
Citation: Kim, B.; Kwon, G.; Park, C.;

Kwon, N.K. The Task Decomposition

and Dedicated Reward-System-Based

Reinforcement Learning Algorithm

for Pick-and-Place. Biomimetics 2023,

8, 240. https://doi.org/10.3390/

biomimetics8020240

Academic Editor: Ming Xie

Received: 29 April 2023

Revised: 1 June 2023

Accepted: 4 June 2023

Published: 6 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

The Task Decomposition and Dedicated Reward-System-Based
Reinforcement Learning Algorithm for Pick-and-Place
Byeongjun Kim 1 , Gunam Kwon 1, Chaneun Park 2 and Nam Kyu Kwon 1,*

1 Department of Electronic Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
slim7928@ynu.ac.kr (B.K.); nineman@yu.ac.kr (G.K.)

2 School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea;
chaneun@knu.ac.kr

* Correspondence: namkyu@yu.ac.kr; Tel.: +82-53-810-3095

Abstract: This paper proposes a task decomposition and dedicated reward-system-based reinforce-
ment learning algorithm for the Pick-and-Place task, which is one of the high-level tasks of robot
manipulators. The proposed method decomposes the Pick-and-Place task into three subtasks: two
reaching tasks and one grasping task. One of the two reaching tasks is approaching the object, and
the other is reaching the place position. These two reaching tasks are carried out using each optimal
policy of the agents which are trained using Soft Actor-Critic (SAC). Different from the two reaching
tasks, the grasping is implemented via simple logic which is easily designable but may result in
improper gripping. To assist the grasping task properly, a dedicated reward system for approaching
the object is designed through using individual axis-based weights. To verify the validity of the
proposed method, wecarry out various experiments in the MuJoCo physics engine with the Robosuite
framework. According to the simulation results of four trials, the robot manipulator picked up and
released the object in the goal position with an average success rate of 93.2%.

Keywords: deep reinforcement learning; Soft Actor-Critic; Pick-and-Place; task decomposition;
robot manipulator

1. Introduction

The robot manipulator is a robotic system designed to perform movements similar
to the arm of a human, which is composed of several joints such as the elbow and wrist,
and several links connecting each joint [1,2]. Due to its similarity to the human arm, the
robot manipulator is also referred to as a robot arm. The robot manipulator usually moves
the end-effector to the desired position and orientation based on commands given to each
joint, to accomplish specific tasks. The robot manipulator is currently being researched
and applied in various fields, categorized as either an industrial robot or a collaborative
robot depending on the application fields and tasks. Industrial robot manipulators are
widely used for tasks that are difficult for humans to do, such as palletizing, transporting
heavy objects, manufacturing, and assembling products within production lines, and
many attempts have been made to improve the efficiency of robot manipulators in various
tasks. In this regard, the authors of [3] analyzed the characteristics of the movement of the
palletizing robot. Based on the analysis, they designed a repeat learning control algorithm
to optimize the maximum speed for improving the working speed of the palletizing
robot. Through experimentation, it was verified that the efficiency of palletizing can be
improved using the proposed algorithm. On the other hand, collaborative robots, which
cooperate with humans, are smaller and lighter than industrial manipulators [4,5]. They
also come equipped with safety features, allowing them to work in real time alongside
humans without posing significant risks [6,7]. In fact, there are more cases of mobile robots
and collaborative robots being used in production lines and factories, and palletizing
tasks previously performed using industrial robots are now conducted using collaborative

Biomimetics 2023, 8, 240. https://doi.org/10.3390/biomimetics8020240 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8020240
https://doi.org/10.3390/biomimetics8020240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0009-0008-6486-6926
https://doi.org/10.3390/biomimetics8020240
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8020240?type=check_update&version=1


Biomimetics 2023, 8, 240 2 of 17

robots. In this regard, researchers have proposed an intelligent collaborative robot system
for automatically loading mixed boxes onto pallets, utilizing a 3D vision system and
reinforcement learning technique to recognize boxes and determine their placement [8].

Manipulators in various fields generally conduct tasks based on the force generated by
closed-loop feedback control systems, or they perform tasks through teleoperation-based
remote work [9]. However, to solve the numerous control problems in robot manipulation
and autonomous driving using feedback systems, modeling the system mathematically
and tuning the gains are necessary. Modeling a control system that considers all possible
situations is extremely complex. It is also difficult to determine the control gain due to
the uncertainties of the system model. To overcome these issues, the imitation learning
method, where the robot learns the path from a demonstration by an expert such as a
human without the need for system modeling and gain tuning, has also been widely
studied. However, imitation-learning-based robots cannot be used for general cases since
the robot follows the behavior of an expert or predetermined path. The robot trained via
imitation learning cannot perform the desired task if the starting point or destination in
the working environment changes. In other words, if the robot has multiple paths that
the robot needs to follow, it is very inefficient in terms of cost because it may require the
same number of robots as paths. Additionally, if there are obstacles on the path where the
robot is moving, the robot cannot avoid them, and if the robot collides with the obstacle,
it can cause a very fatal problem. In this regard, many studies have been performed to
control the robot using sensors such as cameras and LiDAR to visually recognize obstacles
and objects [10,11]. However, these control algorithms require a new and accurate system
modeling process according to changes in the surrounding environment, making the robot
difficult to adapt proactively to environmental changes.

To overcome these limitations, the reinforcement learning method has attracted many
researchers’ attention, as it enables the robots to make active decisions according to the state
of the environment [12,13]. Reinforcement learning is a subfield of machine learning in
artificial intelligence. One of the advantages of reinforcement learning is that input–output
data pairs are not required [14,15]. The objective of reinforcement learning is to obtain the
optimal policy which maximizes rewards based on the observed state through interaction
between the agent and the environment. Therefore, reinforcement learning requires a re-
ward system, which enables the agent to develop the policy that maximizes the cumulative
reward. Since reinforcement learning trains the agent based on the experience accumulated
through the interaction between the agent and the environment, the system model is not
mandatory. Moreover, in tasks where the agent is required to reach a specific destination
randomly selected within a user-defined range, the agent can plan the optimal path to
reach the destination through learning different actions depending on the destination.
Additionally, if there are obstacles in the environment, the agent can learn actions to avoid
obstacles according to the reward system [16]. If the agent collides with some obstacles, it
receives a bad reward, and the agent can formulate the optimal policy to avoid obstacles
through taking actions to avoid them [17,18].

However, for high-level tasks such as Pick-and-Place, Peg-in-Hole, and Door Opening,
it is hard to establish the optimal policy through end-to-end learning based on reinforcement
learning. In general, these high-level tasks consist of some subtasks which are simpler
and easier than the original whole tasks [19]. Thus, the agent has to be able to perform
all subtasks in a sequence. However, designing a reward system which enables the agent
to consider all subtasks is a very difficult problem [20,21]. Due to this, although there
have been many attempts to deal with the Pick-and-Place task using end-to-end learning,
the performance still has room for improvement. In [22], three out of four experiments
had success rates of less than 80%, and there was a case where the success rate was even
lower than 20%. In addition, one of the essential requirements for the Pick-and-Place
task is grasping objects. The authors of [23,24] showed the results of their experiments
with grasping tasks using visual data such as images, but the success rates for both cases
were only around 70%. To address the limitations and challenges of end-to-end learning



Biomimetics 2023, 8, 240 3 of 17

for high-level tasks, various methods have emerged, including task decomposition and
Hierarchical Reinforcement Learning (HRL) [25,26]. Task decomposition refers to the
process of breaking down a difficult and complex task into several simpler subtasks. For
example, Pick-and-Place can be decomposed into several subtasks, such as reaching the
object, lifting the object, and placing the object at the destination. Similarly the Door
Opening task can be decomposed into reaching the handle of the door, turning or pressing
the handle, and pushing or pulling the door. HRL involves decomposing a complex
task into several subtasks and training individual agents using reinforcement learning
algorithms for each subtask. Then, the agent for addressing the entire task is trained in
an end-to-end manner using the experiences obtained through hierarchically operating
the agents trained for each subtask. Applying HRL, a study solved the Pick-and-Place
task using the environment provided by Open AI Gym, and this study decomposed the
Pick-and-Place task into three modules, namely, Approach, Manipulate, and Retract [27].
Then, in [24], the Deep Deterministic Policy Gradient (DDPG) algorithm was used to learn
the optimal policies for each module. Using these trained agents sequentially, the agent to
accomplish the Pick-and-Place task was trained, and its performance was evaluated. Due
to the nature of the Pick-and-Place task, its task decomposition can be improved, and better
results can be expected through using a more dedicated reward system for the specific
subtask. This is the motivation behind this study.

This paper proposes a task decomposition and dedicated reward-system-based deep
reinforcement learning algorithm for the Pick-and-Place task. Except for the actions of
grasping the object, the Pick-and-Place task is identical to the two reaching tasks for
approaching each destination. Thus, in our research, we decompose the Pick-and-Place task
into three subtasks, Reaching–Grasping–Reaching, and train two agents for each reaching
task using the SAC algorithm [28,29]. While in [27], the agent for the manipulating module
which is similar to our grasping task was trained using DDPG [30], the proposed method
implements the grasping action through the simple simulation logic. In other words, as it is
possible to grip the object using the movement of only the gripper, reinforcement learning
is not required. In addition, since the manipulating task is lifting the object to the target
position while grasping the object, it is also a difficult problem for which to implement
the reward system considering these requirements. On the other hand, the reaching task
only requires that only the end-effector should reach the target position. So, the reward
system can be designed easily since it requires only the difference between the positions
of the end-effector and the target. For this reason, the proposed method decomposes the
Pick-and-Place task into two reinforcement-learning-based reaching tasks and one control
logic for grasping. However, this logic is easily implementable but may result in dropping
and missing the object. To overcome this constraint, this study designs a dedicated reward
system applied to the agent for reaching the object. Additionally, we expand the state
information of the task environment to increase the number of cases that the agent needs
to consider and add obstacles, which differs from the Open AI Gym’s Pick-and-Place
environment. This research experimented in the Pick-and-Place environment provided
by Robosuite using the simulation tool MuJoCo. According to the simulation results, the
effectiveness of the proposed method for the Pick-and-Place task is verified.

2. Problem Statement

This study solves the problem of Pick-and-Place using a reinforcement learning al-
gorithm. First, to use reinforcement learning, a Markov decision process (MDP) for the
problem which is handled should be defined [31]. MDP is a mathematical framework
modeling the decision-making problems for stochastic events and actions taken by an
agent. In MDP, the state changes stochastically over time, and the reward is accumulated
based on the transition of the state. MDP is represented as {S , A, P ,R, γ}, and the agent
takes an action at ∈ A based on the policy π(a|s), which means a distribution of actions
with the given state st ∈ S . Then, P is composed of the trainsition probability of the
state P(st+1|st, at). It represents the probability that the current state st ∈ S will change



Biomimetics 2023, 8, 240 4 of 17

to the next state st+1 ∈ S according to the taken action. The agent repeats this procedure
and accumulates the reward for every step. Finally, the agent learns the optimal policy
to maximize the expected reward Eπ

[
∑∞

k=0 γ
kRt+k

]
. Additionally, γ ∈ [0, 1] is discount

factor. The Figure 1 represents the overall process of MDP.

Biomimetics 2023, 8, x FOR PEER REVIEW 4 of 18 
 

based on the transition of the state. MDP is represented as 𝒮, 𝒜, 𝒫, ℛ, γ , and the agent 
takes an action at ∈ 𝒜 based on the policy π a|s , which means a distribution of actions 
with the given state st ∈ 𝒮 . Then, 𝒫  is composed of the trainsition probability of the 
state  P st+1|st, at . It represents the probability that the current state st ∈ 𝒮 will change 
to the next state st+1 ∈ 𝒮 according to the taken action. The agent repeats this procedure 
and accumulates the reward for every step. Finally, the agent learns the optimal policy to 
maximize the expected reward Eπ ∑ γk∞

k=0 Rt+k  . Additionally, γ ∈ 0, 1   is discount 
factor. The Figure 1 represents the overall process of MDP. 

 
Figure 1. The Markov decision process for the Pick-and-Place task which is implemented via the 
reinforcement learning method. 

Pick-and-Place is one of the high-level robot manipulation tasks, which involves the 
robot manipulator picking up a specific object and bringing it to a target location. In the 
Pick-and-Place task to be operated in this study, a Panda manipulator is used as an agent. 
It has six joints and one gripper, so the state st ∈ 𝒮  consists of each joint angle. 
Additionally, the position and the orientation of the end-effector belong to the state. In 
addition, the information related to the object is used as elements of the state, such as the 
position of the object and the target position to place the object. The Panda robot operates 
through using the torque of each joint as the action at ∈ 𝒜. Through this information, the 
agent experiences trial and error to gain the rewards based on the action for the given 
state. Lastly, based on these experiences, the agent learns the optimal policy to pick up the 
object and place it in the endingposition in the Pick-and-Place task. However, it is difficult 
to obtain the optimal policy for high-level tasks such as Pick-and-Pace through end-to-
end reinforcement learning. Thus, to reduce the complexity, common studies use a 
environment without obstacles and fix the orientation of the object. Nevertheless, the 
studies handling the Pick-and-Place task often show success rates lower than 90%. To 
improve the success rate for Pick-and-Place, this research implements a task 
decomposition and dedicated reward-system-based reinforcement learning algorithm. 
Generally, high-level tasks are composed of some simple subtasks, and subtasks can be 
trained easily through end-to-end reinforcement learning. Therefore, our study 

Figure 1. The Markov decision process for the Pick-and-Place task which is implemented via the
reinforcement learning method.

Pick-and-Place is one of the high-level robot manipulation tasks, which involves the
robot manipulator picking up a specific object and bringing it to a target location. In the
Pick-and-Place task to be operated in this study, a Panda manipulator is used as an agent. It
has six joints and one gripper, so the state st ∈ S consists of each joint angle. Additionally,
the position and the orientation of the end-effector belong to the state. In addition, the
information related to the object is used as elements of the state, such as the position of
the object and the target position to place the object. The Panda robot operates through
using the torque of each joint as the action at ∈ A. Through this information, the agent
experiences trial and error to gain the rewards based on the action for the given state.
Lastly, based on these experiences, the agent learns the optimal policy to pick up the object
and place it in the endingposition in the Pick-and-Place task. However, it is difficult to
obtain the optimal policy for high-level tasks such as Pick-and-Pace through end-to-end
reinforcement learning. Thus, to reduce the complexity, common studies use a environment
without obstacles and fix the orientation of the object. Nevertheless, the studies handling
the Pick-and-Place task often show success rates lower than 90%. To improve the success
rate for Pick-and-Place, this research implements a task decomposition and dedicated
reward-system-based reinforcement learning algorithm. Generally, high-level tasks are
composed of some simple subtasks, and subtasks can be trained easily through end-to-end
reinforcement learning. Therefore, our study decomposes the Pick-and-Place task into some
subtasks and trains each agent dealing with each subtask. Finally, we use an environment
including some obstacles to differ from the common environment for Pick-and-Place. In
addition, in this environment, the orientation of the object changes for every episode.



Biomimetics 2023, 8, 240 5 of 17

3. Existing Solutions
3.1. Deep Reinforcement Learning

Deep reinforcement learning (DRL) is a subfield of artificial intelligence and machine
learning which combines deep learning and reinforcement learning. The goal of DRL is
for an intelligent agent to interact with an environment based on experience, receiving
rewards or penalties for actions taken in a given state and learning a policy that maximizes
the accumulated reward. Deep learning is a technique that uses artificial neural networks
to learn from data, with the neural network serving as a predictive model that extracts
complex features from data and performs predictions based on those features. DRL uses
deep learning to represent the policy and the action value function of the agent. The
policy network returns the probability distribution of actions based on the environment’s
observations and states, and the action value network evaluates the action taken in a given
state and represents the result as a numerical value. One of the main advantages of DRL
is that it allows for direct learning from raw input, such as images, without the need for
feature engineering or preprocessing. This study uses DRL to train and test agents for each
subtask, where each agent is designed to perform a specific subtask.

3.2. Soft Actor-Critic

SAC is a model-free, off-policy reinforcement learning algorithm designed to learn
a stochastic policy in continuous action spaces, and it combines maximum entropy RL
and the soft Q function as well as the Actor-Critic architecture. The key idea of maximum
entropy RL is to encourage policy exploration through adding an entropy term and to
find the optimal policy that maximizes both the expected reward r(st, at) and the expected
entropy H(π(·|st)) as follows:

π∗ = arg max
π

∑
t

E(st,at)∼ρρπ
[r(st, at) + αH(π(·|st))], (1)

where α is a temperature parameter used to control the stochasticity of the optimal policy.
As α increases, the importance of the entropy term increases, resulting in stronger encour-
agement for exploration and allowing for more exploration-based attempts at new actions.
Additionally, the SAC algorithm evaluates the action taken in the current state using the
soft Q function, which is expressed using equations for Q and V as follows:

Q(st, at) = r(st, at) + γEst+1∼p[V(st+1)], (2)

V(st) = Eat∼π[Q(st, at)− αlogπ(at|st)]. (3)

SAC replaces the evaluation and update for the convergence of the policy and soft Q
function with neural networks. In this algorithm, the policy network is used as the actor
network, and the soft Q function network is used as the critic network. The critic network
evaluates the action, which the agent selected according to the current state. The objective
function of the critic network is defined as the mean square error (MSE) between the Q
value approximated using the critic network and the target Q value, and it is formulated in
the following form:

JQ(θ) = E(st, at)∼D

[
1
2
(
Qθ(st, at)−

(
r(st, at) + γEst+1∼p

[
Vθ(st+1)

]))2
]

, (4)

where θ is the parameter of the critic network optimized to minimize MSE through stochas-
tic gradient descent (SGD) as follows:

^
∇θJQ(θ) = ∇θQθ(st, at)

(
Qθ(st, at)−

(
r(st, at) + γ

(
Qθ(st+1, at+1)− αlog(πφ(at+1|st+1))

)))
. (5)



Biomimetics 2023, 8, 240 6 of 17

The actor network is the policy network to determine the action for the agent according
to the current state. The objective function of the actor network is represented as follows:

Jπ(φ) = Est∼D

[
Eat∼πφ

[αlog (πφ(at|st))−Qθ(st, at)]
]
. (6)

The parameter of the actor network is denoted by φ, and the KL Divergence (KLD) between
the policy entropy value and Q value is used as the objective function of the actor network.
However, before computing the gradients, the objective function of the actor network
is modified using the reparameterization trick at = fφ(εt; st). The policy of SAC uses a
differentiable Q function as the target, which allows for obtaining low variance using the
reparameterization trick. Applying this trick, it is possible to accelerate the convergence
speed of the policy. Using this trick, the objective function of the actor is reparameterized
as shown in (7), and the actor network is updated via SGD to minimize the KLD between
the policy entropy and Q value as shown in (8).

Jπ(φ) = Est∼D,εt∼N[αlogπφ(fφ(εt; st)|st)−Qθ(st, fφ(εt, st))], (7)

^
∇φJπ(φ) = ∇φαlog (πφ(at|st)) + (∇atαlog (πφ(at|st))−∇at Q(st, at))∇φfφ(εt; st). (8)

4. Proposed Solution

The Pick-and-Place task can be divided into three subtasks: Reaching, Grasping, and
Placing. The reaching task is that the robot manipulator reaches the object, and the grasping
task is gripping the object. Then, the placing task is bringing the object to the placing
position, however, it is the same as reaching the target location while maintaining the
state gripping the object. Therefore, considering this similarity in this study positively,
we propose the method for handling the Pick-and-Place task through modularizing two
reaching agents and one grasping logic consecutively. To verify the validity of the proposed
method, we trained two reaching agents using SAC to approach the object and place it
in the target location, and then analyzed training results for each agent. Afterward, we
evaluated the performance of the Pick-and-Place task with the proposed method.

4.1. Designing States, Actions, and a Dedicated Reward System

A state st ∈ R52, an action at ∈ R8, and the reward system can be defined as follows:

st =

(
See, Spick,

~
Spick, Pplace,

~
Pplace, Θcos, Θsin, Θvel, Sgripper

)
, (9)

at = (τ1t , τ2t , τ3t , τ4t , τ5t , τ6t , τ7t , τ8t), (10)

−1 ≤ τi ≤ 1, ∀i ∈ 1, 2, · · · , 8, (11)

where See = [Pee, Qee] ∈ R7 means the current position Pee ∈ R3 and the orientation
Qee ∈ R4 of the end-effector of the robot manipulator, and the orientation is represented as a
quaternion. Similarly, Spick =

[
Ppick, Qpick

]
∈ R7 represents the current position Ppick ∈ R3

and orientation Qpick ∈ R4 of the object that the robot manipulator needs to approach

and grasp in the experimental environment. Using them,
~
Spick ∈ R7 denotes See − Spick,

composed of the difference between the position and that of the orientation between the
end-effector and the generated object. Meanwhile, Pplace ∈ R3 means the goal location
where the robot manipulator should place the object, without including information about

its orientation. Then,
~
Pplace ∈ R3 denotes Pee − Pplace, that is, the difference of the position

between the end-effector and the goal location. Θcos ∈ R7 and Θsin ∈ R7 consist of cosine
and sine values for each joint angle of the robot manipulator, and Θvel ∈ R7 represents
the velocities for each joint. Sgripper ∈ R4 refers to the joint positions and velocities of the
gripper attached to the end-effector of the robot manipulator. Since the Panda robot has



Biomimetics 2023, 8, 240 7 of 17

seven joints and one gripper, the action state should be composed of eight torques τi for
each joint and the gripper. All actions are predicted and sampled using the actor network,
and the maximum and minimum values of the actions are constrained as shown in (11). In
the case of the joint action, according to the sign, the direction of the rotation of the joint
is changed. If the action value is positive, the joint rotates counterclockwise, and if it is
negative, it rotates clockwise. Similarly, the gripper action is also divided into opening
and closing actions depending on the sign of the action value. A positive value of the
action of the gripper indicates a closing movement, while a negative value indicates an
opening movement.

Finally, the reward system is designed considering the positions of the end-effector
and the object. It also considers the energy of the robot manipulator, and it is defined
as follows:

r = rpos + renergy, (12)

where,
rpos = rx + ry + rz, (13)

rx = Kx ×
(
xee − xg

)2, ry = Ky ×
(

yee − yg

)2
, rz = Kz ×

(
zee − zg

)2, (14)

(
xee, yee, zee

)
= Pee (15)

(
xg, yg, zg

)
= Pg =

{
Ppick, in reaching task

Pplace, in placing task
, (16)

Kx, Ky =

{
−2, in reaching task
−1, in placing task

, Kz =

{
−0.5, in reaching task
−1, in placing task

, (17)

renergy = −0.00003×
8

∑
i=1
|Fi|. (18)

The reward for the position in Equation (13) is calculated via considering the difference
between the end-effector position Pee and the goal position of subtasks Pg (14). Then,(
xee, yee, zee

)
is the position of the end-effector in a Cartesian coordinate system (15), and(

xg, yg, zg

)
is the goal position that the end-effector should reach in the same system (16).

During the process of reaching the generated object, the position of the object Ppick is used
as the goal position, and during the process of placing the object, Pplace is used as the
destination (16). In addition, the energy reward (18) is computed based on the actuator
forces Fi observed through the simulation tool for each joint when the robot manipulator
moves. However, in the reaching task, the feedback parameters Kx, Ky, and Kz, which are
the ratio of rx, ry, and rz, in the reward for the position are not all the same, as shown in
(17). The existing reward system uses all parameters as −1, causing the robot manipulator
to learn actions that only move closer to the object. Unfortunately, in the reaching task, this
can lead to situations where the robot manipulator grips the object on the edges instead of
its surface, resulting in the object being dropped or missed. To address this issue, we set the
feedback ratios Kx and Ky to be bigger than Kz. Based on the set feedback ratios, the robot
manipulator operates to prioritize matching the (x, y) coordinate first and then matches
the height of the end-effector to enable the gripper to grip the object on its surfaces.

4.2. Architecture of Soft Actor-Critic

The proposed method uses SAC to address the Pick-and-Place task. SAC has actor-
critic architecture, and it is shown in Figure 2. SAC is compraised of interactions between
the environment and the agent as well as network updates. First, in the process of inter-
action, the agent takes an action estimated using the actor network for the current state.



Biomimetics 2023, 8, 240 8 of 17

Then, it obtains the next state and the reward based on the approximated action for the
given state. The interaction is represented as a black line in Figure 2. Next, SAC has
five networks, which are the actor network, Q network, and target Q network. The actor
network means the policy network for agent, and it estimates an action for the current
state. Then, the Q network and target Q network are used to evaluate the value of the taken
action for a given state, and these two networks are correctively referred to as the critic
network. In the training process of the Q network, the current state, action, and reward are
used as inputs to calculate two Q values. Similarly, in the target Q network, two target Q
values are approximated based on the next state and next action estimated using the actor
network. Lastly, using the smaller one of two target Q values, the Q network is optimized
to minimize MSE between the Q value and the target Q value, as shown in Equation (5).
Meanwhile, in the training process of the actor network, the current state is used as the
input of the network to obtain the action. After that, two Q values are estimated based
on the obtained action, and the smaller one is used to optimize the actor network. Using
estimated Q value, the actor network is optimized to minimize KLD between the policy
entropy values and Q values as represented in Equation (8). Besides, after the training of
the Q network, target Q networks are soft-updated so that the weights of the Q network
are copied at a certain ratio τ to the target Q network (19). Finally, the training of the Q
network is represented using a red line, and that of the actor network is expressed using a
blue line.

θ−Qk
← τθQk + (1− τ)θ−Qk

, k = 1, 2. (19)

Biomimetics 2023, 8, x FOR PEER REVIEW 8 of 18 
 

4.2. Architecture of Soft Actor-Critic 
The proposed method uses SAC to address the Pick-and-Place task. SAC has actor-

critic architecture, and it is shown in Figure 2. SAC is compraised of interactions between 
the environment and the agent as well as network updates. First, in the process of 
interaction, the agent takes an action estimated using the actor network for the current 
state. Then, it obtains the next state and the reward based on the approximated action for 
the given state. The interaction is represented as a black line in Figure 2. Next, SAC has 
five networks, which are the actor network, Q network, and target Q network. The actor 
network means the policy network for agent, and it estimates an action for the current 
state. Then, the Q network and target Q network are used to evaluate the value of the 
taken action for a given state, and these two networks are correctively referred to as the 
critic network. In the training process of the Q network, the current state, action, and 
reward are used as inputs to calculate two Q values. Similarly, in the target Q network, 
two target Q values are approximated based on the next state and next action estimated 
using the actor network. Lastly, using the smaller one of two target Q values, the Q 
network is optimized to minimize MSE between the Q value and the target Q value, as 
shown in Equation (5). Meanwhile, in the training process of the actor network, the current 
state is used as the input of the network to obtain the action. After that, two Q values are 
estimated based on the obtained action, and the smaller one is used to optimize the actor 
network. Using estimated Q value, the actor network is optimized to minimize KLD 
between the policy entropy values and Q values as represented in Equation (8). Besides, 
after the training of the Q network, target Q networks are soft-updated so that the weights 
of the Q network are copied at a certain ratio τ to the target Q network (19). Finally, the 
training of the Q network is represented using a red line, and that of the actor network is 
expressed using a blue line. 

θQk
-  ← τθQk

 + 1-τ θQk
- , k = 1, 2. (19) 

 

Figure 2. The architecture of Soft Actor-Critic. This architecture includes processes of training for the
actor and critic networks. It also involves the interaction between the environment and the agent.

4.3. Proposed Method: Task Decomposition for the Pick-and-Place Task

This study proposes a method decomposing the Pick-and-Place task into two easier
reaching tasks for approaching the desired location and one grasping task for gripping the
object. These tasks are sequentially operated as Reaching–Grasping–Reaching, achieving
the same action as Pick-and-Place. In this study, two agents for each reaching task excluding
the grasping task are trained using the SAC algorithm, considering the continuity of the
action state of the robot manipulator. In contrast, the grasping task is operated using



Biomimetics 2023, 8, 240 9 of 17

simulation action-based logic without DRL. In [27], the destination that the agent of the first
module aims for is a little away from the position of the object, and the manipulating agent
is trained to lift the object through DRL. In contrast, in the first reaching task proposed in
this paper, the destination is the position of the generated object in the Cartesian coordinate
system, so if the robot manipulator reaches the object, the position of the end-effector almost
coincides with the position of the target object. Therefore, the proposed method does not
apply DRL to the grasping task because the robot manipulator can grasp the object only
through moving the gripper without moving other joints after reaching the object. Thus, in
this study, the grasping logic is performed after matching the position of the end-effector
with the position of the object through the first reaching agent. Lastly, after catching the
object, the robot manipulator places the object at the goal position on the right table with
the obstacle, using the second reaching agent while maintaining the state which is grasping
the object. Additionally, the grasping logic is the simple simulation-based algorithm that
restricts the actions of all joints to 0 and limits the action of the gripper to 0.5. The Figure 3
shows how the proposed algorithm implements the Pick-and-Place task.

Biomimetics 2023, 8, x FOR PEER REVIEW 9 of 18 
 

Figure 2. The architecture of Soft Actor-Critic. This architecture includes processes of training for 
the actor and critic networks. It also involves the interaction between the environment and the agent. 

4.3. Proposed Method: Task Decomposition for the Pick-and-Place Task 
This study proposes a method decomposing the Pick-and-Place task into two easier 

reaching tasks for approaching the desired location and one grasping task for gripping 
the object. These tasks are sequentially operated as Reaching–Grasping–Reaching, 
achieving the same action as Pick-and-Place. In this study, two agents for each reaching 
task excluding the grasping task are trained using the SAC algorithm, considering the 
continuity of the action state of the robot manipulator. In contrast, the grasping task is 
operated using simulation action-based logic without DRL. In [27], the destination that 
the agent of the first module aims for is a little away from the position of the object, and 
the manipulating agent is trained to lift the object through DRL. In contrast, in the first 
reaching task proposed in this paper, the destination is the position of the generated object 
in the Cartesian coordinate system, so if the robot manipulator reaches the object, the 
position of the end-effector almost coincides with the position of the target object. 
Therefore, the proposed method does not apply DRL to the grasping task because the 
robot manipulator can grasp the object only through moving the gripper without moving 
other joints after reaching the object. Thus, in this study, the grasping logic is performed 
after matching the position of the end-effector with the position of the object through the 
first reaching agent. Lastly, after catching the object, the robot manipulator places the 
object at the goal position on the right table with the obstacle, using the second reaching 
agent while maintaining the state which is grasping the object. Additionally, the grasping 
logic is the simple simulation-based algorithm that restricts the actions of all joints to 0 
and limits the action of the gripper to 0.5. The Figure 3 shows how the proposed algorithm 
implements the Pick-and-Place task. 

 
Figure 3. The total workflow of the proposed method for the Pick-and-Place task. This task is 
decomposed into two reaching tasks and one grasping task. Each agent is trained using SAC, and 
the trained agents are operated sequentially as Reaching–Grasping–Reaching to deal with the Pick-
and-Place task. 

Figure 3. The total workflow of the proposed method for the Pick-and-Place task. This task is
decomposed into two reaching tasks and one grasping task. Each agent is trained using SAC,
and the trained agents are operated sequentially as Reaching–Grasping–Reaching to deal with the
Pick-and-Place task.

5. Implemetation
5.1. MuJoCo Physics Engine

MuJoCo, which stands for “Multi-Joint dynamics with Contact,” is a high-performance
physics engine and simulation tool used for modeling and simulating robot systems.
MuJoCo can handle multi-contact, friction, and other non-linear effects. One of the major
advantages of MuJoCo is its flexible and easy-to-use API, which allows users to customize
the robot models, control algorithms, and task environments using various programming
languages such as Python, MATLAB, and C++. MuJoCo engine can accurately represent
the movement of various robot or human models, considering angles, velocities, and forces.
Additionally, this engine can realistically implement and visualize the interaction between
robots and their environments through its capability of collision detection. MuJoCo can
also entreat various types of objects and accurately simulate the effects of friction and non-



Biomimetics 2023, 8, 240 10 of 17

linear forces acting on them. Finally, MuJoCo includes tools for visualizing and analyzing
simulation results, allowing real-time visualization of robot behavior and analysis of
performance metrics such as energy consumption, joint torques, and contact forces. In
summary, MuJoCo is a powerful physics engine and simulation tool for designing robot
systems, control algorithms, and testing them in various tasks.

5.2. Robosuite

Robosuite is a modularized software platform for developing and testing robot learn-
ing algorithms, providing some robots and environments with physics-based dynamics
and actual sensor models. In addition, Robosuite includes a flexible and modular software
architecture that allows users to easily customize robots and environments. One of the
key features of Robosuite is its focus on reinforcement learning algorithms, supporting
not only systems for training and evaluating reinforcement learning algorithms but also
other machine learning techniques such as imitation learning and inverse reinforcement
learning. It also provides several robots and task environments for these techniques and
algorithms [32]. The robots provided in Robosuite include robot manipulators such as
Franka Emika Panda, Kinova3, Jaco, UR5, Baxter, and IIWA, and users can solve desired
tasks using either one robot (single agent) or two robots (multi-agents) depending on their
needs. Moreover, users can use the desired gripper according to their customizations, such
as the null gripper for gripperless forms, the wiping gripper for wiping purposes, and
six types of clamp grippers. Robosuite provides nine kinds of environments for robot
manipulation tasks, including Pick-and-Place, Door Opening, Two Arm Peg-in-Hole, and
Two Arm Lifting, among others, which are all based on the MuJoCo environment. Further-
more, it supports various objects, such as bread, cereal, doors, and nuts, allowing users
to manipulate multiple objects simultaneously or rotate them as desired. Thus, users can
easily customize environments using the provided objects and robots and create more
challenging task environments through combining various tasks. Finally, in Figure 4, the
task environments provided in Robosuite are introduced.

Biomimetics 2023, 8, x FOR PEER REVIEW 10 of 18 
 

5. Implemetation 
5.1. MuJoCo Physics Engine 

MuJoCo, which stands for “Multi-Joint dynamics with Contact,” is a high-
performance physics engine and simulation tool used for modeling and simulating robot 
systems. MuJoCo can handle multi-contact, friction, and other non-linear effects. One of 
the major advantages of MuJoCo is its flexible and easy-to-use API, which allows users to 
customize the robot models, control algorithms, and task environments using various 
programming languages such as Python, MATLAB, and C++. MuJoCo engine can 
accurately represent the movement of various robot or human models, considering angles, 
velocities, and forces. Additionally, this engine can realistically implement and visualize 
the interaction between robots and their environments through its capability of collision 
detection. MuJoCo can also entreat various types of objects and accurately simulate the 
effects of friction and non-linear forces acting on them. Finally, MuJoCo includes tools for 
visualizing and analyzing simulation results, allowing real-time visualization of robot 
behavior and analysis of performance metrics such as energy consumption, joint torques, 
and contact forces. In summary, MuJoCo is a powerful physics engine and simulation tool 
for designing robot systems, control algorithms, and testing them in various tasks. 

5.2. Robosuite 
Robosuite is a modularized software platform for developing and testing robot 

learning algorithms, providing some robots and environments with physics-based 
dynamics and actual sensor models. In addition, Robosuite includes a flexible and 
modular software architecture that allows users to easily customize robots and 
environments. One of the key features of Robosuite is its focus on reinforcement learning 
algorithms, supporting not only systems for training and evaluating reinforcement 
learning algorithms but also other machine learning techniques such as imitation learning 
and inverse reinforcement learning. It also provides several robots and task environments 
for these techniques and algorithms [32]. The robots provided in Robosuite include robot 
manipulators such as Franka Emika Panda, Kinova3, Jaco, UR5, Baxter, and IIWA, and 
users can solve desired tasks using either one robot (single agent) or two robots (multi-
agents) depending on their needs. Moreover, users can use the desired gripper according 
to their customizations, such as the null gripper for gripperless forms, the wiping gripper 
for wiping purposes, and six types of clamp grippers. Robosuite provides nine kinds of 
environments for robot manipulation tasks, including Pick-and-Place, Door Opening, 
Two Arm Peg-in-Hole, and Two Arm Lifting, among others, which are all based on the 
MuJoCo environment. Furthermore, it supports various objects, such as bread, cereal, 
doors, and nuts, allowing users to manipulate multiple objects simultaneously or rotate 
them as desired. Thus, users can easily customize environments using the provided 
objects and robots and create more challenging task environments through combining 
various tasks. Finally, in Figure 4, the task environments provided in Robosuite are 
introduced. 

    
(a) (b) (c) (d) 

Biomimetics 2023, 8, x FOR PEER REVIEW 11 of 18 
 

    
(e) (f) (g) (h) 

Figure 4. The environments and robot manipulators provided by Robosuite: (a) Door Opening 
environment with UR5e; (b) Nut Assembly environment with Sawyer; (c) Block Stacking 
environment with Jaco; (d) Table Wiping environment with IIWA; (e) Pick-and-Place environment 
with Panda; (f) Two Arm Handover environment with Baxter; (g) Two Arm Lifting environment 
with Sawyer and Panda; (h) Two Arm Peg-in-Hole environment with IIWA and UR5e. 

5.3. Environment Implementation 
The Pick-and-Place environment is provided by various frameworks, and Open AI 

Gym and Robosuite are the representative ones. The Pick-and-Place environment in Open 
AI Gym, which is commonly used, is shown in Figure 5a, where an object and target are 
both generated on a single table without any obstacles [33]. Moreover, the object is a cube, 
and its orientation is not considered, only its position is randomly generated. On the other 
hand, the Pick-and-Place environment provided by Robosuite has some differences from 
the environment of Open AI Gym. The Robosuite environment has two tables, and the 
object is generated on the left table, while the target is generated on the right table, as 
shown in Figure 5b. The position and orientation of the object are randomly generated 
within a certain range around the center position of the left table, while the target location 
is generated at one of four predetermined locations on the right table. In addition, the 
right table has a frame where the target is located, which can act as an obstacle to the 
movement of the robot manipulator. Thus, there is a possibility of learning the function 
of obstacle avoidance during the learning process. For these reasons, in this 
experimentation, we used the environment provided by Robosuite to solve a slightly more 
challenging Pick-and-Place task, where the robot manipulator must consider the state of 
the environment more carefully and perform active decision-making while also avoiding 
obstacles. 

  
(a) (b) 

Figure 5. Two Pick-and-Place environments: (a) Pick-and-Place environment provided by Open AI 
Gym; (b) Pick-and-Place environment provided by Robosuite. 

  

Figure 4. The environments and robot manipulators provided by Robosuite: (a) Door Opening
environment with UR5e; (b) Nut Assembly environment with Sawyer; (c) Block Stacking environment
with Jaco; (d) Table Wiping environment with IIWA; (e) Pick-and-Place environment with Panda;
(f) Two Arm Handover environment with Baxter; (g) Two Arm Lifting environment with Sawyer and
Panda; (h) Two Arm Peg-in-Hole environment with IIWA and UR5e.



Biomimetics 2023, 8, 240 11 of 17

5.3. Environment Implementation

The Pick-and-Place environment is provided by various frameworks, and Open AI
Gym and Robosuite are the representative ones. The Pick-and-Place environment in Open
AI Gym, which is commonly used, is shown in Figure 5a, where an object and target are
both generated on a single table without any obstacles [33]. Moreover, the object is a cube,
and its orientation is not considered, only its position is randomly generated. On the other
hand, the Pick-and-Place environment provided by Robosuite has some differences from
the environment of Open AI Gym. The Robosuite environment has two tables, and the
object is generated on the left table, while the target is generated on the right table, as
shown in Figure 5b. The position and orientation of the object are randomly generated
within a certain range around the center position of the left table, while the target location
is generated at one of four predetermined locations on the right table. In addition, the right
table has a frame where the target is located, which can act as an obstacle to the movement
of the robot manipulator. Thus, there is a possibility of learning the function of obstacle
avoidance during the learning process. For these reasons, in this experimentation, we used
the environment provided by Robosuite to solve a slightly more challenging Pick-and-
Place task, where the robot manipulator must consider the state of the environment more
carefully and perform active decision-making while also avoiding obstacles.

Biomimetics 2023, 8, x FOR PEER REVIEW 11 of 18 
 

    
(e) (f) (g) (h) 

Figure 4. The environments and robot manipulators provided by Robosuite: (a) Door Opening 
environment with UR5e; (b) Nut Assembly environment with Sawyer; (c) Block Stacking 
environment with Jaco; (d) Table Wiping environment with IIWA; (e) Pick-and-Place environment 
with Panda; (f) Two Arm Handover environment with Baxter; (g) Two Arm Lifting environment 
with Sawyer and Panda; (h) Two Arm Peg-in-Hole environment with IIWA and UR5e. 

5.3. Environment Implementation 
The Pick-and-Place environment is provided by various frameworks, and Open AI 

Gym and Robosuite are the representative ones. The Pick-and-Place environment in Open 
AI Gym, which is commonly used, is shown in Figure 5a, where an object and target are 
both generated on a single table without any obstacles [33]. Moreover, the object is a cube, 
and its orientation is not considered, only its position is randomly generated. On the other 
hand, the Pick-and-Place environment provided by Robosuite has some differences from 
the environment of Open AI Gym. The Robosuite environment has two tables, and the 
object is generated on the left table, while the target is generated on the right table, as 
shown in Figure 5b. The position and orientation of the object are randomly generated 
within a certain range around the center position of the left table, while the target location 
is generated at one of four predetermined locations on the right table. In addition, the 
right table has a frame where the target is located, which can act as an obstacle to the 
movement of the robot manipulator. Thus, there is a possibility of learning the function 
of obstacle avoidance during the learning process. For these reasons, in this 
experimentation, we used the environment provided by Robosuite to solve a slightly more 
challenging Pick-and-Place task, where the robot manipulator must consider the state of 
the environment more carefully and perform active decision-making while also avoiding 
obstacles. 

  
(a) (b) 

Figure 5. Two Pick-and-Place environments: (a) Pick-and-Place environment provided by Open AI 
Gym; (b) Pick-and-Place environment provided by Robosuite. 

  

Figure 5. Two Pick-and-Place environments: (a) Pick-and-Place environment provided by Open AI
Gym; (b) Pick-and-Place environment provided by Robosuite.

5.4. Training and Test Methods

In this section, we describe how to train two reaching agents in the modularized Pick-
and-Place task using SAC in the Robosuite environment. The first task in the modularized
Pick-and-Place task is to reach the generated object, and the gripper needs to match the
position and orientation of the end effector with that of the object to approach the object
successfully without colliding. Training episodes for the first reaching agent start from the
initial state, as shown in Figure 6a, and the agent learns the optimal policy to reach the object
based on the proposed reward system using the position of the object as the destination.
Next, the second task is to place the object at the goal location, and we introduce the method
of training the second agent to reach the goal position using the reward system based on the
target location on the right table. When training the second reaching agent, the state that
the robot manipulator reached the object is used as the initial state, as shown in Figure 6b.



Biomimetics 2023, 8, 240 12 of 17

Biomimetics 2023, 8, x FOR PEER REVIEW 12 of 18 
 

5.4. Training and Test Methods 
In this section, we describe how to train two reaching agents in the modularized Pick-

and-Place task using SAC in the Robosuite environment. The first task in the modularized 
Pick-and-Place task is to reach the generated object, and the gripper needs to match the 
position and orientation of the end effector with that of the object to approach the object 
successfully without colliding. Training episodes for the first reaching agent start from the 
initial state, as shown in Figure 6a, and the agent learns the optimal policy to reach the 
object based on the proposed reward system using the position of the object as the 
destination. Next, the second task is to place the object at the goal location, and we 
introduce the method of training the second agent to reach the goal position using the 
reward system based on the target location on the right table. When training the second 
reaching agent, the state that the robot manipulator reached the object is used as the initial 
state, as shown in Figure 6b. 

(a) (b) 

Figure 6. Two initial states for training the second reaching task: (a) the initial state determined at 
the start of every episode; (b) the state in which the end-effector has reached the position of the 
object. 

So, the initial state should be implemented by the agent for reaching the object before 
the training of the second reaching agent begins. Therefore, the training episodes using 
this method are divided into two stages. First, the agent trained to reach the object 
implements the state in which the end-effector has reached the position of the object 
without policy optimization. Next, the second reaching agent is trained to enable only the 
gripper to reach the destination without the object from this state implemented by the first 
stage. Then, using these two reaching agents and grasping logic sequentially, the 
performance of the proposed algorithm for the Pick-and-Place task is tested. The process 
of the test is composed of three stages. First, the first reaching agent reaches the object. 
Second, the gipper grasps the object through the grasping logic. Finally, the second 
reaching agent reaches the placing position while maintaining the state grasping the 
object. The Algorithm 1 means the SAC algorithm to train two reaching agents. 

  

Figure 6. Two initial states for training the second reaching task: (a) the initial state determined at the
start of every episode; (b) the state in which the end-effector has reached the position of the object.

So, the initial state should be implemented by the agent for reaching the object before
the training of the second reaching agent begins. Therefore, the training episodes using this
method are divided into two stages. First, the agent trained to reach the object implements
the state in which the end-effector has reached the position of the object without policy
optimization. Next, the second reaching agent is trained to enable only the gripper to
reach the destination without the object from this state implemented by the first stage.
Then, using these two reaching agents and grasping logic sequentially, the performance
of the proposed algorithm for the Pick-and-Place task is tested. The process of the test is
composed of three stages. First, the first reaching agent reaches the object. Second, the
gipper grasps the object through the grasping logic. Finally, the second reaching agent
reaches the placing position while maintaining the state grasping the object. The Algorithm
1 means the SAC algorithm to train two reaching agents.

Algorithm 1: Training method for both reaching agents using SAC

Input of reaching task: µ BLoad parameter of the first reaching agent
Input of placing task: θ1, θ2, φ BInitial parameters of the second reaching agent

θ1 ←− θ1, θ2 ←− θ2 BInitialize parameters of the target Q network
D←− ∅ BInitialize an empty replay buffer
for each iteration do

if training the second reaching agent do
for each reaching step do

at ∼ πµ(at|st) BSample action from reaching policy
st+1 ∼ p(st+1|st, at) BSample transition from the environment

end for
end if
for each reaching step do

at ∼ πφ(at|st) BSample action from placing policy
st+1 ∼ p(st+1|st, at) BSample transition from the environment
D←− D∪ {(st, at, r(st, at), st+1)} BStore the transition in the replay buffer

end for
for each gradient step do

θi ←− θi − λQ
^
∇θi JQ(θi) for i ∈ {1, 2} BUpdate the Q-function parameters

φ←− φ−λπ
^
∇φJπ(φ) BUpdate the policy parameters

α←− α− λα
^
∇αJ(α) BAdjust temperature parameters

θi ←− τθi + (1− τ)θi for i ∈ {1, 2} BUpdate target network parameters
end for

end for
Output: θ1, θ2, φ BOptimized parameters



Biomimetics 2023, 8, 240 13 of 17

6. Experimental Results

This section introduces the training and test results for the experimentations to obtain
optimal policies for each reaching agent to solve the Pick-and-Place task using the proposed
algorithm. The first agent reaching the object was trained for five thousand episodes with
three hundred steps per episode. Then, the second agent reaching the goal position was
trained for the number of maximum episodes not equal to that of the first agent, with the
same steps per episode. In the case of the test for the agent reaching the goal position, we
applied this agent to place the object at the destination after implementing the state in
which the robot manipulator reached and gripped the object consecutively using the first
agent and grasping logic.

6.1. Reaching Agent for Approaching the Object

The first subtask is that the robot manipulator reaches the generated object. The object
is generated on the left table, and its position and orientation are randomly determined,
considering z-axis rotation. The agent was trained based on the proposed reward system to
reach this object from its current position, and the whole training process was repeated over
four trials. The training results were compared using the episode reward accumulated for
each episode, which was plotted on two graphs. In Figure 7, the moving average values of
rewards for the last ten episodes are displayed. Figure 7a shows the moving average values
of the episode rewards for each trial in red, green, blue, and turquoise. In Figure 7b, the
average value of each episode for all four trials is denoted using a purple line, emphasizing
the trend of reward convergence and policy optimization. The reward system was designed
to minimize the difference between the positions of the object and end effector, so the
reward received by the agent upon successful completion of the reaching task is close to
zero. Figure 7b shows that the reward converges to a value close to zero during the training
process, which indicates that the optimal policy for reaching the object has been established.

Biomimetics 2023, 8, x FOR PEER REVIEW 14 of 18 
 

converges to a value close to zero during the training process, which indicates that the 
optimal policy for reaching the object has been established. 

  
(a) (b) 

Figure 7. The results of the experimentation for training the agent to reach the generated object: (a) 
the accumulated reward for each episode of four trials; (b) the moving average values of episode 
rewards considering the same episode for all trials. 

The performance of the trained agent was evaluated using its success rate, where 
success was defined as the end-effector of the robot manipulator almost reaching the 
position of the generated object, as indicated in Equation (20). 

Done = True,    if xee - xpick
2 < 0.00015, and yee - ypick

2
 < 0.00015, and zee - zpick

2 < 0.0002. (20) 

The trained agent for reaching the object was tested for one thousand episodes, and 
this test was repeated four times. According to the test result, all trials showed complete 
success, and the average success rate for each trial is also 100%, as shown in Table 1. 

Table 1. The success rates for each trial and the average success rate for all trials. The test process is 
that the robot manipulator reaches the object using the established policy. 

Trial 1 Trial 2 Trial 3 Trial 4 Average 
100% 100% 100% 100% 100% 

6.2. Reaching Agent for Placing the Object 
This subsection presents the results of training the agent to bring objects to the 

placing position on the right table and testing its success rate. The state where the end-
effector reached the object is used as the initial state for training. The placing position is 
randomly selected from one of the four positions on the right table. The structure of the 
reward system used for the training the second reaching agent was the same as that used 
for the training process of the first reaching agent, designed to minimize the difference 
between the goal position and the position of the end-effector. Therefore, if the end-
effector successfully reaches the target location, the agent receives a negative reward close 
to zero. Then, the experimentation was repeated four times, and the maximum number of 
episodes for each trial was set to seven thousand episodes, with a maximum of three 
hundred steps per episode. The results of each trial were calculated through taking the 
moving average of the episode rewards and presented in the graph. First, Figure 8a shows 
the results of each trial for the training process, and according to Figure 8b, the reward 
converges to the value close to zero as the number of episodes increases. It indicates that 
the optimal policy for reaching the goal position was established. 

Figure 7. The results of the experimentation for training the agent to reach the generated object:
(a) the accumulated reward for each episode of four trials; (b) the moving average values of episode
rewards considering the same episode for all trials.

The performance of the trained agent was evaluated using its success rate, where
success was defined as the end-effector of the robot manipulator almost reaching the
position of the generated object, as indicated in Equation (20).

Done = True, if
(

xee − xpick

)2
< 0.00015, and

(
yee − ypick

)2
< 0.00015, and

(
zee − zpick

)2
< 0.0002. (20)



Biomimetics 2023, 8, 240 14 of 17

The trained agent for reaching the object was tested for one thousand episodes, and
this test was repeated four times. According to the test result, all trials showed complete
success, and the average success rate for each trial is also 100%, as shown in Table 1.

Table 1. The success rates for each trial and the average success rate for all trials. The test process is
that the robot manipulator reaches the object using the established policy.

Trial 1 Trial 2 Trial 3 Trial 4 Average

100% 100% 100% 100% 100%

6.2. Reaching Agent for Placing the Object

This subsection presents the results of training the agent to bring objects to the placing
position on the right table and testing its success rate. The state where the end-effector
reached the object is used as the initial state for training. The placing position is randomly
selected from one of the four positions on the right table. The structure of the reward
system used for the training the second reaching agent was the same as that used for the
training process of the first reaching agent, designed to minimize the difference between the
goal position and the position of the end-effector. Therefore, if the end-effector successfully
reaches the target location, the agent receives a negative reward close to zero. Then, the
experimentation was repeated four times, and the maximum number of episodes for each
trial was set to seven thousand episodes, with a maximum of three hundred steps per
episode. The results of each trial were calculated through taking the moving average of
the episode rewards and presented in the graph. First, Figure 8a shows the results of each
trial for the training process, and according to Figure 8b, the reward converges to the value
close to zero as the number of episodes increases. It indicates that the optimal policy for
reaching the goal position was established.

Biomimetics 2023, 8, x FOR PEER REVIEW 15 of 18 
 

  
(a) (b) 

Figure 8. The results of the experimentation for training the agent to reach the goal position where 
the object should be placed using the first method: (a) the accumulated reward for each episode of 
four trials; (b) the moving average values of episode rewards considering the same episode for all 
trials. 

The performance of the trained agent was evaluated using success rate, where 
success was defined as the end-effector of the robot manipulator or the object almost 
reaching the destination as follows: 

Done = True,    if xee - xplace
2 + yee - yplace

2
 + zee - zplace

2 < 0.00085. (21) 

The trained agent for reaching the goal position was evaluated for one thousand 
episodes, and this process was repeated four times. According to the test result, every trial 
showed a high success rate, and the average success rate for all trials is 93.2%, as shown 
in Table 2. 

Table 2. The success rates for each trial and the average of success rates for all trials. The evaluation 
process is that the robot manipulator places the object at the destination using the optimal policy 
established via the first method. 

Trial 1 Trial 2 Trial 3 Trial 4 Average 
94.2% 92.7% 93.5% 92.6% 93.2% 

Finally, our study confirmed that the robot manipulator can perform the Pick-and-
Place task through the proposed algorithm, sequentially utilizing the agent for reaching 
the object, grasping logic, and the agent for reaching the goal position based on the first 
training method. 

7. Discussion 
The Pick-and-Place task is composed of several subtasks such as Reach, Push, and 

Slide. Thus, it is called a high-level task, so the success rate of this task is often lower than 
the subtasks. For this reason, the existing work has tried to solve this problem using 
reinforcement learning. This study also considers the use of reinforcement learning for the 
Pick-and-Place task of the robot manipulator. The main idea of this study is to decompose 
the Pick-and-Place task into several subtasks and construct a dedicated reward system. 
Due to the similarity between the reaching and the placing task, our research considers 
the placing task as a kind of reaching task. Therefore, to make the task simple, we can 
decompose the Pick-and-Place task into two reaching tasks and one grasping task. In 
particular, the grasping is implemented with simple logic, and a dedicated reward system 
is used for the agent reaching the object. For each task, the optimal policies for each agent 

Figure 8. The results of the experimentation for training the agent to reach the goal position where
the object should be placed using the first method: (a) the accumulated reward for each episode
of four trials; (b) the moving average values of episode rewards considering the same episode for
all trials.

The performance of the trained agent was evaluated using success rate, where success
was defined as the end-effector of the robot manipulator or the object almost reaching the
destination as follows:

Done = True, if
(

xee− xplace

)2
+
(

yee − yplace

)2
+
(

zee − zplace

)2
< 0.00085. (21)



Biomimetics 2023, 8, 240 15 of 17

The trained agent for reaching the goal position was evaluated for one thousand
episodes, and this process was repeated four times. According to the test result, every trial
showed a high success rate, and the average success rate for all trials is 93.2%, as shown in
Table 2.

Table 2. The success rates for each trial and the average of success rates for all trials. The evaluation
process is that the robot manipulator places the object at the destination using the optimal policy
established via the first method.

Trial 1 Trial 2 Trial 3 Trial 4 Average

94.2% 92.7% 93.5% 92.6% 93.2%

Finally, our study confirmed that the robot manipulator can perform the Pick-and-
Place task through the proposed algorithm, sequentially utilizing the agent for reaching
the object, grasping logic, and the agent for reaching the goal position based on the first
training method.

7. Discussion

The Pick-and-Place task is composed of several subtasks such as Reach, Push, and
Slide. Thus, it is called a high-level task, so the success rate of this task is often lower
than the subtasks. For this reason, the existing work has tried to solve this problem using
reinforcement learning. This study also considers the use of reinforcement learning for the
Pick-and-Place task of the robot manipulator. The main idea of this study is to decompose
the Pick-and-Place task into several subtasks and construct a dedicated reward system.
Due to the similarity between the reaching and the placing task, our research considers
the placing task as a kind of reaching task. Therefore, to make the task simple, we can
decompose the Pick-and-Place task into two reaching tasks and one grasping task. In
particular, the grasping is implemented with simple logic, and a dedicated reward system
is used for the agent reaching the object. For each task, the optimal policies for each
agent are trained via SAC. Then, these trained agents and grasping logic are utilized
sequentially for the Pick-and-Place task. The validity of our proposed method is shown in
the experimental simulation. For the Pick-and-Place task using the Panda manipulator, we
constructed the simulation environment using Robosuite. This environment considered
the random position and orientation of the object, and also considered obstacles. First, the
agent for reaching the object was trained using SAC, and the evaluation result of this agent
showed a 100% success rate, on average. Then, the agent for reaching the goal position
where the robot manipulator places the object was trained using the state that the robot
manipulator reached the generated object on the left table as the initial state. This agent
was evaluated through the process that the robot manipulator reaches the object, grips the
object using the grasping logic, and places the object using these trained agents sequentially.
In the test process, according to the simulation results, the agent which was learned the
optimal actions to place the object at the goal position from the state that the end-effector
approached the object could perform the Pick-and-Place task successfully. Therefore, this
study successfully confirmed that the proposed algorithm can conduct the Pick-and-Place
task with an obstacle consecutively using two reaching agents for approaching the object
or the destination of the object and grasping logic.

8. Conclusions

This study proposed the task decomposition and dedicated reward-system-based
reinforcement learning algorithm for the Pick-and-Place task. The experimentat used
a Pick-and-Place environment with obstacles where the position and orientation of the
object were randomly generated, considering the state of the environment in detail. In this
study, the Pick-and-Place task was decomposed into two reaching subtasks to approach
the object or the target location and one grasping task. The two agents for reaching



Biomimetics 2023, 8, 240 16 of 17

tasks, excluding the grasping process, were trained using SAC. Additionally, the agent
for reaching the object was trained through applying a dedicated reward system to assist
the grasping task. In contrast, using the designed grasping logic operating only a gripper,
the robot manipulator grabbed the object without deep reinforcement learning. Operating
two trained agents for reaching and grasping logic consecutively as Reaching–Grasping–
Reaching, the proposed method successfully picked up the object and placed it in the
goal position. Therefore, the proposed method expects that the task decomposition of a
high-level task into several simple tasks can be applied to various kinds of high-level tasks.
Even though only experimentation on the Pick-and-Place task was carried out, we will
apply the proposed method to other tasks such as Door Opening, Peg-in-Hole, and Nut
Assembly in the future.

Author Contributions: Conceptualization, B.K. and N.K.K.; methodology, B.K.; software, B.K.;
validation, B.K., G.K. and N.K.K.; writing—original draft preparation, B.K.; writing—review and
editing, G.K., C.P. and N.K.K.; visualization, B.K. and G.K.; supervision, C.P. and N.K.K.; project
administration, N.K.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a Korea Institute for Advancement of Technology (KIAT)
grant funded by the Korea Government (MOTID (P0008473, HRD Program for Industrial Innovation),
and in part by Yeungnam University through a research grant, in 2020.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author presents their sincere appreciation to all those who contributed to
this study.

Conflicts of Interest: The authors announce no conflict of interest.

References
1. Yudha, H.M.; Dewi, T.; Risma, P.; Oktarina, Y. Arm robot manipulator design and control for trajectory tracking; a review. In

Proceedings of the 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI),
Malang, Indonesia, 16–18 October 2018; pp. 304–309.

2. Kasera, S.; Kumar, A.; Prasad, L.B. Trajectory tracking of 3-DOF industrial robot manipulator by sliding mode control. In
Proceedings of the 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics
(UPCON), Mathura, India, 26–28 October 2017; pp. 364–369.

3. Luan, N.; Zhang, H.; Tong, S. Optimum motion control of palletizing robots based on iterative learning. Ind. Robot. Int. J. 2012,
39, 162–168. [CrossRef]

4. Knudsen, M.; Kaivo-Oja, J. Collaborative robots: Frontiers of current literature. J. Intell. Syst. Theory Appl. 2020, 3, 13–20.
[CrossRef]

5. Bendel, O. Co-robots from an Ethical Perspective. In Business Information Systems and Technology 4.0: New Trends in the Age of
Digital Change; Springer: Berlin/Heidelberg, Germany, 2018; pp. 275–288.

6. Gualtieri, L.; Rauch, E.; Vidoni, R. Emerging research fields in safety and ergonomics in industrial collaborative robotics:
A systematic literature review. Robot. Comput.-Integr. Manuf. 2021, 67, 101998. [CrossRef]

7. Pauliková, A.; Gyurák Babel’ová, Z.; Ubárová, M. Analysis of the impact of human–cobot collaborative manufacturing imple-
mentation on the occupational health and safety and the quality requirements. Int. J. Environ. Res. Public Health 2021, 18, 1927.
[CrossRef]

8. Lamon, E.; Leonori, M.; Kim, W.; Ajoudani, A. Towards an intelligent collaborative robotic system for mixed case palletizing. In
Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 9128–9134.

9. Solanes, J.E.; Muñoz, A.; Gracia, L.; Martí, A.; Girbés-Juan, V.; Tornero, J. Teleoperation of industrial robot manipulators based on
augmented reality. Int. J. Adv. Manuf. Technol. 2020, 111, 1077–1097. [CrossRef]

10. Nascimento, H.; Mujica, M.; Benoussaad, M. Collision avoidance interaction between human and a hidden robot based on kinect
and robot data fusion. IEEE Robot. Autom. Lett. 2020, 6, 88–94. [CrossRef]

11. Chen, C.; Pan, Y.; Li, D.; Zhang, S.; Zhao, Z.; Hong, J. A virtual-physical collision detection interface for AR-based interactive
teaching of robot. Robot. Comput. Integr. Manuf. 2020, 64, 101948. [CrossRef]

12. Nguyen, H.; La, H. Review of deep reinforcement learning for robot manipulation. In Proceedings of the 2019 Third IEEE
International Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019; pp. 590–595.

https://doi.org/10.1108/01439911211201627
https://doi.org/10.38016/jista.682479
https://doi.org/10.1016/j.rcim.2020.101998
https://doi.org/10.3390/ijerph18041927
https://doi.org/10.1007/s00170-020-05997-1
https://doi.org/10.1109/LRA.2020.3032104
https://doi.org/10.1016/j.rcim.2020.101948


Biomimetics 2023, 8, 240 17 of 17

13. Zhao, W.; Queralta, J.P.; Westerlund, T. Sim-to-real transfer in deep reinforcement learning for robotics: A survey. In Proceedings
of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 1–4 December 2020; pp. 737–744.

14. Dalgaty, T.; Castellani, N.; Turck, C.; Harabi, K.-E.; Querlioz, D.; Vianello, E. In situ learning using intrinsic memristor variability
via Markov chain Monte Carlo sampling. Nat. Electron. 2021, 4, 151–161. [CrossRef]

15. Deng, Z.; Chen, Q. Reinforcement learning of occupant behavior model for cross-building transfer learning to various HVAC
control systems. Energy Build. 2021, 238, 110860. [CrossRef]

16. Li, W.; Yue, M.; Shangguan, J.; Jin, Y. Navigation of Mobile Robots Based on Deep Reinforcement Learning: Reward Function
Optimization and Knowledge Transfer. Int. J. Control Autom. Syst. 2023, 21, 563–574. [CrossRef]

17. Sangiovanni, B.; Rendiniello, A.; Incremona, G.P.; Ferrara, A.; Piastra, M. Deep reinforcement learning for collision avoidance
of robotic manipulators. In Proceedings of the 2018 European Control Conference (ECC), Limassol, Cyprus, 12–15 June 2018;
pp. 2063–2068.

18. Lin, G.; Zhu, L.; Li, J.; Zou, X.; Tang, Y. Collision-free path planning for a guava-harvesting robot based on recurrent deep
reinforcement learning. Comput. Electron. Agric. 2021, 188, 106350. [CrossRef]

19. Cesta, A.; Orlandini, A.; Bernardi, G.; Umbrico, A. Towards a planning-based framework for symbiotic human-robot collaboration.
In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin,
Germany, 6–9 September 2016; pp. 1–8.

20. Singh, A.; Yang, L.; Hartikainen, K.; Finn, C.; Levine, S. End-to-end robotic reinforcement learning without reward engineering.
arXiv 2019, arXiv:1904.07854.

21. Zou, H.; Ren, T.; Yan, D.; Su, H.; Zhu, J. Reward shaping via meta-learning. arXiv 2019, arXiv:1901.09330.
22. Iriondo, A.; Lazkano, E.; Susperregi, L.; Urain, J.; Fernandez, A.; Molina, J. Pick and place operations in logistics using a mobile

manipulator controlled with deep reinforcement learning. Appl. Sci. 2019, 9, 348. [CrossRef]
23. Kim, T.; Park, Y.; Park, Y.; Suh, I.H. Acceleration of actor-critic deep reinforcement learning for visual grasping in clutter by state

representation learning based on disentanglement of a raw input image. arXiv 2020, arXiv:2002.11903.
24. Deng, Y.; Guo, X.; Wei, Y.; Lu, K.; Fang, B.; Guo, D.; Liu, H.; Sun, F. Deep reinforcement learning for robotic pushing and picking

in cluttered environment. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Macau, China, 3–8 November 2019; pp. 619–626.

25. Pateria, S.; Subagdja, B.; Tan, A.-h.; Quek, C. Hierarchical reinforcement learning: A comprehensive survey. ACM Comput. Surv.
(CSUR) 2021, 54, 1–35. [CrossRef]

26. Duan, J.; Eben Li, S.; Guan, Y.; Sun, Q.; Cheng, B. Hierarchical reinforcement learning for self-driving decision-making without
reliance on labelled driving data. IET Intell. Transp. Syst. 2020, 14, 297–305. [CrossRef]

27. Marzari, L.; Pore, A.; Dall’Alba, D.; Aragon-Camarasa, G.; Farinelli, A.; Fiorini, P. Towards hierarchical task decomposition using
deep reinforcement learning for pick and place subtasks. In Proceedings of the 2021 20th International Conference on Advanced
Robotics (ICAR), Ljubljana, Slovenia, 6–10 December 2021; pp. 640–645.

28. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P. Soft actor-critic
algorithms and applications. arXiv 2018, arXiv:1812.05905.

29. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 1861–1870.

30. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

31. Kim, M.; Han, D.-K.; Park, J.-H.; Kim, J.-S. Motion planning of robot manipulators for a smoother path using a twin delayed deep
deterministic policy gradient with hindsight experience replay. Appl. Sci. 2020, 10, 575. [CrossRef]

32. Zhu, Y.; Wong, J.; Mandlekar, A.; Martín-Martín, R.; Joshi, A.; Nasiriany, S.; Zhu, Y. robosuite: A modular simulation framework
and benchmark for robot learning. arXiv 2020, arXiv:2009.12293.

33. Gallouédec, Q.; Cazin, N.; Dellandréa, E.; Chen, L. panda-gym: Open-source goal-conditioned environments for robotic learning.
arXiv 2021, arXiv:2106.13687.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41928-020-00523-3
https://doi.org/10.1016/j.enbuild.2021.110860
https://doi.org/10.1007/s12555-021-0642-7
https://doi.org/10.1016/j.compag.2021.106350
https://doi.org/10.3390/app9020348
https://doi.org/10.1145/3453160
https://doi.org/10.1049/iet-its.2019.0317
https://doi.org/10.3390/app10020575

	Introduction 
	Problem Statement 
	Existing Solutions 
	Deep Reinforcement Learning 
	Soft Actor-Critic 

	Proposed Solution 
	Designing States, Actions, and a Dedicated Reward System 
	Architecture of Soft Actor-Critic 
	Proposed Method: Task Decomposition for the Pick-and-Place Task 

	Implemetation 
	MuJoCo Physics Engine 
	Robosuite 
	Environment Implementation 
	Training and Test Methods 

	Experimental Results 
	Reaching Agent for Approaching the Object 
	Reaching Agent for Placing the Object 

	Discussion 
	Conclusions 
	References

