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Abstract: Recent studies have shown that DNA enhancers have an important role in the regulation
of gene expression. They are responsible for different important biological elements and processes
such as development, homeostasis, and embryogenesis. However, experimental prediction of these
DNA enhancers is time-consuming and costly as it requires laboratory work. Therefore, researchers
started to look for alternative ways and started to apply computation-based deep learning algorithms
to this field. Yet, the inconsistency and unsuccessful prediction performance of computational-based
approaches among various cell lines led to the investigation of these approaches as well. Therefore, in
this study, a novel DNA encoding scheme was proposed, and solutions were sought to the problems
mentioned and DNA enhancers were predicted with BiLSTM. The study consisted of four different
stages for two scenarios. In the first stage, DNA enhancer data were obtained. In the second stage,
DNA sequences were converted to numerical representations by both the proposed encoding scheme
and various DNA encoding schemes including EIIP, integer number, and atomic number. In the
third stage, the BiLSTM model was designed, and the data were classified. In the final stage, the
performance of DNA encoding schemes was determined by accuracy, precision, recall, F1-score, CSI,
MCC, G-mean, Kappa coefficient, and AUC scores. In the first scenario, it was determined whether
the DNA enhancers belonged to humans or mice. As a result of the prediction process, the highest
performance was achieved with the proposed DNA encoding scheme, and an accuracy of 92.16% and
an AUC score of 0.85 were calculated, respectively. The closest accuracy score to the proposed scheme
was obtained with the EIIP DNA encoding scheme and the result was observed as 89.14%. The AUC
score of this scheme was measured as 0.87. Among the remaining DNA encoding schemes, the atomic
number showed an accuracy score of 86.61%, while this rate decreased to 76.96% with the integer
scheme. The AUC values of these schemes were 0.84 and 0.82, respectively. In the second scenario, it
was determined whether there was a DNA enhancer and, if so, it was decided to which species this
enhancer belonged. In this scenario, the highest accuracy score was obtained with the proposed DNA
encoding scheme and the result was 84.59%. Moreover, the AUC score of the proposed scheme was
determined as 0.92. EIIP and integer DNA encoding schemes showed accuracy scores of 77.80% and
73.68%, respectively, while their AUC scores were close to 0.90. The most ineffective prediction was
performed with the atomic number and the accuracy score of this scheme was calculated as 68.27%.
Finally, the AUC score of this scheme was 0.81. At the end of the study, it was observed that the
proposed DNA encoding scheme was successful and effective in predicting DNA enhancers.

Keywords: DNA enhancer; DNA encoding scheme; deep learning; artificial intelligence

1. Introduction

The region just opposite the point where a gene begins to be read is called the pro-
moter [1]. A promoter is a short region of DNA that increases the rate of transcription
of genes in a gene cluster [2]. The promoter region contains DNA sequences that control
the expression of genes. In eukaryotes, apart from promoter regions, DNA regions called
enhancers also affect gene expression. Although these enhancers are far from the transcrip-
tion start point, they are close to each other in three-dimensional space [3]. Enhancers,
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promoters, silencers, and insulators are expressed as cis-regulatory and play important
roles in the gene expression process.

Predicting enhancers plays an important role in the discovery of biological activities
in organisms. Today, with the development and advancement of technology, there are
various experimental approaches used to predict DNA enhancers. Examples of these
approaches are DNaseI-seq (DNAseI-digested chromatin sequencing), ChIP-Seq (chromatin
immunoprecipitation sequencing), RNA-Seq (RNA sequencing), FAIRE-Seq (formaldehyde-
assisted isolation of regulatory elements sequencing) [4–6]. Identifying the enhancers found
in the gene is a difficult and tedious task. The main reason for this is the partially complex
coding structures of the enhancers, their presence in other genes, and the absence of a
unique code [7,8]. In addition, these approaches require a laboratory, which causes them to
be ineffective in terms of both time and cost.

To prevent these problems, the importance of computation-based approaches has in-
creased recently, and deep-learning-supported systems have been used in this field. To use
deep learning methods, DNA sequences must be converted to numerical representations.
In this case, the performance of computation-based approaches depends on the digital
encoding scheme used and the deep learning model applied [9]. This dependence on
computation-based approaches leads to poor and inconsistent prediction performance [10].
Therefore, it is necessary to develop novel encoding schemes and use consistent approaches.

In this study, a novel DNA encoding scheme is proposed to avoid the mentioned
problems and is used to predict DNA enhancers. The study consisted of two different
scenarios and a total of four stages. In the first stage, DNA enhancer data of human and
mouse genomes were obtained. The VISTA Enhancer Browser dataset was used for this
process. In the second stage, DNA data were converted to numerical representations
with various DNA encoding schemes and the proposed repetition-frequency-based DNA
encoding scheme. In this stage, EIIP (electron–ion interaction potential), integer number,
and atomic number DNA encoding schemes were used. In the third stage, a deep learning
model was designed and BiLSTM (bidirectional long short-term memory) model was
used. In the last stage, the performances of DNA encoding schemes were determined, and
accuracy, precision, recall, F1-score, CSI (classification success index), G-mean (geometric
mean), MCC (Matthew’s correlation coefficient), Kappa coefficient, and AUC (area under
curve) scores were used for this. These stages were performed for both scenarios. In the
first scenario, it was predicted whether the DNA enhancers were human or mouse. In
the second scenario, it is predicted whether the enhancers belong to humans or mice, and
in addition, whether they are enhancers. The highlights of the study can be summarized
as follows:

• In this study, a novel DNA encoding scheme was proposed and this scheme was used
for the prediction of DNA enhancers.

• In this study, DNA enhancers were analyzed and predicted by various DNA encoding
schemes. For the first time in this study, EIIP, integer number, and atomic number
DNA encoding schemes were applied to this field.

• For the first time in this study, the BiLSTM deep learning model was applied to the
mentioned DNA encoding schemes.

The organization of the study is as follows: In the second section, a few studies in
this field were examined. The methods used in those studies and the performances of the
classifiers were given. In the third section, the data set and DNA encoding schemes were
mentioned. In addition to these, the proposed DNA encoding scheme was explained in
detail in this section. Finally, the deep learning model and evaluation metrics were specified.
In the fourth section, the results of the application were given, and the discussion was
carried out. Moreover, the advantages and disadvantages of the study were also mentioned.
In the last section, the study was summarized and the contributions of the study to the
literature and future study were mentioned.
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2. Related Works

In this section, various prediction studies with DNA enhancers and deep learning
models were mentioned. When the literature is examined, although the scarcity of studies
in this field is revealed, a new field of study makes these studies valuable. In the study [10],
researchers predicted DNA enhancers using the DBN (deep belief network) deep learning
model. In the study, the VISTA Enhancer Browser dataset was used, and the prediction
process was performed on 741 human DNA enhancers. DNA sequences were converted
to the numerical representations by the k-mer DNA encoding scheme, and the k value
was determined as two, three, and four in the study. A total of 168 k-mer features were
used in the study. Then, classification was performed with the DBN network, and the
performance of the classifier was measured only with the accuracy evaluation criterion.
At the end of the study, an accuracy score of 92.0% was obtained. In study [11], the
researchers created a hybrid deep learning model and predicted DNA enhancers. In the
study, DNA sequences were converted to numbers by a binary hot-coding scheme and
prepared for classification. The data used in the study were obtained from the VISTA
Enhancer Browser dataset and a total of 1747 experimentally proven human genome
intron elements were used. For the classification process, a hybrid deep learning model
was designed and for this, CNN (convolutional neural network) and DLSTM (deep long
short-term memory) architectures were combined. In addition to these, KNN (K nearest
neighbor), SVM (support vector machines), and RF (random forest) machine learning
methods were also used in the study. The performance of the classifiers was determined by
the precision, accuracy, specificity, and MCC evaluation metrics. At the end of the study,
the highest accuracy score was determined with the hybrid deep learning model and the
result was 89.7%. In another study, researchers predicted DNA enhancers from chromatin
strands using the RF algorithm [12]. H1 and IMR90 datasets were used in the study. The
parameters of the classifier were determined by using ROC (receiver characteristic curve)
and the most suitable parameters were selected. In this way, the optimum number of trees
was decided. The performance of the classifier was determined by the misclassification
rate, and at the end of the study, a misclassification rate of about 0.05 was achieved. In
study [13], the researchers predicted DNA enhancers using the word embedding method
and deep learning. DNA sequences were encoded by the GAN (generative adversarial
networks) method and evaluated for use in the classifier. The deep learning models used
in the study were based on the BiLSTM and CNN-LSTM methods. The performance of the
classifiers was measured with accuracy, precision, recall, and MCC evaluation criteria. At
the end of the study, an accuracy score of 93.95% was observed. In study [14], researchers
developed a deep learning algorithm-based model and predicted DNA enhancers. In the
study conducted on H1 cells, a total of nine features were obtained from DNA sequences,
including histone modifications, TFs and cofactors, chromatin accessibility, transcription,
DNA methylation, CpG islands, evolutionary conversion, sequence signatures, and TF
binding sites. For the classification process, DNN (deep neural networks) and HMM
(hidden Markov model) were used and the performance of the classifiers was determined
by accuracy, recall, precision, and F1-score values. At the end of the study, an accuracy score
of 96.82% was obtained with the proposed deep learning model. When the literature review
was examined, it was observed that DNA enhancers were successfully predicted by deep
learning algorithms. Based on these achievements, BiLSTM, one of the deep learning types,
was used in this study and its results were analyzed based on DNA encoding schemes.

3. Materials and Methods

In this section, the dataset and DNA encoding schemes used in the study were men-
tioned. In addition to these, the proposed novel repetition frequency-based scheme was
also explained. Finally, information about BiLSTM and the evaluation metrics were given.
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3.1. Data Set

In this study, the Vista Enhancer Browser dataset was used [15]. A key resource for
experimentally verified human and mouse non-coding regions with gene enhancer activity
as determined in transgenic mice is the VISTA Enhancer Browser. The majority of these
non-coding elements were chosen for testing because of their high conservation in other
vertebrates or because of epigenomic proof (ChIP-Seq) of potential enhancer marks. This
freely accessible website offers the outcomes of an in vivo enhancer screen. A total of 3321
in vivo tested elements have been recorded as of 7 April 2023, including 1699 elements
having enhancer activity. Within the scope of the study, both enhancer-containing and
non-enhancer DNA sequences of both humans and mice were obtained from this dataset.
In the study, these sequences were separated, and the type of enhancers was determined.
In addition to these, a distinction was made whether the sequence was an enhancer or not.

3.2. DNA Encoding Schemes

In this study, EIIP, integer number, and atomic number DNA encoding schemes
were used. Although the integer number encoding scheme is evaluated in the fixed
category, EIIP and atomic number encoding schemes are included in the biochemical-based
encoding schemes.

3.2.1. Integer Number DNA Encoding Scheme

The integer number DNA encoding scheme is a widely used method [16–18]. In this
scheme, arbitrary values of 1, 3, 2, and 4 are assigned to bases A, C, G, and T, which are
nucleotides in DNA sequences, respectively [19]. DNA sequences are encoded according
to the expression given in Equation (1).

Integer Representation = x ↔ n, x ε {A, C, G, T}, n ε {1, 3, 2, 4} (1)

In Equation (1), n represents integers, whereas x represents bases. According to
the values in Equation (1), a DNA sequence as S(n) = [ACACCCAGGT] is encoded as
C(n) = [1 3 1 3 3 3 1 2 2 4] by integer number DNA encoding scheme.

3.2.2. Atomic Number DNA Encoding Scheme

In the atomic number DNA encoding scheme, DNA bases are expressed according
to their atomic number. In this scheme, bases are converted into an atomic indicator and
bases are valued according to these indicators. This scheme was first proposed and used
to determine the fractal size difference between humans and chimpanzees [20]. In this
scheme, A takes 70, C gets 58, G takes 78 and T gets 66. According to the expression given
in Equation (2), DNA sequences are converted to numerical representations.

Atomic Number Representation = x ↔ n, x ε {A, C, G, T}, n ε {70, 58, 78, 66} (2)

In Equation (2), n denotes atomic numbers, while x denotes bases. According to
the values in Equation (2), a DNA sequence as S(n) = [ACACCCAGGT] is encoded as
C(n) = [70 58 70 58 58 58 70 78 78 66] by atomic number DNA encoding scheme.

3.2.3. EIIP DNA Encoding Scheme

The EIIP encoding scheme has been proposed as an alternative to the Voss DNA
encoding scheme and is a frequently used method in many FFT (fast Fourier transform)
based GSP (genomic signal processing) applications [21,22]. In this scheme, the so-called
potential energies of free electrons are assigned to the bases in the DNA sequence and
encoded. In the EIIP DNA encoding scheme, the A base is 0.1260, the C base is 0.1340, the
G base is 0.0806, and the T base is 0.1335. According to the expression given in Equation (3),
DNA sequences are converted.

EIIP Representation = x ↔ n, x ε {A, C, G, T}, n ε {0.1260, 0.1340, 0.0806, 0.1335} (3)
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In Equation (3), n specifies EIIP values, while x denotes bases. According to the values
in Equation (3), a DNA sequence as S(n) = [ACACCCAGGT] is encoded as
C(n) = [0.1260 0.1340 0.12600.1340 0.1340 0.1340 0.1260 0.0806 0.0806 0.1335] by EIIP DNA
encoding scheme.

3.3. A Novel DNA Encoding Scheme Based on Base Repetition Frequency

TF (term frequency) is a method that is frequently used in NLP (natural language
processing) studies and is used to convert words into numerical expressions [23,24]. TF
expression in NLP is obtained by dividing a word by the total number of words. For
instance, if there are 5 bananas in a 100-word document, the TF value of the term banana
is 0.05 (5/100). In this way, in NLP studies, applications consider 0.05 instead of banana
expression. In the TF approach, the threshold value is generated by the algorithm itself
rather than the user’s choice [23]. This causes the method to change according to the given
input value and to be dynamic. Considering the performances of the TF method in NLP
studies, a similar approach was used in this study and the bases in the DNA sequence
were converted into numerical expressions according to this approach. In the proposed
DNA encoding scheme, the process is performed according to the length of the sequence
and the frequency of the bases in that sequence. Since the proposed method is based on
the base frequency in the DNA sequence, it is named BFDNA (base frequency DNA). In
Equation (4), the encoding formula of the BFDNA DNA encoding scheme is given.

BFDNA =
num. of times X base occurs in a DNA sequence

Total sequence length
(4)

In Equation (4), the X value represents the bases found in the DNA sequence. DNA
sequences consist of four different bases, A, C, G, and T in total. Here the X value
is calculated for each base. According to the values in Equation (4), a DNA sequence
S(n) = [ACACCCAGGT] is converted into numerical expressions step by step with the
BFDNA encoding scheme as follows:

• For A base: BFDNA(A) =
3

10 = 0.3
• For C base: BFDNA(C) =

4
10 = 0.4

• For G base: BFDNA(G) =
2
10 = 0.2

• For T base: BFDNA(T) =
1

10 = 0.1

Since the length of the sequence is 10, the total number of each base is divided by
10. There were 3 A bases in total in the sequence; the BFDNA value of this base was
0.3, and since there were 4 C bases, the BFDNA value of this base was calculated as 0.4.
Furthermore, there are 2 G bases and 1 T base in total from the sequence; the BFDNA values
of these bases were obtained as 0.2 and 0.1, respectively. According to the calculation step,
a DNA sequence S(n) = [ACACCCAGGT] is encoded with the BFDNA DNA encoding
scheme as C(n) = [0.3 0.4 0.3 0.4 0.4 0.4 0.3 0.2 0.2 0.1]. One of the most important features
of the proposed DNA encoding scheme is that it has a dynamic structure. Almost all the
other DNA encoding schemes found in the literature and used in this study have a static
structure. Regardless of the length of the sequence, the bases take the same value. However,
there is no such structure in the proposed scheme. Although other DNA encoding schemes
used in the study consist of fixed values, the BFDNA scheme does not include fixed values.
A comparison of DNA encoding schemes used for DNA sequences of the same species is
given in Table 1.

As seen in the example given in Table 1, the bases in the two DNA sequences take
the same values in the integer number, atomic number, and EIIP encoding schemes. In
the integer number DNA encoding scheme, the C base in the first DNA sequence was
assigned as 3, whereas the C base in the second DNA sequence was expressed with the
value 3. Similar inferences can be made with atomic numbers and EIIP DNA encoding
schemes. However, in the proposed BFDNA encoding scheme, the value of the C base in
the first DNA sequence was 0.4, whereas this value was calculated as 0.2 in the second DNA
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sequence. This shows that the proposed approach is not fixed and has a dynamic structure.
As the sequence length increases, this difference between DNA encoding schemes becomes
more pronounced. In addition, degeneration is observed over time in encoding schemes
that consist of fixed values and cause the loss of information [25]. In order to prevent such
information loss and to be used to predict DNA enhancers, the BFDNA encoding scheme,
which has a dynamic structure, has been proposed and applied in the study.

Table 1. Comparison of DNA encoding schemes.

First DNA Sequence Integer Number Atomic Number EIIP BFDNA

[CATCG] [3 1 4 3 2] [58 70 66 58 78] [0.134 0.126 0.133 0.134 0.081] [0.4 0.2 0.2 0.4 0.2]

Second DNA Sequence

[CGAAT] [3 2 1 1 4] [58 78 70 70 66] [0.134 0.081 0.126 0.126 0.133] [0.2 0.2 0.4 0.4 0.2]

3.4. BiLSTM Deep Learning Model

Deep learning is a form of machine learning that is now employed successfully.
One of the main factors contributing to its popularity is the ease and speed with which
data can be gathered, as well as the ability to meet the hardware requirements for data
analysis [26]. Moreover, dealing with complicated and huge data sets has a role in this
regard. The method of feature extraction is deep learning’s main advantage over ma-
chine learning. Deep learning uses an adaptive strategy, whereas machine learning-based
methods manually extract essential information [27]. Manual feature extraction is chal-
lenging and time-consuming due to the quantity of data or the complexity of the data
collection [28]. Deep learning is now utilized in nearly every sector thanks to these benefits.
Studies in the disciplines of biomedicine [29,30], bioinformatics [31], object identifica-
tion [32], robotics [33], and energy [34] have all used deep learning. The success of deep
learning in various fields has laid the groundwork for the use of deep learning in this study.
For this reason, BiLSTM, one of the deep learning methods, was used in this study. The
BiLSTM deep learning model is a kind of RNN (recurrent neural network). It is formed by
adding another LSTM layer to the LSTM layer. Sequential structures such as time and text
series make better use of LSTM [35]. Moreover, the biological sequence analysis challenge
has been successfully solved using LSTM on a large scale because of its structure which
takes advantage of historical data [36]. This model can remember information about the
past as well as the future because of this structure. By using the BiLSTM architecture, both
forward and backward calculations are performed concurrently, and the output is produced
by merging the data that was discovered as a result of both sets of computations. Due to
this, processing sequential data and time series benefits from the usage of information in
two directions. Although one of the two LSTM units in the structure of BiLSTM processes
the information backward, the other processes the input. One of the biggest reasons for
using the BiLSTM method in the study is that each element of an input sequence contains
data from the past and the present. For this reason, by integrating LSTM layers from both
directions, BiLSTM can generate an output that is more meaningful [37]. Furthermore, each
component (A, C, G, T) in the sequence (DNA sequence) will provide a different output
from the BiLSTM. Therefore, the BiLSTM model is useful for some bioinformatics applica-
tions such as predicting protein–protein interactions, determining protein structures, and
predicting DNA promoters [38]. Due to the performances demonstrated in bioinformatics
studies and the advantages of its structure, BiLSTM was used in this study. A general
schematic of the BiLSTM deep learning architecture is given in Figure 1.
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Figure 1. Structure of BiLSTM deep learning model.

3.5. Evaluation Criteria

In this study, the performances of deep learning models were determined by the evalua-
tion criteria of accuracy, precision, recall, F1-score, AUC, and confusion matrix. The confusion
matrix is a kind of table used to show the performance of a classification algorithm. Perfor-
mance is based on the determination of training data by testing. There are four different
parameters in the confusion matrix: FP stands for false positive, TN for true negative, TP for
true positive, and TN for true negative. The TP expression indicates that the predicted value
is positive and correct. In addition, the TN expression indicates that the estimated value is
negative and correct. In addition, FP indicates that the value is positive but false, while FN
indicates that the value is negative and false. Accuracy, F1-score, precision, and recall values
are based on the calculation of these given expressions into various equations. The calculation
of these operations is shown between Equations (5) and (8).

Accuracy =
TP + FN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1− Score = 2×
(

Precision× Recall
Precision + Recall

)
(8)

In addition, the AUC score is also an important evaluation criterion. The AUC score
gives the area under the ROC (receiver characteristic curve). The AUC score usually
indicates how good the model is at separating classes. In addition, it is also used to
determine the best threshold [39]. The ranges given in Table 2 are taken into account when
interpreting the AUC score.

Table 2. Interpretation of AUC scores [40].

AUC Score Explanation

0.00–0.49 No distinction
0.50–0.69 Poor classification
0.70–0.79 Acceptable classification
0.80–0.89 Great classification
0.90–1.00 Outstanding classification
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AUC score of 0.49 and below indicates that the classification process was not per-
formed. In addition, if the AUC score is between 0.50 and 0.69, it is considered a poor
classification. AUC score between 0.70 and 0.79 indicates an acceptable classifier, whereas
a value between 0.80 and 0.89 indicates excellent classification. Values of 0.90 and above
indicate an extraordinary classification.

CSI is an uncommon evaluation criterion that uses the performance of the classification
process. The positive class is the only thing the CSI concentrates on [41]. It is calculated by
the formula given in Equation (9).

CSI = Precision + True Positive Rate− 1 (9)

The CSI value varies between −1 and 1. A value of −1 means that all predictions are
false positive or false negative [41]. A value of 1 indicates that the predictions are excellent.
A CSI value of 0 means that the results are random predictions.

G-mean is an evaluation criterion that measures the balance between the performance
of classes. It is determined by the formula in Equation (10).

Gmean =
√

Recall× Specificity (10)

A high value indicates that the risk of over-fitting for negative classes is low, and the
risk of under-fitting for positive classes is low.

MCC is an evaluation metric used to determine the performance of a classification
model. It is an approach that is effective when the number of data between classes is
unbalanced (uneven) [42]. It is calculated by the formula given in Equation (11).

MCC =
(TP× TN− FP× FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(11)

The MCC value approaching 0 indicates that the classification model is unsuccessful,
whereas the value approaching 1 indicates that this model is effective. It is an evaluation
criterion mostly used in binary classification problems [43].

Cohen’s Kappa coefficient is an evaluation metric used to measure agreement between
classes. It is calculated by the formula given in Equation (12).

Kappa coefficient =
2× (TP× TN− FP× FN)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
(12)

The Kappa coefficient varies from 0 to 1. Kappa values and interpretation of these
values are given in Table 3.

Table 3. Interpretation of Kappa coefficients [44].

Kappa Coefficient Explanation

0.00 No agreement
0.10–0.20 Slight agreement
0.21–0.40 Fair agreement
0.41–0.60 Moderate agreement
0.61–0.80 Substantial agreement
0.81–0.99 Almost perfect agreement

1.00 Perfect agreement

A kappa value of 0 indicates that there is no agreement between the classes, whereas
values between 0.10 and 0.20 indicate that there is slight agreement. A sufficient agreement
is observed if the kappa coefficient is between 0.21 and 0.40. A moderate agreement is
observed when the value is between 0.41 and 0.60, whereas a substantial agreement is
available when the value is between 0.61 and 0.80. The kappa value between 0.81 and
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0.99 indicates that the model makes an almost perfect agreement. In addition, a kappa
coefficient of 1 indicates that a perfect agreement is observed. The flow chart of the study is
given in Figure 2.
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According to the workflow given in Figure 2, human and mouse DNA sequences
were obtained in the first step (Data Collection). Although some of these sequences
consist of DNA enhancers, some do not have DNA enhancers. Then (Preprocessing)
these sequences were converted into numerical expressions with both the proposed DNA
encoding scheme and various DNA encoding schemes. After the sequences were converted
to numerical expressions, min–max normalization was performed, and the sequences were
normalized. In the third step (Data Preparation), the data were prepared, and the data set
was divided into three as training, testing, and validation. In the fourth step (Classification
and Validation), the BiLSTM deep learning model was designed, and the training process
was carried out with the training data. Then, the parameters of the classifier were adjusted
with the validation data set, and the most effective parameters were selected. In the last
step (Evaluation), the performance of the classifier was tested on the test data set and the
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performance of each DNA encoding scheme was measured with accuracy, precision, recall,
F1-score, CSI, G-mean, MCC, Kappa coefficient, and AUC scores.

4. Application Results

In this study, the application was carried out through two different scenarios. In the
first scenario, it was predicted whether the DNA enhancers belonged to humans or mice,
whereas in the second application, it was predicted whether there was a DNA enhancer
and, if any, whether it belonged to a human or mouse. At the end of the prediction process,
the accuracy, precision, recall, F1-score, CSI, G-mean, MCC, Kappa coefficient, and AUC
scores of each DNA encoding scheme were calculated.

4.1. Predicting Human and Mouse Enhancers

In the study, a novel DNA encoding scheme was proposed to predict human and
mouse DNA enhancers and compared with various DNA encoding schemes. In this
direction, the performances of DNA encoding schemes were determined by using the
BiLSTM deep learning model, with accuracy, precision, recall, F1-score, CSI, G-mean, MCC,
Kappa coefficient, and AUC scores. The hyperparameters of the developed BiLSTM model
are as follows:

• DNA sequences used for training data in the input layer were evaluated.
• In the second layer, 256-unit BiLSTM was used, and the activation function was

determined as SeLU (scaled exponential linear unit).
• Dropout was done and 15% of the data was discarded.
• Then the 128-unit BiLSTM was used and the activation function SeLU was chosen.
• Again, dropout was selected and 20% of the data was forgotten.
• Then the 64-unit BiLSTM was used and the activation function SeLU was chosen.
• Again, dropout was selected and 20% of the data was forgotten.
• Batch normalization was applied, and the data were reduced to 1—dimensional with

the flattening process.
• Three different fully connected layers were employed. Their number of neurons was

determined as 512, 256, and 128.
• In the last layer, the Sigmoid activation function was used, and the data were classified.
• Binary-cross entropy was used for the loss of the model and the model was optimized

with the RMSProp optimization algorithm.
• The training process was carried out with 500 epochs.
• Seventy-five percent of the data was used for training, 15% for validation, and 15%

for testing.

The results of the classification process are given in Table 4.

Table 4. Performance of DNA encoding schemes in predicting human and mouse DNA enhancers.

DNA Encoding Scheme Accuracy Precision Recall F1-Score CSI G-Mean MCC Kappa AUC Score

Integer number 76.96% 78.53% 75.76% 77.12% 0.5429 0.7698 0.5397 0.5393 0.82
Atomic number 86.61% 85.36% 87.28% 86.31% 0.7264 0.8663 0.7323 0.7321 0.84

EIIP 89.14% 87.07% 90.61% 88.80% 0.7768 0.8920 0.78.33 0.7826 0.87
BFDNA 92.16% 89.76% 94.11% 91.88% 0.8387 0.9224 0.8440 0.8431 0.85

When the results in Table 4 were examined, only the accuracy score of the proposed
method was over 90% and became 92.16%. In addition, the highest precision, recall, and
F1-score were obtained with the proposed method, and these values were 89.76%, 94.11%,
and 91.88%, respectively. The AUC score of the proposed BFDNA method was obtained
as 0.85. The closest accuracy score to the proposed method was obtained by EIIP and
atomic number DNA encoding schemes and the results were obtained as 89.14% and
86.61%, respectively. The precision score of the EIIP method was 87.07%, the recall value
was 90.61%, and the F1-score value was 88.80%. In addition, the highest AUC score was
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obtained with the EIIP, and the result was 0.87. The AUC score of the atomic number DNA
encoding scheme was obtained as 0.84. In addition, the precision, recall, and F1-score
values of this method were found to be 85.36%, 87.28%, and 86.31%, respectively. The most
ineffective classification process was obtained by an integer number DNA encoding scheme.
With this method, all evaluation criteria except the AUC score were below 80%. The AUC
score was calculated as 0.82 with this method. When a comparison was made according to
the CSI values, a value of 0.5429 was obtained with the integer number method, whereas
the values of 0.7264 and 0.7768 were calculated with the atomic number and EIIP methods,
respectively. The highest CSI value was obtained with the proposed BFDNA, and the result
was 0.8387. A CSI value of 1 indicates a great classification. The fact that the proposed
method also produced a score close to 1 showed that this method performed an almost
perfect classification. In addition, the MCC value of only the integer number DNA encoding
method remained below 0.70 and the result was 0.5397. On the other hand, atomic number
and EIIP DNA encoding methods showed MCC scores above 0.70. The highest MCC score
was obtained with the recommended BFDNA method, and the result was 0.8440. The
closer the MCC score is to 1, the more effective the classification. Considering the MCC
results, it has been observed that DNA encoding methods other than integer number DNA
encoding were effective. When observations were made according to the Kappa results, it
was observed that the integer number DNA encoding method was the most unsuccessful.
With this method, a Kappa coefficient of 0.5393 was obtained and moderate agreement
was observed between the classes. In addition, Kappa coefficient values of atomic number
and EIIP DNA encoding methods remained between 0.61 and 0.80. Therefore, it has been
shown that there is a substantial agreement between the classes for these two methods.
On the other hand, the most effective Kappa coefficient was obtained with the proposed
BFDNA DNA encoding method and the result was 0.8431. This showed that there was
almost a perfect agreement between the classes. The results in Table 4 are the results from
the first scenario. The flow chart of the algorithm for the first scenario is shown in Figure 3.
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According to the scenario given in Figure 3, data is fed into the system in the first step
and arranged according to their labels. There are two different labels in this scenario. These
are “Human enhancer” and “Mouse enhancer” labels. Then, these labels were trained by
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applying the deep learning model. At the end of the training process, a blinded data set
was used, and the model was tested. In the testing phase of the model, classification was
carried out according to the determined labels. According to the labels, the distinction
was made whether the sequences belonged to humans or mice, and the scenario was
finished. Since there are two different labels, binary classification was performed. The
main purpose of this scenario is to classify the DNA enhancers of these two species.
Moreover, the confusion matrix and ROC curves of each DNA encoding method are given in
Figures 4 and 5, respectively, to show their performance.

The pink and dark blue dots in Figure 5 represents micro-average ROC and macro-
average ROC values, respectively. Micro-average ROC is the sum of the true positive rate
divided by the sum of the false positive rate. In other words, each class will have a weightage.
On the other hand, macro-average requires computing the metric independently for each class
and then taking the average over them, thus treating all classes equally a priori.
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4.2. Predicting DNA Enhancers

In this scenario, it was estimated whether there was a DNA enhancer and if so,
which species it belonged to was predicted. Both the proposed DNA encoding scheme
and other DNA encoding schemes have been applied in this scenario as well. BiLSTM
deep learning model was used in this classification process and the performances of DNA
encoding schemes were determined by accuracy, precision, recall, F1-score, CSI, G-mean,
MCC, Kappa coefficient, and AUC scores. The hyperparameters of the developed BiLSTM
method are as follows:

• DNA sequences used for training data in the input layer were evaluated.
• In the second layer, 128-unit BiLSTM was used, and the activation function was

determined as SeLU.
• Dropout was done and 15% of the data was discarded.
• Then the 64-unit BiLSTM was used and the activation function SeLU was chosen.
• Again, dropout was selected and 20% of the data was forgotten.
• Batch normalization was applied, and the data were reduced to 1—dimensional with

the flattening process.
• Two different fully connected layers were employed. Their number of neurons was

determined as 256 and 128.
• In the last layer, the Softmax activation function was used, and the data were classified.
• Categorical-cross entropy was used for the loss of the model and the model was

optimized with the Adam optimization algorithm.
• The training process was carried out with 500 epochs.
• Seventy-five percent of the data was used for training, 15% for validation, and 15%

for testing.

The results of the classification process are given in Table 5.
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Table 5. Performance of DNA encoding schemes in predicting DNA enhancers and their species.

DNA Encoding Scheme Accuracy Precision Recall F1-Score CSI G-Mean MCC Kappa AUC Score

Integer number 73.68% 74.58% 68.96% 71.66% 0.4354 0.5416 0.5865 0.5731 0.89
Atomic number 68.27% 68.93% 64.38% 66.58% 0.3281 0.4597 0.4968 0.4836 0.81

EIIP 77.80% 79.10% 73.11% 76.00% 0.5221 0.6060 0.6462 0.6340 0.90
BFDNA 84.59% 85.64% 80.35% 82.91% 0.6599 0.7104 0.7467 0.7394 0.92

When the results in Table 5 were examined, only the accuracy score of the proposed
method was over 80% and became 84.59%. In addition, the highest precision, recall, and
F1-score were obtained with the proposed method and these values were 85.64%, 80.35%,
and 82.91%, respectively. The AUC score of the proposed BFDNA method was obtained as
0.92. The closest accuracy score to the proposed method was obtained by the EIIP DNA
encoding scheme and a value of 77.80% was observed. The precision score of the EIIP
method was 79.10%, the recall value was 73.11%, and the F1-score value was 76.00%. In
addition, the AUC score was 0.90. The accuracy score of the integer number DNA encoding
scheme was 73.68% and it was observed as the third effective method. The precision score
of this method was 74.58%, the recall score was 68.96%, and the F1-score value was 71.66%.
The AUC score was observed as 0.89. The most ineffective classification process was ob-
tained by atomic number DNA encoding scheme. With this method, all evaluation criteria
except the AUC score were below 80%. The AUC score was calculated as 0.81 with this
method. In addition to these results, when the CSI values were examined, it was observed
that the DNA encoding methods could not perform a very effective prediction. The CSI
values of the integer number and atomic number DNA encoding methods remained below
0.5 and the results were 0.4354 and 0.3281, respectively. Although the EIIP method showed
a CSI score above 0.5, it could not perform a very effective prediction process. However,
the highest CSI score was obtained with the proposed BFDNA DNA encoding method
and the result was 0.6599. As the CSI value approached 1, the prediction processes of the
model were great. None of the four DNA encoding methods came close to 1. However, the
most effective CSI score was obtained with the proposed method. Very high scores were
not observed in MCC values either. The MCC value of the atomic number DNA encoding
method was 0.4968, whereas this value was 0.5865 in the integer number DNA encoding
method. The MCC value of the EIIP DNA encoding method was 0.6462. In contrast to these
DNA encoding methods, only the proposed BFDNA DNA encoding method exceeded
0.7, resulting in 0.7467. It is a known fact that the model becomes effective as the MCC
value approaches 1. In this sense, when the results were examined, it was observed that
the most effective method was the proposed method. In addition, when DNA encoding
methods were analyzed according to Kappa coefficients, it has been observed that there
was moderate agreement between classes in atomic number and integer number DNA
encoding methods. On the other hand, the existence of a substantial agreement with the
classes was observed in EIIP and proposed BFDNA DNA encoding methods. The results
in Table 5 are the results from the second scenario. The flow chart of the algorithm for the
first scenario is shown in Figure 6.

In the scenario given in Figure 6, DNA sequences are first given to the system. There
are three different class labels in this scenario. These are the “Human DNA enhancer”,
“Mouse DNA enhancer”, and “No enhancer”. Then, these data were trained with a deep
learning model. The performance of the model was then tested on a blinded dataset.
At the test stage, it was determined whether there was a DNA enhancer in the DNA
sequences. If there is no enhancer, the classification label for this part was predicted as “No
enhancer”. If there is a DNA enhancer, a distinction has been made as to which type this
enhancer belongs to. When the classification process of all sequences in the blind dataset
was completed, the scenario was terminated. Since there are three different class labels
multi-class classification was performed in this scenario. Furthermore, the confusion matrix
and ROC curves of each DNA encoding method are given in Figures 7 and 8, respectively,
to show their performance.
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4.3. Discussion

When the findings in Table 4 (first scenario) are examined, it is seen that the most
effective prediction process is performed with the proposed BFDNA method. Other DNA
encoding schemes, although exhibiting accuracy scores close to BFDNA, failed to pass.
Although the highest accuracy score in the classification process according to the first
scenario was obtained with the BFDNA method, successful results were also demonstrated
with other methods. When compared according to the AUC scores, even if the most
successful classification was made with EIIP, all methods produced a result above 0.80, and
they performed great classification. In the findings in Table 5 (second scenario), the results
decreased slightly. However, the most successful classification process was obtained with
the proposed BFDNA encoding scheme. The closeness of accuracy seen in the first scenario
was not observed in this scenario. However, when observing by AUC score, integer number
and atomic number methods performed great classification, whereas EIIP and proposed
BFDNA methods performed outstanding classification.

One of the biggest problems of the atomic number method is that it produces different
results in various coding schemes [45]. Although it is a fixed method, the fact that coding
schemes give different results leads to uniformity in research. These disadvantages may
have caused the atomic number to be ineffective. The integer number DNA encoding
scheme is one of the most used methods in studies with artificial neural networks. The
biggest reason for this is that the mean is zero and the deviations are symmetrical [16].
Such symmetric and complementary features are effective for training data and extracting
features. These achievements may have caused the integer number DNA encoding scheme
to become more effective as the amount of data increased. In the EIIP method, real numbers
are used, unlike integers and atomic numbers. This is an advantage that makes scientific
calculation easy. Because of this advantage, it is effectively used in GSP studies that use
neural networks and waveform transforms to show the pseudo-potential properties of
nucleotide sequences [46,47]. In this study, the EIIP method was effective for both scenarios
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and performed more successful classification than both integer number and atomic number
methods. The most successful classification process was obtained with the proposed
BFDNA encoding scheme in two scenarios. One of the biggest reasons for this is that the
proposed method has a dynamic structure. Other DNA encoding schemes have a static
nature. The length of the sequence or the location of the bases does not affect the encoding
process. However, this is not the case in the proposed BFDNA method. The proposed
method varies according to the sequence and exhibits an adaptive presentation. In addition,
the proposed BFDNA method, like the EIIP method, consists of real numbers. This is a
factor that facilitates scientific computing, as in EIIP. The fact that these two methods are
the most effective for both scenarios supports this.

In addition, the results obtained in this study were compared with other studies in
the literature and the performance of the proposed method was demonstrated. In Table 6,
these comparison results are given and interpreted.

Table 6. Comparison of this study and some studies in the literature.

Reference DNA Encoding Method Classification Model Accuracy

[10] k-mer DBN 92.00%
[11] Binary hot encoding Hybrid 89.70%
[13] Word embedding Hybrid 93.95%
[14] Chemical features DNN 96.82%

This study BFDNA BiLSTM 92.16%

When the results in Table 6 are examined, it is seen that the study performed with the
proposed method has an accuracy of over 90%. The developed method was observed as the
third most effective method among the compared studies. When studies [13] and [14] were
examined, the accuracy scores were higher than the proposed method. The deep learning
models used in the mentioned studies differ from the deep learning model used in this
study. This may be the reason why the accuracy score was high in those studies. In addition,
the word embedding method was used in the study [13]. The word embedding method is
also a method frequently used in NLP studies. Since the developed model was inspired by
the approach used in NLP studies, a performance close to the one in [13] was achieved. In
the study [14], chemical properties were used. In the study, nine different chemical features
were obtained for each DNA sequence. This resulted in the formation of a large number
of sample data for a DNA sequence. The number of data is of great importance in deep
learning studies. The large number of data had a positive effect on the deep learning model.
The proposed method was more effective than the results of studies [10,11]. One of the
reasons for this may be the DNA encoding methods used in those studies. In addition,
selected deep learning algorithms directly affect this performance. However, it should be
noted that the datasets used in the mentioned studies and the dataset used in this study
are different. In bioinformatics studies, there is no standard gold data set, as in most
artificial intelligence studies. This causes the comparison to be difficult most of the time
and conducive to the inability to interpret the results properly. However, it is a fact that
this proposed method showed as effective results as the existing methods in the literature.
This shows that the method can be used effectively in other DNA studies.

Despite these achievements, there are several disadvantages in this study. These
disadvantages can be identified as:

• Studies with genomic sequences vary greatly according to the numerical methods
used. Although the deep learning method used in this study was the same, the results
were different from each other. The lack of a standard method and the fact that the
results vary according to the encoding methods cause the studies in this field to be
limited and to be interpreted as unhealthy.

• Furthermore, mouse and human DNA enhancers are currently scarce. The increase
in this number over time may affect the results obtained in this study positively or
negatively, and accordingly may cause the results to change. A new analysis with an
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increase in the number of data will be more effective in evaluating the performance of
both the proposed method and other methods.

• It is important to use the proposed method in other DNA analysis studies and to
interpret the results to be obtained there. In this way, the performance of the proposed
method can be demonstrated in detail.

• In addition, only BiLSTM deep learning model was used in this study. There are many
deep learning methods. These DNA encoding schemes need to be analyzed with other
deep learning algorithms and the results should be interpreted. In this way, more
effective results can be obtained.

• No feature extraction was performed in the study. The use of different signal pro-
cessing methods (DWT (discrete wavelet transform), FFT, EMD (empirical mode
decomposition), VMD (variational mode decomposition), etc.) can be instrumental in
obtaining more effective features and observing more successful results.

• Furthermore, optimization algorithms were not used in the study. Performing the
optimization process can improve results and increase the performance of DNA
encoding schemes.

• As seen in the ROC curve in Figure 8, the data set contains insufficient data. In this
case, it may cause two different problems in the model: overfitting or underfitting.
Obtaining, examining, and interpreting DNA sequences takes time and causes a
difficult process. Therefore, the emergence of insufficient data is a common problem
in bioinformatics studies [48,49]. There is such a problem in this study. Researchers
need to consider this situation.

• In addition to the overfitting problem, approaches such as ensemble learning, transfer
learning, and data duplication (synthetic data) are generally used for insufficient data.
The insufficient data problem observed in this study can be addressed by using one
or more of these approaches. Although each of these approaches has advantages and
disadvantages, these approaches also need to be evaluated for further studies.

• In such cases, overfitting is generally observed. In the case of overfitting, the model
memorizes patterns in the data. In order to avoid the overfitting problem, options
such as reducing the network capacity, using regularization methods (L1 and L2),
and placing dropout layers are generally used. For the second scenario in this study,
although the network capacity was reduced and the dropout layer was used, this
problem could not be avoided. The use of regularization methods or other approaches
may prevent this problem.

• In order to prevent the overfitting problem, early stopping and pruning approaches can
be used in addition. However, these approaches also have several disadvantages. Early
stopping puts the artificial intelligence model’s training phase on hold before it can learn
about the data noise. Nevertheless, if the timing is not set properly, the model will still
not produce reliable results. The process of feature selection, also known as pruning,
identifies the most crucial features in the training set and gets rid of the rest. Identifying
effective features in this approach takes time and is often a tedious process.

• In addition, this problem can be avoided by using cross-validation. Although the number
of labels (classes) of the data set used in the study is low, there are approximately 1000
features for each label. In short, each DNA sequence contains at least 1000 bases. The im-
plementation of the cross-validation process takes time and increases the processing load.
This approach can also be preferred on more powerful hardware and the performance of
the developed DNA encoding method can be interpreted in a healthier way.

• In addition, the implications obtained from this study can be summarized as follows:
• Other cis-regulatory elements including promoters, insulators, and silencers can be

predicted using the suggested BFDNA encoding technique. Experimental approaches
are often preferred to determine cis-regulatory elements [50]. However, using experi-
mental approaches takes time and is costly [51]. With this study and similar studies,
it has been shown that cis-regulatory elements can be determined by computational
approaches rather than experimental approaches.
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• The proposed approach can also be used generically for research involving whole
genomic sequencing, making it useful for both academics and healthcare professionals.
In order for genomic sequences to be analyzed by computational methods, sequences
must be converted to numerical expressions. There are various DNA encoding meth-
ods in the literature. In this study, some of these methods are included and their
performances in these methods are evaluated. With this study, a novel DNA encod-
ing method has been proposed in the literature. This method can be used not only
to predict DNA enhancers, but also for genomic sequencing research (prediction of
intron-exon regions, STR analysis, phylogenetic analysis, species identification, etc.).

• One of the biggest achievements of this study is that the developed BFDNA DNA
encoding method has a dynamic structure compared to other methods. In all other
approaches, the methods use a dynamic structure. Even if the length of the DNA
sequence is different or the locations of the bases are different, the bases in the DNA
sequence always take the same value. To give a simple example, in the atomic number
DNA encoding method, the A base takes the value 70, regardless of the length of
the DNA sequence or the location of the base. However, this is not the case in the
proposed BFDNA method. Since this approach uses the length of the DNA sequence
and the repetition frequency of the bases, there is no fixed value. This has resulted in
the approach being adaptive and different from other DNA encoding methods.

• In studies on most DNA sequences, it has been observed that the chemical properties of
DNA sequences are also used [52,53]. However, various experimental applications are
used to determine these chemical properties. As this requires experimental equipment,
it is both costly and time-consuming. With this study, it has been shown that DNA
encoding methods used in computational approaches can also be effective in studies
on DNA sequencing. When DNA enhancer studies were examined, it was observed
that some studies focused on the chemical properties of DNA sequences [54–58].
When the performances in those studies were examined, it was observed that the
accuracy scores ranged between 41.7% and 78%. In this study, only the integer number
DNA encoding method was within this range, and an accuracy score of 77% was
obtained. All remaining DNA encoding methods showed accuracy scores of over 85%.
Moreover, the proposed BFDNA DNA encoding method achieved a high accuracy
score of 92.16%. These results showed that computational features can also be effective.

5. Conclusions

In this study, a novel DNA encoding method called BFDNA has been proposed and
applied to analyze the DNA enhancers of both humans and mice using data taken from the
Vista enhancer browser data set with BiLSTM deep learning model. It has been observed
that the proposed BFDNA encoding method is effective in predicting DNA enhancers.
Moreover, the results of the proposed BFDNA encoding method were compared with
other DNA encoding methods in the literature. A deep-learning-based DNA enhancer
framework consisting of BiLSTM and BFDNA proved to be more effective in terms of
accuracy, precision, recall, F1-score, AUC score, kappa, and MCC compared to the other
DNA encoding methods. On account of this, this study introduces an intelligent computa-
tional model to identify and predict the DNA enhancers and their strength. Additionally,
the proposed BFDNA encoding method can be employed to predict other cis-regulatory
elements including insulators, promoters, and silencers. The results obtained from this
study showed that the proposed BFDNA method can be used in various other DNA studies.
In future studies, researchers will be able to use this developed method in STR analysis
studies, phylogenetic analysis, prediction of intron and exon regions, and various DNA
sequencing studies. Finally, this study demonstrates the performance of computational
approaches and shows that these approaches can be more effective than experimental
approaches. This may be an alternative to experimental approaches in future studies and
may be more efficient in terms of cost, time, and laboratory equipment.
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