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Abstract: An interactive artificial ecological optimization algorithm (SIAEO) based on environmental
stimulus and a competition mechanism was devised to find the solution to a complex calculation,
which can often become bogged down in local optimum because of the sequential execution of
consumption and decomposition stages in the artificial ecological optimization algorithm. Firstly, the
environmental stimulus defined by population diversity makes the population interactively execute
the consumption operator and decomposition operator to abate the inhomogeneity of the algorithm.
Secondly, the three different types of predation modes in the consumption stage were regarded as
three different tasks, and the task execution mode was determined by the maximum cumulative
success rate of each individual task execution. Furthermore, the biological competition operator
is recommended to modify the regeneration strategy so that the SIAEO algorithm can provide
consideration to the exploitation in the exploration stage, break the equal probability execution mode
of the AEO, and promote the competition among operators. Finally, the stochastic mean suppression
alternation exploitation problem is introduced in the later exploitation process of the algorithm, which
can tremendously heighten the SIAEO algorithm to run away the local optimum. A comparison
between SIAEO and other improved algorithms is performed on the CEC2017 and CEC2019 test set.

Keywords: artificial ecological optimization algorithm; environmental stimulus; population diversity;
competition mechanism; engineering optimization; K-means clustering

1. Introduction

In the realm of optimization, the emerging heuristic algorithm has become a focus
of researchers due to its convenience and comprehensibility. Swarm intelligence (SI) is an
important branch of biological heuristic computing. The SI algorithm takes advantage of
the collaborative competitive relationship among populations to pilot the population to
conduct the optimal solution, which fascinates a great deal of investigators. Several novel
algorithms have been put forward in recent years. For example, SFO [1], HHO [2], BMO [3],
EJS [4], MCSA [5], SDABWO [6], STOA [7], SCA [8], SSA [9] et al. Swarm-based intelligent
optimization algorithm has greatly promoted its application in engineering optimization
because it has abandoned gradient information in traditional optimization algorithms, such
as time series prediction [10], image segmentation [11], feature selection [12] and cloud
computing scheduling tasks [13].

The AEO algorithm [14] is a SI algorithm introduced by Zhao et al. in 2019. The AEO
algorithm is designed according to energy flow and material circulation in natural ecosys-
tem. The algorithm model is established through three stages of production, consumption
and decomposition. The first stage is the producer, who itself obtains energy from nature
and uses it to describe the plants in the ecosystem. The second stage is consumer, whose
main body is an animal; the final stage is the decomposer, which feeds on both the producer
and the consumer.
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In the population of AEO algorithm, all individuals are called consumers except
for one producer and decomposer. Consumers can be divided into herbivorous animals,
carnivorous animals and omnivorous animals according to their different ways of foraging.
Energy levels in an ecosystem decrease along the food chain, so producers have the highest
energy levels, and decomposers have the lowest. AEO algorithm has a strong ability to
equilibrium the whole search and local exploitation, and is easy to implement, with few
design parameters, and has good applications in many fields. One study [15] improved
AEO by introducing self-adaption nonlinear weight, optional cross-learning and Gaussian
mutation strategies, as well as an excogitated IAEO algorithm to handle the optimization
problem of PEMFC. In [16], the authors applied an EAEO to settle the actuality problem
of distributed power distribution in the distribution system by combining AEO with the
sine and cosine operator so as to cut down the power wastage of the distribution network.
In [17], the authors proposed the MAEO algorithm to handle the parameter estimation
of the PEMFC problem by introducing the linear operator H to balance exploration and
exploitation. The authors of [18] proposed a promising blend multi-population algorithm
HMPA for managing multiple engineering optimization problems. HMPA adopts a new
population division method, which divides the population into several subpopulations,
each of which dynamically exchanges solutions. An associative algorithm based on AEO
and HHO was presented. Regarding this knowledge, multiple strategies were mixed
to get the maximum efficiency of HMPA. For [19], the authors proposed a new random
vector function chain (RVFL) network combined with the AEO algorithm to calculate
the optimal outcome of the SWGH system. The authors of [20] proposed a new fitness
function reconstruction technology based on the AEO algorithm for photovoltaic array
reconstruction optimization. The authors of [21] used an AEO algorithm to acquire the
ideal modulation parameters of a PID controller for an AVR system.

Although the AEO algorithm has been successfully used in the above domains, the
AEO algorithm first explores all individuals and then executes the exploitation in sequence
mode, which aggrandizes the computational burden and retards the optimization speed of
the AEO. Secondly, the correcting of the AEO in the exploration stage puts individuals at
the end of the biological chain, which does not account for the biological competition in
nature—that is, every creature preys on other species and is itself the target of prey, so the
solution accuracy is not high.

For the sake of making the AEO characteristics better and ameliorating the accuracy of
an optimization scheme, inspired by environmental stimulation and rival mechanism, when
the population diversity in the environment is large, there are fewer similar organisms
distributed in unit space, and the exploration ability is strong. In this case, the exploitation
should be strengthened, and vice versa. Based on this, this paper proposes a combination
of environmental stimuli and biological competition mechanism improved the artificial
ecological optimization algorithm (SIAEO), improvements on AEO to do the following
two aspects: (1) the environmental stimulation mechanism is introduced into the AEO
algorithm, the external environment stimulation to achieve defined by the population
diversity population interaction perform manipulations of consumption and, reduce the
computational complexity of algorithm; (2) In the consumption stage, considering the
biological competition, an individual is added to die due to predation, and the maximum
cumulative success rate of each individual performing different tasks is used to guide the
individual to choose a more suitable consumption renewal strategy, which redounds to
the exploitation of the algorithm in the exploration stage. In the decomposition stage, two
arbitrarily chosen individuals are introduced to define a potential exploitation and update
formula, which can excellently assist the algorithm apart from the local optimal so as to
build on proportionate the overall search and local optimization of the algorithm.

K-means [22,23] is an excellent clustering algorithm in a complex clustering problem.
After determining the number of classes as well as clustering centers, the nearest neighbor
principle is used to allocate samples to the categories determined by K clustering centers,
and the in-class distance is minimized, and the inter-class distance is maximized by con-
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stantly updating the K-clustering centers. Among them, the determination of K cluster
centers belongs to the high-dimensional optimization problem.

To demonstrate the effectiveness and functionality of the SIAEO algorithm, this ex-
periment consists of two parts. Firstly, 40 benchmark functions composed of the CEC2017
and CEC2019 are designed to measure the performance of SIAEO to reply to complex high-
dimension numerical optimization, and the results are paralleled with nine other excellent
algorithms. The numerical optimization potential of the SIAEO is proved. Secondly, the
validity of SIAEO solving the engineering optimization and K-means optimal clustering
center was verified, and four engineering optimization problems and nine criterion data
sets of a UCI machine learning knowledge base were clustered. The results confirmed the
significance and competitiveness of the SIAEO–K-means algorithm.

The structure of this article is that Section 2 outlines the AEO, and Section 3 gives a
list of the improvement strategy of the improved AEO algorithm. In Section 4, numerical
examples and practical application examples and cluster optimization show the excellent
performance of the SIAEO. In the conclusions, we review the entire paper and point out
directions for future research.

2. AEO Algorithm

For the D-dimensional optimization problem:

min f (x1, x2, . . . xD)

s.t lowj ≤ xj ≤ upj, j = 1, 2, . . . , D

where f (x1, x2, . . . xD) represents the optimization function, xj is the j− th decision variable
and upj and lowj are the upper and lower bounds of xj, respectively.

The AEO algorithm simulates the energy flow of the ecosystem, which is presented in
2019. According to the composition of the food chain, it is divided into three stages: pro-
duction, consumption and decomposition. The detailed steps for solving the optimization
problem AEO algorithm are:

(1) Initialization: Suppose N expresses the population size, randomly generate N individ-
uals in the D-dimensional decision space to compose the early generation population
ed by X(0) = {Xi(0)}N

i=1, the j-th dimension of the individual Xi(0) =
{

xij(0)
}D

j=1 is
created by

xij(0) = rand(0, 1) · (upj − lowj) + lowj . (1)

in which rand(0, 1) is a random number within (0, 1).
(2) Production phase: Suppose the t-th population is X(t) = {Xi(t)}N

i=1, which are ranked
in descending order with optimal value, in the production stage, only a temporary
location update is performed on producer X1(t). The specific update strategy is a
linear combination of best XN(t) and randomly generated individual Xr(t), and the
updated formula is:

Xnew
1 (t + 1) = (1− a) · XN(t) + a · Xr(t). (2)

where a = r1 · (1 − t
T ) expresses the coefficient used for linear weighting,

Xr(t) =
{

xrj(t)
}D

j=1, xrj(t) = lowj + rand(0, 1) · (upj − lowj), represents a member
arbitrarily generated in the solution space; t, T respectively represent this iteration
and the final iteration. r1 indicates a random value between [0, 1]. Equation (2) shows
that in the pre-development stage of the algorithm, producers tend to explore Xr(t)
extensively, while in the later stage, focus on further exploitation near XN(t).

(3) Consumption phase: In this stage, the second to N-th individuals are temporarily
updated according to the random walk strategy generated by Levy’s flight. Let v1 and
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v2 be two random numbers with standard normal distribution and the consumption
factor is defined:

C =
1
2

v1

|v2|
, v1 ∼ N(0, 1), v2 ∼ N(0, 1). (3)

in which N(0, 1) represents the normal distribution. The i-th individual was classified
and updated according to probability by using the formula of herbivorous (Task 1),
carnivorous (Task 2) and omnivorous (Task 3), i.e.,

Xnew
i (t + 1) =


Xi(t) + C · (Xi(t)− X1(t)), i ∈ [2, . . . N], 0 < r2 ≤ 1

3 (Task1)
Xi(t) + C · (Xi(t)− Xk(t)), i ∈ [3, . . . N], 1

3 < r2 ≤ 2
3 (Task2)

Xi(t) + C · (r3 · (Xi(t)− X1(t))
+(1− r3)(Xi(t)− Xk(t)) ), i ∈ [3, . . . N], 2

3 < r2 < 1 (Task3)

. (4)

where k is a positive integer with a random value in [2, i− 1], r2, r3 are the random
values in [0, 1].

(4) Decomposition phase: The temporarily updated population Xnew(t + 1) is further
revised to obtain the final revised population:

Xi(t + 1) = XN(t + 1) + 3u · (e · XN(t + 1)− h · Xnew
i (t + 1)). (5)

where u is a random number that is normally distributed, e = r4 · rand(1, 2) − 1,
h = 2 · r4 − 1 and r4 is a random number between [0, 1].

In summary, the AEO algorithm wantonly creates initial solutions. In the process of
updating and optimizing the population of each generation, the position of the producer
is revised by relying on Equation (2), while the updating of consumers are carried out
according to the isoprobability decision method by using Equation (4) and the final decom-
position process is performed by Equation (5) until the termination conditions are met, the
algorithm ends.

3. An Improved Interactive Artificial Ecological Optimization Algorithm Based on
Environmental Stimulus and Biological Competition Mechanism

In an ecosystem, the survival and death of various organisms in the ecosystem, the
predation of animals, and the stability and balance of the ecological chain are all greatly
affected by the environment. In the process of predation, animals respond to different
environmental stimuli in order to cope with the impact of the intensity of environmental
stimulus on the predation patterns of animals. The incentive mechanism is a mechanism
to describe the relationship between environmental stimulus and individual response.
Combined with the AEO algorithm, environmental stimulus S is defined to guide indi-
viduals to carry out task conversion between consumption and decomposition, thereby
meaning that consumption and decomposition can be executed interactively rather than
sequentially, thereupon then reducing the complexity of the algorithm. In the process
of predation, animals have incentive responses to different environmental stimuli and
form their own preferences that are influenced by natural enemies. Furthermore, since the
survival of organisms itself follows the competition mechanism of survival of the fittest,
the introduction of competitive trend in the consumption stage can better simulate the real
situation of the ecosystem.

The purpose of this paper is to better improve the exploration and development ability
of the AEO algorithm. Therefore, we introduced an interactive execution environment to
stimulate the consumption and decomposition of tasks through the incentive mechanism
and biological competition relations into the AEO algorithm. The consumption phase
of the population individuals changes by searching the environment, and the largest
accumulation of mission success rates guides the best-performing way to feed. The method
of isoprobability execution of the AEO is abandoned, the convergence ability of the AEO is
accelerated, and the exploitation function of the AEO in the exploration stage is intensified.
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At the same time, during the decomposition stage, through the introduction of arbitrary
individuals, the exploration ability in the exploitation stage is boosted.

3.1. Environmental Stimulus

Environmental stimulus describes the external drive of an individual to perform a
task. In the process of an algorithm search, the execution opportunity of consumption and
decomposition can be measured by population diversity.

Population diversity is an indicator that describes the differences between individuals
and reflects the distribution of populations [24]. For the t-generation population, population
diversity [25] was measured as:

Diversity(t) =
1

N · L
N

∑
i=1

√√√√ D

∑
j=1

(xij(t)− xj(t))
2. (6)

xj(t) =

N
∑

i=1
xij(t)

N
. (7)

where N and L represent the size of population and reconciliation space, respectively, D is
the dimension, X(t) is the population center, X(t) =

{
xj(t)

}D
j=1.

Environmental stimulus is defined as:

S(t) = p
√

Diversity(t). (8)

as well as p indicates the sensitivity coefficient of the stimulus to diversity. Referring to the
value in reference [25] and simulation experiment, p is 50 in this paper.

When S(t) ≥ 1, the variety of the group is better and the current algorithm is in the
exploration stage. This moment increasing the exploitation potential of the algorithm while
carrying out exploration can be helpful to improve the calculation accuracy. Therefore,
when S(t) ≥ 1, the consumption stage of AEO algorithm is implemented, and the updated
formula is modified using a competition relationship to enhance the exploitation ability.
When S(t) < 1, the population diversity is relatively poor, and the individuals of the popu-
lation have converged to the vicinity of the optimal solution. At this time, the exploitation
should be strengthened to help the algorithm seek out the best solution, nevertheless at the
same time, the scope of the population should be maintained to forestall individuals from
getting bogged down in the local optimal. Therefore, when S(t) < 1, the decomposition
stage of AEO algorithm is implemented in which the individuals emulate from the best
individuals as well as the random mean is integrated to enhance the exploration perfor-
mance. To boost the global and local searching of the AEO, the calculation precision of the
algorithm is improved.

3.2. Incentive Mechanism

In the incentive mechanism, the individual’s success in performing a search task refers
to the improvement of its fitness, and the individual’s propensity to perform a task is
measured by the cumulative success rate. The cumulative success rate should increase
when the individual successfully performs the task and decrease when the individual fails
to perform the task. The greater the cumulative success rate, the greater the propensity to
perform the task, and vice versa.

By absorbing the advantages of the incentive mechanism, the three different consumer
predation modes (Task 1), (Task 2) and (Task 3) in the consumption stage are regarded
as three different search tasks. Therefore, we utilize the cumulative times of individual i
successfully executing task j until the t-th iteration to calculate the cumulative success rate.
The specific methods are as follows:
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(a) Cumulative success rate initialization. For each individual Xi(0) = (xi1(0), xi2(0), · · · , xiD(0))

in the initial population, a three-dimensional cumulative success rate vector
CSRi(0) = (CSRi1(0), CSRi2(0), CSRi3(0)) is initialized, where CSRij(0) ∈ [0, 1] rep-
resents the initial cumulative success rate of the i-th individual performing the j-th
task. The assignment method is:

CSRi1(0) = CSRi2(0) = rand(0, 0.4), (9)

CSRi3(0) = 1− CSRi1(0)− CSRi2(0). (10)

where rand(a, b) stands for the random value in [a, b], and Formula (10) ensures that
the sum of the elements after initialization is 1. Then initialize the three dimensional
count vector Counti(0) = (Counti1(0), Counti2(0), Counti3(0)) to store the times of
individual i successfully executing task j, where Countij(0) = 0.

(b) Cumulative success rate update process. Firstly, the update process of count vector
Counti(t) is introduced. Let Flagij(t) represent the identifier of the j-th task performed
by the i-th individual of in the t-th generation. When individual i performs task
j, let Flagij(t) = 1; otherwise, it is 0. Since each individual in each generation
performs only one of the three tasks in Equation (4). Therefore, for individual i, only
one element of Flagij(t) (j = 1, 2, 3) is 1. Let Xnew

i (t) represent the new individual
obtained by individual i of in the t-th generation after performing task j, then the
Flagij(t) = 1. If Xnew

i (t) is superior to Xi(t), that is, individual i successfully performs
task j, then the possibility of executing task j next time should be increased while
the chance of executing other tasks should be weakened. The j-th element of the
corresponding count vector Counti(t + 1) increases by 1 while the remaining elements
remain unchanged, that is,{

Countij(t + 1) = Countij(t) + 1
Countik(k 6=j)(t + 1) = Countik((k 6=j))(t)

Flagij(t) = 1 && f it(Xnew
i (t)) < f it(Xi(t)) (11)

where f it(•) refers to the individual’s fitness, which is defined as the objective function
value in this paper.

If Xnew
i (t) is inferior to Xi(t), that is, individual i fails to execute task j, then the

possibility of executing task j next time should be reduced and the chance of executing
other tasks should be increased. The j-th element of the corresponding count vector
Counti(t + 1) remains unchanged, while the current value of other elements increases by 1,
that is{

Countij(t + 1) = Countij(t)
Countik(k 6=j)(t + 1) = Countik(k 6=j)(t) + 1

Flagij(t) = 1 && f it(Xnew
i (t)) ≥ f it(Xi(t)) (12)

At this point, the vector CSRi(t + 1) of the cumulative success rate of the next genera-
tion of individual i is updated with the count vector Counti(t + 1) as:

CSRij(t + 1) =
Countij(t + 1)
2 · (N − 1) · t . (13)

For each individual, cumulative success rate vector CSRi(t + 1) = (CSRi1(t + 1),
CSRi2(t+ 1), CSRi3(t+ 1)) can be calculated. Let CSRi∗(t+ 1) = max

1≤j≤3
{CSRij(t+ 1)} and

take CSRi∗(t + 1) as a definite indicator of the task to be executed in the next consumption
phase. In the consumption phase of the AEO, the corresponding updatings is executed
with equal probability without considering the incentive mechanism. Now, formula (13) is
used to calculate the cumulative success rate of each individual performing the three tasks,
and the strategy corresponding to the * task is determined according to the indicator of task
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propensity CSRi∗(t + 1), so as to motivate individuals to explore more promising areas in
a more appropriate way. The incentive mechanism pseudocode is named Algorithm 1.

Algorithm 1: Incentive mechanism (N, X(t), CSR(t), Flag)

1 For t-th generation population X(t) = {Xi(t)}N
i=1

2 Calculated population diversity Diversity(t) and environmental stimulus S(t)
3 i f S(t) ≥ 1
4 for i = 1:N
5 CSRi∗(t) = max(C SRij(t))
6 Perform Task*; Flagi∗(t) = 1
7 end for % Get the updated population Xnew(t) = (Xnew

i (t))N
i=1

8 f or i = 1 : N
9 f or j = 1 : 3
10 i f Flagij == 1&& f it(Xnew

i (t)) < f it(Xi(t))
11 Update optimal solution and fitness value

12
Countij(t + 1) = Countij(t) + 1, Countik(k 6=j)(t + 1) = Countik((k 6=j))(t)
else i f Flagij == 1&& f it(Xnew

i (t)) >= f it(Xi(t))
13 Countij(t + 1) = Countij(t), Countik(k 6=j)(t + 1) = Countik(k 6=j)(t) + 1
14 end if
15 CSRij(t + 1) = Countij(t + 1)/(2 · (N − 1) · t)
16 Flagij(t + 1) = 0
17 end f or
18 end f or
19 else
20 for i=1:N
21 Execute the decomposition phase
22 end for
23 end i f
Output: t + 1 generation population

3.3. Updating Based on Competition Mechanism

Due to ecological competition, the individuals in the consumption stage of the ecosys-
tem eat both the low-ranking organisms and the high-ranking natural enemies. In Equation
(4), the influence of natural enemies is not taken into account, which makes the algorithm
have strong exploration ability but poor exploitation ability in the consumption stage. In
Equation (5), the algorithm is apt to stumble into local optimization as a result of only
considering the lead of the optimal individual. When choosing the execution strategy of
the algorithm according to the environmental stimulus, each strategy should have both
exploration and exploitation performance. Therefore, the influence of predator predation
is integrated into (4), and the Task to be executed is determined according to the maxi-
mum cumulative success rate. That is, if the CSRi∗(t) = max(CSRij(t)), then the Task* is
executed and updated as

Xi(t + 1) =


Xi(t) + C · (Xi(t)− X1(t)), i ∈ [2, . . . N]. Task1
Xi(t) + C · (r5 · (Xi(t)− Xk(t)) + (1− r5)(Xj(t)− Xi(t))), i ∈ [3, . . . N]. Task2
Xi(t) + C · (r6 · (Xi(t)− X1(t)) + (1− r6)(Xi(t)− Xk(t))

+r7 · (Xj(t)− Xi(t))) , i ∈ [3, . . . N]. Task3

(14)

where k means a positive integer of the random value in interval [2, i − 1], j indicates a
positive integer of the random value of [i + 1, N], and r5, r6, r7 are random numbers at (0, 1).

In Equation (5), the drag of random individuals is integrated into enabling the al-
gorithm to from local optimum. For two randomly selected individuals Xrand1(t) and
Xrand2(t) in the current population, a more reasonable updating formula is put forward to
substitute for the decomposition strategy of the original algorithm. Formula (15) is adopted
to displace the intrinsic individual position updating strategy of Formula (5):
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Xi(t + 1) = XN(t + 1) + 3u · (e · XN(t + 1)− h · Xnew
i (t + 1)) +

Xrand1(t) + Xrand2(t)
2

. (15)

Other parameters are the same as Equation (5). In Equation (15), the insertion of two
heterogeneous individuals in the population can perfectly heighten the universality of
exploration of the algorithm and aid the algorithm in averting the local optimum.

3.4. Implementation Steps of SIAEO Algorithm

To make the above preparations, the incentive mechanism and competition relation-
ship were integrated into AEO, the environmental stimuli were defined according to
population diversity, and the next-generation search strategy was determined according to
the cumulative success rate of the search tasks, so as to effectively make the convergence
speed and the precision in the calculation of the AEO better. The global searching and local
optimization of the AEO balance are further promoted by modifying the updated formula
of consumption and decomposition stage through competition relationship. Based on
this, this paper provides an improved artificial ecological optimization algorithm (SIAEO)
that integrates into environmental stimulus and competition mechanism. The execution
programs of the SIAEO are described as:

Step 1: Set algorithm parameters.
Step 2: According to Equation (1), the initial population X(0) = {Xi(0)}N

i=1 is ran-
domly generated and the cumulative success rate of each individual performing three
different search tasks is initialized and assigned.

Step 3: The diversity (Diversity) of the population and the environmental stimulus
S were calculated through Equations (6)–(8), and the individuals were rearranged in
ascending order in light of the fitness value.

Step 4: According to the numerical value of S, the corresponding strategy is executed
to obtain the new population, as follows:

If S ≥ 1, execute the consumption operator, each individual adopts the corresponding
formula in Formula (14) to update according to the maximum cumulative success rate; The
cumulative success rate of each individual performing three search tasks was calculated;

If S < 1, then use Equation (15) to perform the decomposition operator.
Step 5: Judge whether t < T is true; if so, make t = t + 1, then the algorithm turn to

Step 3. Otherwise, the algorithm ends and outputs the best solution and corresponding
function value.

The working frame of the SIAEO is displayed in Figure 1.

3.5. Time Complexity Analysis of the Algorithm

In the SIAEO, if the meanings of N, D and T are shown above, then the time complexity
of the beginning phase is O(N · D). The time complexity of the population diversity and
the production are O(N · D · T) and O(D · T), while consumption and the decomposition
phase are both O(N ·D · T). According to the incentive mechanism, only one of the two can
be executed in an iteration, but because the consumption operator and the decomposition
operator contain exploration and exploitation capacity in the meantime, the stimulus
incentive mechanism properly uses these two operators and better balances the relationship
between them. The complexity of evaluating fitness values for each individual is O(N · T).
The complexity of sorting fitness values is O(N · log N · T). As a consequence, the total
computational time complexity of the SIAEO algorithm is:

O(SIAEO) = O((N + T) · D + (2N · D + N + N · log N) · T) (16)
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Figure 1. The flowchart of the SIAEO algorithm.

4. Numerical Experiment

For the sake of testing the superiority of the SIAEO in settling complicated problems
and the practical applicability of solving the actual problems, the latest standard test
set CEC2019 was selected to separately analyze the validity of the improved strategy in
Section 4.1. In Section 4.2, the CEC2017 test set was selected for high dimensional numerical
experiments, and CEC2019 was selected to test the performance divergence between SIAEO
and other algorithms. In Section 4.3, the SIAEO is applied to manage four engineering
minimization problems. Finally, the high-dimensional K-means clustering problem is
selected to declare the precision and accuracy of clustering by the SIAEO.

4.1. Strategy Effectiveness Analysis

To validate the influence of a single improvement strategy on the SIAEO algorithm, ex-
periments were set up to compare the SIAEO algorithm with the SAEO that only appended
environmental stimulus strategy, the CAEO that only added incentive mechanism and
biological competition mechanism strategy in the composition stage, the DAEO that only
increased local escape operator mechanism strategy in decomposition stage and AEO [2].
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4.1.1. Test Functions

The effectiveness of the improved strategies was evaluated using ten multi-modal
functions of the CEC2019 standard test set [26]. Table 1 gives the range of variables,
dimensions, and the theoretical optimal value F(x∗) of the CEC2019 test function. Although
the dimension of the CEC2019 test set is not high, each function has many local optimal
advantages, among which f4, f6, f7 and f8 have many local optimal advantages, which
tremendously challenges the global minimization of the intelligence algorithm.

Table 1. CEC2019 benchmark function.

Function Range Dim F(x*)

f1 Storn’s Chebyshev Polynomial Fitting Problem [−8192, 8192] 9 1
f2 Inverse Hilbert Matrix Problem [−16348, 16348] 16 1
f3 Lennard–Jones Minimum Energy Cluster [−4, 4] 18 1
f4 Rastrigin’s Function [−100, 100] 10 1
f5 Griewangk’s Function [−100, 100] 10 1
f6 Weierstrass Function [−100, 100] 10 1
f7 Modified Schwefel Function [−100, 100] 10 1
f8 Expanded Schaffer F6 Function [−100, 100] 10 1
f9 Happy Cat Function [−100, 100] 10 1
f10 Ackley Function [−100, 100] 10 1

4.1.2. Strategy Effectiveness Verification of the SIAEO

Table 2 compares the outcomes of the SIAEO with the SAEO, CAEO, DAEO and
AEO algorithms on CEC2019 test set. The same parameter settings were used for all five
algorithms, namely, an independent running for 30 times, N = 50, the estimation times
of the maximization function is N · 10000 times, average Ave and standard deviation Std
represent the error between the optimal value and the theoretical value of 30 times running
and average CPU Time of 30 times running was calculated. Two-tailed t- and Friedman tests
were applied to inspect the statistical comparison of all the methods of concern. Where the
bold data represents the optimal results calculated by the five algorithms, (+), (=) and (−)
respectively signify the use of a two-tailed t-test at a significance level α = 0.05, the SIAEO
is superior to, equal to and inferior to the comparison algorithm, and (#) line remarks
the number of corresponding results. The Friedman rank means the sorting result of the
Friedman test.

Table 2. Comparison of results of SIAEO’s improved strategy on CEC2019 functions.

Functions
Algorithms

AEO SAEO CAEO DAEO SIAEO

f1
Ave 0 0 0 0 0
Std 0 0 0 0 0

Time 10 (NaN) 12 (NaN) 12 (NaN) 14 (NaN) 15

f2
Ave 3.35 3.38 3.25 3.28 3.36
Std 2.68 × 10−1 2.65 × 10−1 1.87 × 10−2 1.47 × 10−1 2.21 × 10−1

Time 10 (=) 12 (=) 13 (=) 14 (=) 17

f3
Ave 4.09 × 10−1 3.58 × 10−1 4.09 × 10−1 1.02 3.62 × 10−1

Std 1.34 × 10−15 1.45 × 10−1 6.28 × 10−16 1.90 1.46 × 10−1

Time 10 (−) 11 (=) 12 (−) 13 (−) 15

f4
Ave 2.00 × 101 1.13 × 101 2.54 × 101 1.31 × 101 1.16 × 101

Std 6.48 2.43 1.10 × 101 6.07 3.89
Time 11 (−) 13 (=) 13 (−) 15 (=) 18

f5
Ave 2.79 × 10−1 1.45 × 10−1 1.81 × 10−1 1.75 × 10−1 1.10 × 10−1

Std 1.59 × 10−1 8.35 × 10−2 9.21 × 10−2 8.64 × 10−2 5.37 × 10−2

Time 10 (−) 11 (=) 11 (−) 13 (=) 13
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Table 2. Cont.

Functions
Algorithms

AEO SAEO CAEO DAEO SIAEO

f6
Ave 3.09 1.25 2.19 3.11 × 10−1 4.76 × 10−1

Std 2.01 1.08 1.40 5.28 × 10−1 1.51 × 10−1

Time 27 (−) 28 (=) 29 (−) 30 (=) 34

f7
Ave 6.40 × 102 6.74 × 102 4.81 × 102 6.47 × 102 4.40 × 102

Std 1.36 × 102 1.97 × 102 2.90 × 102 2.60 × 102 1.43 × 102

Time 11 (−) 13 (−) 14 (=) 15 (−) 19

f8
Ave 2.47 2.78 2.44 1.75 2.36
Std 1.60 × 10−1 2.71 × 10−1 4.72 × 10−1 6.22 × 10−1 4.77 × 10−1

Time 10 (=) 12 (−) 13 (=) 14 (=) 18

f9
Ave 2.51 × 10−1 1.70 × 10−1 2.67 × 10−1 1.34 × 10−1 1.45 × 10−1

Std 9.58 × 10−2 7.84 × 10−2 9.51 × 10−2 3.49 × 10−2 2.54 × 10−2

Time 10 (−) 12 (=) 12 (−) 14 (=) 18

f10
Ave 1.78 × 101 2.00 × 101 1.29 × 101 1.50 × 101 8.14
Std 6.25 9.61 × 10−4 9.82 9.26 7.56

Time 10 (−) 12 (−) 13 (=) 14 (=) 17
(#) + 7 3 5 2
(#) = 2 6 4 7
(#) − 0 0 0 0

Friedman rank 3.434 3.139 3.095 2.639 2.419

It can be noted from Table 2 that, for the 10 functions of the CEC2019, the solution
results of the five algorithms for the f1 function have reached the optimal value. The SAEO,
CAEO, DAEO, and SIAEO each have advantages over the other test functions. Among
them, the SAEO has the best performance in solving the f3 and f4 functions. The CAEO
possessed the optimal mean and standard deviation in the f2 function. While the DAEO
acquired the best average results on three functions (f6, f8 and f9), the SIAEO captured
the best average results on the f5, f7 and f10 functions. On the whole, the addition of
each strategy individually contributes to the advancement of the AEO algorithm in some
way. For different test functions, each strategy has distinct effects. Therefore, the SIAEO
algorithm gathered in one place with the three improved strategies is more promising
and competitive.

4.1.3. Analysis of Statistical Test Results

The last four lines of Table 2 clearly state that the results of two statistical tests, the two-
tailed t-test and the Friedman test, demonstrate the absolute superiority of our improved
SIAEO algorithm. The number of functions similar to the SIAEO, SAEO, CAEO and DAEO
algorithms is 2, 6, 4 and 7, respectively, while the number of functions inferior to SIAEO
is 7, 3, 5 and 2, respectively. On the one hand, this manifests that the SIAEO algorithm is
provided with significant advantages and superior performance over the AEO algorithm
and shows the effectiveness of the improvement strategy at the same time. On the other
hand, we can also discover the importance of the orientation and influence degree of the
three strategies in the iterative optimization process. The DAEO algorithm, which only
raises the local escape operator in the decomposition stage, gains more proficiency than
other strategies. As many as seven functions are close to the SIAEO’s performance. The
SAEO, which only attaches environmental stimulus mechanisms to reduce computational
complexity, obtains six functions close to the SIAEO’s performance.

The Friedman test showed an ability to test the similarity of the five algorithms, with
smaller results indicating better algorithms. The SIAEO algorithm took the minimum value
of 2.419 and ranked first overall, followed by the DAEO, CAEO, SAEO and AEO algorithms
to demonstrate the superiority of the improved strategy.
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4.1.4. The Tendency Analysis of Consumption Operator

There are three predation modes in the consumption stage, showed by Task1, Task2
and Task3. The algorithm changes from overall situation performance to local performance
with iterations increasing. However, the original algorithm adopts three tasks with equal
probability execution, which will cause a part of resource waste in the late iteration. The
incentive mechanism will improve this situation to a large extent. The number of tasks
performed by Task2 is much higher than that of other tasks, followed by Task3, and the
number of tasks performed by Task1 decreases in the final stage of the iteration. In each
iteration, we recorded the frequency of individuals performing the three tasks and stacked
them up as we went through the iteration. Figure 2 shows the running results on the node
test functions of the CEC2019.
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In Figure 2, it can be seen that in the prophase iterations of the SIAEO, the algorithm
pays attention to global exploration ability and executes the consumption operator. The
cumulative number of tasks performed increases with each iteration. The improved car-
nivorous and weedy strategies have a higher probability of being selected because they
combine exploration and exploitation, resulting in a higher slope of the cumulative line. At
the end of the iteration, environmental stimuli guide the algorithm to perform decomposi-
tion operations. Due to the termination of the consumption operator, the individual does
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not perform the three tasks, so the cumulative curve presents a horizontal straight line in
the late iteration.

4.2. Numerical Optimization Experiment
4.2.1. Parameter Setting

To show the availability and stability of the SIAEO in handling high-dimensional
optimization problems, a total of 40 benchmark test functions of the CEC2019 [26] and
CEC2017 [27] were numerically optimized. The CEC2017 test set is composed of a total
of 30 functions, including single-peak functions (F1–F3), simple multi-peak functions
(F4–F10), mixed functions (F11–F20) and composite functions (F21–F30). In the experiment,
the SIAEO algorithm was compared with the AEO’s improved algorithms IAEO [15],
EAEO [16] and AEO [14], as well as other representative swarm intelligence algorithms,
including AOA [28], TSA [29], HHO [2], QPSO [30], WOA [31] and GWO [32]. Table 3
shows the parameter values of each algorithm used in the experiment. To be fair, all
algorithms run independently 30 times, N = 50 and, D = 100 and the maximum estimation
times is N · 10000 times. The computer is configured as Intel(R) Core I7, main frequency
3.60 ghz, memory 8 GB, Windows 7 64-bit operating system, and the programming is by
MATLAB R2014a.

Table 3. Algorithm parameter setting.

Algorithms Parameter Value

SIAEO p 50
AOA C1, C2, C3, C4 2, 6, 2, 0.5
TSA pmax, pmin 4, 1

HHO β 1.5
QPSO ωmax, ωmin 1, 0.5
GWO amax, amin 2, 0
WOA amax, amin 2, 0

4.2.2. Comparison of Results between SIAEO and Comparison Algorithm

Tables 4 and 5 exhibit that the SIAEO and nine other algorithms run the CEC2017 and
CEC2019 test sets independently 30 times. The Ave and Std and the average CPU Time
of 30 times are calculated. The bold data display the minimum value obtained by each
algorithm. The symbols “+”, “−” and “=“ in () after time in the table indicate that the
SIAEO is significantly better than, worse than or similar to the competitive algorithm when
the t-test is executed on the SIAEO and the other nine comparison algorithms. The last four
rows of Tables 4 and 5 show the number of best solutions achieved on all test functions ((#)
best), as well as the t-test ‘+’, ‘−’, and ‘=’ quantity statistics and Friedman test results.

Table 4. Comparison between the SIAEO and comparison algorithm on the CEC2017 test set (D = 100).

Functions
Algorithms

SIAEO IAEO EAEO AEO AOA TSA HHO QPSO WOA GWO

F1
Ave 1.12 × 104 8.56 × 109 5.90 × 103 6.62 × 103 2.58 × 1011 1.09 × 1011 3.49 × 108 1.57 × 1011 1.07 × 107 6.51 × 1010

Std 1.03 × 104 1.11 × 109 4.68 × 103 5.37 × 103 1.71 × 1010 1.28 × 1010 3.84 × 107 6.62 × 109 1.81 × 106 9.21 × 109

Time 34 27 (+) 28 (=) 26 (=) 124 (+) 165 (+) 26 (+) 31 (+) 82 (+) 28 (+)

F2
Ave 4.62 × 1077 8.67 × 10112 8.53 × 1042 2.14 × 1046 8.04 × 10170 5.89 × 10140 8.06 × 1093 6.30 × 10149 5.83 × 10129 2.97 × 10132

Std 9.80 × 1077 2.19 × 10113 2.34 × 1043 6.04 × 1046 Inf 1.67 × 10141 2.28 × 1094 4.00 × 10149 1.65 × 10130 8.40 × 10132

Time 34 28 (=) 29 (=) 26 (=) 125 (=) 166 (=) 27 (=) 32 (+) 83 (=) 29 (=)

F3
Ave 1.25 × 105 2.81 × 105 4.81 × 103 1.07 × 104 3.01 × 105 2.00 × 105 1.45 × 105 2.69 × 105 7.10 × 105 2.19 × 105

Std 1.53 × 104 1.40 × 104 1.40 × 103 4.61 × 103 1.06 × 104 2.61 × 104 2.01 × 104 1.23 × 104 1.22 × 105 1.91 × 104

Time 33 27 (+) 28 (−) 25 (−) 123 (+) 164 (+) 26 (+) 31 (+) 83 (+) 31 (+)

F4
Ave 3.14 × 102 1.36 × 103 2.91 × 102 2.97 × 102 8.83 × 104 1.73 × 104 5.94 × 102 3.71 × 104 5.61 × 102 5.61 × 103

Std 3.72 × 101 1.61 × 102 6.11 × 101 7.65 × 101 1.01 × 104 5.18 × 103 1.23 × 102 6.72 × 103 8.31 × 101 8.65 × 102

Time 34 27 (+) 28 (=) 25 (=) 123 (+) 163 (+) 26 (+) 31 (+) 83 (+) 31 (+)

F5
Ave 2.64 × 102 9.40 × 102 7.82 × 102 7.99 × 102 1.19 × 103 1.50 × 103 9.64 × 102 1.34 × 103 9.24 × 102 1.11 × 103

Std 4.37 × 101 6.04 × 101 7.06 × 101 5.26 × 101 8.16 × 101 9.99 × 101 3.79 × 101 2.56 × 101 7.10 × 101 5.93 × 101

Time 36 30 (+) 30 (+) 28 (+) 125 (+) 166 (+) 29 (+) 33 (+) 85 (+) 33 (+)
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Table 4. Cont.

Functions
Algorithms

SIAEO IAEO EAEO AEO AOA TSA HHO QPSO WOA GWO

F6
Ave 5.77 5.74 × 101 4.43 × 101 2.32 × 101 9.69 × 101 1.13 × 102 8.20 × 101 8.98 × 101 8.22 × 101 6.12 × 101

Std 2.09 8.74 6.65 4.02 3.70 7.17 4.71 2.47 1.04 × 101 2.57
Time 43 40 (+) 37 (+) 35 (+) 132 (+) 173 (+) 38 (+) 40 (+) 92 (+) 40 (+)

F7
Ave 6.27 × 102 1.60 × 103 1.98 × 103 2.04 × 103 3.07 × 103 2.83 × 103 2.93 × 103 2.40 × 103 2.57 × 103 1.74 × 103

Std 1.10 × 102 1.85 × 102 2.56 × 102 2.55 × 102 1.78 × 102 2.05 × 102 1.88 × 102 9.26 × 101 9.73 × 101 5.81 × 101

Time 36 30 (+) 30 (+) 28 (+) 125 (+) 166 (+) 29 (+) 33 (+) 85 (+) 33 (+)

F8
Ave 2.62 × 102 9.45 × 102 8.72 × 102 8.65 × 102 1.29 × 103 1.53 × 103 1.07 × 103 1.40 × 103 1.04 × 103 1.15 × 103

Std 4.06 × 101 5.87 × 101 7.96 × 101 7.47 × 101 1.48 × 102 1.43 × 102 6.84 × 101 3.04 × 101 8.37 × 101 3.58 × 101

Time 36 30 (+) 30 (+) 28 (+) 125 (+) 166 (+) 29 (+) 33 (+) 85 (+) 33 (+)

F9
Ave 1.97 × 103 4.40 × 104 2.05 × 104 2.21 × 104 6.96 × 104 1.08 × 105 4.04 × 104 5.64 × 104 3.59 × 104 4.09 × 104

Std 9.92 × 102 6.36 × 103 2.11 × 103 2.73 × 103 3.26 × 103 2.26 × 104 2.41 × 103 3.10 × 103 1.05 × 104 4.44 × 103

Time 36 30 (+) 30 (+) 28 (+) 124 (+) 166 (+) 29 (+) 33 (+) 85 (+) 33 (+)

F10
Ave 1.27 × 104 1.95 × 104 1.43 × 104 1.48 × 104 2.89 × 104 2.63 × 104 1.87 × 104 2.94 × 104 1.96 × 104 2.86 × 104

Std 1.05 × 103 1.69 × 103 1.44 × 103 1.09 × 103 8.93 × 102 1.34 × 103 1.48 × 103 1.25 × 103 2.48 × 103 7.18 × 102

Time 38 33 (+) 32 (+) 30 (+) 127 (+) 167 (+) 32 (+) 35 (+) 87 (+) 35 (+)

F11
Ave 8.33 × 102 2.38 × 104 1.08 × 103 9.27 × 102 1.40 × 105 7.28 × 104 2.36 × 103 9.15 × 104 4.61 × 103 5.17 × 104

Std 1.36 × 102 4.98 × 103 1.84 × 102 1.50 × 102 1.41 × 104 1.41 × 104 3.67 × 102 2.34 × 103 8.23 × 102 1.07 × 104

Time 34 28 (+) 29 (+) 26 (=) 124 (+) 164 (+) 27 (=) 32 (+) 84 (+) 32 (+)

F12
Ave 2.18 × 107 6.97 × 108 2.83 × 106 2.59 × 106 1.85 × 1011 5.52 × 1010 4.16 × 108 1.02 × 1011 6.44 × 108 1.89 × 1010

Std 8.83 × 106 5.07 × 107 1.23 × 106 1.14 × 106 1.56 × 1010 1.55 × 1010 1.95 × 108 8.02 × 109 2.72 × 108 2.33 × 109

Time 35 31 (+) 30 (−) 28 (−) 125 (+) 166 (+) 29 (+) 33 (+) 86 (+) 33 (+)

F13
Ave 2.76 × 103 1.04 × 107 1.11 × 104 4.24 × 103 4.30 × 1010 1.46 × 1010 5.64 × 106 2.79 × 1010 8.92 × 104 2.89 × 109

Std 1.45 × 103 3.88 × 106 5.21 × 103 2.95 × 103 3.95 × 109 5.36 × 109 1.48 × 106 1.69 × 108 3.95 × 104 9.55 × 108

Time 34 29 (+) 29 (+) 27 (=) 123 (+) 164 (+) 28 (+) 32 (+) 84 (+) 32 (+)

F14
Ave 8.20 × 104 2.84 × 106 3.95 × 104 5.87 × 104 4.36 × 107 6.45 × 106 1.34 × 106 1.18 × 107 1.21 × 106 8.47 × 106

Std 5.17 × 104 9.97 × 105 1.57 × 104 3.12 × 104 1.70 × 107 4.70 × 106 2.10 × 105 1.43 × 106 4.81 × 105 3.47 × 106

Time 37 33 (+) 32 (=) 30 (=) 127 (+) 167 (+) 31 (+) 35 (+) 87 (+) 35 (+)

F15
Ave 9.44 × 102 5.96 × 105 2.48 × 103 2.46 × 103 2.24 × 1010 8.01 × 109 1.49 × 106 1.55 × 1010 8.04 × 104 8.42 × 108

Std 9.83 × 102 1.97 × 105 2.17 × 103 2.93 × 103 3.29 × 109 4.85 × 109 3.45 × 105 1.17 × 109 4.73 × 104 1.90 × 108

Time 34 28 (+) 29 (+) 26 (=) 123 (+) 164 (+) 27 (+) 32 (+) 84 (+) 32 (+)

F16
Ave 3.90 × 103 5.09 × 103 4.46 × 103 4.51 × 103 1.84 × 104 1.08 × 104 5.86 × 103 1.37 × 104 7.20 × 103 8.15 × 103

Std 5.91 × 102 4.47 × 102 6.25 × 102 8.49 × 102 2.06 × 103 1.87 × 103 7.92 × 102 1.17 × 103 1.42 × 103 7.17 × 102

Time 35 30 (+) 30 (+) 27 (=) 124 (+) 165 (+) 28 (+) 33 (+) 85 (+) 33 (+)

F17
Ave 2.51 × 103 3.74 × 103 3.70 × 103 3.50 × 103 4.28 × 106 1.11 × 105 4.70 × 103 5.59 × 104 4.92 × 103 6.42 × 103

Std 4.75 × 102 4.15 × 102 6.34 × 102 6.24 × 102 2.73 × 106 1.14 × 105 5.67 × 102 6.07 × 103 4.37 × 102 5.28 × 102

Time 40 37 (+) 35 (+) 33 (+) 130 (+) 171 (+) 35 (+) 39 (+) 91 (+) 38 (+)

F18
Ave 2.26 × 105 4.19 × 106 1.72 × 105 1.58 × 105 5.85 × 107 7.24 × 106 3.18 × 106 2.25 × 107 1.78 × 106 1.15 × 107

Std 1.46 × 105 1.33 × 106 5.65 × 104 7.04 × 104 2.21 × 107 3.98 × 106 1.18 × 106 1.13 × 107 5.22 × 105 3.57 × 106

Time 35 30 (+) 30 (=) 27 (=) 124 (+) 165 (+) 28 (+) 33 (+) 85 (=) 33 (+)

F19
Ave 8.99 × 102 1.22 × 106 4.49 × 103 5.03 × 103 2.12 × 1010 6.43 × 109 4.93 × 106 1.04 × 1010 1.03 × 107 6.47 × 108

Std 7.49 × 102 3.79 × 105 6.07 × 103 4.33 × 103 2.48 × 109 5.20 × 109 1.30 × 106 2.63 × 109 7.15 × 106 1.20 × 108

Time 71 78 (+) 66 (+) 64 (+) 161 (+) 202 (+) 73 (+) 69 (+) 121 (+) 69 (+)

F20
Ave 2.22 × 103 3.04 × 103 3.46 × 103 3.20 × 103 5.30 × 103 4.24 × 103 3.88 × 103 4.71 × 103 4.05 × 103 4.35 × 103

Std 3.23 × 102 5.23 × 102 3.70 × 102 7.41 × 102 3.25 × 102 3.90 × 102 4.55 × 102 3.64 × 102 4.24 × 102 6.19 × 102

Time 42 39 (+) 37 (+) 34 (+) 131 (+) 172 (+) 38 (+) 40 (+) 92 (+) 40 (+)

F21
Ave 5.04 × 102 1.15 × 103 1.05 × 103 1.10 × 103 2.12 × 103 2.03 × 103 1.91 × 103 1.74 × 103 1.72 × 103 1.34 × 103

Std 4.17 × 101 8.51 × 101 8.91 × 101 1.49 × 102 1.68 × 102 1.67 × 102 1.52 × 102 1.90 × 101 2.20 × 102 5.08 × 101

Time 65 69 (+) 59 (+) 57 (+) 153 (+) 194 (+) 64 (+) 62 (+) 114 (+) 62 (+)

F22
Ave 1.46 × 104 2.19 × 104 1.71 × 104 1.59 × 104 3.12 × 104 2.83 × 104 2.09 × 104 2.75 × 104 2.09 × 104 2.99 × 104

Std 1.55 × 103 7.94 × 102 1.30 × 103 2.02 × 103 1.02 × 103 1.61 × 103 1.66 × 103 3.36 × 103 1.76 × 103 8.82 × 102

Time 68 72 (+) 62 (+) 59 (=) 157 (+) 197 (+) 68 (+) 65 (+) 117 (+) 65 (+)

F23
Ave 9.05 × 102 1.42 × 103 1.38 × 103 1.24 × 103 4.26 × 103 3.03 × 103 2.65 × 103 3.89 × 103 2.66 × 103 1.72 × 103

Std 5.75 × 101 1.02 × 102 1.78 × 102 6.39 × 101 3.66 × 102 3.31 × 102 2.83 × 102 7.78 × 101 2.87 × 102 6.67 × 101

Time 79 88 (+) 74 (+) 71 (+) 168 (+) 209 (+) 80 (+) 76 (+) 129 (+) 76 (+)

F24
Ave 1.31 × 103 2.13 × 103 2.31 × 103 2.05 × 103 8.98 × 103 4.19 × 103 3.66 × 103 6.00 × 103 3.32 × 103 2.27 × 103

Std 1.04 × 102 9.40 × 101 2.53 × 102 9.81 × 101 1.69 × 103 2.47 × 102 3.54 × 102 1.65 × 102 2.94 × 102 7.89 × 101

Time 74 83 (+) 69 (+) 67 (+) 156 (+) 192 (+) 75 (+) 71 (+) 119 (+) 72 (+)

F25
Ave 8.98 × 102 1.84 × 103 7.95 × 102 8.11 × 102 2.53 × 104 8.41 × 103 1.12 × 103 1.16 × 104 1.03 × 103 4.87 × 103

Std 5.61 × 101 1.22 × 102 4.70 × 101 7.14 × 101 1.95 × 103 1.59 × 103 5.81 × 101 2.05 × 102 5.37 × 101 5.55 × 102

Time 79 89 (+) 73 (−) 71 (=) 160 (+) 196 (+) 81 (+) 76 (+) 124 (+) 76 (+)

F26
Ave 8.64 × 103 1.25 × 104 1.72 × 104 1.56 × 104 4.95 × 104 2.96 × 104 2.18 × 104 2.62 × 104 2.74 × 104 1.77 × 104

Std 8.66 × 102 8.07 × 103 6.07 × 103 6.34 × 103 2.29 × 103 1.83 × 103 2.67 × 103 2.87 × 102 3.34 × 103 1.11 × 103

Time 86 97 (+) 80 (+) 78 (+) 167 (+) 203 (+) 89 (+) 83 (+) 131 (+) 83 (+)

F27
Ave 8.97 × 102 1.29 × 103 1.39 × 103 1.31 × 103 8.13 × 103 3.26 × 103 1.76 × 103 5.26 × 103 2.57 × 103 1.71 × 103

Std 5.36 × 101 1.00 × 102 1.46 × 102 2.58 × 102 4.21 × 103 6.08 × 102 4.70 × 102 1.32 × 102 1.02 × 103 1.66 × 102

Time 97 114 (+) 92 (+) 90 (+) 179 (+) 215 (+) 102 (+) 95 (+) 143 (+) 95 (+)

F28
Ave 7.63 × 102 1.96 × 103 6.55 × 102 6.48 × 102 3.28 × 104 1.31 × 104 8.43 × 102 1.05 × 104 8.17 × 102 6.44 × 103

Std 4.63 × 101 1.77 × 102 2.89 × 101 2.68 × 101 2.76 × 103 3.27 × 103 3.61 × 101 2.50 × 102 3.41 × 101 7.42 × 102

Time 92 107 (+) 87 (−) 85 (−) 174 (+) 209 (+) 98 (+) 90 (+) 138 (+) 90 (+)

F29
Ave 2.94 × 103 4.84 × 103 4.40 × 103 4.07 × 103 2.62 × 105 1.48 × 104 6.15 × 103 6.21 × 104 1.07 × 104 7.88 × 103

Std 4.85 × 102 4.31 × 102 3.50 × 102 5.72 × 102 1.23 × 105 5.60 × 103 3.93 × 102 2.89 × 103 3.23 × 103 5.99 × 102

Time 61 67 (+) 56 (+) 54 (+) 144 (+) 179 (+) 61 (+) 59 (+) 107 (+) 59 (+)
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Table 4. Cont.

Functions
Algorithms

SIAEO IAEO EAEO AEO AOA TSA HHO QPSO WOA GWO

F30
Ave 1.83 × 104 2.65 × 107 2.32 × 104 1.90 × 104 3.69 × 1010 1.21 × 1010 3.55 × 107 1.93 × 1010 1.77 × 108 2.45 × 109

Std 8.12 × 103 6.51 × 106 1.49 × 104 8.99 × 103 6.59 × 109 4.17 × 109 9.20 × 106 1.92 × 109 5.02 × 107 6.43 × 108

Time 88 103 (+) 84 (=) 81 (=) 188 (+) 229 (+) 106 (+) 97 (+) 150 (+) 96 (+)
(#) best 21 0 6 3 0 0 0 0 0 0
(#) + 29 20 16 30 30 28 30 28 30
(#) = 1 6 11 0 0 2 0 2 0
(#) − 0 4 3 0 0 0 0 0 0

Friedman rank 1.69 4.45 2.52 2.38 9.57 8.12 5.34 8.54 5.63 6.47

Table 5. Comparison between the SIAEO and comparison algorithm on the CEC2019 test set.

Functions
Algorithm

SIAEO IAEO EAEO AEO AOA TSA HHO QPSO WOA GWO

f1
Ave 0.00 0.00 0.00 0.00 3.75 × 10−15 1.78 × 102 0.00 1.16 × 10−9 3.94 × 106 4.02 × 104

Std 0.00 0.00 0.00 0.00 1.19 × 10−14 3.97 × 102 0.00 2.41 × 10−9 5.26 × 106 1.06 × 105

Time 1.71 0.95 (=) 1.26 (=) 1.08 (=) 1.34 (=) 1.71 (+) 0.96 (=) 1.47 (=) 1.18 (+) 0.78 (+)

f2
Ave 3.43 3.31 3.55 3.37 3.90 5.58 × 102 3.98 4.00 6.60 × 103 7.05 × 102

Std 1.70 × 10−1 3.39 × 10−2 3.18 × 10−1 2.35 × 10−1 1.89 × 10−1 1.67 × 102 6.51 × 10−2 4.28 × 10−4 6.17 × 102 3.85 × 102

Time 1.57 0.82 (=) 1.18 (=) 1.00 (=) 1.84 (+) 2.46 (+) 0.85 (+) 1.39 (+) 1.42 (+) 0.72 (+)

f3
Ave 3.73 × 10−1 3.14 4.09 × 10−1 4.38 × 10−1 3.82 7.68 2.75 5.77 2.90 3.89
Std 1.31 × 10−1 1.02 2.41 × 10−8 9.17 × 10−2 5.37 × 10−1 2.27 1.22 1.05 2.59 4.41 × 10−1

Time 1.65 0.81 (+) 1.18 (=) 0.98 (=) 2.01 (+) 2.61 (+) 0.83 (+) 1.42 (+) 1.47 (+) 0.72 (+)

f4
Ave 1.55 × 101 1.80 × 101 1.69 × 101 1.69 × 101 5.20 × 101 6.34 × 101 4.22 × 101 6.07 × 101 5.19 × 101 2.81 × 101

Std 3.17 6.95 5.31 6.76 7.68 1.07 × 101 8.57 4.67 1.99 × 101 2.35
Time 1.48 0.82 (=) 1.16 (=) 0.98 (=) 1.33 (+) 1.72 (+) 0.86 (+) 1.38 (+) 1.12 (+) 0.68 (+)

f5
Ave 2.07 × 10−1 9.30 × 10−1 2.10 × 10−1 2.73 × 10−1 4.35 × 101 4.93 9.67 × 10−1 5.22 × 101 7.94 × 10−1 2.60
Std 1.72 × 10−1 1.39 × 10−1 5.42 × 10−2 1.31 × 10−1 9.09 3.62 3.39 × 10−1 9.89 5.18 × 10−1 6.25 × 10−1

Time 1.72 0.84 (+) 1.17 (=) 0.99 (=) 1.34 (+) 1.73 (+) 0.86 (+) 1.38 (+) 1.13 (+) 0.69 (+)

f6
Ave 1.09 1.68 2.59 3.32 7.30 3.79 5.35 6.62 6.23 3.22
Std 7.40 × 10−1 2.78 × 10−1 6.61 × 10−1 1.63 8.01 × 10−1 8.79 × 10−1 8.07 × 10−1 5.26 × 10−1 1.24 2.76 × 10−1

Time 3.29 3.04 (+) 2.83 (+) 2.64 (+) 2.97 (+) 3.36 (+) 2.85 (+) 3.03 (+) 2.77 (+) 2.33 (+)

f7
Ave 5.75 × 102 7.65 × 102 7.43 × 102 1.05 × 103 1.47 × 103 1.62 × 103 1.27 × 103 1.57 × 103 1.48 × 103 1.09 × 103

Std 2.36 × 102 2.88 × 102 2.93 × 102 3.09 × 102 2.13 × 102 1.36 × 102 3.96 × 102 2.68 × 102 3.44 × 102 2.29 × 102

Time 1.37 0.83 (=) 1.16 (=) 0.98 (+) 1.32 (+) 1.70 (+) 0.88 (+) 1.36 (+) 1.11 (+) 0.69 (+)

f8
Ave 2.73 2.92 2.89 2.90 3.47 3.09 3.54 3.36 3.28 2.96
Std 2.83 × 10−1 3.03 × 10−1 3.20 × 10−1 3.72 × 10−1 1.44 × 10−1 2.22 × 10−1 1.24 × 10−1 1.13 × 10−1 2.53 × 10−1 2.29 × 10−1

Time 1.32 0.81 (=) 1.13 (=) 0.96 (=) 1.31 (+) 1.68 (+) 0.87 (+) 1.34 (+) 1.10 (=) 0.67 (=)

f9
Ave 2.16 × 10−1 2.68 × 10−1 2.74 × 10−1 3.41 × 10−1 1.73 3.88 × 10−1 5.99 × 10−1 6.53 × 10−1 5.88 × 10−1 2.55 × 10−1

Std 3.05 × 10−2 6.60 × 10−2 1.11 × 10−1 9.51 × 10−2 4.13 × 10−1 1.18 × 10−1 1.18 × 10−1 9.44 × 10−2 1.50 × 10−1 8.00 × 10−2

Time 1.30 0.78 (=) 1.12 (=) 0.94 (+) 1.28 (+) 1.67 (+) 0.82 (+) 1.32 (+) 1.08 (+) 0.65 (=)

f10
Ave 1.50 × 101 1.58 × 101 1.68 × 101 1.80 × 101 2.03 × 101 2.04 × 101 2.02 × 101 2.03 × 101 2.00 × 101 2.04 × 101

Std 8.54 7.23 6.85 6.32 3.83 × 10−2 1.09 × 10−1 1.23 × 10−1 1.47 × 10−1 4.14 × 10−2 5.64 × 10−2

Time 1.36 0.81 (=) 1.14 (=) 0.96 (=) 1.31 (+) 1.68 (+) 0.87 (+) 1.34 (+) 1.10 (+) 0.67 (+)
(#) best 9 2 1 1 0 0 1 0 0 0
(#) + 3 1 3 9 10 9 9 9 8
(#) = 7 9 7 1 0 1 1 1 2
(#) − 0 0 0 0 0 0 0 0 0
Friedman

rank 2.16 3.88 2.88 3.21 7.46 7.61 6.26 7.93 7.16 6.12

The data in Table 4 demonstrate that the SIAEO performed best for the high-dimensional
and challenging CEC2017 test set in line with the number of optimal solutions achieved
((# best) with a value of (# best) of 21. Specifically, the SIAEO accessed the best results on
six of the seven simple multi-peak functions (F4–F10). For mixed functions (F11–F20) and
composite functions (F21–F30), the performance is best on seven and eight functions, re-
spectively. For three unimodal functions (F1–F3), the performance is slightly inferior to that
of the EAEO. In general, the SIAEO performs slightly less well for unimodal functions, but
its performance on simple multimodal functions, mixed functions, and composite functions
is the the most promising. Thus, the SIAEO algorithm possesses more advantages and more
comprehensive performance in solving high-dimensional complex optimization problems.

The data in Table 5 illustrate that the SIAEO’s (#)best value is nine in terms of the num-
ber of optimal solutions ((#)best), which indicate that the SIAEO unfolds before one’s eyes a
significant advantage in solving the CEC2019 test set with fixed dimensions. In conclusion,
the SIAEO algorithm shows more promising performance for both the high-dimensional
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CEC2017 test set and the fixed-dimensional CEC2019 test set, which authenticates that the
SIAEO outperforms the other nine comparison algorithms in terms of scalability.

Figure 3 provides the comparison diagram of curve convergence process of three
simple multi-peak functions (F5, F6, and F8), three mixed functions (F15, F16, and F19),
and three composite functions (F21, F23, and F24) of the CEC2017 test set when the SIAEO
and other algorithms search for optimization. For ease of observation, the convergence
curve is plotted with log 10(F(x)) as the ordinate. Figure 3 illustrates this point: although
the SIAEO algorithm is slower than AEO algorithm in solving simple multi-peak, mixed
function and composite functions, it has strong exploration and exploitation performance.
It is obviously better than the other nine reference algorithms in terms of solving precision
and has a strong ability to escape the local optimal.
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Figure 3. Convergence curve of nine benchmark functions of the CEC2017.

4.2.3. Analysis of Statistical Test Results

Statistical test [33] is an essential mathematical method to analyze the results of
intelligent optimization algorithms. When the significance level is α = 0.05, three statistical
tests, including the two-tailed t-test, Wilcoxon signed-rank test and Friedman test, are used
to test the performance of the comparison algorithm.

(1) Two-tailed t-test

In Tables 4 and 5, the t-test results of the SIAEO and the other nine comparison algo-
rithms are given in parentheses after Time, and (#) best gives the number of winning results.
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As an attempt to comprehensively assess all algorithms, the comprehensive performance
CP is defined by the number of superior algorithms minus the number of inferior algo-
rithms, i.e., “(#)+” − “(#)−”. When the CP is positive, that is, CP > 0, it indicates that the
SIAEO is superior to the comparison algorithm and vice versa. Table 6 shows CP values of
the SIAEO and other comparison algorithms on the CEC2017 test set and the CEC2019 test
set. Obviously, the data in Table 6 indicates that the SIAEO is an excellent algorithm for the
CEC2017 test set. The CP value of the SIAEO compared with the AEO is 13, which exhibits
the superiority of the SIAEO amendment scheme. For the EAEO and IAEO, the CP values
are 29 and 16, respectively, which suggests that the proposed algorithm is significantly
superior to the EAEO and IAEO. By comparing the CP values of the other six intelligent
algorithms, the SIAEO achieved an overwhelming superiority, with the CP values of thirty
compared with the other four algorithms, except that the CP values of WOA and HHO
algorithms are 28. For the CEC2019 test set, the CP values of the SIAEO algorithm are
positive compared with the AEO, EAEO and IAEO, while the CP values of the other six
comparison algorithms are close to the maximum. In all, it shows that the SIAEO algorithm
has more advantages and prospects in exploring high-dimensional minimize problems.

Table 6. The CP values of the SIAEO and comparison algorithms on CEC2017 and CEC2019 test sets.

SIAEO. VS
CEC2017 (D = 100) CEC2019

(#)+ (#)− CP (#)+ (#)− CP

IAEO 29 0 29 3 0 3
EAEO 20 4 16 1 0 1
AEO 16 3 13 3 0 3
AOA 30 0 30 9 0 9
TSA 30 0 30 10 0 10

HHO 28 0 28 9 0 9
QPSO 30 0 30 9 0 9
WOA 28 0 28 9 0 9
GWO 30 0 30 8 0 8

(2) Wilcoxon signed-rank test

For the CEC2017 and CEC2019 test sets, the Wilcoxon signed-rank test with a signifi-
cance level of 0.05 was used to test the difference between the SIAEO and other competitive
algorithms. In Table 7, R+ and R− represent the sum of the rank of all the test functions
in which the SIAEO is better or worse than its competitors. The greater the difference
between R+ and R-, the better the performance of the algorithm will be. p represents the
probability value corresponding to the test result. When p < 0.05, it means that a significant
difference exists in the two algorithms. Significance means the significance of the difference,
“+” expresses that the underlying algorithm is prominently better than the comparison
algorithm, and “=” indicates that the performance is similar to the comparison algorithm.
Table 7 shows that the SIAEO significantly outperforms the other nine algorithms except
for the IAEO for the CEC2019 test set. Not only is p < 0.05, but the number of R+ is far
greater than the number of R−, especially for the EAEO, AOA, TSA, HHO, QPSO, WOA
and GWO, the number of R− is 0. For the CEC2017 test set, although the SIAEO is not
significantly superior to the EAEO and AEO in p, it provides more potential performance
than the EAEO and AEO algorithms in R+ and R-. In general, the SIAEO has a significant
advantage among the nine comparison algorithms based on the p-value. Moreover, it
outperforms all competitors in the number of R+ and R- and shows a more promising
performance in high-dimensional cases.

(3) The Friedman test

Nonparametric Friedman test [34] was used to test the overall performance of the ten
comparison algorithms. During the inspection, the average value of 30 times of independent
operation is used as input data to calculate the overall ranking of each algorithm. Friedman
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test results and rankings for the CEC2017 and CEC2019 test sets are shown in the last row
of Tables 4 and 5. The results in Tables 4 and 5 indicate that the SIAEO ranked first in both
the 100 dimensions of the CEC2017 and the fixed dimensions of the CEC2019. The AEO,
EAEO and IAEO rank 2nd, 3rd and 4th, respectively. In addition, the ranking does not
change with the change of dimension, so illustrating the SIAEO has significant robustness
and the ability to solve high-dimensional problems. Figure 4 shows the differences in
Friedman ranking and illustrates the SIAEO having prominent preponderance over the
other algorithms.

Table 7. Wilcoxon sign rank test results of the SIAEO and comparison algorithms at 0.05 significance
level.

SIAEO. VS
CEC2017 (D = 100) CEC2019

R+ R− p Significance R+ R− p Significance

IAEO 465 0 0.0000 + 43 2 0.0117 +
EAEO 295 170 0.1986 = 45 0 0.0039 +
AEO 293 172 0.2134 = 44 1 0.0078 +
AOA 465 0 0.0000 + 55 0 0.0020 +
TSA 465 0 0.0000 + 55 0 0.0020 +

HHO 465 0 0.0000 + 45 0 0.0039 +
QPSO 465 0 0.0000 + 55 0 0.0020 +
WOA 465 0 0.0000 + 55 0 0.0020 +
GWO 465 0 0.0000 + 55 0 0.0020 +
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4.3. Engineering Optimization Experiment

In this subsection, to validate the ability of the SIAEO to solve the optimization
problems in real-world applications, four real-world engineering challenges are disposed
of availing on the proposed algorithm. In the comparison results, the optimal value is
represented in bold font.

4.3.1. Three-Bar Truss Design Problem

This example discusses a 3-bar planar truss structure (Figure 5) that minimizes volume
while meeting stress restrictions on each side of the truss members [35]. Optimization
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of two-stage rod length A1, A2 with the variable vector x = (x1, x2) = (A1, A2) can be
mathematically simulated as below:

min feo1(x) = (2
√

2x1 + x2)l
s.t.

g1(x) =
√

2x1+x2√
2x2

1+2x1x2
P− σ ≤ 0

g2(x) = x2√
2x2

1+2x1x2
P− σ ≤ 0

g3(x) = 1
x1+
√

2x2
P− σ ≤ 0

0 ≤ x1, x2 ≤ 1.
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The findings of the SIAEO and other excellent comparative methodologies are given
in Table 8. Table 8 also lists the best decision variables of the optimal solution for all com-
paring approaches. Table 8 shows that by supplying optimal variables at x∗ = (x∗1 , x∗2) =
(0.788675136, 0.40824828) with minimum objective function value: feo1(x∗) = 263.895843,
the proposed SIAEO achieved better and comparable outcomes than other potential mini-
mized methods.

Table 8. Optimal results of various methods for the Three bar truss design problem.

Algorithm
The Best Decision Variables

Minimum Cost
x1 x2

CS [5] 0.78867 0.40902 263.9716
CSA [36] 0.788638976 0.408350573 263.895844
SSA [9] 0.78866541 0.408275784 263.89584

Ray and Sain [37] 0.795 0.395 264.3
MBA [38] 0.7885650 0.4085597 263.89585

PHSSA [39] 0.82299 0.31925 264.701723
SIAEO 0.788675136 0.40824828 263.895843
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4.3.2. Himmelblau’s Nonlinear Problems

The mathematical description of Himmelblau’s nonlinear problems [40] using the
vector x = (x1, x2, x3, x4, x5) can be surveyed as:

min feo2(x) = 5.3578547x2
3 + 0.8356891x2x5 + 37.293239x1 − 40792.141

s.t.
0 ≤ g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 ≤ 92,
90 ≤ g2(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 − 0.0021813x2

3 ≤ 110,
20 ≤ g3(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 ≤ 25,
78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ x3, x4, x5 ≤ 45.

The best results obtained using various methods are demonstrated in Table 9, which
reveal that the SIAEO outperforms existing approaches and also has engineering practicability.

Table 9. Optimal results of various methods for the Himmelblau’s nonlinear problems.

Algorithm
The Best Decision Variables

Minimum Cost
x1 x2 x3 x4 x5

Himmelblau [40] N/A N/A N/A N/A N/A −30,373.949
Deb [41] N/A N/A N/A N/A N/A −30,665.539

He et al. [42] 78 33 29.995256 45 36.775813 −30,665.539
Dimopoulos [43] 78 33 29.995256 45 36.775813 −30,665.54

CS [5] 78 33 29.99616 45 36.77605 −30,665.233
CSA [36] 78 33 29.995256 45 36.775813 −30,665.53867
SIAEO 78 33 29.995256 45 36.775812 −30,665.53867

4.3.3. Tabular Column Design Problem

Figure 6 illustrates the uniform tabular column design problem [44]. Generating a
homogeneous column of tabular design at the lowest possible cost is its purpose. The
following is a mathematical description of the problem using the variable vector x = (x1, x2).

min feo3(x) = 9.82x1x2 + 2x1
s.t.
g1(x) = P

πσyx1x2
− 1 ≤ 0,

g2(x) = 8PL2

π3Ex1x2(x2
1+x2

1)
− 1 ≤ 0,

g3(x) = 2.0/x1 − 1 ≤ 0,
g4(x) = x1/14− 1 ≤ 0,
g5(x) = 0.2/x2 − 1 ≤ 0,
g6(x) = x2/0.8− 1 ≤ 0,
2 ≤ x1 ≤ 14, 0.2 ≤ x2 ≤ 0.8.

Although the optimization variables of the tabular column design problem are few, there
are many constraints that increase the difficulty of hunting for feasible solutions. The best results
of each algorithm for searching such a problem are given in Table 10. The SIAEO method’s
variation is clearly lower than the other approaches; in addition, the SIAEO method’s best result
has the best performance by supplying optimal variables at x∗ = (x∗1 , x∗2) = (5.4512, 0.29167)
with a minimum objective function value: feo3(x∗) = 26.526.
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Table 10. Optimal results of each algorithm for the tabular column design.

Algorithm
The Best Decision Variables

Minimum Cost
x1 x2

CS [5] 5.45139 0.29196 26.53217
CSA [36] 5.45116 0.29196 26.5313

Hsu and Liu [45] 5.4507 0.292 25.5316
Rao [44] 5.44 0.293 26.5323
SIAEO 5.4512 0.29167 26.526

4.3.4. Gas Transmission Compressor Design Problem

This four-variable mechanical design problem was first proposed by Beightlerand
Phillips designed the problem [46]. The goal is to seek out the variable for sending natural
gas to the gas pipeline transmission system at the lowest possible cost. The following is a
mathematical description of the problem with the vector x = (x1, x2, x3, x4).

min feo4(x) = 8.61× 105x1/2
1 x2x−2/3

3 x−1/2
4 + 3.69× 104x3 + 7.72× 108x−1

1 x0.219
2 − 765.43× 106x−1

1
s.t.
g1(x) = x4x−2

2 + x−2
2 − 1 ≤ 0,

20 ≤ x1 ≤ 50, 1 ≤ x2 ≤ 10, 20 ≤ x3 ≤ 50, 0.1 ≤ x4 ≤ 60.

The objective function of this problem is complex and highly nonlinear, which puts
forward higher requirements for the optimization algorithm.

The optimal results of different methods for solving such a problem are given in
Table 11. The SIAEO method’s variation is clearly lower than the other approaches; in
addition, the SIAEO method’s best result has the best performance by supplying opti-
mal variables at x∗ = (x∗1 , x∗2 , x∗3 , x∗4) = (50, 1.17828, 24.59259, 0.38835) with a minimum
objective function value: feo4(x∗) = 2964895.
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Table 11. Optimal results of various methods for the Gas transmission compressor design problem.

Algorithm
The Best Decision Variables Minimum

Costx1 x2 x3 x4

WOA [31] 50 1.18 24.58 0.3883 2,964,900
SSA [9] 26.19 1.10 21.47 0.2119 3,034,100

BOA [47] 33.19 1.10 26.48 0.2162 3,007,000
SOS [48] 50 1.18 24.58 0.3883 2,964,900
PSO [49] 31.79 1.10 31.57 0.2224 3,050,900
DE [50] 50 1.18 24.59 0.3884 2,964,900
SIAEO 50 1.17828 24.59259 0.38835 2,964,895

4.4. Application of SIAEO in Clustering Problem

K-means clustering is a very effective clustering method [51,52]. When the number
of classes is determined, the determination of the clustering center is the key to this
method. The finding of the clustering center can be turned into the optimization problem
of minimum class spacing. For the data set Data = {o1, o2, . . . , oV} composed of V samples,
there are M classes in total, the cluster center of class i (i = 1, 2, · · ·M) is Pi, and the number
of data in the cluster of class i is Vi, then the clustering center Pi(i = 1, 2, · · ·M) of K-means
clustering is the optimal of the following optimization model.

min
M

∑
i=1

Vi

∑
j=1
‖oj − Pi‖2

2 (17)

Attempting to demonstrate the SIAEO algorithm’s competitiveness in solving high-
dimensional practical problems by verifying its optimization ability for high-dimensional
clustering, this section uses the SIAEO to search for the optimal clustering center of K-
means clustering.

4.4.1. SIAEO—K-Means Algorithm

Table 12 gives the number of data instances, class-number Classes, Dimension Features
of data and the number of dimensions of the decision variables in optimization problem (17)
in nine data sets from the UCI standard database [53]. The process of solving optimization
problem (17) with the SIAEO algorithm is as follows: Firstly, N Dimension individuals are
generated as N groups of clustering centers. For each individual, that is, each group of
clustering centers, the K-means clustering method is adopted to determine the number of
data contained in each category. Individual fitness values are calculated using Formula (17)
and determine the optimal individuals. Then, the SIAEO algorithm is used to update each
individual until the optimal cluster center is found.

Table 12. Characteristics of the nine datasets.

Datasets Instances Classes Features Dimension

Cancer 683 2 9 18
Heartstatlog 270 2 13 26

Wine 178 3 13 39
Ecoli 336 8 7 56

WDBC 569 2 30 60
Vehicle 846 4 18 72

Segmentation 210 7 18 126
Air 359 3 64 192

Abalone 4177 29 7 203
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4.4.2. Experimental Setup and Performance Evaluation

In the experiment, N = 20 and T = 100, and the independent operation was performed
30 times. The IAEO, EAEO, AEO, DE and PSO were selected to combine with K-means as
the comparison algorithm. Table 13 provides the mean Ave, standard deviation Std and
Rank gained by the SIAEO and comparison algorithm to search the optimization model
established by Formula (17) of the data in Table 12. The last three lines of Table 13 give
the evaluation index. The count indicates the number of data sets of the optimal result
obtained by each optimization algorithm. The Avg_Rank represents the average ranking
and Total Rank quantitatively expresses the contrast in the optimization ability of each
algorithm. For nine data sets, Figure 7 depicts the search process of each contrast algorithm
to reflect the characteristics of the algorithm and to explore the global optimal solution
during operation.
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Table 13. Comparison of K-means optimization results of six algorithms on nine datasets.

Algorithm SIAEO-
K-Means

IAEO-
K-Means

EAEO-
K-Means

AEO-
K-Means DE-K-Means PSO-

K-Means

Cancer

mean 3.67 × 103 4.65 × 103 3.84 × 103 4.36 × 103 5.85 × 103 6.03 × 103

Std 2.94 × 102 1.59 3.23 × 102 2.99 × 102 4.01 × 102 4.32 × 102

Rank 1 4 2 3 5 6

Heartstatlog

mean 1.13 × 104 1.40 × 104 1.16 × 104 1.48 × 104 1.40 × 104 1.45 × 104

Std 7.02 × 101 1.60 × 102 5.32 × 102 0.00 6.37 × 102 1.94 × 101

Rank 1 3 2 6 4 5

Wine

mean 1.75 × 104 1.91 × 104 1.71 × 104 2.10 × 104 1.91 × 104 2.36 × 104

Std 1.26 × 103 1.05 × 103 2.42 × 102 1.94 × 103 8.75 × 102 7.46 × 101

Rank 2 3 1 5 4 6

Ecoli

mean 9.88 × 101 1.21 × 102 9.96 × 101 1.52 × 102 1.36 × 102 1.07 × 102

Std 3.63 1.17 × 101 1.04 × 101 0.00 8.32 4.21

Rank 1 4 2 6 5 3

WDBC

mean 1.65 × 105 2.46 × 105 2.00 × 105 2.96 × 105 2.80 × 105 2.98 × 105

Std 4.22 × 103 3.20 × 101 3.96 × 104 3.98 × 103 2.07 × 104 2.17 × 101

Rank 1 3 2 5 4 6

Vehicle

mean 9.07 × 104 9.96 × 104 1.02 × 105 1.28 × 105 1.14 × 105 1.27 × 105

Std 7.10 × 103 5.36 × 103 2.97 × 103 0.00 7.32 × 103 1.40 × 101

Rank 1 2 3 6 4 5

Segmentation

mean 2.90 × 104 3.53 × 104 3.08 × 104 3.56 × 104 3.66 × 104 3.91 × 104

Std 9.79 × 102 5.38 × 102 2.66 × 102 5.05 × 103 1.33 × 103 1.50 × 102

Rank 1 3 2 4 5 6

air

mean 4.48 × 101 3.57 × 101 3.97 × 101 7.72 × 101 1.35 × 102 6.22 × 101

Std 3.92 2.71 6.68 × 10−1 1.81 0.00 7.03

Rank 3 1 2 5 6 4

abalone

mean 1.17 × 103 1.59 × 103 1.27 × 103 1.91 × 103 1.91 × 103 1.58 × 103

Std 6.17 4.60 × 101 9.40 × 101 6.98 × 101 3.51 × 101 1.87 × 102

Rank 1 4 2 5 6 3

count 7 1 1 0 0 0

Avg_Rank 1.33 3.00 2.00 5.00 4.78 4.89

Total Rank 1 3 2 6 4 5

4.4.3. Comparison and Analysis of Results

Table 13 shows that when compared with other algorithms, the SIAEO acquires the
ideal intra-class distance in seven data sets and ranks 1.33 on average, placing it first overall.
The EAEO and IAEO came in second and third place, while the PSO and DE came in 4th
and 5th place, respectively, while the AEO ranked last, which differed greatly from the
SIAEO. Figure 7 shows that the SIAEO possesses a strong capability to escape the local
minimum and explores the global minimum compared with other algorithms, making it an
outstanding heuristic algorithm for solving high-dimensional clustering problems.
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5. Conclusions

In artificial ecosystem optimization algorithms, the relationship between exploration
and exploitation has always been the focus of research. In this paper, by introducing
the environmental stimulus incentives mechanism, which was defined by the population
diversity of the external environment stimulus to assist populations to realize the con-
version between consumption and decomposition, the largest cumulative success rate by
individuals performing different tasks to guide the consumption of individual choice was
found to be more suitable for an update strategy. This method decreases the complexity of
the AEO and improves the calculation precision.

At the same time, in the consumption stage, a new exploration and updating method
that uses biological competition to make it have successfully random search features is
proposed. Because of this, an improved artificial ecosystem optimization algorithm (SIAEO)
on account of environmental stimulus incentive mechanisms and biological competition
was proposed. Two types of tests were developed to confirm the superiority of the SIAEO.
The validity of the SIAEO and other intelligent algorithms and the AEO variant algorithms
to resolve the CEC2017 and CEC2019 benchmark functions was confirmed in the first
set of experiments. The SIAEO has a greater solving precision and convergence speed
than contrast algorithms, according to the findings of the experiments. The SIAEO’s
better stability and robustness are further demonstrated through statistical tests and the
convergence curve.

The second group of experiments verified the usefulness of the SIAEO. Four engi-
neering minimize problems verify the efficiency of the SIAEO in light of the complex
engineering nonlinear search problems. The SIAEO–K-means model was established to
optimize the K-means clustering center, and nine UCI standard data sets were applied in
the experiment. The results showed that SIAEO–K-means obtained higher evaluation index
values and had better performance in high-dimensional clustering data sets. The SIAEO
exceeds the comparative algorithms according to optimization ability and performance in
addressing high-dimensional problems in light of the two groups of experimental data.

As the AEO is a new heuristic algorithm, a more effective improvement strategy to
balance its exploration and exploitation ability is studied to improve its optimization ability.
The authors of [54] provided a dynamic data flow clustering method based on intelligent
algorithms, providing a reference for the fusion of dynamic data clustering and heuristic
algorithms. Another study [55] required an optimized estimation of hydraulic jump roller
length. These new requirements need further exploration of the large-scale clustering
ability of AEO algorithm and its deep application in the mechanical field in the future.
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