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Abstract: The paper features a computational fluid dynamics study of a flapping NACA0015 hydro-
foil moving with a combination of sinusoidal heaving and pitching. Several kinematic configurations
are explored, varying sequentially pitch and heave amplitude, Strouhal number and phase angle,
in an attempt to determine the influence of each parameter on the propulsive performance.
To optimize efficiency the angle of attack should assume the highest value that also avoids the
arise of the leading edge vortex generated in the dynamic stall state. At low Strouhal number opti-
mum is reached at high heave amplitudes, which correspond to the configurations minimizing the
hysteresis in the (Cy, Cx) plane. The same outcome in terms of hysteresis minimization has been
verified to occur when optimal phase shift was considered. Differently, when the Strouhal number
and the angle of attack become higher, to exploit efficiently the lift increment owed to dynamic stall it
emerged the necessity of adopting low heave amplitude to improve separation resistance, avoiding
the occurrence of deep stall.

Keywords: carangiform thruster; propulsive performance; computational fluid dynamics; NACA0015;
flapping foil; discontinuous Galerkin; Spalart-Allmaras; dynamic stall

1. Introduction

In the field of autonomous underwater vehicles (AUVs), bio-inspired solutions have
been sought in the last three decades as a source of improvement in terms of propulsive
efficiency and maneuverability. As a matter of fact, fishes and marine mammals are faster
and nimbler than their robotic counterparts: AUVs turnabout radius is normally a multiple
of the robot hull length, namely from two to six times, whereas a biological swimmer is
capable to reverse its course without breaking, with a radius of curvature of the order of
one third of its body length. The cost of transport, which measures the energy spent to
cruise at a given speed, is also significantly lower for aquatic animals when compared
to the state-of-the-art of modern nautical technology [1]. Therefore, several prototypes
of swimming robots have been manufactured by researchers worldwide in the last thirty
years, and an extensive review is provided in [2].

Despite the efforts made to pursue the considerable potential payoffs of marine ani-
mals’ locomotion, the performance of biological systems are still far to reach. Indeed, the
possibility to emulate effectively the swimming modes developed by aquatic animals over
thousands of years of evolution depends from the understanding of the fluid mechanics
principles of swimming locomotion. In order to address this very ambitious objective,
computational fluid dynamics (CFD) analysis represents an invaluable tool to investigate
the propulsive performances of biological and bio-inspired thrusters.

According to swim mechanics, thrust force originates from the momentum transfer
due to the interaction between the fish body and the surrounding water [3]. Particularly,
body and caudal fin (BCF) swimmers generate thrust by bending their tails and caudal fins
following specific undulation patterns. BCF locomotion is further expanded in five swim-
ming modes characterized by the percentage of the body involved in the tail undulations.
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Thus, carangiform and subcarangiform swimmers generate thrust by bending respectively
half and the last third of their tails. The motion law commonly adopted by biologists
and roboticists to model the shape of the tail as a function of time is Lighthill’s travelling
wave, an harmonic function whose amplitude increases moving towards the caudal fin [4].
On the other hand, in thunniform locomotion, thrust generation is mainly due to the caudal
fin motion, where tail motion is mostly confined. Here, the fin traces an undulating path to
adjust its angle of attack and prevent flow separation [5]. Indeed, thunniform locomotion
is the most efficient swimming mode in BCF locomotion.

As stated before, several prototypes of bio-inspired underwater robots propelled both
by carangiform and thunniform locomotion have been designed by researchers in the
last thirty years. In the literature, the most common solution adopted to manufacture a
carangiform swimming robot consists of a sealed forebody hinged to a piecewise flexible
tail embodying a multi-joint, open-chain mechanism driven by dedicated servomotors or
by a single rotary actuator [6–8]. A similar architecture has been employed to drive the
caudal fins of thunniform swimming robots [9]. When a multi-joint mechanism is adopted
to approximate the tail undulation patterns of the aforementioned swimming modes, it
results easy to prove that the links of the system oscillate following an harmonic motion
law. As a result, the caudal fin, which coincides with the tail linkage end effector, performs
an harmonic roto-translation called flapping, where the individual components of the
resulting motion are oscillation functions characterized by different amplitudes but the
same frequency, and a constant phase shift. When a flapping caudal fin is employed as
the thruster of a bio-inspired underwater robot, the quantification of its performance in
terms of thrust generation and propulsive efficiency is a fundamental issue in the design
process. As a matter of fact, in order to size the robot actuation system, the propulsive
loads generated by the fin must be known as a function of the geometric and kinematic
parameters of flapping motion.

To this end, this paper presents a detailed investigation of the dynamic performance
of a roto-translating foil predicted by means of computational fluid dynamics. Here, the
fin is simulated as a stand-alone thruster and the numerical predictions allow a complete
characterization of its propulsive behavior. Aside from comparative considerations, the
analysis results can be also exploited to compute the dynamics of a swimming robot and
size its driving systems [8]. CFD analysis has been extensively employed in the field
of biomimetics. In [10], the authors performed a two-dimensional analysis on the base
ornithopter configuration of an insect flying robot using commercial CFD codes: the results
have yielded deeper insights regarding the influence of varying flapping frequency on
critical flow metrics regarding adequate lift and thrust generation. Flying systems have
been investigated also in [11], where CFD methods have been employed to model the
transitional aerodynamics of the variable camber morphing wing. Numerical simulations
have been also exploited in the marine field to model the hydrodynamic performance of
manta-like flapping [12].

Unlike other papers on the subject, the goal here is to provide a comprehensive
performance-oriented manual on rigid flapping thrusters, which could be exploited as a
design tool. Moreover, this work advances novel considerations on the physical effects of
each kinematic parameter and proposes new perspectives on the cause-and-effect relation-
ships between the wake structure and the propulsive performance, under a broad range of
kinematic conditions. The heave amplitude, in particular, was varied in an interval that has
seldom been studied in the past.

The paper is organized in the following way: Section 2 outlines the kinematics, intro-
ducing the fundamental expressions of the flapping motion and the parameters of interest.
In Section 3 the numerical setup of the simulations is presented, including the spatial
and temporal discretization schemes, the turbulence model implemented and the special
treatment reserved to moving boundaries. The results are collected in Section 4, preceded
by a brief description of the mesh and the definition of the main propulsive performance
indicators. Finally, the most significant conclusions are drawn in Section 5.
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2. Motion Kinematics

Fishes and aquatic mammals arrived to their current locomotion capabilities through
a process of biological optimization, driven by natural selection. As a result, a wide
and complex variety of swimming behaviors have developed, usually classified into
(i) undulatory, (ii) oscillatory, (iii) pulsatile jet-based and (iv) drag-based motions.
For a detailed explanation of each class the interested reader can refer to Smits’ well-
known review [13]. The species adopting motion behaviors that fall within one or another
of these categories further exhibit peculiar body shapes, with geometries and mass distribu-
tions that coupled with the adopted swimming configuration have the effect of optimizing
their underwater motion.

A complete and exact representation of such a rich variety of configurations, if possible,
would require the adoption of prohibitively complex models, rendering computational
simulations unfeasible. However, it has been showed how for the oscillatory configurations,
which include BCF swimmers, significant simplifications may be adopted and still derive a
model retaining relevant information about the physics of the problem. For instance, vari-
ous experimental investigations [5,14–16] showed that the approximation of the oscillatory
regime through a flapping hydrofoil predicts the maximum efficiency in the same range of
kinematic configurations found for cetaceans and carangiform fishes.

Within the flapping foil approximation, the body inertia contribution in the propulsion
generation is discarded, with the motion assumed to be concentrated at the body end,
namely at the propeller tail. The latter is then suitably approximated via hydrofoil profiles,
moving according to kinematic laws approximating their natural motion. The analysis has
here been restrained to a two-dimensional case, with the propeller approximated using a
symmetric NACA0015 profile, whose schematic representation is given in Figure 1 together
with some relevant kinematic parameters.

h(t)

α (t)

θ (t)

U∞

uy(t)
t

x

y

Figure 1. Scheme of the NACA0015 airfoil.

The profile is hence prescribed to move according to an harmonic law composed of a
rotation around a pivotal point and a vertical translation, following the parametrization
presented below:

θ(t) = θ0 sin(2π f t)

h(t) = h0 sin(2π f t + ψ) .
(1)

According to Equation (1), pitch amplitude and vertical displacement follow a sinu-
soidal variation with frequency f . The pitching motion occurs around a fixed center of
rotation, with the maximum angular displacement given by θ0. The simultaneous heaving
motion is characterized by an amplitude h0 and present, with respect to the periodic rotation,
a constant phase shift ψ.
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From the above relations, the vertical and rotational velocities may be read as:

ωt
z(t) = 2π f θ0 cos(2π f t)

ut
y(t) = 2π f h0 cos(2π f t + ψ) ,

(2)

where the superscript ‘t’ identifies the components representing the relative motion between
the inertial and the moving reference frames. The velocity induced by the profile vertical
motion affects the instantaneous, effective angle of attack, that according to the convention
exposed in Figure 1 may be expressed as follows:

α(t) = θ(t) + arctan

(
ut

y(t)
U∞

)
, (3)

with U∞ being the horizontal free-stream velocity. The maximum value reached by α in the
harmonic period is indicated by αmax.

A global description of the profile kinematics widely adopted in the topic of flapping
hydrofoils is provided via the Strouhal number

St = f
A

U∞
≈ f

2h0

U∞
. (4)

This non-dimensional parameter groups together the profile oscillation frequency
with a length scale that best characterizes the flow. In the context of flapping foils the
characteristic length may be associated to the wake width A, here approximated by the
total heave amplitude 2h0.

The predominance of heaving or pitching in the foil motion can be quantified by
means of the dimensionless heave ratio, defined by Akoz et al. [17] as

h∗ =
2h(t∗)
ATE

, (5)

where t∗ is the time instant at which the trailing edge (TE) reaches its highest vertical
position and ATE is the total vertical excursion of the TE. The motion is heave-dominated
when h∗ > 0.5, while h∗ < 0.5 identifies a pitch-dominated kinematics.

In order to provide a comprehensive analysis of the propulsive performance related to
the flapping motion, a wide range of kinematic configurations have been explored. Thrust
and efficiency have been computed for several combinations of St, θ0, h0 and ψ, which
have been extensively recognized as the major kinematic factors influencing the propulsive
capabilities of the foil.

3. Simulation Setup

As far as the numerical framework is concerned, the simulations were carried out
adopting an incompressible, high-order discontinuous Galerkin (DG) solver. This DG
solver was extensively validated over the years for a broad variety of fluid dynamics
applications [18–21]. The current implementation with a moving reference frame was
validated in [22] for a flow past a transversely oscillating cylinder, where the numerical
resuts were compared with well established reference data.

The problem has been modelled adopting as governing equations the fully turbu-
lent Unsteady Reynolds-Averaged Navier-Stokes equations (URANS), equipped with
the Spalart-Allmaras [23] one equation model for the turbulent viscosity-like variable ν̃.
Such choice has been motivated by the widely demonstrated efficacy of this particular
one-equation model in aerodynamic flow predictions, also showed in the framework of
oscillating foil, reported for example in [24,25]. The validity of the Spalart-Allmaras turbu-
lence model to simulate oscillating foils in a DG environment was addressed in a recent
paper [26], where the numerical results showed good agreement with the experimental
data available in literature.
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To avoid dealing with moving meshes a relative reference frame, fixed with the
NACA profile, is introduced. The governing equations are then formulated expressing the
velocity components ui defined in the absolute (inertial) frame described in terms of the
coordinates in the moving frame [27,28]. The relative motion between the two frames is
then represented by an inter-frame velocity vector Ui(t) = ut

i(t) + εijkωj
t(xk − x0,k). The

vectors ut
i and ωj

t, introduced in Equation (2), are now to be intended as expressed in terms
of the foil-fixed relative frame coordinates, with (xk − x0,k) representing the distance vector
from the rotation point and εijk being the Levi-Civita tensor. In this way it is easy to see
that Ui(t) exactly identifies the profile velocity, as seen from the inertial frame, projected
onto the relative one.

Exploiting the solenoidality of the velocity field Ui, the equations of motion assume
the following form:

∂ui
∂xi

= 0 ,

∂ui
∂t

+
∂uiuj

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
(ν + νt)

∂ui
∂xj

)
− εijkωt

j uk + Uj
∂ui
∂xj

,

∂ν̃

∂t
+

∂ν̃uj

∂xj
= Cb1S̃ν̃ +

Cb2
σ

∂ν̃

∂xj

∂ν̃

∂xj
− Cw1 fw

(
ν̃

d

)2
+

1
σ

∂

∂xj

(
(ν + νt)

∂ν̃

∂xj

)
+ Uj

∂ν̃

∂xj
,

(6)

where the working variable for the pressure is to be intended as the specific pressure
p = P/ρ and d is the minimum distance from the wall. The effective turbulent viscosity is
derived as νt = fv1ν̃, with fv1, as well as fw and S̃, being a closure function that, together
with the constants σ, Cb1, Cb2 and Cw1, defines the Spalart-Allmaras model. The interested
reader may find a comprehensive description of the previously cited terms in [23].

The numerical scheme is constructed starting from a suitable partition of the phys-
ical domain Ω, where the exact solution of the above model lives, into a set of ne non
overlapping elements Ωk:

Ω ≈ Ωh =
ne⋃

k=1

Ωk. (7)

The DG discretization is then obtained by considering an element based, modal
expansion for the solution vector making use of base functions made up by hierarchical, or-
thonormal polynomials up to order n. The analytical solution is hence locally approximated
via a finite-dimensional, piecewise-continuous polynomial, possibly discontinuous across
element interfaces.

For the sake of compactness the state variables are collected in a solution vector
q = {p, ui, ν̃}T so that the equations above may be represented in the following matrix
notation:

I0 ∂q
∂t

+∇ · (Fc + Fd) + g = 0. (8)

Here the term I0 = I − I(1,1), where I(i,j) denotes a single entry matrix, has been
introduced to cancel the time derivative of pressure in the continuity equation, keeping
the model consistent with the representation provided in Equation (6). Finally, Fc and Fd
identify the convective and diffusive flux tensors, both function of time and system state,
while the vector g, introduced to collect the source terms, contains the contributions of the
non-inertial components arising from the inter-frame formulation.

In this way, the modal Galerkin expansion for the vector q reads:

qk =
m

∑
i=1

φk
i (x) Qk

i (t) , (9)

where m = (n + 1)(n + 2)/2 defines the number of degrees of freedom, the function φi
identifies the i-th component of the polynomial base, and Qi collects the corresponding
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degrees of freedom of the solution vector. The index k, instead, takes into account the
element-based character of the method, with the base functions φi having compact support.

Having a local approximations of the solution vector living in the polynomial space
Pn ensures a space accuracy of order n + 1 for the velocity and eddy viscosity-like, and
order of accuracy n for the pressure.

The numerical scheme is then constructed passing through the variational formulation
of the above system of partial differential equations. Defining a test function v, living in
the same finite-dimensional vector space of the solution vector, the weak formulation is
obtained imposing an orthogonality condition among v and the governing equations and
integrating by parts:∫

Ωk

v ·
(

I0 ∂q
∂t
−∇v · (Fc + Fd) + v · g

)
dΩ +

∮
∂Ωk

v · (Hc + Hd)dσ = 0, (10)

where the element index, k, in the integrand functions has been dropped.
One of the key features of a DG method consists in the evaluation of a uniquely defined,

normal, numerical fluxes Hc,d, depending on the adjacent elemental states and gradients.
The convective flux, Hc, is here treated using the artificial compressibility flux method
reported in [29], while for the viscous contribution, Hd, the well-known BR2 discretization
scheme of Bassi and Rebay [30] is implemented.

Introducing in Equation (10) the previously defined n-th order modal expansion for
q finally yields a system of linear ordinary differential equations (ODEs) for the global
degrees of freedom (d.o.f.) vector Q:

M0 dQ
dt

+ R = 0 , (11)

where M0 is a modified global, block diagonal mass matrix, characterized by null entries
at the pressure degrees of freedom, Q is the global solution vector containing the solution
d.o.f. and R is the residual vector, containing the surface and volume contribution of flux
tensors and non−inertial source terms.

The system is discretized in time using a three-stages, third-order accurate Rosenbrock-
type Runge-Kutta scheme ROS3P [31]. The latter is of linearly-implicit type, it allows the
construction of the new time solution Q by freezing the Jacobian matrix ∂R/∂Q compu-
tation at each time step, avoiding hence any non-linear resolution procedure. The linear
system arising from time discretization of Equation (11) is finally resolved using a flexible
generalized minimal residual (GMRES) solver preconditioned by a highly parallel efficient
p-multigrid algorithm, described in [32]. It should be underlined that due to the inter-frame
velocity formulation, the boundary condition are non-homogeneous and the system is in
turn non-autonomous, with a d.o.f. time dynamics that results to be function of not only
the state vector but also, explicitly, of time.

4. Results

This section gives a brief description of the computational grid and introduces the
main results in terms of flow fields and propulsive performance plots. The latter have to be
intended as an integration of what was partially presented in the CFD analysis contained
within the multiphysics study performed by Costa et al. [8].

The fluid domain is a circle of radius 25c, where c is the foil chord length, discretized
by means of an unstructured mesh with ne = 4670 quadrangular elements, as illustrated
in Figure 2a. The Open Source software employed for the mesh generation is GMSH [33].
The cells nearby the boundary of the profile are structured-like and adequately curved
so to wrap around the foil curvature, as shown in Figure 2b. The face of these cells is
approximated using a piecewise third order polynomial. The cells in contact with the
profile have a height y+ ≈ 5 and get progressively inflated outwards for a total of 19 layers.
The region behind the foil is refined to enable an accurate study of the wake, which is
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directly correlated to the propulsive features of the flapping motion. In particular, it is
well known that the forward motion of a flapping foil is characterized by counter-rotating
eddies forming a jet-like wake, typically denoted as reverse Von Kármán vortex street [34].
In order to verify the independence of the results upon the mesh we did not follow a grid
refinement procedure, typical of low-order methods, but rather a check increasing the
polynomial degree of the solver, as done in [26], which is known to be a viable alternative
for high-order schemes. Simulations were carried out up to n = 6.

The reason was just to ensure the convergence of the results, as a matter of fact the
propulsive performances remained practically the same once n = 3 was reached, see for
example the performance data reported in Figure 3a. The time integration was done with
a step size ranging from 0.001c/U∞ to 0.05c/U∞. The choice was driven by the need to
obtain a satisfactory trade-off between numerical stability and computational expense.

(a) (b)

Figure 2. (a) Global mesh; (b) Close-up view of NACA0015.

θ

η

I
I
I

(a)

αα

θ

θ

θ

θ

θ

θ

(b)

Figure 3. (a) Propulsive efficiency and mean thrust coefficient as a function of the pitch amplitude for
cases with ψ = 90◦ and St = 0.1935. The nearly overlapping curves at polynomial degree n = 3 and
n = 6 indicate that convergence is reached for n ≥ 3. (b) Spatial orbits of α and Tα̇. Lines with the
same style share the same θ0.
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For the sake of generality, the forces in x and y-direction, i.e., Fx and Fy, and the
torque Mz exerted on the foil are normalized, ending up with the drag, lift and moment
coefficients below

Cx =
Fx

1/2 ρ b c U2
∞

, Cy =
Fy

1/2 ρ b c U2
∞

, CM =
Mz

1/2 ρ b c2 U2
∞

, (12)

where ρ is the fluid density and b is the (unit) span. It should be noted that the force
components Fx and Fy, together with the torque Mz, are to be intended as expressed in the
absolute reference frame, meaning that the referred x and y-direction coincide with the two
coordinate axis of the inertial frame.

The propulsive performance associated to the oscillating motion is evaluated in terms
of mean thrust coefficient CT = −Cx and propulsive efficiency ηp. Essentially, the assess-
ment is based on the amount of propelling force that the foil is able to produce per unit
period and on the effectiveness of this production mechanism in relation to the power spent
to activate the body. In mathematical form the two quantities can be defined as

CT =
1

ncT

∫ ncT

0
CT dt (13)

ηp =
CT

CP
, (14)

where CP is the mean power coefficient

CP = − 1
ncT

∫ ncT

0

[
Cy

ut
y

U∞
+ CM

cωt
z

U∞

]
dt , (15)

while nc and T represent the number of cycles selected for the average and the
period, respectively.

All the kinematic configurations addressed in this paper are featured by a Reynolds
number Re = U∞c/ν = 300, 000. As reported in [26] this value is enough to employ a fully
turbulent model, as for flapping foils the latter provides results analogous to those obtained
using an algebraic transition model. This holds true as long as there is no combination of
extremely small St and high α, which is not present in any of the simulated cases. The center
of rotation of the foil is located inside the profile, along the chord line, at 1/17 c from the
leading edge. Since the aim was to analyze the sensitivity of the propulsive performance to
the kinematic variables discussed in Section 2, a series of tests were performed by changing
just one parameter and keeping all the others constant. The choice of the test cases was
made starting from a known efficient flapping configuration typical of BCF swimmers,
characterized by θ0 = 15◦, h0/c = 1, ψ = 90◦ and St = 0.2. The kinematic parameters in
play were then varied between lower and higher values for a reasonably extended interval,
in order to include a representative number of operational conditions. Table 1 collects the
complete list of cases and the resulting propulsive efficiency and mean thrust coefficient.
The graphical version is given by Figures 3–5. Moreover, Figures 6–8 depict the vorticity
fields of the majority of the cases contained in Table 1. Indeed, despite someone remarks
that there is no one-to-one connection between the wake morphology and the propulsive
performance [13], the visualization of the vortical structures surely helps in understanding
the physical mechanisms that improve thrust and/or efficiency. Some of the kinematic
configurations have been also animated over few cycles, in order to study the shedding
of the vortices during upstroke and downstroke with greater detail. These animations are
provided as Supplementary Materials.

In the following paragraphs the effect of each kinematic parameter is isolated and
dissected.
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η
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(a)

α

α

(b)

Figure 4. (a) Propulsive efficiency and mean thrust coefficient as a function of the Strouhal number
for cases with ψ = 90◦ and θ0 = 15◦. Lines with the same style share the same h0. (b) Spatial orbits of
α and Tα̇. Lines with the same style share the same St.
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I
I

(a)
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ψ

ψ
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(b)

Figure 5. (a) Propulsive efficiency and mean thrust coefficient as a function of the phase shift for
cases with St = 0.1935 and θ0 = 15◦. (b) Spatial orbits of α and Tα̇. Lines with the same style share
the same ψ.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Contour plot of the instantaneous vorticity field for case h0 = c, ψ = 90◦ and St = 0.1935.
(a) θ0 = 1◦; (b) θ0 = 5◦; (c) θ0 = 10◦; (d) θ0 = 15◦; (e) θ0 = 20◦; (f) θ0 = 25◦.

(a) (b)

(c) (d)

Figure 7. Contour plot of the instantaneous vorticity field for cases with St = 0.5, ψ = 90◦ and
θ0 = 15◦. (a) h0 = 0.75c; (b) h0 = 1.25c; (c) h0 = 2c; (d) h0 = 3c.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Contour plot of the instantaneous vorticity field for case h0 = c, θ0 = 15◦ and St = 0.1935.
(a) ψ = 45◦; (b) ψ = 60◦; (c) ψ = 75◦; (d) ψ = 90◦; (e) ψ = 105◦; (f) ψ = 120◦; (g) ψ = 150◦;
(h) ψ = 170◦.

4.1. Angle of Attack and Dynamic Stall

Numerous works recognized the angle of attack as a crucial parameter to control the
propulsive performance of a flapping foil [15,35,36]. Figure 9 presents a compact portrait
of the entire space of configurations simulated, plotted in terms of propulsive efficiency
against maximum angle of attack.

Even though efficiency is affected by the interplay of all kinematic parameters, a global
optimum is always identifiable, for the explored configurations, in correspondence of those
generating αmax between 10◦ and 25◦. This is in fair accordance with what reported in [36],
but even so high values of efficiency are still found for αmax values falling well above the
static stall condition.
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Table 1. Propulsive efficiency and mean thrust coefficient of the whole set of kinematic configurations.

θ0 [◦] h0/c ψ [◦] St αmax [◦] h∗ ηp [%] CT

1 1 90 0.1935 30.30 1.00 55.3 0.442
5 1 90 0.1935 26.30 0.99 67.5 0.439
10 1 90 0.1935 21.30 0.97 72.7 0.373
15 1 90 0.1935 16.30 0.94 75.4 0.295
20 1 90 0.1935 11.30 0.90 75.4 0.205
25 1 90 0.1935 6.30 0.86 68.3 0.103

15 0.75 90 0.1 2.44 0.90 23.6 0.006
15 0.75 90 0.2 17.14 0.90 70.4 0.288
15 0.75 90 0.3 28.30 0.90 61.4 0.756
15 0.75 90 0.5 42.52 0.90 44.0 2.236
15 0.75 90 0.7 50.55 0.90 25.6 3.806

15 1 90 0.1 2.44 0.94 35.8 0.010
15 1 90 0.1935 16.30 0.94 75.4 0.295
15 1 90 0.3 28.30 0.94 65.5 0.833
15 1 90 0.5 42.52 0.94 42.1 2.134
15 1 90 0.7 50.55 0.94 26.9 3.697

15 1.25 90 0.1 2.44 0.96 43.9 0.013
15 1.25 90 0.2 17.14 0.96 78.2 0.350
15 1.25 90 0.3 28.30 0.96 67.8 0.902
15 1.25 90 0.5 42.52 0.96 37.3 1.969
15 1.25 90 0.7 50.55 0.96 24.2 3.393

15 1.5 90 0.1 2.44 0.97 48.5 0.016
15 1.5 90 0.2 17.14 0.97 80.2 0.374
15 1.5 90 0.3 28.30 0.97 66.9 0.957
15 1.5 90 0.5 42.52 0.97 33.6 1.834
15 1.5 90 0.7 50.55 0.97 22.0 3.164

15 1.75 90 0.1 2.44 0.98 52.6 0.018
15 1.75 90 0.2 17.14 0.98 81.9 0.394
15 1.75 90 0.3 28.30 0.98 61.5 0.933
15 1.75 90 0.5 42.52 0.98 29.9 1.730
15 1.75 90 0.7 50.55 0.98 20.3 2.913

15 2 90 0.1 2.44 0.99 54.7 0.019
15 2 90 0.2 17.14 0.99 83.2 0.411
15 2 90 0.3 28.30 0.99 56.4 0.876
15 2 90 0.5 42.52 0.99 25.1 1.450
15 2 90 0.7 50.55 0.99 15.9 1.593

15 2.5 90 0.1 2.44 0.99 57.6 0.021
15 2.5 90 0.2 17.14 0.99 84.9 0.435
15 2.5 90 0.3 28.30 0.99 49.1 0.807
15 2.5 90 0.5 42.52 0.99 23.3 1.228
15 2.5 90 0.7 50.55 0.99 16.0 1.521

15 3 90 0.1 2.44 0.99 59.2 0.023
15 3 90 0.2 17.14 0.99 85.9 0.450
15 3 90 0.3 28.30 0.99 46.5 0.767
15 3 90 0.5 42.52 0.99 23.0 1.173
15 3 90 0.7 50.55 0.99 15.9 1.554
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Table 1. Cont.

θ0 [◦] h0/c ψ [◦] St αmax [◦] h∗ ηp [%] CT

15 1 45 0.1935 23.90 1.16 63.8 0.416
15 1 60 0.1935 20.28 1.08 68.0 0.363
15 1 75 0.1935 17.45 1.00 71.6 0.322
15 1 90 0.1935 16.30 0.94 75.4 0.295
15 1 105 0.1935 17.45 0.90 77.7 0.281
15 1 120 0.1935 20.28 0.86 77.6 0.280
15 1 150 0.1935 27.80 0.82 68.7 0.296
15 1 160 0.1935 30.39 0.81 61.4 0.297
15 1 170 0.1935 32.90 0.81 46.8 0.285
15 1 180 0.1935 35.27 0.80 25.2 0.175

Due to the circulation-based aspects of the considered propulsion mechanism, the
persistence of high efficiency at elevated αmax suggests the presence of a continuous pro-
duction of lift that might be traced back to the onset of dynamic stall process [37,38].
Dynamic stall is a complex phenomenon affecting airfoils in conditions of unsteady motion.
It determines a delay in severe separation, enabling the profile to produce lift up to angles
of attack well above the static, stall-inducing value. Within the considered framework of
flapping kinematics, the contribution coming from the aforementioned unsteady motion
manifests as a time-dependent rate of change in the angle of attack α̇ = dα/dt. With its
shape and magnitude intimately dependent upon the tested motion parameters, such
quantity proved to be of fundamental relevance, being involved, in particular, in the control
of some of the dynamic stall aspects critically affecting the profile propulsive performances,
see Section 4.3.

α

η

η θ

η

η

η

η

η

η

η

η

η ψ

Figure 9. Propulsive efficiency as a function of the peak angle of attack.

As the dynamic stall regime sets in, imposing a dynamic delay of stall-like separation,
a lift increasing tendency along with α is observed. This follows a rather complex behavior
and is eventually characterized, for the larger values of α, by sudden increments owed to
the arise of local separation phenomena and the subsequent vorticity organization at the
solid boundary. These coherent structures, arising over the suction surface of the foil, are
usually referred to as leading edge vortex (LEV), or also as dynamic stall vortex (DSV) in
the specialized literature [39–41]. Despite the significant lift increase that such structures
have been demonstrated to provide, the obtained results seem to suggest how the optimal
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condition, from an efficiency viewpoint, is identified by configurations limiting, when not
avoiding, their formation. Following the observations reported in [39], the above assertion
may be rephrased by saying that for a configuration producing large thrust efficiently,
αmax should be in the so-called linear region of the (CL, α) plane, found within the
pre-stall regime.

In other words, analogously to steady aerodynamics, the peak angle of attack should
be kept low enough so to avoid massive separation if one wants to produce thrust in an
efficient way.

The authors are aware of the limitations related to the application of turbulence models
to unsteady aerodynamic problems, particularly when accurate capturing of loads at large
α and the onset of boundary layer separation are required. Nonetheless, the framework of
URANS simulations, employing several closure equations among which the SA version
used in this paper, proved its capability of yielding results qualitatively significant when
investigating dynamic stall [40].

For optimal conditions αmax should not be too small either. To clarify why one can
refer to Figure 10 and consider the following argument. For heave-dominated motions the
power produced by the torque Mzcωt

z has been observed to be much smaller than the one
generated by thrust and drag. Indeed, in the computations reported here, its contribution
to CP is less than 2% and hence it can be neglected. With this hypothesis the instantaneous
output and input power Pout, Pin are given by

Pout = (L sin γ︸ ︷︷ ︸
FxL

−D cos γ︸ ︷︷ ︸
FxD

)U∞ , (16)

Pin = (L cos γ︸ ︷︷ ︸
FyL

+ D sin γ︸ ︷︷ ︸
FyD

)ut
y , (17)

with γ = α− θ. The propulsive efficiency is then computed as

ηp =

∫ ncT
0 Pout dt∫ ncT
0 Pin dt

=

∫ ncT
0 (L sin γ− D cos γ)U∞ dt∫ ncT
0 (L cos γ + D sin γ)ut

y dt
. (18)

From Equation (18) it is easy to verify that ηp ≈ 1 when L� D, due to the fact that

ut
y

U∞
= πSt cos

(
π St U∞

h0
t + ψ

)
= tan γ . (19)

This means that as long as lift dominates drag, the efficiency is close to the unit
regardless of the modulus of the lift and its orientation. Otherwise the efficiency starts
to decay along with the lift-to-drag (L/D) ratio, due to the progressive emergence of the
detrimental contribution of drag both in the streamwise and vertical directions; this comes
as no surprise since the L/D ratio represents the aerodynamic efficiency of a body. In this
context the dependence of ηp on γ, and thus partially on St, even if it exists, is much less
impactful. Since prior stall one can imagine that, for a symmetric profile in quasi-static
conditions, L ∝ αU2

e f f , at very small angles of attack the lift is almost absent whereas the

drag is not, being D ∝ (CD0 + α2)U2
e f f with CD0 > 0. This leads to a very small L/D ratio

which determines not only a very small CT , but also an unsatisfactory ηp.
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Figure 10. Lift and drag vector decomposition into streamwise and vertical contributions.

4.2. Pitch Amplitude

The pitch amplitude is also an important quantity, because it does not only set the max-
imum excursion of the pitch angle, but it also modulates the pitch rate. Figure 3a displays
the performance sensitivity to the pitch amplitude θ0, maintaining St = 0.1935, h0 = c
and ψ = 90◦. The pitch amplitude was varied using the stencil [1◦, 5◦, 10◦, 15◦, 20◦, 25◦].
Note that the St was set to such value in order to get StTE = 0.2 for the reference case
h0 = c, θ0 = 15◦, ψ = 90◦, where StTE = f ATE/U∞ may be thought of as the ‘real’ Strouhal
number based on the TE total excursion.

The thrust coefficient presents a global maximum presumably within the interval
1◦ < θ0 < 5◦ and quickly drops for greater values of total heave excursion. This is due
to the progressive decrease of αmax as θ0 is increased, which in the end brings the profile
in a situation where lift is practically zero. The fact that the maximum mean thrust is
produced at peak angles of attack over 26◦ may be explained again with the dynamic stall
phenomenon, whose impact is amplified at low pitch amplitudes due to the higher rate
of change of the angle of attack, as displayed by Figure 3b. The maximum efficiency has
a value of approximately 76% around 15◦ < θ0 < 20◦. To understand why efficiency is
maximized in this region, one can recall what was said in Section 4.1 about the dependence
of ηp on the L/D ratio. The interval 15◦ < θ0 < 20◦ is indeed where the ratio between
lift and drag returns the highest value. For lower pitch amplitudes lift increases due
to the dynamic stall effect, but drag increases even more and gives a lower L/D ratio.
At higher pitch amplitudes, instead, the peak angle of attack is so small that lift is almost
null, differently from drag which is non-zero even when α = 0.

Figure 6 depicts the vorticity fields at varying pitch amplitude. Starting from Figure 6a
we can see a typical 2P wake, in accordance with the nomenclature introduced by Roshko
and Williamson [42]. The counter-rotating vortex pairs shed each half cycle are not balanced
though, as the second vortices generated during upstroke/downstroke (indicated with
2u/2d in Figure 6a) are much bigger than the corresponding first ones (identified by 1u/1d).
As θ0 increases, the second vortices lose strength and at θ0 = 10◦ they become less intense
than their counterparts, which seem to maintain instead the same size and level of vorticity
(Figure 6b,c). Further increasing θ0 the second vortices start to be fragmented in multiple
co-rotating swirling structures and become so weak that they merge almost immediately
with the first vortices, leading to a sort of 2S wake which resembles a reversed von Kármán
street. Above θ0 = 20◦ the instantaneous angle of attack always remains well below the
value of static stall, therefore clear separation cannot be appreciated and no vortex gets
formed downstream the foil, with the wake being basically streamlined. An interesting
insight could be extracted by noting that the vortex pairs observed up to θ0 = 15◦ seem
to be formed in two distinct phases. The first vortices are created at the extremes of the
heave motion, where α̇ is maximum, and detach when the foil is approximately in the
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neutral position, meanwhile the second eddies arise past the centerline, where α reaches its
maximum value, and detach when the profile approaches the point of maximum vertical
displacement. This could suggest that 2u, 2d are linked to the separation owed to the
reaching of an angle of attack greater than the stall value, whereas 1u, 1d are caused by
the sudden change of α rather than its instantaneous value, as it can be appreciated in
Figure 3b. On the base of this assumption 1u, 1d would be nothing but the so-called starting
vortices largely examined in literature [39]. Since the second vortices origin on the side
of the foil opposite to where the profile is moving (lower surface in upstroke and upper
surface during downstroke) their effect is beneficial in terms of thrust production, because
they rotate contrarily to a classical von Kármán street. On the other hand, the first vortices
rotate in the opposite sense, and so their contribution is detrimental or beneficial from
a propulsive point of view, depending on the timing of the detachment. Specifically, if
1u (1d) detaches below (above) the certerline it most likely has a positive effect on thrust
generation, otherwise it acts in drag favor. The positive or negative effect of the vortices
depends indeed not only on the sense of rotation, but also on the position with respect to
the neutral axis (see Section 4.4 for a more detailed motivation).

The fact that for small pitch amplitudes α is larger, especially around h = 0, produces
stronger second vortices and allows to obtain high CT . This, in turn, helps to maintain
efficiency at discrete levels. On the base of these reasonings one could argue that the
efficiency is decently high even when the second vortices weaken as in Figure 6c, despite
the first vortices maintaining the same strength as cases at smaller θ0. The explanation could
be traced back to the fact that when 2u, 2d becomes less energetic, 1u, 1d detach slightly
earlier and as a consequence they move upwards (downwards) in downstroke (upstroke)
switching their role from detrimental to beneficial in terms of propulsive performance
averaged over the entire period.

4.3. Strouhal Number and Heave Amplitude

In Figure 4a, the combined effects of Strouhal number and heave amplitude are
portrayed, keeping fixed θ0 = 15◦ and ψ = 90◦. Note that by maintaining constant pitch
amplitude and phase shift, the configurations characterized by the same St number produce
the same αmax, as one can write

α(t) = θ0 sin
(

2πt
T

)
+ arctan

(
πSt cos

(
2πt
T

+ ψ

))
, (20)

with an effect of the heave amplitude corresponding just to a direct modulation of the
motion period T = 1/ f = 2h0Tf low/(cSt), with Tf low = c/U∞ being the time scale of the
flow. Equation (20) hence shows that, for a fixed St, the term Tα̇ does not depend on the
heave amplitude, see also Figure 4b, and in particular as h0 is increased α̇ decreases and
vice versa.

The maximum efficiency manifests over a neighborhood centered in St = 0.2, with a
peak value above 85% for h0 = 3c at St = 0.1935. The fact that for all heave amplitudes
ηpmax occurs in such range is in line with what was documented in [5,15,43] and reflects the
assertion advanced in [14,16,44,45], namely that most fishes swim following this flapping
frequency, which corresponds to the most efficient from a propulsive standpoint. The mean
thrust coefficient monotonically increase along with St due to the continuous increment of
lift owed to the onset of dynamic stall effects, as already mentioned in Section 4.1.

Another distinctive feature, detectable in Figure 4a, is the significantly different effect
of heave amplitudes on the propulsion performance at small and large St. As far as ηp is
concerned, the cases with h0 = 3c, which have the highest h∗, present the best efficiency
at low St. After such optimum, ηp decreases very fast moving towards higher Strouhal
numbers, with the configuration h0 = 3c becoming the least efficient after St ≈ 0.25. These
findings confirm what reported by Akoz et al. [17], according to which heave-dominated
motions maximize their efficiency at low Strouhal numbers. On the other hand, the
configuration h0 = 0.75c, generating the least optimal efficiency among the ones that
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have been investigated, exhibits the most subtle ηp decrease at high Strouhal numbers,
demonstrating to be the most efficient one when high angles of attack are involved. An
almost identical trend might be observed in the CT curves. As a matter of fact when the
Strouhal number is low the mean thrust coefficient is maximum for h0 = 3c, instead at
high St the propelling force is optimal for h0 = 0.75c. An helpful insight on such dynamics
might be extracted from the visualization of the phase diagrams reported in Figure 11.
Therein we consider the lift coefficient defined as

CL =
L

1/2 ρ b c U2
e f f

, (21)

against the values assumed by α during one motion period. Two cases, in particular,
are analyzed as they show an opposite behavior with respect to the heave amplitude:
(i) St = 0.1 and (ii) St = 0.5.

At St = 0.1 a motion regime for which αmax < 3◦ is established. Due to low angles of
attack, the effects of stall delay coming from a fast dynamics are not triggered, with the
latter seeming to mainly induce strong energy-loss features. This is reflected in Figure 11a
by the presence of a distinguishable reduction of the hysteresis cycle as h0 is increased.
Such progressive collapse of the CL(α) curve appears to produce an alignment with the
2πα law, characteristic of steady, inviscid aerodynamics.

α

πα

(a)

α

πα

(b)

Figure 11. (CL, α) diagrams at ψ = 90◦ and θ0 = 15◦ for varying h0 at (a) St = 0.1 and (b) St = 0.5.

On the other hand, as the Strouhal increases a parallel increment of the αmax experi-
enced by the profile during its cycle occurs. At St = 0.5, Figure 11b, a value αmax = 42.52◦

is reached as the profile pass through the zero vertical position. For such values of angle of
attack, well above the static stall, the trend-inversion in the effects of increasing heave am-
plitude on the propulsion performances does not come as a surprise. Indeed, the beneficial
effects of a fast dynamics, allowing for a separation delay and a continuous lift production
result to be strongly mitigated when increasing h0, due to the associated decreasing effect
on motion frequency. Referring again to Figure 11b, for the configurations with h0 < 2c
the dynamic contribution coming from large α̇ enables to keep generating lift up to αmax,
reaching peak values after crossing the position corresponding to h = 0, i.e., as the pro-
file decelerates towards its maximum stroke displacement. Conversely, when h0 ≥ 2c
the reduction of α̇ causes a decrease in the maximum sustainable angle of attack before
occurrence of deep stall and thrust collapse. In particular, for h0 = 3c the lift coefficient
experiences a sudden drop after a localized peak at α ≈ 41◦ . Such behavior is consistent
with the onset of a deep stall, featured by the presence of a chord-sized LEV arising from
leading edge separation, before reaching αmax.
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Figure 7 includes the vorticity fields at St = 0.5 for the values of h0 reported above.
As h0 ≤ 1.25c, Figure 7a,b, both captured during upstroke, the frequency variation has a
clear manifestation in the modification of the pattern of the shed eddies. In particular, for
h0 = 0.75c the high motion frequency, inducing large α̇ values, avoid significant leading
edge separation as the profile travels through αmax while for h0 = 1.25c a distinct separated
region of positive vorticity is clearly distinguishable. When h0 ≥ 2c, Figure 7c,d, a chord-
sized LEV detaches from the solid boundary as the angle of attack approaches its maximum
in the cycle, with the profile entering in deep stall. For h0 = 3c, Figure 7d, a negative
vorticity region close to the profile identifies the further shedding of a large trailing edge
vortex (TEV). It might be conjectured, as also reported in [39], that as the formed LEV
detaches and starts being advected downstream, i.e., as the deep stall comes into being,
the sudden change of pressure distribution around the profile forces the roll-up of the
opposite vorticity boundary layer, creating the above mentioned TEV that, therefore, can
be considered as a further sign of deep stall onset.

In conclusion, independently on the St regime at which the profile operates, it would
seem that efficiency-driven propulsion solutions should mainly focus on kinematic con-
figurations ensuring minimal, if not absent, leading edge separation. At low Strouhal this
is guaranteed, provided an adequate choice of phase shift is performed, see Section 4.4,
by the low angles of attack that are produced, whereas when dealing with fast dynamics
regime an effective thrust production, even though sub-optimal, requires low heave.

4.4. Phase Shift

The phase offset between pitch and heave sinusoids establishes whether the leading
edge leads the trailing edge or vice versa. Figure 5a shows the propulsion characteristics as
function of the flapping phase angle. In this case ψ was varied between 45◦ and 120◦ with
a constant step of 15◦ and between 150◦ and 180◦ with a step of 10◦, keeping the remaining
parameters fixed at St = 0.1935, θ0 = 15◦ and h0 = c. This choice was made in order to
include both the interval where efficiency have been reported as the highest [35,36] and the
regions where ηp undergoes a considerable degradation.

According to Van Buren et al. [36] the phase shift is a crucial factor, and this is corrobo-
rated by Figure 5, where both ηp and CT are subjected to large variations, in an interval that
covers less than one-half of the entire spectrum of phases. The mean thrust tends to increase
moving away from ψ = 90◦ due to the increase of the angle of attack, which increments
the lift, nevertheless drag increases even more and causes ηp to diminish. Once ψ > 150◦

then αmax becomes too high and CT collapses, producing in turn a drop of the efficiency.
The cause is that α̇ becomes insufficient to avoid deep stall at angles of attack greater than
30◦. The phase shift, in fact, seems to have a rather bland effect on α̇ (see Figure 5b) and it
does not allow to obtain values high enough to counteract the simultaneous growth of α.
The efficiency is maximized at 105◦ ≤ ψ ≤ 120◦, in between the results outlined by Van
Buren et al. [36] and what is predicted by linear theory, for which ηpmax verifies at ψ = 90◦

and ψ ≈ 135◦, respectively.The diverse behavior of efficiency and mean thrust coefficient at
phase angles greater or lower than 90◦ can be investigated looking at Figure 12. Among
the simulated cases, the efficiency is optimal at ψ = 105◦ because it allows to change the
angle of attack in such a way to boost Cy in the first half of the upstroke and downstroke
phases and diminish it in the second halves, as showed in Figure 12b. This reflects in a
minimization of the hysteresis in the (Cy, Cx) space (Figure 12a), which is directly linked to
ηp as pointed out in Section 4.3. Aside from the hysteresis one can also note in Figure 12a
that for ψ < 90◦ the thrust coefficient reaches higher values throughout the oscillating cycle
(we recall that CT = −Cx), whereas for ψ > 90◦ the orbits span between smaller values.
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Figure 12. (a) (Cy, Cx) and (b) (Cy, h/h0) diagrams at varying phase shift for cases with St = 0.1935
and θ0 = 15◦. The curves in the (Cy, h/h0) space orbit counterclockwise.

Figure 8 displays how the vorticity field is affected by the phase shift variation. In the
interval considered, the flows past the foil are almost identical when ψ ∈ [75◦, 120◦] and
this finds confirmation in their very similar propulsive performance. The wake topology,
in particular, tends to a 2S reverse von Kármán. The only visible difference among the
various cases is the width of the wake, which decreases as ψ increases. This could justify
the highest efficiency at ψ ≈ 105◦ through the observation that the single vortices shed each
half cycle are closer to the neutral axis. Indeed, as long as the counterclockwise vortices are
above h = 0 and the clockwise vortices are below it, the propelling action is more effective
if the eddies are close to the neutral position, since the velocity distributes as a concentrated
jet. A schematic representation of this mechanism is illustrated in Figure 13. Outside of the
interval [75◦, 120◦] the wake becomes 2P, although starting from ψ ≥ 170◦ it tends to go
back to a 2S pattern. Specifically, the change in slope of ηp at ψ ≈ 160◦ in Figure 5 may be
associated to the detrimental vortices 1u, 1d which move upward and vertically align with
the eddies 2u, 2d. Their alignment causes their contributions to forward motion to cancel
out, leading to little neat thrust. Once ψ ≥ 170◦ the vortices 1u, 1d almost vanish, however
2u, 2d are squeezed towards the centerline and their contribution starts to cancel out, as
discussed right before.

ux ux ux

h = 0

Figure 13. Sketch of the streamwise velocity profiles for counter-rotating vortices travelling at
different distances from the neutral axis.

5. Conclusions

Several simulations involving the dynamics of a flapping NACA0015 profile were per-
formed on top a discontinuous Galerkin solver, where the high-order numerical framework
was exploited to ensure the resolution independence of the output data.

A wide range of kinematic configurations was presented, involving multiple heaving
amplitudes, Strouhal numbers, pitch and phase angles, so to replicate the typical operational
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conditions of BCF swimmers. A detailed analysis of the problem sensitivity upon such
variables was performed, and original observations concerning the relevance of dynamic
stall and phase shift effects were advanced.

The results highlighted that, when employing thrusters with an imposed kinematics
that makes use of circulatory-based propulsion mechanisms, the most relevant features
influencing the propulsive performance appear to be the angle of attack and its rate of
change. Upon inspection of the maximum angles of attack in the space of the tested
configurations, the presence of a global optimum from an efficiency standpoint clearly
emerged, located in the range 15◦ < αmax < 20◦. The display of a localized peak at such
values well above static stall, and the retaining of considerably high efficiency values for
even larger αmax, might be traced back to a leading edge separation delay imposed by the
unsteady motion effects, associated to the sinusoidal α̇. Furthermore, considering simple
balance equations it was showed, for circulatory-dominated propulsion, the necessity of
constraining the operational conditions within a regime ensuring high lift-to-drag ratios, so
to guarantee high propulsive efficiency.

As far as pitch angle is concerned, the explored configurations manifested an optimal
efficiency for 15◦ < θ0 < 20◦, corresponding to the interval in which the lift-to-drag ratio
of the profile is maximized. Furthermore, the inspection of the spanwise vorticity fields
underlined the influence of the pitch amplitude on the vorticity pattern arising behind the
profile. Specifically, vortices seems to be formed at two distinct separation stages, namely
once the maximum instantaneous angle of attack is reached and when rate of change of α
assumes the highest value.

Concerning the effects of Strouhal number and heave amplitude, it emerged once
again the key role played by the dynamics of α. For fixed θ0 and ψ, a given Strouhal
number directly sets αmax, while h0 directly modulates the frequency of the motion cycle.
Optimal efficiency was found in the interval 0.2 < St < 0.3, while mean thrust coefficient
increases monotonically up to St = 0.7, in line with the majority of the works published
on the subject. For values of αmax well above the static stall condition, large heave am-
plitudes, i.e. high frequencies, emerged as a feasible strategy to get very high efficiency.
Such condition, indeed, results in an increase of α̇ which allows to postpone leading edge
separation and maintain significant lift production at large angles of attack. On the other
hand, when the maximum angle of attack reached during the oscillating period is smaller
than the static stall value, an efficiency improvement was observed for narrow heave ampli-
tudes. For such cases the low frequency also brought to a decrease of the hysteresis in the
(Cy, Cx) plane.

A similar behavior in terms of hysteresis reduction was also detected when examining
the performance sensitivity to the phase shift. From a dynamic viewpoint, the reduction
of the loads hysteresis cycle appears to have the function of compensating the dynamic
effects owed to the profile motion. An adequate choice of ψ, in particular, allows for a faster
inversion of the lift sign in the transition between upstroke and downstroke, limiting the
portion of the cycle where the profile might have a detrimental propulsive behavior. The
results showed an optimal efficiency for 105◦ < ψ < 120◦, which in literature is typically
identified at ψ = 90◦.
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AUV Autonomous underwater vehicle
BCF Body and caudal fin
CFD Computational fluid dynamics
DG Discontinuous Galerkin
DSV Dynamic stall vortex
GMRES Generalized minimal residual method
LEV Leading edge vortex
L/D Lift-to-drag
TEV Trailing edge vortex
URANS Unsteady Reynolds-Averaged Navier-Stokes
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