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Abstract: The in situ measurement of the bioelectric potential in xilematic and floematic superior plants
reveals valuable insights into the biological activity of these organisms, including their responses to
lunar and solar cycles and collective behaviour. This paper reports on the “Cyberforest Experiment”
conducted in the open-air Paneveggio forest in Valle di Fiemme, Trento, Italy, where spruce (i.e., Picea
abies) is cultivated. Our analysis of the bioelectric potentials reveals a strong correlation between
higher-order complexity measurements and thermodynamic entropy and suggests that bioelectrical
signals can reflect the metabolic activity of plants. Additionally, temporal correlations of bioelectric
signals from different trees may be precisely synchronized or may lag behind. These correlations are
further explored through the lens of quantum field theory, suggesting that the forest can be viewed
as a collective array of in-phase elements whose correlation is naturally tuned depending on the
environmental conditions. These results provide compelling evidence for the potential of living plant
ecosystems as environmental sensors.

Keywords: Picea abies; bioelectric potential; electrophysiology; quantum field theory; fractal dimension;
Shannon entropy

1. Introduction

Plants have been studied for their salient intelligence [1–5], capabilities to implement
distributed information processing [6–9], indications of advanced perception, cognition
and adaptive behaviour [10–13], anticipatory responses [14], and swarm intelligence [15].
Higher plants employ impulses of electrical activity to coordinate the actions of their bodies
and long-distance communication [16–18].

The bursts of impulses could be either endogenous [19], e.g., related to motor activ-
ities [20–23], or in a response to external stimulation, e.g., the temperature [24], osmotic
environment [25], or mechanical stimulation [26,27]. Electrical signals could propagate
between any type of cells in plant tissue, there are indications, however, of higher con-
ductivity of the vascular system, which might act as a network of pathways for travelling
electrical impulses [28–31].

In a previous study [32], we established a methodological framework for measuring,
sorting, and analysing bioelectric data and demonstrated that forests could behave as
collective entities using quantum field theory. In this study, we use higher-order statistics
and quantum field theory to analyse the electrical activity of superior plants and their
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thermal fluctuations, gaining deeper insights into the complex interactions within forests
and their impacts on the surrounding environment.

We present the results of the Cyberforest Experiment [32], which was conducted in the
Paneveggio forest in Valle di Fiemme, under the town of Paneveggio (TN, Italy) [33–36],
at an altitude of 1950 metres and covering an area of 8000 square metres. This research
marks a significant advancement in our understanding of the complex and interconnected
nature of the forest ecosystem and has the potential to revolutionise our knowledge of
ecosystem functioning on a global scale. Consequently, the findings of this study will be of
great interest to scientists and researchers across multiple disciplines, including ecology,
environmental science, physics of complex systems, and quantum field theory.

The organisation of the paper is as follows: Section 2 presents the experimental setup
and numerical analysis. Section 3 describes the electrical and thermographic measurements
conducted on three individual trees/logs. Section 4 outlines the theoretical modelling of
the forest as a collective organism using a quantum field theory, and finally our conclusions
are drawn in Section 5. The Appendices contain details about the formalism used in the
theoretical modelling.

2. Materials and Methods
2.1. Experimental Setup

For the collection of xilematic bioelectric potentials from one tree, ten stainless steel
(AISI 316) threaded rods of 6 mm diameter were utilised. These rods were evenly spaced
along the trunk, uncovered portion of roots and logs, with a separation distance of 50 cm.
Each electrode pair was connected to a differential amplifier prior to recording the data.

For the collection of floematic bioelectric potentials, two recording circles were posi-
tioned around the trunk of another tree. One circle was located 1 m above the ground level
with a radial distance of 60◦, while the other was located 3 m above the ground level with a
radial distance of 90◦ (see Figure 1). As with the xilematic potential collection, each electrode
pair was connected to a differential amplifier prior to analogue to digital conversion.

Figure 1. Left: a schematic illustration of the xilematic bioelectric potential recording of site B
from a healthy tree (rotated 90◦ counterclockwise). Right: the floematic bioelectric potential record-
ing of site G from a healthy tree. Here, we show two sections at different heights from the
ground. The numbers indicate distances in centimetres, with relevant coordinates specified as
N = North, S = South, E = East, W = West, NE = North-East, SE = South-East, NW = North-West, and
SW = South-West.

The same threaded rods were used to collect bioelectric signals from five logs. The
first rod was inserted at the top of each log, and the second was positioned along one of the
roots, 50 cm away from the first. Both rods were then connected to the differential amplifier.
Signals were transmitted using the double-shielded ultra-low resistance INCA1050HPLC
cable from MD Italy, designed for high-fidelity audio applications. DI-710-US data loggers
were used in differential mode, recording data at a frequency of 1 sample per second per
channel with 16-bit resolution and a full range of 1 V.

The acquired data were smoothed using a first-order Savitzky–Golay function with a
variable-size window ranging from 41 to 301 points based on the noise level. The electrodes
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were labelled with the Greek letters α, β, γ, δ, ε, η, ζ, θ, ι, and κ. The collection sites were
labelled with the Latin letters ‘B’, ‘E’, and ‘G’.

Collection site ‘B’ represents a healthy, sun-exposed tree of approximately 70 years old,
site ‘E’ represents a portion of five dead logs in an area devastated by the 2018 Vaia storm,
and site ‘G’ represents a healthy, shadowed tree of approximately 20 years old. These
collection sites were selected to showcase the varying ages and vitality levels that can be
found in forests. The thermographies of trees at sites ‘B’ and ‘G’ and one log at site ‘E’
were captured at 30 minute intervals from a fixed orientation using a FLIR camera with a
240× 240 pixel CCD sensor. The frames were then cropped and masked to enhance the
signal-to-noise ratio of the relevant portions of the trunks.

The images were analysed using MATLAB R2021b, resulting in the computation
of Shannon entropy for each frame plotted over time. By aligning the heterogeneous
datasets of Shannon entropy and bioelectric potentials on a common time scale, a direct
correlation was established between them. Further numerical techniques were utilised to
extract complexity metrics from the biopotentials as detailed in Section 2.2. Our research
focused on comparing the Shannon entropy and fractal dimensions as this comparison
could provide valuable insights into the sensory capabilities of living plant ecosystems.

2.2. Numerical Analysis

In various demanding signal-processing systems and applications, using second-order
statistics, such as the mean, variance, and correlation, becomes insufficient when the data
deviate from a Gaussian distribution and the adaptive system is nonlinear [37–40]. In
such scenarios, higher-order statistics are necessary to represent the characteristics of
linear/nonlinear adaptive signal-processing systems with greater accuracy. Furthermore,
the concept of information theory suggests that the level of uncertainty determines the
information value of data. Indeed, the data carry little information if an event is highly
probable. By using metrics, such as the entropy, Simpson diversity, expressiveness, and
Lempel–Ziv complexity, higher-order statistics help to reduce uncertainty.

In this study, we computed the following information–theoretic complexity measures
to characterize the spatiotemporal activity patterns in raw data with a time window of
30 min, making sure to link the complexity calculation with the instantaneous thermogra-
phy of each particular site.

1. The Shannon entropy (I1) is a measure of the uncertainty of a discrete random variable.
Given a random variable s with n elements, s = {s1, s2, · · · , sn}, and its probability
distribution p(s) = {p(s1), p(s2), · · · , p(sn)}, the Shannon entropy can be expressed
mathematically as in Equation (1).

I1 = −
n

∑
i=1

p(si) log(p(si)). (1)

2. The Rényi entropy (I2) constitutes a fundamental aspect of the notion of generalised
dimensions, which play a crucial role in statistics as a measure of diversity [41]. The
mathematical formulation of this entropy is given by Equation (2). In the present
study, we fixed the parameter q to 2.

I2 =
1

1− q

(
ln

(
n

∑
i=1

p(si)
q

))
(2)

3. The Tsallis entropy (I3), a generalization of the standard Boltzmann–Gibbs entropy,
represents a non-extensive entropy measure [42]. The mathematical expression of
this entropy is represented by Equation (3), in which q and k denote the degree of
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non-extensivity and a positive constant, respectively. Our empirical study implements
a setting of q = 2 and k = 1.

I3 =
k

1− q

(
1−

n

∑
i=1

p(si)
q

)
(3)

4. The space filling (I4) is defined as the ratio of non-zero elements in the signal s to the
total length of the signal.

5. The Expressiveness (I5) is determined as the ratio of the Shannon entropy (I1) to the
space filling (I4). This metric provides an indication of the “economy of diversity”.

6. The diversity index (I6) quantitatively assesses the number of unique activities of in-
terest present in the acquired signal and considers phylogenetic relationships between
these activities, including aspects, such as the richness, divergence, and evenness. Its
mathematical formulation is given by Equation (4), where we set the parameter q to 3.

I6 =
1

q−1
√

∑n
i=1 p(si)p(si)q−1

=

(
n

∑
i=1

p(si)
q

)1/1−q

(4)

7. The Simpson diversity (I7) is a measure of the concentration of individuals classified
into types and can be calculated as I7 = ∑n

i=1 p(si)
2. The range of I7 is between 0 and

1, with 1 indicating infinite diversity, and 0 representing no diversity.
8. The Lempel–Ziv complexity (I8) is utilised as a measure of temporal signal diversity,

with a focus on its compressibility. The calculation of I8 was performed using the
Kolmogorov complexity algorithm [43]. This metric has been found to be valuable in
providing a scalar measurement for estimating the bandwidth of random processes
and quantifying the harmonic variability in quasi-periodic signals.

9. The perturbation complexity index (PCI) (I9) is determined by the normalisation of
the Lempel–Ziv complexity of the spatiotemporal pattern of the signal, relative to its
Shannon entropy (I1).

10. The Kolmogorov complexity (I10) is a metric that evaluates the information content
of a signal. It quantifies the minimum length of a binary code required to describe the
signal, assuming an optimal encoding, and can be expressed mathematically as per
Equation (5).

I10 = min{|P| | P ∈ 0, 1∗, U(P) = s} (5)

where U(P) is the output of the binary program P when executed on a fixed reference
universal Turing machine, and |P| is the length of the binary program P .

11. The fractal dimension (I11) quantifies the self-similarity of a signal across multiple
scales. In accordance with the notion that signals exhibiting more irregular or chaotic
patterns are expected to exhibit a higher fractal dimension than signals featuring
more regular or predictable patterns, in this study, the fractal dimension of a signal
was calculated using the Higuchi method [44]. This method is based on the fractal
dimension formula for a curve as represented by I11 =

log(n)
log(1/d) . Here, the parameter

d represents the step size used in signal sampling, and log(·) represents the natural
logarithm.

3. Results

The response data collected from the five differential channels of each study site were
found to be inherently noisy.

In Figures 2–4 (plots (a)), we present a series of plots with 20,000 s of continuous
recordings from a healthy old sun-exposed tree at site ‘B’, five dead logs at site ‘E’, and
a healthy young shadowed tree at site ‘G’, respectively. The underlying oscillations and
correlations between channels become more noticeable (as shown in plots (b) of each Figure)



Biomimetics 2023, 8, 122 5 of 21

when the time scale is reduced to 1 h and when the first-order Savitzky–Golay smoothing
function with 101 points is used.

In evaluating differences in biopotential values, it is essential to consider the rela-
tive scale where the difference is always between two electrodes. For vertically aligned
electrodes at site ‘B’, the potential difference for the α− β and ι− κ pairs is around 100
to 120 mV, whereas for the γ− δ and ε− ζ pairs, it ranges from 20 to 40 mV. This slight
difference between the two electrode groups may be attributed to the contact resistance
at the collection site, which is beyond the study’s control. It is possible that the natural
production of resin could increase the contact resistance and diminish the magnitude of the
measured signals. Interestingly, the η − θ pair exhibited the highest potential difference,
at approximately 650 mV, as the piezometric pressure of water in the soil generated an
ionic gradient whose boundary occurred at a specific height, corresponding to the electrode
level.

Figure 2. (a) Raw recordings from five differential xilematic channels situated along the height of
an old, healthy tree, captured over a 20,000 second continuous recording. (b) The plot of 1 h of
data after applying the first-order Savitzky–Golay smoothing function with a window of 101 points.
(c) The Kolmogorov complexity of the bioelectric potential data collected during thermographic data
acquisition. All channels are presented along with their average (the dashed red curve). (d) The
fractal dimension of the bioelectric potential data collected during thermographic data acquisition.
All channels are presented along with their average (the dashed red curve).

At site ‘E’, potential differences range from 70 to 80, 120 to 140, 20 to 30, 10 to 20,
and 70 to 90 mV for dead logs, with a lower dispersion of values. For the electrodes
positioned radially around the trunk at site ‘G’, the higher circle has potential differences of
about 80 to 100 mV, while the lower circle features potential differences ranging from 160 to
200 mV, except for the ι− κ pair, which has values of 900 to 930 mV. This high discrepancy is
attributed to the position of the electrodes, which face the sun during recordings and feature
the highest potential difference, demonstrating that sensors can accurately trace the plant’s
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physiological activity. In addition, observations on the signal amplitudes, frequencies, and
noise are reflected in the complexity measures.

Figure 3. (a) Raw recordings from five differential xilematic channels positioned on five different
dead logs in proximity, captured over a 20,000 second continuous recording. (b) The plot of 1 h of
data after applying the first-order Savitzky–Golay smoothing function with a window of 101 points.
(c) The Kolmogorov complexity of the bioelectric potential data collected during thermographic data
acquisition. All channels are presented along with their average (the dashed red curve). (d) The
fractal dimension of the bioelectric potential data collected during thermographic data acquisition.
All channels are presented along with their average (the dashed red curve).

In the xilematic recordings, since lymph movements along the trunk are linked to ionic
conduction, temporal shifts between channels can be easily justified when a particular
electrical feature, such as a valley or a peak, propagates.

In the floematic recordings, correlations can also be observed, particularly between the
two differential channels operating across the sun-exposed coordinates observable between
east and west passing from the south. However, the dead logs feature a less correlated
structure, with some exceptions possibly due to anastomosis of roots where electrical
connections may play a role in correlating signals. It is noteworthy that the floematic
recordings of the young tree exhibit a more pronounced bioelectric activity as demonstrated
by the multiple jumps and non-steady potentials measured. The corresponding complexity
measures, specifically the Kolmogorov complexity (as shown in plots (c)) and the fractal
dimension (as shown in plots (d)), display a greater extent and more significant variation
compared to the other two cases.

The complexity measures were computed using the formulas described in Section 2.2
from the raw signals. Each differential channel generated a complexity curve as illustrated
in panels (c) and (d) of Figures 2–4. The samplings caused spontaneous activity that induced
abrupt jumps in the biopotential recordings. This effect was particularly noticeable in the
ε− ζ couple shown in Figure 4a. However, the older tree (Figure 2a) and logs (Figure 3a)
exhibited more uniform noise without such jumps.
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Figure 4. (a) Raw recordings from five differential floematic channels situated along the trunk of
a young, healthy tree, captured over a 20,000 second continuous recording. (b) The plot of 1 h of
data after applying the first-order Savitzky–Golay smoothing function with a window of 101 points.
(c) The Kolmogorov complexity of the bioelectric potential data collected during thermographic data
acquisition. All channels are presented along with their average (the dashed red curve). (d) The
fractal dimension of the bioelectric potential data collected during thermographic data acquisition.
All channels are presented along with their average (the dashed red curve).

We employed the Kolmogorov and other complexity measures to provide a more
“holistic” interpretation of the biopotential curves. A higher complexity value indicated
that there were more biopotential fluctuations per time unit. The number and amplitude of
fluctuations varied across channels depending on the underlying physiological activity that
generated the signal. Electrical probes served as point sensors that recorded phenomena
related to living beings with vast complexity. Differences in entropy were also impacted
by photosynthetic activity, which was more influenced by topmost electrodes or couples
situated closer to the Sun position.

For example, in all complexity measurements for site ’B,’ we observed that the com-
plexity was maximal for the differential couple alpha− beta that corresponds to the topmost
electrodes positioned at 3 and 2.5 m from the ground level. On the other hand, the dif-
ferential couple corresponding to the trunk basement, η − θ, exhibited higher complexity
discrepancy and was, thus, excluded from the average calculation but was retained for
thermographic correlation analysis.

For site ‘G’, we observed that the complexity of the two differential couples positioned
3 m above the ground level was lower and well-separated from the three couples positioned
1 m above the ground level. Despite a similar trend, calculating the average for this case is
appropriate and does not pose any issues for the subsequent analysis.

Our study utilised thermographic imaging and bioelectric potential recordings at
three sites as shown in Figure 5. The data was synchronised in time, and complexity
analysis was performed to produce comparable results. After registering and masking each
frame, the Shannon entropy was calculated and compared with the fractal dimension of
electrical signals as shown in Figure 6.
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The results reveal a strong correlation between thermodynamics and bioelectricity at
sites ‘B’ and ‘G’ as demonstrated by the overlap of the two curves. At site ‘B’, the couple
η − θ corresponding to the trunk basement (depicted in the top row plots of Figure 5)
displayed a significant correlation. The young tree at site ‘G’ displayed an even more
pronounced correlation as it exhibited a variety of complex phenomena with a peculiar
trend of complexity over time.

In contrast, the correlation between thermodynamics and bioelectricity was weak in
the case of dead logs due to less spontaneous electrical activity and poor synchronisation
between differential couples connected to different individuals. However, our findings
demonstrate that the average fractal dimension of bioelectric potentials is directly related
to the Shannon entropy of thermographic images.

Figure 5. (a–f) Thermographic images of the tree at Site ‘B’. (g–l) Thermographic images of one of the
five logs at Site ‘E’. (m–r) Thermographic images of the tree at Site ‘G’. The temperature readings in
the top-left inset of each plot are direct observations with a fixed emissivity from the pixel indicated
by the middle cross. The actual time scale is also indicated.

The bioelectric potential curves recorded at different sites can be compared by cal-
culating their quadratic cross-correlations to determine if a time lag leads to better syn-
chronisation of the signals. This analysis was performed by dividing the data into 1 h
segments, selecting one signal as a reference, and shifting another signal in time relative
to the reference, both from tail-to-head and head-to-tail. At each step, the quadratic cross-
correlation was calculated. As shown in Table 1, several regimes were observed over 24 h,
with most cases showing a perfect synchronisation with a time lag of less than a second or
slightly larger in the evening and, in some cases, a perfect synchronisation in the morning
and afternoon.

In the subsequent Section 4, we explore the possibility of explaining the observed
outcome. In one instance (late at night), the time lag corresponded to a considerably
slower propagation speed of approximately 1 cm/s, which is consistent with previous
observations of the physical transport of signals by the lymph [32]. Figure 7 presents the
visual representation of the quadratic cross-correlation functions, particularly in the case of
chemical diffusion and long lags, which demonstrate that their structure is highly similar
and exhibits two correlations.



Biomimetics 2023, 8, 122 9 of 21

(a) (b)

(c)

Figure 6. (a) The relationship between the average Shannon entropy of thermographies and the fractal
dimension of couple η − θ for the tree located in site ‘B’. (b) The correlation between the average
Shannon entropy of thermographies and the average fractal dimension of bioelectric potential for
one of the five logs located in site ‘E’. (c) The relationship between the average Shannon entropy
of thermographies and the average fractal dimension of bioelectric potential for the tree located in
site ‘G’.

One occurs around 1100 s, corresponding to a propagation speed of 1.5 cm/s, and the
other, less prominent, occurs at the double the timescale, 6.4 mm/s. This could be attributed
to the presence of multiple ionic species, each contributing to the propagation of signals be-
tween distant individuals through the root network and their differing diffusion speeds. We
can conclude that bioelectrical signals from various trees may display accurate synchronisa-
tion or temporal deviation, depending on the hour of the day and the metabolic condition
of the forest. These factors are contingent upon prevailing environmental conditions, such
as temperature, humidity, insolation, and water availability.

Table 1. Analysis of the synchronisation time scales of biopotential fluctuations at different sites
through quadratic cross-correlation. This analysis was conducted by shifting the biopotential vectors
of channels α− β and computing the quadratic cross-correlation function for all lags within a range
of one-hour delay or anticipation. The values in the table represent the average of the calculations
performed on all permutations of the sites ‘B’, ‘E’, ‘F’, and ‘G’. The average propagation speeds were
calculated based on the average linear ground distance between the sites, which was 16 m.

Date Time Average Air Temperature [◦C] Average Lag Time [s] Average Speed [m/s]

24 October 2022 19:00 8.1 0.5 32
25 October 2022 01:00 6.9 1539 0.01
25 October 2022 07:00 5.0 0 ∞
25 October 2022 13:00 9.3 0.5 32
25 October 2022 19:00 6.4 2.67 6
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Figure 7. The results of a quadratic cross-correlation analysis on biopotential signals collected from
all sites, with a data chunk of 1 h. The biopotential vectors from site ‘B’ were compared to those from
sites ‘E’, ‘F’, and ‘G’ to investigate temporal correlations. The cross-correlation functions for each
comparison are represented by the black curve (site ‘B’ vs. site ‘E’), the red curve (site ‘B’ vs. site ‘F’),
and the blue curve (site ‘B’ vs. site ‘G’), respectively. The similar shapes of the curves demonstrate
the similarity in the behaviour of biopotential fluctuations across all comparisons. The time lag at
which the cross-correlation reaches its absolute maximum is approximately 1100 s, and a relative
maximum occurs at approximately double the time lag. The compared sites are located at about the
same distance, approximately 16 m.

4. Theoretical Modelling

Living plants are dynamic systems that constantly exchange matter and energy with
their environment in various forms. Consequently, they are not “closed” systems but
rather dissipative systems that “sense” the environment through the inflow and outflow of
matter and energy. In the previous sections, the reported experimental results confirmed
the permanent “dialogue” of the trees (and logs) with the environment in which they are
embedded as well as a dialogue among the trees themselves.

In this respect, the results reported, for example, in Table 1 and Figure 7, suggest that
there might be two main characterisations of the said dialogue. From one side, communica-
tion rests on the exchange of chemical vectors travelling at different speeds through the
roots, soil, and the atmosphere, in general. On the other hand, the cases of the observed
smallness of time-scale synchronisation are difficult to explain in classical terms of chemical
or other kinds of mediators whose speed would be exceedingly high, suggesting that the
underlying molecular dynamics of the trees might allow phase-correlations (entanglement),
by its nature—not mediated by messengers—but emerging from the plants sharing the
same environmental background (the same ground state in the language of our modelling;
see below).

This, in turn, suggests investigating quantum field theory (QFT) dynamics resulting
in long-range correlations at the molecular level. The theoretical modelling proposed in
this section is motivated by, and moves along the view derived from, the presented results
and provides the QFT formalism accounting for them. Our modelling framework is mainly
targeted towards comprehending and elucidating specific findings presented in Section 3,
which were also illustrated in Figures 2–7 and summarised in Table 1.

Specifically, we aim to shed light on the following aspects: (1) the diverse array
of dynamic regimes observed in the recorded bioelectric potential data, which provide
insights into the physiological activity of trees; (2) the shift in scale from microscopic events
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involving electrons, ions, and molecules to macroscopic manifestation in terms of bioelectric
potential recordings; (3) the pivotal role played by temperature and entropy in mediating
the transition between different dynamical regimes; (4) the manner in which the fractal
dimension, its changes, and its relationship with temperature and entropy contribute to
the characterisation of the recorded bioelectric potential data; and (5) the observations
on lag time scales of biopotential fluctuations at various sites, which suggest inter-tree
communication facilitated by the exchange of chemical and other physical vectors, and
phase-correlations through the shared environment in which trees exist.

The present study offers a qualitative comprehension of the experimental findings
using a modelling approach that integrates fundamental first principles into a cohesive
theoretical framework. Despite its limitations, our model’s strength lies in its unifying
ability to reconcile the observations with the underlying theoretical principles. As future
prospects, we intend to pursue a more comprehensive and descriptive modelling approach
that would yield quantitative fitting of the presented results.

The subsequent part of this section is arranged in the following manner. First, we
elaborate in Section 4.1 on how our theoretical model achieves the goal of elucidating the
outcomes of points (1) and (2). In addition, we evaluate points (3) and (4) in Section 4.2
and address points (1)–(3) and (5) in Section 4.3. Finally, comprehensive formal details are
presented in Appendices A.1–A.3.

4.1. On the Molecular Dynamics Underlying the Observed Electrical Activity

Previous sections demonstrated that the molecular activity in living plants is impacted
by a range of endogenous and exogenous factors, including pressure agents, thermal
and chemical gradients, light and other electromagnetic (EM) radiation, and gravitational
forces from the earth, moon, and sun. One significant consequence of these influences is
the breakdown of molecular dynamics symmetries.

In this section, we mainly focus on the dynamics of water molecules, which play a
central role in the lives of plants, and other molecules that have specific electrical dipole
moments due to the charge configuration of their electronic shells. Since these molecular
dipoles may be, in principle, oriented in any direction, their dynamics are symmetric under
spherical rotational transformations. However, the aforementioned forces and agents cause
this symmetry to break down, with dynamic consequences that can be well-understood
within the framework of QFT. In the phenomenon of spontaneous breakdown of symmetry
(SBS), the symmetry-breaking agents alter the system state; however, they do not modify
the field evolution equations.

This contrasts with explicit symmetry breakdown, where the breaking agents modify
the field equations [45–48]. SBS is known to generate a network of long-range correlations
among the system constituents in their lowest energy state (the vacuum or ground state
of the system). This leads, thus, to the formation of ordered patterns as stated by the
Goldstone theorem in QFT. These correlations, characterised by in-phase, non-destructive
interference, are referred to as coherent correlations. They are responsible for the system’s
ordering and for its macroscopic functional activity (such as in a crystal or a magnet).

The “order parameter” provides a measure of the degree of order in the system’s
ground state; it is a classical field, whose observed values do not, in fact, depend on
quantum fluctuations. For instance, in magnets and in crystals, the order parameter is
the magnetisation and density, respectively. In the case of molecular electrical dipoles,
the order parameter is the non-zero polarisation density P(x, t), which would be zero on
average in the absence of SBS.

In QFT theories with SBS, the boson quanta associated in the infinite volume limit
with correlation waves are the massless Nambu–Goldstone (NG) modes or quanta [49–51].
In the case of dipole correlation waves, these NG modes are called dipole-wave quanta
(DWQ) [52,53]. The system’s ground state is characterised as a coherent condensate of DWQ.

Endogenous or exogenous factors may induce variations in the value of the order pa-
rameter, corresponding to changes in the condensation density and, therefore, to transitions
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of the system through different dynamic regimes—referred to as phase transitions. This is a
characteristics of living systems, which undergo a continuous process of phase transitions.

Already at this point of our discussion, we see that the theoretical modelling includes
the transition from the microscopic scale of the molecular activity to the macroscopic scale
of the classical order parameter. We will return to this point in the following. Moreover,
the description of the tree system living over a manifold of different dynamical regimes,
continuously undergoing through phase transitions is also a specific feature of our QFT
theoretical frame. This point will be further discussed in the following.

Consequently, the connection between the condensation of DWQ and the electrical
pulse activity discussed in Section 3 becomes crucial. To illustrate this connection, we
simplify the analysis by limiting ourselves only to the space components of the EM vector
potential A(x, t). Consider the (local) U(1) gauge transformation:

A(x, t)→ A(x, t) +∇λ(x, t), (6)

and adopt, as customary, the Coulomb gauge condition ∇ · A(x, t) = 0. Consistently
with this condition, the constraint∇2λ(x, t) = 0 is imposed. The SBS of the global U(1)
symmetry results in the non-vanishing value of the order parameter v(x, t), which is found
to be |v(x, t)|2 = 2P(x, t) [48,53].

Let the NG boson, originating from the U(1) SBS [47,51,53], be represented by the real
field χ(x, t). It can be shown that the condensation of the χ(x, t) field in the system ground
state, described by the transformation χ(x, t)→ χ(x, t) + (q/h̄ c) λ(x, t), induces the gauge
transformation (6), provided that the consistency conditions∇2χ(x, t) = 0 is also satisfied
(few formal details in the Appendix A.1). We notice that observable effects only appear
when λ(x, t) is a singular and/or topologically non-trivial function (e.g., in the case of
vorticity or ring-like structures) [46,48,51,54].

In these cases, different paths between two points (two electrodes) A and B are not
equivalent, which underlies the high complexity detected in data acquisition. In conclusion,
our analysis, which is consistent with the established results in QFT [47,48,51,54], shows
that the evolution of the classical vector potential is directly linked to the topologically
non-trivial dynamics of coherent boson condensation in SBS.

We will see in the following that the fractal dimension observed in the measurements
can be also described in terms of the coherent state dynamics of the molecular activity.

4.2. Thermal Effects, Free Energy, Entropy, and Fractal Self-Similarity

The results described in Section 3 show that temperature and its changes play a
relevant role in the bioactivity of plants. In each one of the dynamical regimes through
which they evolve (the phase transitions), considered as equilibrium (or quasi-equilibrium)
states for the system coupled to the environment at a given temperature T, the free energy
F = U− TS has to be minimized according to the general laws of thermodynamics, namely
dF = dU− TdS = 0, with U denoting the internal energy, S the entropy, and the Boltzmann
constant kB set equal to 1 for simplicity.

In particular, the lesson coming from the results presented in Section 3 is that a sort of
“internal degree of freedom” exists for the living plants, such that energy transmutation is
possible from ordered configurations (low entropy) to (random) kinetic configurations or
vice versa, TS↔ U. The theoretical modelling must, therefore, account for such a feature
emerging from the observations.

Let us start by remarking that, according to our theoretical framework, the behaviour
of the boson DWQ coherent condensate can be well-approximated as that of an ideal gas
due to its coherence. Due to impurities or boundary effects, DWQ develops a non-vanishing
effective mass, me f f [53]. In accordance with the equipartition theorem, the magnitude
of the momentum p is related to the temperature T and the effective mass me f f through
p2/(2me f f ) = (3/2)kBT.

The correlation wavelength λ is related to the momentum p through the de Broglie
relation λ = h/p, with h being the Planck constant. The finite size over which the coherent
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correlated domain extends can be expressed as R = h̄/(me f f c) = nλ/2, where c is the
speed of light, h̄ = h/(2π), and n is an integer number. As established in previous
studies [32,53], in combining these relations, one finds

T =
πhc n2

6kBR
. (7)

The validity of the said approximation is confirmed by the fact that the inverse propor-
tionality expressed by Equation (7) between T and the range R over which the coherent
correlation extends is indeed consistent with the law of the minimization of the free energy
dF = 0, i.e., dU = TdS. This can be derived from (7) [32] by differentiating both sides,
obtaining

dT =
T

CV
dS, (8)

with CV ≡
(

dU
dT

)
V

=
(

dQ
dT

)
V

the specific heat at constant volume V of the DWQ ideal

gas and dS = dQ/T = CVd(logT). Considering that at constant V, dU = CVdT, (8) gives
dU = TdS.

The analysis of the thermographic pictures (Figure 5) presented in Section 3 suggests
that a dynamical control mechanism is activated in the trees, aimed at keeping their
temperature higher than the environment’s low temperature. Suppose that a decrease
(increase) in the environmental temperature needs to be contrasted by the tree for its
survival. Equation (7) shows that, in order to increase (decrease) T, the correlation range R
must be accordingly decreased (increased), with corresponding disordering and entropy
increase (ordering and entropy decrease).

The tree system, thus, reacts to the external perturbing actions according to the Le
Chatelier principle [55,56] by ‘disinvesting’ energy (entropy increase), i.e., releasing the
energy stored in ordered patterns to the gas-like kinetic regime or harvesting energy
from the gas-like kinetic regime and ‘investing’ it into the formation of coherent in-phase
correlated patterns (entropy decrease and coherent boson condensation) with all processes
constrained by the dF = 0 condition. We thus see that the mentioned energy transmutation
from ordered configurations to kinetic ones or vice versa, TS↔ U, is possible.

This leads us to the further possibility offered by our theoretical modelling—namely, of
understanding the dynamic origin of the observed fractal dimension of bioelectric potential,
of its changes, and its relation with entropy (cf. Figures 2d–4d and 6).

It has been shown [48,57,58] that an isomorphism exists between fractal self-similarity
and coherent states in QFT, and therefore, between the fractal dimension and the entropy
associated with the coherent condensate (cf. Appendix A.2). In log–log plots of conjugate
variables (e.g., the logarithm of power spectral density versus the logarithm of frequency),
if fractal self-similarity is present in the phenomenon under study, the measured data
follow, in their log–log plot, a distribution along a straight line, whose slope is related to
the fractal dimension. In order to make the reading easier, we report in the Appendix A.2
some details of the related mathematical formalism.

Here, we limit ourselves to note that, not only is the observed fractal behaviour described
in our scheme but also the changes of the fractal dimension reported in Figures 2d–4d and 6
are understood. In fact, from the discussion above presented, at constant V and constant
(or quasi-constant) T, the system may move along the straight line of slope T = dU/dS in
the plane (U, S). It is in such processes of changes in the coherent condensate densities
(described by the corresponding changes in the entropy) that the observed changes in fractal
dimensions occur (in agreement with the intrinsic relation between the fractal dimension
and entropy in our modelling). These features also emerge in the following discussion on
the system QFT coherent state.
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4.3. Entanglement and Collective Dynamical Effects

As already observed, living plants are open, dissipative systems, and the QFT canoni-
cal formalism requires that the description of their states also include the effects of temper-
ature and the environment [46–48,59]. Since fluxes ingoing to the system are outgoing from
the environment, and vice versa, the last one is described as the time-reversed image of the
system. Then, the finite temperature QFT state describing the system and its environment
is [32,59].

|0(θ(β))〉 = ∏
k

1
cosh θk(β)

exp
(

tanh θk(β) a†
k ã†

k

)
|0〉, (9)

which is the SU(1,1) generalised coherent state [60] at finite temperature T. Moreover, as
discussed below and in the Appendices A.2 and A.3, it is found to be an entangled and
squeezed state. For simplicity, the time-dependence of β(t) is not shown, β(t) ≡ β = 1/kBT.
The state is normalized to 1, 〈0(θ(β))|0(θ(β))〉 = 1, ∀θ(β), ∀β, ∀t, and the operators a†

k
and ak are the creation and annihilation operators, respectively, entering in the expansion
of the NG correlation field χ(x, t). The operators ã†

k and ãk are the creation and annihilation
operators representing the environment (the thermal bath) [46–48,59].

Equation (A3) shows that changes in temperature, β→ β′, lead to different dynamical
regimes in the infinite volume limit. This is also formally described by the change in the
slope of the straight line in the (U, T) plane, namely of the fractal dimension (cf. Section 4.2
and Appendix A.3) characterising the system dynamics, a new ratio dU/dS between
internal (kinetic) energy and energy stored in the dipole wave ordering correlations.

We introduce in the Appendix A.1, Equation (A4), the entropy Sa/ã and the free
energy Fa/ã for the modes ak and ãk. From Equation (A8), we see that, for dFa = dUa −
(1/β)dSa = 0 , variations in time of Nak(θ(β(t))) (the number of ak modes condensed in
|0(θ(β))〉, i.e., of the dipole wave ordering correlations), produce equivalent changes in
the “internal energy” dUa and in entropy dSa. There is a redistribution of the energy from
the ordered structure to the kinetic energy sector or vice versa, thereby, confirming our
discussion in Section 4.2.

Variations in the entropy, related to the Kolmogorov entropy in nonlinear dynamical
systems [61] are induced by fluctuations for small δθk and negligible ∂δθk/∂t at the min-
imum condition dFa = 0 (cf. Equation (A10)). Phase correlation in the state |0(θ(β))〉 is
manifest since it is an entangled state.

Remarkably, such an entanglement has effects at the macroscopic level since, as
seen, the em equations at a classical level are controlled by the entangled coherent boson
condensate [47,48,51,54]. On the other hand, the QFT state |0(θ(β))〉 determines mea-
surable quantities, such as thermal averages and the entropy, and is, therefore, called
a “macroscopic quantum state”, which is realistic in the manifestations of its coherent
condensate, e.g., the condensate in a magnet or a crystal.

Moreover, the extremely short time lags (cf. Figure 7 and Table 1) do not imply a
violation of relativity postulates since the phase velocity is not bounded by the light velocity.
The entanglement appears, thus, not as an effect of spooky forces at a distance [62–64] but
of the embedding of the plants in the common environmental bath, of which themselves are
part, described by the state |0(θ(β))〉. The covariance cov(Na, Nã) ≡ 〈NaNã〉 − 〈Na〉 〈Nã〉
gives a measure of the degree of entanglement.

One finds cov(Na, Nã) = (1/4) sinh2 θ 6= 0 for θ 6= 0. In contrast, cov(Na, Nã) = 0
for non-correlated modes since, in that case , 〈NaNã〉 = 〈Na〉 〈Nã〉 (expectation values
in |0(θ(β))〉 are denoted by the symbol 〈∗∗〉, and the subscript k has been omitted for
simplicity). For non-zero values of 〈(∆Na)2〉 and 〈(∆Nã)2〉, one might also normalize the
covariance dividing it by (〈(∆Na)2〉)1/2 (〈(∆Nã)2〉)1/2, obtaining then J(Na, Nã) = 1 for
the linear correlation coefficient J [32,62–65].

As a final result, as already observed in [32], the forest appears to be an in-phase
collective dynamical system.
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5. Conclusions and Future Prospects

In this study, we aimed to demonstrate the correlation between electrical activity pat-
terns of superior plants and thermographic images in a Picea abies forest. The experiments
were conducted in several sites with different stages of plant development, including the
dead state, and the data collected were time-stamped precisely to ensure accuracy, thus,
providing a unique dataset to analyse.

To analyse the data, we employed higher-order signal statistics and complexity metrics,
which enabled us to highlight the significant correlation between bioelectric signals and
thermal data. The bioelectric signals were found to reflect the metabolic activity of the
plants, while the thermal data reflected their thermodynamic state.

A theoretical analysis based on quantum field theory was used to explain the relation-
ship between the two aspects, and we viewed the forest as a collective array of in-phase
elements that are naturally correlated and tuned depending on environmental conditions.
Further analysis of the lag time between simultaneous recordings from different locations
showed that the synchronisation of bioelectric signals featured at least two regimes: one
with an exact synchronisation and one with a much higher time lag, possibly due to physical
diffusion.

In conclusion, this study provides valuable insights into the correlation between
electrical activity and thermographic images in a forest. Furthermore, our findings open up
roads for future research to explore the impacts of environmental changes on the bioelectric
response and the predictability of such changes.
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Appendix A

Appendix A.1. Dipole-Wave-Quanta Condensation and Bioelectric Potential

The charge density wave function σ(x, t) is introduced as:

σ(x, t) =
√

ρ(x, t) eiχ(x,t) , (A1)

https://www.cyberforest.it/
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where ρ(x, t) = |σ(x, t)|2 is the charge density, and it can be shown that ρ(x, t) ∝ |v(x, t)|2.
As said in Section 4.1, the condensation of χ(x, t) quanta in the ground state is described by
the transformation

χ(x, t)→ χ(x, t) +
q

h̄ c
λ(x, t), (A2)

which, thus, induces the phase transformation: σ(x, t)→ exp[i(q/h̄, c), λ(x, t)]σ(x, t).
The gauge symmetry of the EM field permits the gauge transformation of A(x, t) to

A′(x, t) = A(x, t) + (h̄, c/q)∇χ(x, t), and as a result, the condensation of χ(x, t) (Equation (A2))
leads to the transformation of the EM vector potential A′(x, t) to A′(x, t) +∇λ(x, t),
provided that the Coulomb gauge condition ∇ · A(x, t) = 0, the consistency condition
∇2χ(x, t) = 0, and∇2λ(x, t) = 0 are satisfied.

As observed in the text, only when λ(x, t) is a singular and/or topologically non-
trivial function, do observable effects appear. In such a case, boson condensation describes
extended objects with topological singularities, such as vortices and rings [46,48,51,54].
Thus, regular values of λ(x, t) do not result in observable effects. We remark that, for
singular λ(x, t), it is (∂1, ∂2 − ∂2, ∂1)λ(x, t) ≡ [∂1, , ∂2]λ(x, t) 6= 0, implying that gauge
transformations do not leave the EM field Fµν invariant and that different paths between
two points A and B are not equivalent. Furthermore, singularities are not compatible with
NG quanta that have a non-zero effective mass, which they acquire due to impurities or in
proximity to the system boundaries.

These results also contribute to understanding the observed long-distance electrody-
namic intermolecular forces [66].

Appendix A.2. Entropy and the Arrow of Time

Temperature (or its inverse β) acts as a label for the state |0(θ(β))〉 and its associated
representation of the canonical commutation relations (CCR). It can be shown [46–48]
that the state without condensed couples (ak, ãk), denoted by |0〉, and states at different
temperatures, β 6= β′, |0(θ(β))〉 and |0(θ(β′))〉, are orthogonal states in the limit of infinite
volume V → ∞:

〈0|0(θ(β))〉 → 0, and 〈0(θ(β′))|0(θ(β))〉 → 0, for V → ∞ ∀β 6= β′. (A3)

This expresses the fact that they belong to unitarily inequivalent representations of the
(CCR), meaning that the change β→ β′ leads to different dynamical regimes, |0(θ(β))〉 →
|0(θ(β′))〉 [46–48]. For each of the modes ak and ãk, one defines the entropy Sa and Sã,
respectively, and

〈0(θ(β))|Sa|0(θ(β))〉 =
+∞

∑
n=0

Wn log Wn , (A4)

Wn = ∏
k

sinh2nk σk

cosh2(nk+1) θk
. (A5)

Here, n denotes the set {nk}, 0 < Wn < 1 and ∑+∞
n=0 Wn = 1. Similar relations also hold

for Sã. The dissipative coupling of the system with the environment is manifest in the
balancing dSa = dSã, implied by the fact that the difference Sa − Sã is a constant of motion.

The free energy for a mode is

Fa ≡ 〈0(θ(β))|
(

Ha −
1
β

Sa

)
|0(θ(β))〉 , (A6)

where we used Ua ≡ Ha = ∑k h̄ωka†
kak (similarly for ã modes). From the minimisation

condition ∂Fa/∂θk = 0 , ∀ k , one finds, in the (quasi-)stationary case, the Bose–Einstein
distribution for the condensed ak modes condensed in |0(θ(β))〉

Nak(t) = sinh2 θk(β(t)) =
1

eβ(t)h̄ωk − 1
, (A7)
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where Nak(t) = Nak(θ(β(t))) is the number of ak’s. The minimising condition
dFa = dUa − (1/β)dSa = 0 also gives

dUa = ∑
k

h̄ ωk Ṅak(t)dt =
1
β

dSa = dQa . (A8)

(and similarly for dFã ) where Ṅak is the time derivative of Nak(θ(β(t))).
The time irreversibility (the arrow of time) is also implied by the formalism since time

evolution is controlled by entropy.

∂

∂t
|0(θ(β))〉 = −

(
1
2

∂Sa

∂t

)
|0(θ(β))〉, (A9)

with β = β(t), and similar expression holds with Sã.
Fluctuations for small δθk = θ′k − θk (θk ↔ θ′k) and negligible ∂δθk/∂t around the

dFa = 0 minimum condition, induce variations in the entropy

∆ ∑
k

h̄ ωk Ṅak(t)dt = ∑
k

2θ̇k(t) cosh(2θk(t))δθkdt =
1
β
(dS′a − dSa), (A10)

which, in nonlinear dynamical systems, are related to the Kolmogorov entropy [61].
We also remark that |0(θ(β))〉 is a squeezed coherent state with squeezing parameter

θk(β) [48,65], which is dependent on the temperature and time (recall that β ≡ β(t)) and is
actually related to the fractal dimension in the isomorphism between fractal self-similarity
and deformed coherent states [57,58] (cf. Appendix A.2).

Appendix A.3. Fractal Self-Similarity and Coherent States

In this Appendix, we summarise the discussion on the isomorphism, mentioned in
Section 4, between deterministic fractals (i.e., those iteratively generated according to a
definite recipe) and q-deformed coherent states [57,58]. The measure of lengths in fractals,
the Hausdorff measure, the fractal “mass”, self-affinity, and other fractal properties are
not discussed here (see [67,68]). The discussion is instead focused on the self-similarity
property, which is considered to be the most important property of fractals (Ref. [68], p. 150).

Although the conclusions are fully general, for concreteness and simplicity, we con-
sider, as an example, the Koch curve (Figure A1). Notice that, for notational simplicity, the
notation used in this Appendix is different from the one used in item 11 in Section 2.

Figure A1. The first five stages of the Koch curve.

In the first step or stage, of order n = 0, let u0 be a segment of unit length L0, called the
initiator [67], in the one-dimensional (d = 1) space. In the next step, order n = 1, construct
the “deformed segment” u1, called the generator, made of α = 4 units of length L1 = 1

3 L0.
Note that the “deformation” of the u0 segment requires that the one dimensional

constraint d = 1 is relaxed, i.e., u1 lives in some d 6= 1 dimensions, and we write u1,q(α) ≡
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q α u0, q = 1/3d, where d has to be determined by requiring that the “paths” u1,q(α) and
u0 be “equivalent”: u1,q(α)/u0 = 1, i.e., that qα = 1, and thus

d =
ln 4
ln 3
≈ 1.2619 . (A11)

d is called the fractal dimension or the self-similarity dimension [68]. Note that, for running α
and β, d = ln α/ ln β is the slope of a straight line in a log–log plot. From the discussion
reported below, it follows that straight line fittings in log–log plots signal that coherent
dynamics are underlying the observed phenomenon, and its fractal dimension is given by
the slope of the straight line.

By iterating the deformation process (L1 → L2 = 1
3 L1, and so on for n = 1, 2, 3, ...), one

finds
un,q(α) = (q α)n u0, n = 1, 2, 3, . . . . (A12)

and (q α)n = 1 by requiring for any n that un,q(α)/u0 = 1. Equation (A11) is then again
obtained for any n, and its independence from n is referred to as the fractal “scale-free”
property [69]. Thus, d provides a measure of the “deformation” of the un,q-space, for any n,
with respect to the u0 space. Notice that the fractal self-similarity is mathematically defined
only in the limit of n→ ∞. Furthermore, note that Ln → 0 for n→ ∞, and thus the “Koch
curve” is everywhere non-differentiable [68].

By specializing the values of α and the “deformation” parameter q, the self-similarity
relation (A12) characterizes, in the n → ∞ limit, a large class of fractals (the Sierpinski
gasket and carpet, the Cantor set, etc.).

Consider now, in the complex α-plane, the functions

un(α) =
αn
√

n!
, u0(α) = 1 , n ∈ N+ , α ∈ C. (A13)

In the space F of the entire analytic functions, they form a basis, which is orthonormal
under the Gaussian measure dµ(α) = (1/π) exp−|α|

2
dαdᾱ, with a normalization condition

ensured by the factor 1/
√

n!. Apart such a factor, the restriction to real α of the functions in
Equation (A13) gives the functions un,q(α)|q→1 in Equation (A12).

The fractal properties may, thus, be studied within the space F of the entire analytic
functions, provided that the results are restricted, in the end, to real α, α → Re(α). Since
it is q 6= 1 (q < 1) in Equation (A12), the “q-deformed” algebraic structure must be also
considered.

In the space F , the Fock–Bargmann representation (FBR) [60] of the Weyl–Heisenberg
algebra of the operators {a, a†, 1}:

[a, a†] = 1 , [N, a†] = a† , [N, a] = −a , N ≡ a†a, (A14)

is constructed by using the the identification:

N → α
d

dα
, a† → α , a→ d

dα
. (A15)

The vacuum state is |0〉: a|0〉 = 0, 〈0|0〉 = 1. The correspondence |n〉 ↔ un(α) is also
adopted, and |n〉 = (1/

√
n!)(a†)n|0〉, so that

a† un(α) =
√

n + 1 un+1(α) , a un(α) =
√

n un−1(α) , (A16)

N un(α) = a†a un(α) = α
d

dα
un(α) = n un(α) . (A17)
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As usual, in the FBR, the coherent state (CS) |α〉, such that a|α〉 = α|α〉, α ∈ C, is given
by [60,70]:

|α〉 = exp
(
−|α|

2

2

) ∞

∑
n=0

αn
√

n!
|n〉 = exp

(
−|α|2

2

) ∞

∑
n=0

un(α)|n〉. (A18)

with
un(α) = e

1
2 |α|

2〈n|α〉 . (A19)

relating the entire analytic function basis {un(α)} (Equation (A13)) with the CS |α〉.
The “q-deformation” is obtained by introducing the the q-derivative operator (which

is not given here for brevity; see, e.g., [71–73]) and using q = eζ , ζ = ln q ∈ C (recall that
q = 1/3d = e−d ln 3, i.e., ζ = −d ln 3, when a Koch fractal is considered). The operator qN is
found to act on f (α) ∈ F as [72]

qN f (α) = f (qα) , f (α) ∈ F . (A20)

which, on the coherent state functional (A18), gives

qN |α〉 = |qα〉 = exp
(
−|qα|2

2

) ∞

∑
n=0

(qα)n
√

n!
|n〉 , (A21)

and a|qα〉 = qα|qα〉, qα ∈ C. Setting u0 ≡ 1 and projecting out the nth component of |qα〉
gives the nth fractal iteration. The operator (a)n acts as a “magnifying” lens [67], showing
that the fractal nth iteration is given by the expectation value of (a)n in the state |qα〉 and
restricted to real qα:

〈qα|(a)n|qα〉 = (qα)n = un,q(α), qα→ Re(qα). (A22)

In conclusion, there is a one-to-one correspondence between the nth term in the coherent
state series (cf. Equation (A21)) and the nth fractal stage of iteration, n = 0, 1, 2, . . . , ∞. qN

is called the fractal operator.
Introduce the operators c = 1√

2

(
α + d

dα

)
, c† = 1√

2

(
α− d

dα

)
, with [c, c†] = 1. It can be

shown that

qNψ(α) =
1
√

q
exp

(
ζ

2
(
c2 − c†2))

ψ(α) ≡ 1
√

q
Ŝ(ζ)ψ(α) ≡ 1

√
q

ψs(α) , (A23)

where q = eζ is assumed for simplicity to be real, ψs(α) denotes the squeezed states in FBR.
The conclusion is that, up to the numerical factor 1/

√
q, qN acts in F as the squeezing

operator Ŝ(ζ) [72,74]. ζ = ln q is called the squeezing parameter. Since qNψ(α) = ψ(qα) (cf.
Equation (A20)), the q-deformation process, associated with the fractal generation process,
is equivalent to the squeezing transformation.

These results can be extended to two-mode coherent states, thus, confirming the
squeezing property of the state |0(θ(β))〉, Equation (9) (the details, not reported here for
brevity, can be found in [57,58]).
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