNS-Toolbox is faster or within
performance variance of Brian2 and Nengo. SNS-Toolbox is faster than ANNarchy for
some densely-connected non-spiking networks, but, in general, is slower but competitive
across the test suite. Suggestions for improving this speed discrepancy will be explored in
the Discussion.



Biomimetics 2023, 8, 247 13 of 24

Figure 3. Comparison of wall-clock times for SNS-Toolbox to simulate a network for one simula-
tion time-step over varying network sizes, using SNS-Toolbox and three other neural simulators
(Brian2 [21], Nengo [40], and ANNarchy [16]). For the following simulators, the time data presented
are chosen as the best-performing backend variant, Brian2, standard Brian2, and the GPU-accelerated
Brian2CUDA; SNS-Toolbox, all available variants; and ANNarchy, CPU-based compilation, and
GPU-based compilation. (A,B): Networks of non-spiking neurons, (C,D): networks of spiking neu-
rons. Left: Fully-connected networks, Right: Sparsely connected networks, following the structure
described in Section 3.2. Lines denote the mean over 1000 steps, shaded region denotes the area
between the fifth and ninety-fifth percentiles. The real-time limit is denoted with a horizontal dashed
black line.

3.2.4. Performance on Embedded Hardware

The testing procedure presented in Section 3.2.2 is again repeated, testing the per-
formance of SNS-Toolbox on various embedded computing platforms. These included
a Raspberry Pi Model 3B (trademark Raspberry Pi Limited, Cambridge, UK), Jetson
Nano 4GB (trademark NVIDIA Corporation, Santa Clara, CA, USA), and an Intel NUC
SWNUC11PHKi7c00 (trademark Intel Corporation, Santa Clara, CA, USA) with 32 GB of
RAM. Due to the reduced available memory available on the Raspberry Pi and Jetson, net-
work size is varied logarithmically from 10 to 1000 neurons, instead of the 10–5000 neurons
in Sections 3.2.2 and 3.2.3. Results are shown in Figure 4; for clarity, all backends are
condensed for each device such that the best performing solution at each network size is
presented. The Raspberry Pi performs comparably with a Jetson Nano, with the Jetson
exhibiting slightly better performance across all network sizes. The amount of memory
available on the Raspberry Pi is the smallest of the three devices, so it is unable to simulate
densely-connected networks over approximately 900 neurons in size. The Intel NUC is a
significantly more powerful computing platform than the Raspberry Pi or the Jetson Nano,
and accordingly behaves more closely to desktop-level performance.



Biomimetics 2023, 8, 247 14 of 24

101 102 103

10 1

100

101

St
ep

 T
im

e 
(m

s)

Dense Non-SpikingA

101 102 103

10 1

100

101

St
ep

 T
im

e 
(m

s)

Sparse Non-SpikingB

NUC
Jetson Nano
Rpi 3B
Real-Time

101 102 103

Number of Neurons

10 1

100

101

St
ep

 T
im

e 
(m

s)

Dense SpikingC

101 102 103

Number of Neurons

10 1

100

101

St
ep

 T
im

e 
(m

s)

Sparse SpikingD

Figure 4. Comparison of wall-clock times to simulate a network for one simulation time-step over
varying network sizes, using SNS-Toolbox on three different embedded computing platforms (Intel
NUC, Raspberry Pi version 3b, and an NVIDIA Jetson Nano). The time data presented are chosen
as the best-performing backend variant at each network size, with GPU-based backends excluded
on the Raspberry Pi. (A,B): Networks of non-spiking neurons, (C,D): networks of spiking neu-
rons. Left: Fully-connected networks, Right: Sparsely connected networks, following the structure
described in Section 3.2. Lines denote the mean over 1000 steps, shaded region denotes the area
between the fifth and ninety-fifth percentiles. The real-time limit is denoted with a horizontal dashed
black line.

3.3. Mobile Robot Control

As a toy application example, we use SNS-Toolbox to control a simulated mobile robot.
A skid-steer Jackal robot (trademark Clearpath Robotics, Kitchener, ON, USA) is placed
in a navigational course resembling a figure-eight in the Gazebo physics simulator [36]
(Figure 5B), with the goal being to drive the robot around the course without colliding with
any of the walls or barriers. The simulated robot is equipped with a planar LiDAR unit,
and is controlled and operated using the ROS software ecosystem [50]. We implement the
neural control system as a ROS node which subscribes to the angular distance readings
from the laser scanner, and publishes to the velocity controller onboard the robot.

The control network, shown in Figure 5A, implements a Braitenberg-inspired [64]
steering algorithm. The laser scan sends distance measurements for 720 points in a 270◦ arc
around the front of the robot, and each neuron in a population of 720 non-spiking neurons
receives external current from a corresponding directional distance scan. These currents
are scaled and mapped by the following relationship,

Iapp(D) =
D−1 − D−1

max

D−1
min − D−1

max
, (34)

such that each neuron has a steady-state voltage of 0 when the sensor distance D is at its
maximum value Dmax, and increases to 1 when the distance is at its minimum Dmin. This
population then excites two heading control neurons, with the left 360 neurons exciting
the clockwise rotation neuron, and the right 360 exciting the counter-clockwise rotation
neuron. All synapses between the sensory and heading control neurons share the same



Biomimetics 2023, 8, 247 15 of 24

synaptic conductance. The difference between the potentials of these two neurons is taken
and scaled to generate the desired angular velocity of the robot,

νang = Kang · (VCW −VCCW). (35)

B

C

A

CCW CW

Speed1.0

5000 10,000 15,000 20,000 25,000 30,000 35,0000

Figure 5. LiDAR-based steering algorithm for a simulated mobile robot using ROS. (A): Network
diagram of the control network. Each distance measurement angle of a simulated LiDAR is inverted,
scaled, and mapped as the input to a single input processing neuron. These are then summed onto
directional neurons corresponding to clockwise or counter-clockwise rotation, depending on which
half of the scanning field the neuron represents. All sensory neurons also connect to a speed control
neuron. The difference between the directional neurons is taken as the rotational velocity, and the
speed control neuron is scaled by the maximum speed to control the linear velocity. (B): Overhead
view of the simulation environment in Gazebo [36]. Orange and white barriers act as boundaries of
the course, the robot trajectory is superimposed on top with a dashed blue line. (C): Neural activity
of the three command neurons during the generation of the trajectory shown above.

As the robot approaches a barrier, the system generates stronger rotational commands
to move away from the obstacle. All 720 sensory neurons also inhibit a speed control
neuron, which scales the linear velocity of the robot as

νlin = νlin,max ·VSpeed. (36)

The speed control neuron also has a constant applied bias current of 1 nA. This has
the effect of dynamically slowing the robot as it becomes closer to obstacles, allowing the
rotational commands to correctly orient the robot. This controller results in successful
navigation of the driving course in 133.24 s, with minimal tuning. Neural parameter
values can be found in Table A1, synaptic parameter values in Table A2, and mapping and
simulation parameter values in Table A3. Currently the velocity is updated with every
neural step, however for improved speed performance the velocity can be updated after
multiple neural steps. This allows the neural states to converge to a steady-state for each
scan distance, and reduces the amount of communication traffic.

Braitenberg-inspired [64] networks have been widely used for steering and lane-
keeping tasks in the past [65–67] to great success. The network designed in this section is
intended as a proof of concept to showcase the ability to interface SNS-Toolbox with ROS
simulations, not as a state-of-the-art steering algorithm.



Biomimetics 2023, 8, 247 16 of 24

3.4. Musculoskeletal Dynamics

In Deng et al. [68], an SNS was designed to control a biomechanical simulation of rat
hindlimbs, with the network and body dynamics simulated using AnimatLab [37]. Here
we reimplement this SNS using SNS-Toolbox and interface it with a new biomechanical
model implemented in the physics simulator Mujoco [49].

3.4.1. Neural Model

An overall network diagram can be found in Figure 6A. The general network structure
consists of a two-layer CPG with separate rhythm generation (RG) and pattern formation
(PF) layers [69], with each layer comprising of half-center (HC) oscillators [70]. The RG
network has two HC neurons which contain voltage-gated ion channels (Equation (14)),
which mutually inhibit one another via two non-spiking interneurons (Equation (1)). This
network generates the overall rhythmic activity of the legs, and the global speed can be
controlled via the level of mutual synaptic inhibition [55].

Hip PF Knee/Ankle PF

Rhythm Generator

Knee Motor
Circuit

Ankle Motor
Circuit

Ext
IN

Ext
IN

Flx
IN

Flx
IN

Ib Flx Muscle
Feedback

Hip Motor Circuit

Ia
IN

Ia
IN

Ib
IN

Ib
IN

Ia
Ext

Ia
Flx

MN
Flx

RC
Flx

MN
Ext

RC
Ext

Ia Ext Muscle
Feedback

Ia Flx Muscle
Feedback

Ib Ext Muscle
Feedback

Ext Muscle
Activation

Flx Muscle
Activation

Inhibitory
Excitatory
To/From Muscle

Motor Circuit

Ext
HC

Ext
HC

Flx
HC

Flx
HC

Ext
HC

Flx
HC

Ext
IN

Flx
IN

Figure 6. SNS-Toolbox controls a musculoskeletal model of a rat hindlimb. (A): Diagram of the
neural control network. (B): Relationship between motor neuron voltage and muscle activation.
(C): The musculoskeletal model used in Mujoco [49]. (D): Neural activity from the half-center
neurons in the central rhythm generator. (E,F): Neural activity from the hip and knee/ankle pattern
formation circuits. (G–I): Motor neuron activity in the motor circuits for the hip, knee, and ankle.
(J–L): Joint angles of the hip, knee, and ankle. All recordings are shown for a period of 1000 ms,
after the model has finished initialization. Pictured are recordings from the elements within the left
leg. Right leg recordings are similar, and shown in Figure A1.

The HC neurons of the RG network excite the corresponding HC neurons in the PF
networks, which are constructed in a similar manner to the RG network. Each PF network
shapes the phase from the RG network into the appropriate joint position for a specific joint,
with the knee and ankle joints sharing a PF network. The PF networks are also presynaptic
to a motor control network for each joint [59,71], where motoneurons (MN) drive the flexor
and extensor muscles for each joint and are adjusted by Ia and Ib feedback from the muscles.
Neural and synaptic parameter values for the network can be found in Tables A4–A6.



Biomimetics 2023, 8, 247 17 of 24

3.4.2. Biomechanical Model

In Deng et al. [68], the rat hindlimbs were modeled in AnimatLab [37] using simplified
box geometry and a pair of linear Hill muscles for each joint. We replicate this model in
Mujoco [49] using a three-dimensional model of bone geometry [72] and non-linear Hill
muscles (shown in Figure 6C). Mujoco was chosen due to its open-source availability, and its
robust internal support for complex muscle-based actuation with a lower computational
overhead than OpenSim [73].

All muscles in the model share the same sigmoidal activation curve which converts
motoneuron activity to a muscle activation between 0 and 1. This is calculated in the same
manner as [74], with the activation sigmoid defined as

act =
1

1 + es(xo f f set−stim)
+ yo f f set, (37)

where s is the steepness of the sigmoid and stim is the motoneuron potential. All muscle
activation parameter values can be found in Table A7, with the resulting curve shown
in Figure 6B.

3.4.3. Simulation Results

The network and mechanical model are simulated for 5000 ms, with data shown
in Figure 6. On each step, muscle tensions from Mujoco are first formatted as Ia and Ib
feedback for the SNS, then the outputs of the SNS are mapped via Equation (37) into muscle
activations for the Mujoco model. The network parameters are exactly the same in this
work as in Deng et al. [68], and result in oscillatory motor behavior (the original joint
angles from AnimatLab can be seen in Figure A2). The overall leg oscillation occurs at half
the frequency of the original model, and the joints exhibit scaled and shifted trajectories.
The hip joint oscillates in the range of {−0.94, 0.07} radians instead of {−0.09, 0.17} radians
in the original model, with the knee in {0.19, 0.84} radians instead of {−0.47,−0.09}
radians and the ankle in {−1.76,−0.97} radians instead of {−0.92,−0.26} radians. Further
investigation is needed to determine the sources of these discrepancies in behavior, however
a difference is to be expected given the difference in muscle modeling.

4. Discussion

In this work, we present SNS-Toolbox, an open-source Python package for simulating
synthetic nervous systems. We focus on simulating a specific subset of neural and synaptic
models, which allows for improved performance over many existing neural simulators.
To the best of our knowledge, the SNS-Toolbox is the only neural simulator available
which meets all of the desired functionality for designing synthetic nervous systems. The
SNS-Toolbox is not tied to a dedicated graphical user interface, allowing networks to be
designed and simulated on embedded systems. Heterogeneous networks of both spiking
and non-spiking neurons, as well as chemical and electrical synapses, can also be simulated
in real-time on both CPU and GPU hardware. All of these capabilities are also fully available
across all major operating systems, including Windows (trademark Microsoft Corporation),
MacOS (trademark Apple Corporation), and Linux-based systems.

We find that SNS-Toolbox can simulate networks with hundreds to thousands of
neurons in real-time on desktop hardware, and low hundreds of neurons on embedded
hardware. The performance is also competitive with other popular neural simulators.
Through a simple programming interface, it is relatively simple to combine networks made
in SNS-Toolbox with other software. Using ROS [50], we implemented a Braitenberg-
inspired [64] neural steering algorithm and controlled navigation of a simulated mobile
robot through an environment in Gazebo [36]. We also take an existing SNS network which
controlled a musculoskeletal model [68] implemented in AnimatLab [37], and achieved
cyclical limb motion after reimplementing the network in SNS-Toolbox and interfacing
with Mujoco [49].



Biomimetics 2023, 8, 247 18 of 24

One decision we made early in the design process was to provide a simplified design
and compilation interface, as well as to build SNS-Toolbox on top of widely used Python
numerical processing libraries in order to facilitate use across all computing platforms.
This has allowed multiple researchers with varying degrees of programming experience
within our laboratories to begin using SNS-Toolbox successfully, as well as an instructional
tool in pilot classes on neurorobotics. While other tools, such as ANNarchy [16], achieve
higher performance by direct code generation in C++, they do so at the expense of easy
cross-platform support. Future work may explore adding additional build systems for
different operating systems in order to achieve comparable performance.

In order to allow network simulation on GPUs, multiple backends in SNS-Toolbox
are built on top of PyTorch [58]. However, PyTorch has a large infrastructure of features
which are currently not supported by the structure of the SNS-Toolbox backend, such as
layer-based organization of networks and gradient-based optimization using automatic
differentiation. Additionally, models built using the formal PyTorch style are able to be
compiled into the C++-adjacent Torchscript, allowing improved simulation performance.
Work is currently underway to restructure the PyTorch backend within SNS-Toolbox to
allow these benefits.

Previous SNS models have often been made using the software AnimatLab [4,6,7,37],
which uses a different workflow than SNS-Toolbox. Within AnimatLab, users have an
integrated GUI that contains a rigid-body modeler, canvas for dragging and dropping
neurons and synapses into a network, and a plotting window for viewing simulation
results. The SNS-Toolbox is designed to focus on the design and simulation of the neural
and synaptic dynamics, with the physics simulation and plotting being relegated to external
libraries. While this may be less convenient for a user who is either a beginner or is
migrating from AnimatLab, we feel that this separation is beneficial as it allows networks
made using the SNS-Toolbox to be more extensible to interfacing with other systems. When
transitioning from AnimatLab, the primary difference in workflow is that networks in
the SNS-Toolbox are described via code instead of drawn. If the transitioning user is
familiar with writing code in Python or another similar language, this change is easily
managed. The other difficulty when converting from AnimatLab to SNS-Toolbox is when
using MuJoCo [49] for physics simulation. As the native muscle model within MuJoCo is
different than AnimatLab, we show in Section 3.4 and Figure A2 that the same network
with the same parameter values will exhibit different behavior if not tuned to use the new
muscle model.

Throughout the design process of SNS-Toolbox, we chose to focus on implementing
specific sets of neural and synaptic dynamics. This brings enhanced performance, however
it does mean that there is no method for a user to add a new neural or synaptic model
to a network which has not been previously defined, without editing the source code for
the toolbox itself. One workaround to this issue is to create more complicated models by
treating individual non-spiking or spiking neurons as compartments which are connected
together as a multi-compartment model, however, in general, we find that this is a limitation
for the SNS-Toolbox at this time.

The SNS-Toolbox is currently available as open-source software on GitHub (trademark
GitHub incorporated), and has an extensive suite of documentation freely available online.
In addition to installing from source, the SNS-Toolbox is also available to install from the
Python Package Index (PyPi). All of the features within the toolbox are built on top of
standard, widely used Python libraries. As long as these libraries maintain backwards
compatibility as they update, or the current versions remain available, the functionality of
SNS-Toolbox should remain into the future.

Examples were shown using the SNS-Toolbox to interface with external software
systems, particularly ROS [50] and Mujoco [49]. While the primary goal of SNS-Toolbox is
a simplified interface which focuses on neural dynamics, other users may find our interface
mappings between SNS-Toolbox and other software useful. As such, we intend to release



Biomimetics 2023, 8, 247 19 of 24

supplementary Python packages which contain helper logic to interface the SNS-Toolbox
with other software as we develop them.

Many robots have been built which use SNS networks for control, although these
are usually tethered to an off-board computer [6,7] or require non-traditional computer
hardware [8] to operate. With the release of SNS-Toolbox, we have two forward-looking
hopes. Firstly, that more researchers design and implement synthetic nervous systems
for robotic control, and that members of the robotics community will find value in neural
simulators which are capable of simulating heterogeneous networks of dynamic neurons.

Author Contributions: Conceptualization, W.R.P.N., N.S.S. and R.D.Q.; methodology, W.R.P.N. and
C.J.; software, W.R.P.N.; validation, W.R.P.N. and C.J.; formal analysis, W.R.P.N.; investigation,
W.R.P.N.; resources, N.S.S. and R.D.Q.; data curation, W.R.P.N.; writing—original draft preparation,
W.R.P.N.; writing—review and editing, W.R.P.N., C.J., N.S.S. and R.D.Q.; visualization, W.R.P.N. and
C.J.; supervision, R.D.Q.; project administration, W.R.P.N. and R.D.Q.; funding acquisition, N.S.S.
and R.D.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Science Foundation (NSF) RI 1704436, as well as by
NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for
Neuroscience Program.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The software and data presented in this study are openly available
https://github.com/wnourse05/SNS-Toolbox (accessed on 9 June 2023), with documentation and
detailed instructions provided at https://sns-toolbox.readthedocs.io/en/latest/index.html (accessed
on 9 June 2023).

Acknowledgments: Special thanks to Ian Adams, who assisted with configuring ROS and setting up
the simulation environment presented in Section 3.3, as well as providing some of the embedded
hardware for testing. We also thank Kaiyu Deng, for their original work in implementing the neural
controller for rat hindlimb locomotion in AnimatLab.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SNS Synthetic Nervous System
ANN Artificial Neural Network
FSA Functional Subnetwork Approach
ROS Robotic Operating System
CPU Central Processing Unit
GPU Graphics Processing Unit
RG Rhythm Generation
PF Pattern Formation
HC Half-Center
MN Motoneuron

Appendix A

Table A1. Mobile robot neural parameter values.

Parameter Vrest Cm Gm

Value 0 mV 5 nF 1 µS

https://github.com/wnourse05/SNS-Toolbox
https://sns-toolbox.readthedocs.io/en/latest/index.html


Biomimetics 2023, 8, 247 20 of 24

Table A2. Mobile robot synaptic parameter values.

Parameter Ein Eex Elo Ehi Gmax,angle Gmax,speed

Value −2.0 5 mV 0 mV 1 mV 0.005 µS 0.0028 µS

Table A3. Mobile robot mapping and simulation parameter values.

Parameter ∆t Dmin Dmax Kang νmax,lin

Value 1 ms 0.1 m 30 m 5/π 1 m/s

Table A4. Rat hindlimb neural parameter values.

Parameter Cm Gm Vrest Vrest,MN

Value 5 nF 1 µS −60 mV −100 mV

Table A5. Rat hindlimb sodium channel parameter values.

Parameter ENa Sm Sh Km Kh Em Eh τh.max GNa

Value 50 mV 0.2 −0.6 1 0.5 −40 mV −60 mV 350 ms 1.5 µS

Table A6. Rat hindlimb synaptic parameter values.

Synapse Gmax Esyn Elo Ehi

HC → IN 2.749 µS −40 mV −60 mV −25 mV

IN → HC 2.749 µS −70 mV −60 mV −25 mV

RGHC → PFHC 0.100 µS −40 mV −60 mV −40 mV

PF → MNhip,ext 2.565 µS −10 mV −60 mV −50 mV

PF → MNhip, f lx 3.632 µS −10 mV −60 mV −50 mV

PF → MNknee,ext 4.930 µS −10 mV −60 mV −50 mV

PF → MNknee, f lx 1.516 µS −10 mV −60 mV −50 mV

PF → MNankle,ext 4.054 µS −10 mV −60 mV −50 mV

PF → MNhip,ext 4.522 µS −10 mV −60 mV −50 mV

PF → Ia 0.500 µS −40 mV −60 mV −40 mV

Ia→ Ia 0.500 µS −70 mV −60 mV −40 mV

Ia→ MN 2.000 µS −100 mV −60 mV −40 mV

MN → RC 0.500 µS −40 mV −10 mV −100 mV

RC → RC 0.500 µS −70 mV −60 mV −40 mV

RC → MN 0.500 µS −100 mV −60 mV −40 mV

RC → Ia 0.500 µS −70 mV −60 mV −40 mV

IaIN → Ia 0.500 µS −40 mV −60 mV −40 mV

IbIN → MN 0.590 µS −10 mV −60 mV −40 mV

PF → Ib 2.000 µS −60 mV −60 mV −59 mV



Biomimetics 2023, 8, 247 21 of 24

Table A7. Rat hindlimb muscle activation and simulation parameter values.

Parameter yof f set Stim xof f set s ∆t

Value −0.01 [−100,−40] mV −70 mV 0.1532 0.1 ms

4000 4250 4500 4750 5000

60

58

56
Po

te
nt

ia
l (

m
V)

RGA

HC_ext
HC_flx

4000 4250 4500 4750 5000
62

60

58

56

Po
te

nt
ia

l (
m

V)

Hip PFB

HC_ext
HC_flx

4000 4250 4500 4750 5000
62

60

58

56

Po
te

nt
ia

l (
m

V)

Knee/Ankle PFC

HC_ext
HC_flx

4000 4250 4500 4750 5000
100

80

60

Po
te

nt
ia

l (
m

V)

Hip MND

Extensor
Flexor

4000 4250 4500 4750 5000
100

80

60

40

Po
te

nt
ia

l (
m

V)

Knee MNE

Extensor
Flexor

4000 4250 4500 4750 5000
100

80

60

40

Po
te

nt
ia

l (
m

V)

Ankle MNF

Extensor
Flexor

4000 4250 4500 4750 5000
Time (ms)

0.8

0.6

0.4

0.2

0.0

An
gl

e 
(ra

d)

Hip AngleG

4000 4250 4500 4750 5000
Time (ms)

0.2

0.4

0.6

0.8

An
gl

e 
(ra

d)

Knee AngleH

4000 4250 4500 4750 5000
Time (ms)

1.8

1.6

1.4

1.2

1.0

An
gl

e 
(ra

d)

Ankle AngleI

Figure A1. Recordings of elements within the right hindlimb. (A): Neural activity from the half-center
neurons in the central rhythm generator. (B,C): Neural activity from the hip and knee/ankle pattern
formation circuits. (D–F): Motor neuron activity in the motor circuits for the hip, knee, and ankle.
(G–I): Joint angles of the hip, knee, and ankle. All recordings are shown for a period of 1000 ms,
after the model has finished initialization.

4000 4250 4500 4750 5000
Time (ms)

0.8

0.6

0.4

0.2

0.0

0.2

An
gl

e 
(ra

d)

Hip AngleA

SNS-Toolbox
AnimatLab

4000 4250 4500 4750 5000
Time (ms)

0.50

0.25

0.00

0.25

0.50

0.75

An
gl

e 
(ra

d)

Knee AngleB

SNS-Toolbox
AnimatLab

4000 4250 4500 4750 5000
Time (ms)

1.75

1.50

1.25

1.00

0.75

0.50

0.25

An
gl

e 
(ra

d)

Ankle AngleC

SNS-Toolbox
AnimatLab

Figure A2. Comparison between simulated motion of the left hindlimb in AnimatLab [37] (solid
blue) and Mujoco [49] (dashed grey). (A): Hip joint angle. (B): Knee joint angle. (C): Ankle joint angle.
All recordings are shown for a period of 1000 ms, after the model has finished initialization.

References
1. Chiel, H.J.; Beer, R.D. The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and

environment. Trends Neurosci. 1997, 20, 553–557. [CrossRef]
2. Bartolozzi, C.; Indiveri, G.; Donati, E. Embodied neuromorphic intelligence. Nat. Commun. 2022, 13, 1024. [CrossRef]

http://doi.org/10.1016/S0166-2236(97)01149-1
http://dx.doi.org/10.1038/s41467-022-28487-2


Biomimetics 2023, 8, 247 22 of 24

3. Szczecinski, N.S.; Goldsmith, C.; Nourse, W.; Quinn, R.D. A perspective on the neuromorphic control of legged locomotion in
past, present, and future insect-like robots. Neuromorphic Comput. Eng. 2023, 3, 023001. [CrossRef]

4. Szczecinski, N.S.; Brown, A.E.; Bender, J.A.; Quinn, R.D.; Ritzmann, R.E. A neuromechanical simulation of insect walking and
transition to turning of the cockroach Blaberus discoidalis. Biol. Cybern. 2014, 108, 1–21. [CrossRef]

5. Schilling, M.; Cruse, H. neuroWalknet, a controller for hexapod walking allowing for context dependent behavior. PLoS Comput.
Biol. 2023, 19, e1010136. [CrossRef]

6. Hunt, A.; Szczecinski, N.; Quinn, R. Development and training of a neural controller for hind leg walking in a dog robot. Front.
Neurorobot. 2017, 11, 18. [CrossRef] [PubMed]

7. Goldsmith, C.A.; Szczecinski, N.S.; Quinn, R.D. Neurodynamic modeling of the fruit fly Drosoph. Melanogaster. Bioinspiration
Biomimetics 2020, 15, 065003. [CrossRef]

8. Ayers, J.; Witting, J. Biomimetic approaches to the control of underwater walking machines. Philos. Trans. R. Soc. A Math. Phys.
Eng. Sci. 2007, 365, 273–295. [CrossRef] [PubMed]

9. Szczecinski, N.S.; Hunt, A.J.; Quinn, R.D. A functional subnetwork approach to designing synthetic nervous systems that control
legged robot locomotion. Front. Neurorobot. 2017, 11, 37. [CrossRef] [PubMed]

10. Szczecinski, N.S.; Quinn, R.D.; Hunt, A.J. Extending the Functional Subnetwork Approach to a Generalized Linear Integrate-and-
Fire Neuron Model. Front. Neurorobot. 2020, 14, 577804. [CrossRef]

11. Mangan, M.; Floreano, D.; Yasui, K.; Trimmer, B.A.; Gravish, N.; Hauert, S.; Webb, B.; Manoonpong, P.; Szczecinski, N.S. A
virtuous cycle between invertebrate and robotics research: Perspective on a decade of Living Machines research. Bioinspiration
Biomimetics 2023, 18, 035005. [CrossRef] [PubMed]

12. Webb, B. Robots in invertebrate neuroscience. Nature 2002, 417, 359–363. [CrossRef]
13. Richardson, M.J. Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Phys. Rev. E-Stat.

Phys. Plasmas Fluids Relat. Interdiscip. Top. 2004, 69, 8. [CrossRef]
14. Guie, C.K.; Szczecinski, N.S. Direct Assembly and Tuning of Dynamical Neural Networks for Kinematics; Springer Science and Business

Media Deutschland GmbH: Berlin, Germany, 2022; Volume 13548 LNAI, pp. 321–331. [CrossRef]
15. Maass, W. Networks of Spiking Neurons: The Third Generation of Neural Network Models. Neural Netw. 1997, 10, 1659–1671.

[CrossRef]
16. Vitay, J.; Dinkelbach, H.; Hamker, F.H. ANNarchy: A code generation approach to neural simulations on parallel hardware. Front.

Neuroinform. 2015, 9, 19. [CrossRef] [PubMed]
17. Sedlackova, A.; Szczecinski, N.S.; Quinn, R.D. A Synthetic Nervous System Model of the Insect Optomotor Response; Springer

International Publishing: Berlin, Germany, 2020; pp. 312–324.
18. Hines, M.L.; Carnevale, N.T. NEURON: A Tool for Neuroscientists. Neuroscientist 2001, 7, 123–135. [CrossRef] [PubMed]
19. Gewaltig, M.O.; Diesmann, M. Nest (neural simulation tool). Scholarpedia 2007, 2, 1430. [CrossRef]
20. Bower, J.M.; Beeman, D. The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System; Springer

Science & Business Media: Berlin, Germany, 2012.
21. Goodman, D.; Brette, R. Brian: A simulator for spiking neural networks in python. Front. Neuroinform. 2008, 2, 5. [CrossRef]
22. Strohmer, B.; Manoonpong, P.; Larsen, L.B. Flexible Spiking CPGs for Online Manipulation during Hexapod Walking. Front.

Neurorobot. 2020, 14, 41. [CrossRef]
23. Djurfeldt, M.; Hjorth, J.; Eppler, J.M.; Dudani, N.; Helias, M.; Potjans, T.C.; Bhalla, U.S.; Diesmann, M.; Kotaleski, J.H.; Ekeberg, Ö.

Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics 2010, 8, 43–60.
[CrossRef] [PubMed]

24. Alevi, D.; Stimberg, M.; Sprekeler, H.; Obermayer, K.; Augustin, M. Brian2CUDA: Flexible and Efficient Simulation of Spiking
Neural Network Models on GPUs. Front. Neuroinform. 2022, 16, 53. [CrossRef]

25. Eshraghian, J.K.; Ward, M.; Neftci, E.; Wang, X.; Lenz, G.; Dwivedi, G.; Bennamoun, M.; Jeong, D.S.; Lu, W.D. Training Spiking
Neural Networks Using Lessons from Deep Learning. arXiv 2021, arXiv:2109.12894.

26. Mozafari, M.; Ganjtabesh, M.; Nowzari-Dalini, A.; Masquelier, T. SpykeTorch: Efficient simulation of convolutional spiking
neural networks with at most one spike per neuron. Front. Neurosci. 2019, 13, 625. [CrossRef] [PubMed]

27. Hazan, H.; Saunders, D.J.; Khan, H.; Patel, D.; Sanghavi, D.T.; Siegelmann, H.T.; Kozma, R. BindsNET: A machine learning-
oriented spiking neural networks library in python. Front. Neuroinform. 2018, 12, 89. [CrossRef] [PubMed]

28. Izhikevich, E.M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Burtsing; Cambridge University Press:
Cambridge, UK, 2007; p. 441. [CrossRef]

29. Niedermeier, L.; Chen, K.; Xing, J.; Das, A.; Kopsick, J.; Scott, E.; Sutton, N.; Weber, K.; Dutt, N.; Krichmar, J.L. CARLsim 6: An
Open Source Library for Large-Scale, Biologically Detailed Spiking Neural Network Simulation; Institute of Electrical and Electronics
Engineers Inc.: New York, NY, USA, 2022; Volume 2022. [CrossRef]

30. Fidjeland, A.K.; Roesch, E.B.; Shanahan, M.P.; Luk, W. NeMo: A platform for neural modelling of spiking neurons using GPUs.
In Proceedings of the 2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors,
Boston, MA, USA, 7–9 July 2009; pp. 137–144. [CrossRef]

31. Yavuz, E.; Turner, J.; Nowotny, T. GeNN: A code generation framework for accelerated brain simulations. Sci. Rep. 2016, 6, 18854.
[CrossRef]

http://dx.doi.org/10.1088/2634-4386/acc04f
http://dx.doi.org/10.1007/s00422-013-0573-3
http://dx.doi.org/10.1371/journal.pcbi.1010136
http://dx.doi.org/10.3389/fnbot.2017.00018
http://www.ncbi.nlm.nih.gov/pubmed/28420977
http://dx.doi.org/10.1088/1748-3190/ab9e52
http://dx.doi.org/10.1098/rsta.2006.1910
http://www.ncbi.nlm.nih.gov/pubmed/17148060
http://dx.doi.org/10.3389/fnbot.2017.00037
http://www.ncbi.nlm.nih.gov/pubmed/28848419
http://dx.doi.org/10.3389/fnbot.2020.577804
http://dx.doi.org/10.1088/1748-3190/acc223
http://www.ncbi.nlm.nih.gov/pubmed/36881919
http://dx.doi.org/10.1038/417359a
http://dx.doi.org/10.1103/PhysRevE.69.051918
http://dx.doi.org/10.1007/978-3-031-20470-8_32
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.3389/fninf.2015.00019
http://www.ncbi.nlm.nih.gov/pubmed/26283957
http://dx.doi.org/10.1177/107385840100700207
http://www.ncbi.nlm.nih.gov/pubmed/11496923
http://dx.doi.org/10.4249/scholarpedia.1430
http://dx.doi.org/10.3389/neuro.11.005.2008
http://dx.doi.org/10.3389/fnbot.2020.00041
http://dx.doi.org/10.1007/s12021-010-9064-z
http://www.ncbi.nlm.nih.gov/pubmed/20195795
http://dx.doi.org/10.3389/fninf.2022.883700
http://dx.doi.org/10.3389/fnins.2019.00625
http://www.ncbi.nlm.nih.gov/pubmed/31354403
http://dx.doi.org/10.3389/fninf.2018.00089
http://www.ncbi.nlm.nih.gov/pubmed/30631269
http://dx.doi.org/10.1017/S0143385704000173
http://dx.doi.org/10.1109/IJCNN55064.2022.9892644
http://dx.doi.org/10.1109/ASAP.2009.24
http://dx.doi.org/10.1038/srep18854


Biomimetics 2023, 8, 247 23 of 24

32. Mutch, J. CNS: A GPU-based framework for simulating cortically-organized networks. In CNS: A GPU-Based Framework for
Simulating Cortically-Organized Networks; Computer Science and Artificial Intelligence Laboratory: Cambridge, MA, USA, 2010.

33. Hoang, R.V.; Tanna, D.; Bray, L.C.J.; Dascalu, S.M.; Harris, F.C. A novel CPU/GPU simulation environment for large-scale
biologically realistic neural modeling. Front. Neuroinform. 2013, 7, 19. [CrossRef] [PubMed]

34. Allard, J.; Cotin, S.; Faure, F.; Bensoussan, P.J.; Poyer, F.; Duriez, C.; Delingette, H.; Grisoni, L.; Allard, J.; Cotin, S.; et al. SOFA—An
Open Source Framework for Medical Simulation; IOP Press: Bristol, UK, 2007; Volume 125, pp. 13–18.

35. Voegtlin, T. CLONES : A closed-loop simulation framework for body, muscles and neurons. BMC Neurosci. 2011, 12, P363.
[CrossRef]

36. Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 28
September–2 October 2004; Volume 3, pp. 2149–2154. [CrossRef]

37. Cofer, D.; Cymbalyuk, G.; Reid, J.; Zhu, Y.; Heitler, W.J.; Edwards, D.H. AnimatLab: A 3D graphics environment for neurome-
chanical simulations. J. Neurosci. Methods 2010, 187, 280–288. [CrossRef]

38. Cofer, D.; Cymbalyuk, G.; Heitler, W.J.; Edwards, D.H. Control of tumbling during the locust jump. J. Exp. Biol. 2010,
213, 3378–3387. [CrossRef]

39. Issa, F.A.; Drummond, J.; Cattaert, D.; Edwards, D.H. Neural circuit reconfiguration by social status. J. Neurosci. 2012,
32, 5638–5645. [CrossRef]

40. Bekolay, T.; Bergstra, J.; Hunsberger, E.; DeWolf, T.; Stewart, T.C.; Rasmussen, D.; Choo, X.; Voelker, A.R.; Eliasmith, C. Nengo: A
Python tool for building large-scale functional brain models. Front. Neuroinform. 2014, 7, 48. [CrossRef]

41. Capolei, M.C.; Angelidis, E.; Falotico, E.; Lund, H.H.; Tolu, S. A biomimetic control method increases the adaptability of a
humanoid robot acting in a dynamic environment. Front. Neurorobot. 2019, 13. [CrossRef] [PubMed]

42. Massi, E.; Vannucci, L.; Albanese, U.; Capolei, M.C.; Vandesompele, A.; Urbain, G.; Sabatini, A.M.; Dambre, J.; Laschi, C.;
Tolu, S.; et al. Combining evolutionary and adaptive control strategies for quadruped robotic locomotion. Front. Neurorobotics
2019, 13, 71. [CrossRef] [PubMed]

43. Cohen, G. Gooaall!!!: Why we Built a Neuromorphic Robot to Play Foosball. IEEE Spectr. 2022, 59, 44–50. [CrossRef]
44. DeWolf, T.; Patel, K.; Jaworski, P.; Leontie, R.; Hays, J.; Eliasmith, C. Neuromorphic control of a simulated 7-DOF arm using Loihi.

Neuromorphic Comput. Eng. 2023, 3, 014007. [CrossRef]
45. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A

neuromorphic manycore processor with on-chip learning. IEEE Micro 2018, 38, 82–99. [CrossRef]
46. Lava. Lava Software Framework; Lava: Santa Clara, CA, USA, 2021.
47. Eliasmith, C.; Anderson, C.H. Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems; MIT Press:

Cambridge, MA, USA, 2003.
48. Nourse, W.R.P.; Szczecinski, N.S.; Quinn, R.D. SNS-Toolbox: A Tool for Efficient Simulation of Synthetic Nervous Systems. In

Biomimetic and Biohybrid Systems; Hunt, A., Vouloutsi, V., Moses, K., Quinn, R., Mura, A., Prescott, T., Verschure, P.F.M.J., Eds.;
Springer International Publishing: Cham, Switzerland, 2022; pp. 32–43.

49. Todorov, E.; Erez, T.; Tassa, Y. MuJoCo: A physics engine for model-based control. In Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 5026–5033.
[CrossRef]

50. Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: An open-source Robot
Operating System. In ICRA Workshop on Open Source Software; ICRA: London, UK, 2009; Volume 3, p. 5.

51. Rossum, G.V. Python Programming Language; CWI (Centre for Mathematics and Computer Science): Amsterdam, The Netherlands,
2007; Volume 41, pp. 1–36.

52. Beer, R.D.; Gallagher, J.C. Evolving Dynamical Neural Networks for Adaptive Behavior. Adapt. Behav. 1992, 1, 91–122. [CrossRef]
53. Mihalaş, Ş.; Niebur, E. A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural Comput.

2009, 21, 704–718. [CrossRef]
54. Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in

nerve. J. Physiol. 1952, 117, 500–544. [CrossRef]
55. Szczecinski, N.S.; Hunt, A.J.; Quinn, R.D. Design process and tools for dynamic neuromechanical models and robot controllers.

Biol. Cybern. 2017, 111, 105–127. [CrossRef]
56. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2323. [CrossRef]
57. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.;

Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef]
58. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Google, J.B.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library; Curran Associates, Inc.: New York, NY, USA, 2019.
59. Hultborn, H.; Lindstr6m, S.; Wigstr6m, H. On the Function of Recurrent Inhibition in the Spinal Cord. Brain Res. 1979, 37, 399403.

[CrossRef] [PubMed]
60. Perkel, D.H.; Mulloney, B. Motor Pattern Production in Reciprocally Inhibitory Neurons Exhibiting Postinhibitory Rebound.

Science 1974, 185, 181–183. [CrossRef] [PubMed]

http://dx.doi.org/10.3389/fninf.2013.00019
http://www.ncbi.nlm.nih.gov/pubmed/24106475
http://dx.doi.org/10.1186/1471-2202-12-S1-P363
http://dx.doi.org/10.1109/iros.2004.1389727
http://dx.doi.org/10.1016/j.jneumeth.2010.01.005
http://dx.doi.org/10.1242/jeb.046367
http://dx.doi.org/10.1523/JNEUROSCI.5668-11.2012
http://dx.doi.org/10.3389/fninf.2013.00048
http://dx.doi.org/10.3389/fnbot.2019.00070
http://www.ncbi.nlm.nih.gov/pubmed/31555117
http://dx.doi.org/10.3389/fnbot.2019.00071
http://www.ncbi.nlm.nih.gov/pubmed/31555118
http://dx.doi.org/10.1109/MSPEC.2022.9729948
http://dx.doi.org/10.1088/2634-4386/acb286
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/IROS.2012.6386109
http://dx.doi.org/10.1177/105971239200100105
http://dx.doi.org/10.1162/neco.2008.12-07-680
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://dx.doi.org/10.1007/s00422-017-0711-4
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1007/BF00237722
http://www.ncbi.nlm.nih.gov/pubmed/499395
http://dx.doi.org/10.1126/science.185.4146.181
http://www.ncbi.nlm.nih.gov/pubmed/4834220


Biomimetics 2023, 8, 247 24 of 24

61. Fitzpatrick, D. The Functional Organization of Local Circuits in Visual Cortex: Insights from the Study of Tree Shrew Striate
Cortex. Cereb. Cortex 1996, 6, 329–341. [CrossRef]

62. Werbos, P.J. Bacpropagation Through Time: WHat It Does and How to Do It. Proc. IEEE 1990, 78, 1550–1560. [CrossRef]
63. Seung, H.S.; Lee, D.D.; Reis, B.Y.; Tank, D.W. The Autapse: A Simple Illustration of Short-Term Analog Memory Storage by

Tuned Synaptic Feedback. J. Comput. Neurosci. 2000, 9, 171–185. [CrossRef] [PubMed]
64. Braitenberg, V. Vehicles: Experiments in Synthetic Psychology; MIT Press: Cambridge, MA, USA, 1986.
65. Wang, C.; Yang, Z.; Wang, S.; Wang, P.; Wang, C.Y.; Pan, C.; Cheng, B.; Liang, S.J.; Miao, F. A Braitenberg vehicle based on

memristive neuromorphic circuits. Adv. Intell. Syst. 2020, 2, 1900103. [CrossRef]
66. Weidel, P.; Djurfeldt, M.; Duarte, R.C.; Morrison, A. Closed loop interactions between spiking neural network and robotic

simulators based on MUSIC and ROS. Front. Neuroinform. 2016, 10, 31. [CrossRef]
67. Kaiser, J.; Tieck, J.C.V.; Hubschneider, C.; Wolf, P.; Weber, M.; Hoff, M.; Friedrich, A.; Wojtasik, K.; Roennau, A.; Kohlhaas, R.; et al.

Towards a framework for end-to-end control of a simulated vehicle with spiking neural networks. In Proceedings of the 2016
IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), San Francisco,
CA, USA, 13–16 December 2016; IEEE: New York, NY, USA, 2016; pp. 127–134.

68. Deng, K.; Szczecinski, N.S.; Arnold, D.; Andrada, E.; Fischer, M.; Quinn, R.D.; Hunt, A.J. Neuromechanical Model of Rat Hind Limb
Walking with Two Layer CPGs and Muscle Synergies; Springer: Berlin, Germany, 2018; Volume 10928 LNAI, pp. 134–144.

69. Rybak, I.A.; Shevtsova, N.A.; Lafreniere-Roula, M.; McCrea, D.A. Modelling spinal circuitry involved in locomotor pattern generation:
Insights from deletions during fictive locomotion. J. Physiol. 2006, 577, 617–639. . [CrossRef]

70. Brown, T.G. The intrinsic factors in the act of progression in the mammal. Proc. R. Soc. Lond. Ser. B Contain. Pap. A Biol. Character
1911, 84, 308–319.

71. Jackson, C.; Nourse, W.R.; Heckman, C.J.; Tresch, M.; Quinn, R.D. Canonical Motor Microcircuit for Control of a Rat Hindlimb;
Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2022; Volume 13548 LNAI, pp. 309–320. [CrossRef]

72. Johnson, W.L.; Jindrich, D.L.; Roy, R.R.; Edgerton, V.R. A three-dimensional model of the rat hindlimb: Musculoskeletal geometry
and muscle moment arms. J. Biomech. 2008, 41, 610–619. [CrossRef] [PubMed]

73. Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source
Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [CrossRef]
[PubMed]

74. Young, F. Design and Analysis of a Biomechanical Model of the Rat Hindlimb with a Complete Musculature. Ph.D. Thesis, Case
Western Reserve University: Cleveland, OH, USA, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1093/cercor/6.3.329
http://dx.doi.org/10.1109/5.58337
http://dx.doi.org/10.1023/A:1008971908649
http://www.ncbi.nlm.nih.gov/pubmed/11030520
http://dx.doi.org/10.1002/aisy.201900103
http://dx.doi.org/10.3389/fninf.2016.00031
http://dx.doi.org/10.1113/jphysiol.2006.118703
http://dx.doi.org/10.1007/978-3-031-20470-8_31
http://dx.doi.org/10.1016/j.jbiomech.2007.10.004
http://www.ncbi.nlm.nih.gov/pubmed/18061600
http://dx.doi.org/10.1109/TBME.2007.901024
http://www.ncbi.nlm.nih.gov/pubmed/18018689

	Introduction
	Materials and Methods
	Neural Models
	Non-Spiking Neuron
	Spiking Neuron
	Neuron with Voltage-Gated Ion Channels

	Connection Models
	Non-Spiking Chemical Synapse
	Spiking Chemical Synapse
	Electrical Synapses
	Matrix and Pattern Connections

	Inputs and Outputs
	Software Design and Workflow
	Design
	Compilation
	Simulation


	Results
	Specifications
	Performance Benchmarking
	Maximum Network Size
	Backend Performance
	Benchmarking Alternative Software
	Performance on Embedded Hardware

	Mobile Robot Control
	Musculoskeletal Dynamics
	Neural Model
	Biomechanical Model
	Simulation Results


	Discussion
	Appendix A
	References

