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Abstract: Self-assembly is usually considered a parallel process while self-folding and origami are
usually considered to be serial processes. We believe that these distinctions do not hold in actual
experiments. Based upon our experience with 4D printing, we have developed three additional hybrid
classes: (1) templated-assisted (tethered) self-assembly: e.g., when RNA is bound to viral capsomeres,
the subunits are constricted in their interactions to have aspects of self-folding as well; (2) self-
folding can depend upon interactions with the environment; for example, a protein synthesized on a
ribosome will fold as soon as peptides enter the intracellular environment in a serial process whereas
if denatured complete proteins are put into solution, parallel folding can occur simultaneously; and,
(3) in turbulent environments, chaotic conditions continuously alternate processes. We have examined
the 43,380 Dürer nets of dodecahedra and 43,380 Dürer nets of icosahedra and their corresponding
duals: Schlegel diagrams. In order to better understand models of self-assembly of viral capsids,
we have used both geometric (radius of gyration, convex hulls, angles) and topological (vertex
connections, leaves, spanning trees, cutting trees, and degree distributions) perspectives to develop
design principles for 4D printing experiments. Which configurations fold most rapidly? Which
configurations lead to complete polyhedra most of the time? By using Hamiltonian circuits of the
vertices of Dürer nets and Eulerian paths of cutting trees of polyhedra unto Schlegel diagrams, we
have been able to develop a systematic sampling procedure to explore the 86,760 configurations,
models of a T1 viral capsid with 60 subunits and to test alternatives with 4D printing experiments, use
of MagformsTM, and origami models to demonstrate via movies the five processes described above.

Keywords: self-assembly; self-folding; origami; 4D printing; polyhedra; topology; Dürer nets;
Schlegel diagrams; Hamiltonian circuits; Eulerian paths

1. Introduction

Self-assembly is an important biological phenomenon involved in the formation of
viral capsids, ribosomes, mitotic spindles composed of microtubules, molecular motors
and other associated proteins that segregate chromosomes, and membranes. Self-folding
is involved in DNA, RNA, and protein folding as well as in macroscopic activities such
as wing-unfolding in beetles, leaf unfolding, seed release in pinecone drying, poppy petal
blossoming, and closing of Venus flytraps. Questions about self-folding and self-assembly,
while simple to pose, can be more complex than originally supposed. Furthermore, the
processes of self-assembly and self-folding can often be inter-related. Herein we define
self-assembly to be the assembly of complex structures from elementary building blocks
without significant external intervention and we define self-folding as a branch of self-
assembly that is constrained by bending and binding at specific points within building
blocks. We investigated distinctive differences between self-assembly, self-folding, and
origami to develop a better understanding of principles of these types of self-organization,
and to better design structures that have potential applications in bioengineering research
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and biomedical applications such as drug delivery, additive manufacturing fabrication
strategies, and compact emergency shelters that can be delivered and easily constructed in
relief and refugee centers in remote locations or extra-terrestrially.

A difficult educational concept and a historical scientific problem is: “How can com-
plex organized structures form spontaneously?” Counterintuitively, self-assembly and
self-folding of complex biological structures is entropy driven. John Pelesko [1] notes
that “nature repeatedly uses the same motif in designing systems [namely:] . . . structured
particles, a binding force, an environment, and a driving force. Self-assembly and self-
folding have also emerged as fundamental processes in the current engineering approach
to advanced manufacturing processes: “self-assembly is one of the few practical strategies
for making ensembles of nanostructures” [2]. For mathematical students, self-assembly fits
generically as a bottom-up form of modeling.

We have been stimulated to develop a better understanding of fundamental principles
of self-assembling and self-folding polyhedra because both processes are involved in form-
ing the capsids of viruses. The work of Caspar and Klug ([3] classified icosahedral viral
capsids according to their triangulation number, while the work of Bonnie Berger et al. [4]
argued that perhaps there are local rules that govern the assembly of virus shells globally.
Twarock et al. [5] extended Caspar and Klug’s work to deal with quasicrystal viral capsids
and RNA-tethered viral capsomeres that combine aspects of self-assembly and self-folding.
This process is more general and has been called “template-assisted self-assembly” [6–8].
Another description of supramolecular self-assembly has been identified as “hierarchical
self-assembly” by Sun et al. [9]. Another distinctive process is associated with proteinaceous
fiber structures such as collagen, amyloid, and actin filaments and has been called “unidi-
mensional assembly” [10]. Herein we assert that further classifications of self-assembling
and self-folding yield insight into the behavior of such processes because there is a need to
understand that these descriptions of supramolecular formation of configurations are not
mutually exclusive.

In order to distinguish between multiple aspects of designing and utilizing self-
organizing models, we illustrate herein polyhedral models that we have designed which
feature self-assembly, self-folding, and hybrids between them in order to develop both
geometric and topological principles of these models of self-organization.

When Skylar Tibbits, the founder of the Self-Assembly Lab at MIT, published his book:
Things Fall Together: A Guide to the New Materials Revolution [11], it was heralded as
“a manifesto for the dawning age of active materials”. Reviewer Kevin Kelly argues that
Tibbits “demonstrates that the seemingly wild idea of a biology-like technology is not
impossible”. Tibbits [12] distinguished between self-folding and self-assembling processes
as well as human folded origami thusly:

“Material parts that are designed in pre-connected configurations such as strands,
fibers, sheet materials, and cast objects that can be designed to change shape and appearance
through mechanical joints. . . . [that] allow folding, curling, shrinking, expanding, and
other active material transformations.

Autonomous components that are moving around and need to find one another,
connect or disconnect and then error-correct. . . . This is the logical antithesis to human
assembly that requires skilled placement and directed energy to go from arbitrary compo-
nents into a final form. Self-assembly allows materials to spontaneously assemble without
pick-and-place guidance”. [12] (p. 75).

We argue that Tibbits’ [12] classification should be extended to include hybrid pro-
cesses. Thus, we present Table 1 (below) of the different types of assembling and folding,
the type of assembly pathway they represent, whether or not they are guided by an external
force (such as an external force like scaffolding proteins), how they have been studied in
the literature and in the lab, and whether or not there are any known biological analogues
to a particular type of folding.
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Table 1. Classification of assembly and folding approaches to constructing polyhedra.

Type of Organization Pathway Guided Methods of Study Biological Analogues

True Parallel
Self-Folding and Self-Assembly Parallel No Plastic, Nickel and Solder Viral capsids, ribosomes

Serial
Folding and Assembly Serial Yes Origami Viral capsids, proteins

Template-Assisted (Guided)
Serial Folding Serial Yes Origami; tethered plastic RNA-tethered capsid assembly

Serial Self-Folding Serial No 3D printed models in an
oriented system Protein Folding

Radial Serial Folding Radial No Magformers not yet known

Random Folding Random No Turbulent Systems in vivo cell conditions

In this paper we focus on the construction of physical models for parallel self-assembly
and serial self-folding and their design principles. In the future we plan to construct models
that are also hybrid in nature, such as those that self-fold into subunits and then self-
assemble into complete designs as well as template assisted serial folding.

2. Serial Folding

Human or guided serial folding is a folding process guided by some intelligent design
or external mechanism. In this method of folding, a guiding force directs the folding of the
net along a specific folding pathway where only one or very few folds occur simultaneously.
As people have only two hands, anyone physically folding a net or doing origami is an
example of guided serial folding, since they can only fold as many faces as they can control
in their hands, and therefore must proceed along the net in some logical manner. Of course,
the guiding force does not have to be human. A robotic arm(s) trained to fold polyhedron
nets would be considered the same type of folding.

In traditional origami models of polyhedral viral capsids, the polyhedron begins as a
flat sheet in the configuration of a Dürer net (Figure 1). A Dürer net has four properties:
“(1) The net is planar. (2) It is a single piece. (3). It is the result of cutting polyhedron edges.
This is called an edge unfolding. (4) It is non-self-overlapping in the plane, so that uncut
points do not unfold on top of one another”. (O’Rourke, [13] (p. 106)) As of that publication,
it was still an open problem of whether every convex polyhedron has an edge unfolding to
make a planar net. A variety of such origami models of various polyhedral viral capsids
is available for the Protein Data Base (PDB) site: https://pdb101.rcsb.org/learn/paper-
models/quasisymmetry-in-icosahedral-viruses, [accessed on 1 December 2022] on that
uses the Caspar and Klug [3] geometric approaches of laying out the individual capsomeres
on a hexagonal graph (Figure 2).

For models of the unit cell of 15 different polyhedral viral capsids see the Viral Zone
website (Figure 3).

Dürer nets are planar projections of polyhedra that preserve the geometrical properties:
lengths, areas, and angles. The number of configurations explodes combinatorially (Table 2).

In order to understand which polygonal face binds to another, we use the relationship
between the Schlegel diagram and the topology of the corresponding Dürer net. In Figure 4,
we have numbered each pentagon of a dodecahedron on the corresponding Schlegel
diagram and the corresponding Dürer net to be the same. These maps help guide the folder
in converting the planar origami model into its 3D polyhedron.

https://pdb101.rcsb.org/learn/paper-models/quasisymmetry-in-icosahedral-viruses
https://pdb101.rcsb.org/learn/paper-models/quasisymmetry-in-icosahedral-viruses
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triangle edge: T = (h2 + hk + k2). It counts the number of symmetrically distinct but quasi-equivalent
triangular facets in the triangulation per face of an icosahedron. (b) A T1 virus has 60 capsomeres
whereas a T3 virus has 180 capsomeres. Note that the volume of a viral capsid increases dramat-
ically as the T number increases. (c) Casper and Klug proved allowable triangulations consist
of equilateral triangles whose vertices lie on a triangular grid. Source: CC By 4.0 (https://math.
stackexchange.com/users/104041/shaun), URL: https://math.stackexchange.com/q/360-3852 (ac-
cessed on 1 December 2022).
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Table 2. Combinatorial Explosion of the number of Dürer nets for various polyhedra.

Combinatorial Explosion

Polyhedron Number of Faces Number of Dürer Nets

Tetrahedron 4 2

Cube 6 11

Octahedron 8 11

Dodecahedron 12 43,380

Icosahedron 20 43,380

Viral capsid (T = 1) 60 ~1030

The basic question for an origami-ist is: which Dürer net is easiest to fold in the
shortest period of time? Since only two edges can be attached at a time, folding is a serial
process. For a human folder, three different challenges arise: (i) how many edges need
to be glued?; (ii) how easy is it to successively attach edges to finish building a complete
polyhedron? and, (iii) which configurations produce intermediate 3D structures that if not
glued in a particular order prevent the construction of a complete polyhedron? Consider
two different Dürer nets in Figure 5.

https://math.stackexchange.com/users/104041/shaun
https://math.stackexchange.com/users/104041/shaun
https://math.stackexchange.com/q/360-3852
https://viralzone.expasy.org/1057
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Figure 5. Of the 43,380 configurations of Dürer nets, we challenge the reader to time themselves in
folding five different Dürer nets (a,b) (1, 5a, 5b, 15, 16d). Consider: When do previous gluings make it
difficult to make subsequent gluings? How difficult are the last few joinings to enclose the icosahedra?

Before leaving human-mediated folding, we have been informed by the research on
using Rubik’s snake to study protein folding [14] and subsequent research in robotics on
reconfigurable order [15–18]. For example, Li, Hu, and Bishop [17] show that in order
to convert the 1D sequence of Rubik’s snake into a 3D globular model of a protein, the
3D “ball” structure is generated by a series of rotational folds = [1, 3, 3, 1, 3, 1, 1, 3, 1, 3,
3, 1, 3, 1, 1, 3, 1, 3, 3, 1, 3, 1, 1, (3)], where “the last rotation in this sequence is marked
in parentheses. This indicates that the “ball” is a closed loop. Closure requires the first
and last wedges to be pinned”. Note that the linear configuration of the Dürer net of
an icosahedron in Figure 4a is not so dissimilar from 1D configuration of Rubik’s snake.
Li, Hu, and Bishop [17] conclude: “The obvious next steps are to develop methods for
collision detection, to explore the effects of different wedge geometries, and to consider
nonuniform embeddings. The methods presented here are sufficient to demonstrate a
systematic approach for achieving multidimensional (1D and 3D) multi-scale modeling
(via embedding) of the chain-like slender body objects”. These same issues of: (i) collision
detection; (ii) different geometries; and, (iii) nonuniform embeddings have arisen in our
research and are addressed below.

3. Radial Serial Folding

Another way to model origami that utilizes self-folding is to use magnetic polygons
available from a number of different toy companies. It is easy to build 3D polyhedral
from different 2D polygons (tetrahedra, octahedron, icosahedra from triangular pieces,
cubes from squares, dodecahedra from pentagons, etc.). These models are often used in
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education to help students learn Euler’s formula which applies to all convex polyhedra. We
have found that we could model the process of “Radial Serial Folding” with such models
(Figure 6). These high school experiments show that you can pick up the net from a single
polygon and the whole polyhedron comes together without any other necessary input. In
this example, gravity drives the folding of the innermost edges first, with the outer panels
eventually lifting off the table and swinging in to complete the finished shape. Assembly
pathways where folding begins towards the center of mass of the net and travels outward
is what we consider to be radial serial folding.
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Figure 6. Radial Serial Folding: Middletown, DE high school teacher Matt Juck demonstrated how
one Durer net planar configuration of a dodecahedron made with MagformersTM [3] easily folded
into a 3D polyhedron.

Due to the limitations of inertia on nets parallel folding nets in solution, we mentioned
that parallel folding in experiment often resembles inverted radial folding, where folding
starts at the edges of the net and travels inward towards the center of mass.

By using MagformersTM [19] to construct many different Dürer nets of polyhedra,
we could experiment and find examples such as in Figure 6 that when lifted easily as-
sembled into full polyhedrons while almost all others fell apart upon lifting one polygon
or only partially folded. On the other hand, we use MagformersTM [19] to illustrate that
simply having pieces that can form a structure does not mean that they are analogous to
self-assembling models. For example, in Figure 7, we show how that if we mix equilateral
MagformerTM units in a vessel, that we are more apt to generate lots of tetrahedra, octahe-
dra, and decahedra, with only a few incomplete icosahedra and no T1 60-piece icosahedra.
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Figure 7. Equilateral triangular MagformersTM [19] units can be assembled to form tetrahedra,
octahedra, decahedra, icosahedra and a T1-like 60-piece icosahedra.

Since MagformersTM [19] are quite heavy, every long Dürer net of either dodecahedra
or icosahedra that we tried was never able to fold by itself into a complete structure.
However, these experiments informed our 4D printing experiments in choosing which
Dürer net configurations to initially try.
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4. True Parallel Self-Assembly and Self-Folding
4.1. Parallel Self-Assembly

Palma, Cecchini, and Samorì [20] assert that: “Self-assembly is one of the most im-
portant concepts of the 21st century”. We [21] have asserted that the entropy-driven
self-assembly of many biological structures counters traditional narratives that assert bi-
ological organization is due to working against the second law of thermodynamics and
helps us understand the evolution of many complex biological structures. Thus, models of
self-assembly are important in helping scientists and students [22] better understand how
complex biological patterns (“designs”) can result from random interactions. Furthermore,
as noted by Swiegers, Balakrishnan, and, Huang [23]:

“thermodynamic self-assembly . . . involves the establishment of a kinetically
rapid, reversible, thermodynamic equilibrium . . . which results in the energeti-
cally most stable product being formed in the greatest proportions. Because the
equilibrium is reversible, the individual coordinate bonds need not form in the
desired manner each and every time. Instead, the constant forming and reforming
of bonds . . . results in ‘incorrect’ bonds being undone and associating ‘correctly’
under a thermodynamic impetus. Thermodynamic self-assembly therefore has
the unique property of being ‘self-correcting.’ . . . the key to using this class of
self-assembly as a synthetic tool is to ensure that the desired product will be
more stable than any possible competing product. . . . the [more that] the desired
product is selectively favored, the greater its stability relative to its competitors,
the greater its proportion in solution”.

Protein subunits (capsomeres) of polyhedral viral capsids vary in their configuration,
so we decided to focus on the 20 simple equilateral triangular pieces of an icosahedron. If
you look at the detailed protein structure of capsomeres of a T1 virus such as the Satellite
Tobacco Necrosis Virus (Figure 8), the inter-actions between capsomeres involve non-
covalent boding through ionic interactions, positive-negative polar associations, hydrogen
bonding, and van der Waals hydrophobic residue interactions. Thus, we used magnets
between our capsomere models as with Olson’s group’s interactive meso-scale models
of self-assembling polyhedral viral capsids [22,24–26] at the Scripps Research Institute
in La Jolla, CA. They produced beautiful self-assembling dodecahedra. As delightful as
these models have been for both the research and education they stimulated, we felt that
icosahedral models would better represent the different members of the polyhedral viral
capsid family. Thus, as original work in this area, we have modeled the self-assembly of a
T1 Satellite Tobacco Necrosis Virus in three different ways.
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beta-pleated sheets and alpha-helices; Positively charges residues are colored red. Negatively charged
residues are colored blue. (b) Charged residues are highlighted on two different 3D rotations of
a capsomere; The front (left) and back (right) of the monomeric subunit. Note the abundance of
charged amino acids on the inside of the capsomere, as well as on the sides where capsomeres contact
one another. (c) Calcium ions are associated with two of the three vertices of the triangular capsid.
Calcium ions interact with Asp, Glu, and Thr residues. These are more visible when examining
multiple subunits. (d) Interestingly, positively charged alpha helices of the capsomeres extend into
the interior of the polyhedral capsid which can bind with the negatively charged phosphates in
the nucleic acid (RNA) genome in the interior of the capsid; (e) Ribbon secondary structure of a
capsomere where an alpha-helix (yellow) extends orthogonally with respect to the primary axis of
the capsomere’s surface. Note that two large Beta-pleated sheets (green) on the right are antiparallel
to one another.

First, we [27] constructed a self-assembling icosahedron (Figure 9; Supplemental Movie S1).
We use a Schlegel diagram (Figure 10) to construct a topological model of where to place
the magnets so that all identical subunits align and bind. As was previously done with
Olson’s dodecahedron model [22,24–26], by reversing the location of north and south poles
of all of our magnets, we can construct two different enantiomers of the self-assembling
icosahedron. See Tibbits [11] (pp. 80–82) for a similar experiment with two different
enantiomers of the self-assembling dodecahedron.

Table 3. Self-Assembly Times (in seconds) of Ten Trials with the Icosahedron in Different Containers.

Type 1 2 3 4 5 6 7 8 9 10 Avg

Cylindrical 145 174 268 46 72 166 138 367 325 448 214.9

Spherical 58 67 44 97 84 116 86 16 81 28 67.7
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Figure 9. Four successive images from our design of the twenty 3D printed subunits to the self-
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printed subunits laid out on a table before putting into a vessel. (c) We found that a spherical vessel 
(Cook et al. [27]) was more conducive to (d) assembling polyhedra than in a cylindrical or an Erlyn-
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Figure 9. Four successive images from our design of the twenty 3D printed subunits to the self-
assembly of the icosahedron in a spherical flask. (a) The 20 individual subunits. (b) The 20 3D
printed subunits laid out on a table before putting into a vessel. (c) We found that a spherical
vessel (Cook et al. [27]) was more conducive to (d) assembling polyhedra than in a cylindrical or an
Erlynmeyer flask. See Supplemental Movie S1 and Table 3.
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Figure 10. Magnet map on a Schlegel diagram of an icosahedron.

After numerous unsuccessful attempts to produce self-assembling polyhedral, we
have developed five design criteria:

First criterion: we must consider the need for a magnet map of complementary attracting
and repulsing orientations. To determine which magnets should attract each other to form
our complete structure, we used Schlegel diagrams because they preserve the topology of the
configuration so that we can determine which subunits specifically bind to one another.

Second criterion: maintain a rotational symmetry of each subunit in the model.
Third criterion: design each subunit so that they are all identical to each other.
Fourth criterion: design each subunit so that it assembles into a sphere. We have found

that having subunits with convex faces increases the odds that the magnets in two separate
subunits will interact with each other when shaken in a container.

Fifth criterion: Self-assembly occurs in an environment. Therefore, the configuration
of the vessel (both its shape and size) that the pieces are shaken in matters enormously
in determining the time to produce full polyhedral. This is akin to a “ship-in-a-bottle”
problem. (Table 3 and Figure 11).
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each edge of the faces and their assembly back into a sphere. (c) Illustration of three and nine pentagon
subunits of a partial dodecahedron viewed from the interior. (d) North and south oriented magnet
holders for correctly inserting magnets into holes on the edges of subunits in a pattern dictated by
the Schlegel diagram magnet mapping (see Figure 8).

Thus, self-assembly occurs not only much faster on average in spherical containers
than in cylindrical containers, but the several of the experiments in cylindrical containers
were not successful in generating complete icosahedra.

Combined, these five criteria help to increase the speed at which a given design
correctly self-assembles, as the pieces can assemble in many different orientations. For
each of the five Platonic solids one can glue a north facing and a south facing magnet
on each edge of a convex subunit to achieve these goals. We have, for the first time,
successfully produced self-assembling tetrahedra, cubes, octahedra, dodecahedra, and
icosahedra models based upon these criteria.

However, to better model polyhedral viral capsids we wanted to build models using
rhombic cells (icosahedral asymmetric units) such as shown in Figure 3 for a T1 virus.
Therefore, we built a self-assembling decahedron of ten rhombi made by simply dividing
a sphere into the 20 equilateral triangular faces but keeping ten pairs glued together
(Figure 12a) and by developing asymmetric rhombi similar to those illustrated in many
virology journals (Figure 12b).
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Figure 12. Ten rhombic subunits can self-assemble into a decahedron model of an icosahedral viral
capsid. (a) A self-assembling decahedron constructed by keeping ten pairs of the subunits in Figure 8
conjoined; (b) a rhombic decahedron subunit with its magnet map, and hole and peg arrangement, for
3D printing, image created in Fusion 360; (c) a view of an incompletely assembled decahedron; The
knobs and holes are to force the long edges to assemble in only one direction. Without them it would
be possible for the long edge with black magnets to be attracted to the long edge with red magnets in
an “upside-down” configuration. These magnet maps are more complicated than the platonic solid
ones and this is where we spent a significant amount of time planning for the T1 model. Because of
this model (b,c) assembles faster and with a higher frequency of completion than model (a). We are
quite sure that if we used a spherical decahedron the assembly time would improve (b,c).
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The decahedron model of subunits (Figure 12c) with knobs and holes was an important
intermediate step in our research to develop a full sixty subunit T1 icosahedral model
(Figure 13).
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Figure 13. A T1 icosahedral model with sixty identical rhombic subunits. (a) An individual 3D printed
subunit with its magnets glued into its edges; (b) A render of an individual subunit with its magnet
map, and hole and peg arrangement, for 3D printing, created in Fusion 360; (c) A self-assembled
spherical model with 60 subunits.

Self-assembly in each of these cases is a parallel process as the subunits are simply
shaken together in a container with no one directing which subunit is interacting with any
other one. To avoid human mediation, we often do the shaking in a rock tumbler or shaker
bath to maintain randomness. When we do shake subunits by hand and intermediate
dead-ends occur (such as four pentagonal assemblies of five triangular pieces), in order
to assemble a full icosahedron, we break them and start over again. We also did this
when using the rock tumbler because it becomes apparent after a certain amount of time
tum-bling that some “bad” intermediates will not break apart on their own. We believe that
these biomimetic models of self-assembling polyhedral not only help us better understand
how viral capsids assemble in vivo, but illuminate how we might build nano-polyhedra
for drug delivery that both assemble a priori and easily disassemble a posteriori at a target
site with an external stimulus.

4.2. Parallel Self-Folding

We tackled the self-folding portion of this problem, thinking about self-folding nets of
the platonic solids in an attempt to clarify and consolidate the existing literature, standard-
ize existing notation, and provide new insights on what nets fold best.

By 3D printing a Dürer net of an icosahedron from polypropylene filament in two
successive layers (the first layer is thinner and be-comes a series of hinges) (Figure 14) and
dropping it into warm water, the net automatically folds into a 3D icosahedron. For such
self-folding models we have had to set the direction of the first printed layer so that it is
not parallel to any edge in the net. If the first (hinge) layer is printed with lines parallel to
the direction of the living hinge, then the hinge will quickly break.

Prior to our work, many of the self-folding models in the literature required high tech
spaces involving tiny models made from difficult to use materials such as solder or DNA.
Our models can be printed in a middle school with a $50 roll of polypropylene filament
and $10 of magnets. This work makes self-folding models much more accessible.

To consider self-folding, we need to understand that the number of Dürer nets explodes
combinatorially (Table 2 above). Thus, the primary design challenge is to determine which
Dürer net is able to fold faster to form a complete polyhedron with the least chance of
forming intermediates that are unable to continue to self-fold. To distinguish each of the
43,380 Dürer nets of dodecahedra and the 43,380 Dürer nets of icosahedra, we use the
Hamiltonian circuit of the degrees of the vertices (Figure 15).
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a flat lower layer before the convex domes on each triangular subunit are printed in subsequent layers.
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for the icosahedron. Categorizing all three of these different types of connections as vertex 
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Figure 15. Vertex degrees, given by the number of edges connected to each vertex, are numbered
on a Dürer net of an icosahedron. The net contains 20 faces (equilateral triangles; viral capsomeres)
with 22 external vertices and 22 external edges. In terms of Euler’s formula V − E + F = 2, this
polygon has only 2 faces (all of the colored net is one face and area outside of its boundary is the
second face: so 22 − 22 + 2 = 2. Note that once the net is folded, the resulting icosahedron has
V = 12, E = 30, and F = 20. This net can be distinguished from the other 43,279 cuts of an icosahedron
to generate a planar configuration by a unique Hamiltonian circuit of the degrees of the vertices:
beginning with the top left vertex (2-3-6-3-2-6-5-2-5-2-5-2-3-6-3-2-6-5-2-5-2-5-). It is important to
distinguish this Hamiltonian circuit from a Hamiltonian path that attaches along one edges of each
of the capsomeres [28]. Two additional topological invariants of these structures are the number of
vertex connections (see Figure 13) and the number of leaves (see Figure 14). Vertices of degree 6 we
will refer to as vertex connections—the edges attached to such vertices are easily joined to one another
when the 2D Dürer net if folded into the 3D icosahedron. Vertices of degree 6 on a Dürer net of an
icosahedron are called vertex connections. The above configuration thus has 4 vertex connections.
Leaves are identified as those polygonal subunits which extend singly (that is, they only share an
edge with one adjacent polygonal subunit). Each triangular face with a degree 2 vertex is a leaf. The
above configuration thus has 8 leaves.

Unfortunately, there is a confusion in the literature in the definition of a vertex con-
nection (Figure 16). Many articles define a vertex connection as a place on the net where
two faces share a vertex but do not share an edge [29,30]. This works well for nets of the
dodecahedron where there is only one way for such a joining of faces to occur, creating
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a 36◦ angle. This is also fine for nets of a cube, in which vertex connections only occur
with the formation of 90◦ angles. Applying this same definition to nets with triangular
faces results in two different types of vertex connections for the octahedron and three
different types of vertex connections for the icosahedron. In the case of the octahedron,
under the classical definition, vertex connections can be formed when three faces share a
vertex forming a 180◦ angle, and when four faces share a vertex forming a 120◦ angle. For
our purposes, we wish to only consider the more acute angle. Likewise, the first definition
of vertex connections allows 180◦, 120◦, and 60◦ angles to be considered vertex connections
for the icosahedron. Categorizing all three of these different types of connections as vertex
connections sacrifices specificity of categorization that we do not wish to allow. Specifically,
we desire a second, generalized definition for vertex connections that results in only one
type of angle vertex connection and can be generalized not only to the platonic solids but
to the Archimedean solids as well. So for the dodecahedron we consider only 36◦ degree
angles, formed at vertices of degree 4 in the Durer net, and for the icosahedron 60◦ degree
angles, formed at vertices of degree 6 in the net. From this point forward the term vertex
connection of a net is used to refer to a vertex of a net that is incident in that net to every
face it will be incident to in the assembled polyhedron. That is, at a vertex connection, the
only operation needed to be performed to complete the polyhedron locally in a ε ball about
that vertex is the gluing of two edges to each other. The number of vertex connections of a
net is then the number of vertices of degree 3 for a cube net, degree 5 for a cube net, degree
4 for a dodecahedron net, and degree 6 for an icosahedron net.
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We can also measure the number of leaves on the spanning tree of a net. This is also 
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All eleven Dürer nets of cubes and octahedra have been extensively studied by Dodd, 
Damasceno, and Glotzer [29]. They focus on the number vertex connections on each net 
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Figure 16. Vertex connections under two different definitions: We prefer the restrictive definition of a
vertex connection, shown in red. The traditional definition includes vertices shown in red and blue:
(a) vertices of degree 4 for Dürer nets of cubes, (b) vertices of degree 5 for Dürer nets of octahedra,
(c) vertices of degree 4 for Dürer nets of dodecahedra, and (d) vertices of degree 6 for Dürer nets of
icosahedra. We do not think including vertices of degree 4 for Dürer nets of octahedra or vertices of
degree 5 for Dürer nets of icosahedra are informative for folding potential.

We can also measure the number of leaves on the spanning tree of a net. This is also a
variable that highly relates to the compactness of the net and how well the net folds. A leaf
only shares one edge with other polygons in a Dürer net.
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All eleven Dürer nets of cubes and octahedra have been extensively studied by Dodd,
Damasceno, and Glotzer [29]. They focus on the number vertex connections on each net
(Figure 17).

Biomimetics 2023, 8, x FOR PEER REVIEW 21 of 32 
 

 

 
Figure 17. We have redrawn the 11 Dürer nets of cubes and octahedra studied by Dodd, Damasceno, 
and Glotzer [29] to highlight the position (red) and number vertex connections. We also have added 
a spanning tree of the centroids of each face. 

Spanning trees are a concept from graph theory that can be applied to our self-folding 
situation as a way to represent Dürer nets. A graph G = {V, E} is a collection of vertices V 
and a collection of edges E indicating which vertices have an edge between them. A span-
ning tree T = {V′, E′} of a graph G is a subgraph of G (That is V′ ⊆ V and E′ ⊆ E) such that 
V′ = V, every vertex has at least one incident edge, and T has no cycles. That is, we say T 
is a spanning tree if it contains all the vertices of the original graph, and every vertex still 
has at least one edge connected to it, but there are paths that can return to their starting 
vertex without repeating a vertex along the way. 

There are two different types of spanning trees we want to consider. The first type of 
spanning tree is that of a cutting tree. A cutting tree represents the edges you would cut 
along to unfold a solid into a planar Dürer net. If we created any cycles in this tree, then 
we would completely detach a face or a collection of faces from the rest of the net, so 
certainly our cutting tree cannot contain any cycles. Additionally, the Dürer net must lie 
planar across its entirety. Therefore, since any closed solid is not locally planar at each 
vertex, at least one edge must be cut along so that the net will lie planar there. Therefore, 
every vertex of the polyhedron must be visited with no cycles. So the cutting tree is a 
spanning tree of the graph G = {V, E} where V is the set of the polyhedron’s vertices and 
E is the set of the polyhedron’s edges. 

Another way to visualize the relationship of a spanning tree on a 3D polyhedron to 
a 2D Dürer net is that instead of doing an edge cut, we can cut 3 of the 6 faces of a cube to 
form 6 triangular faces. The resulting Dürer net has a spanning tree of length 9 instead of 
4 to 6 as shown in Figure 17 (Figure 18). 

Figure 17. We have redrawn the 11 Dürer nets of cubes and octahedra studied by Dodd, Damasceno,
and Glotzer [29] to highlight the position (red) and number vertex connections. We also have added
a spanning tree of the centroids of each face.

Spanning trees are a concept from graph theory that can be applied to our self-folding
situation as a way to represent Dürer nets. A graph G = {V, E} is a collection of vertices
V and a collection of edges E indicating which vertices have an edge between them. A
spanning tree T = {V′, E′} of a graph G is a subgraph of G (That is V′ ⊆ V and E′ ⊆ E) such
that V′ = V, every vertex has at least one incident edge, and T has no cycles. That is, we say
T is a spanning tree if it contains all the vertices of the original graph, and every vertex still
has at least one edge connected to it, but there are paths that can return to their starting
vertex without repeating a vertex along the way.

There are two different types of spanning trees we want to consider. The first type of
spanning tree is that of a cutting tree. A cutting tree represents the edges you would cut
along to unfold a solid into a planar Dürer net. If we created any cycles in this tree, then we
would completely detach a face or a collection of faces from the rest of the net, so certainly
our cutting tree cannot contain any cycles. Additionally, the Dürer net must lie planar
across its entirety. Therefore, since any closed solid is not locally planar at each vertex, at
least one edge must be cut along so that the net will lie planar there. Therefore, every vertex
of the polyhedron must be visited with no cycles. So the cutting tree is a spanning tree of
the graph G = {V, E} where V is the set of the polyhedron’s vertices and E is the set of the
polyhedron’s edges.

Another way to visualize the relationship of a spanning tree on a 3D polyhedron to a
2D Dürer net is that instead of doing an edge cut, we can cut 3 of the 6 faces of a cube to
form 6 triangular faces. The resulting Dürer net has a spanning tree of length 9 instead of 4
to 6 as shown in Figure 17 (Figure 18).
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Figure 18. (a) Each face of a cube is divided into two equilateral triangles to convert the six faces into
(b) twelve triangular faces. Once a cube is cut along the edges of the triangles to produce a Dürer net,
a spanning tree connects the centroid of each triangle (shown as a black dot on each face), according
to their adjacency on the surface of the original cube.

The other type of spanning tree is a skeleton graph. In this case, we take the Dürer net
itself and create a graph that represents it in the plane. We place one vertex at the center of
each face on the Dürer net, and we connect two vertices with an edge if those two faces are
connected in the planar Dürer net (Figures 1, 2, 14–17 and 19). Since the net must lie planar
and every face must be included for it fold to the completed polyhedron, the skeleton graph
is a spanning tree.
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Figure 19. A skeleton graph with its backbone drawn overtop the spanning tree in blue.

A spanning tree helps us generate two other useful topological invariants of Dürer
nets. In graph theoretic terms, the diameter of a graph is the maximum taken over all pairs
of vertices

(
vi, vj

)
of the minimum distance between vi and vj. However, since the skeleton

graph is a spanning tree, there are no cycles and therefore it sufficient to define the diameter
as just the length (measured in edges) of the longest path possible that does not repeat any
vertices. We could consider this path the backbone of the skeleton (Figure 19).

For a given tree, it is possible for there to be multiple maximal paths. Thus, some
skeleton graphs can have multiple backbones.

Another useful property of a spanning tree is its Degree Distribution. If we consider
the spanning tree, in graph theoretic terms, then we can consider what the possible degrees
of the vertices of the spanning tree of a Dürer net could be. A cube has 6 faces⇒ Spanning
tree has 5 edges

∑
v∈V

d(v) = 2e = 10

If A is the number of vertices of degree 1 (leaves), B = number of vertices of degree 2,
C = number of vertices of degree 3, etcetera, then we can therefore write two linear equations:

A + 2B + 3C + 4D = 10

A + B + C + D = 6
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This system of equations has only 4 discrete solutions that do not violate linear algebra
and that can be represented as a valid net. In Table 4, we show the four satisfactory
solutions and in Table 5 we give the number of possible degree distributions for each type
of Platonic solid.

Table 4. The four satisfactory solutions to the pair of linear equations.

A B C D Nets of This Type

2 4 0 0 4

3 2 1 0 5

4 0 2 0 1

4 1 0 1 1

Table 5. The number of possible degree distributions for each type of Platonic solid.

Shape of Faces of Unique Degree Distributions

Tetrahedron 4 2

Cube 6 4

Octahedron 8 3

Dodecahedron 12 21

Icosahedron 20 9

Menon et al. [31], Pandey et al. [32], Kaplan et al. [33], and Pigrim et al. [34] used
vertex connections and geometrically, the radius of gyration (Figure 20). Pandey et al. [32]
define a net Ω’s radius of gyration by the following integral which computes a measure of
how well packed the net is around its center of mass:

R2
g =

∫
Ω
(x− x)2 + (y− y)2dA
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Figure 20. To determine the radius of gyration, we view the net as being embedded in the Cartesian
xy-plane, where (x, y) is the center of mass of the net Ω and an integral calculates the volume under a
paraboloid with the domain on the xy-plane restricted to the net with the center of mass of the net
centered at the origin. Thus, the longer the net, and the less compact it is around its center of mass,
the larger quadratic penalty is applied by the integral.

Other researchers [35] have slightly simplified this formula, by taking a summation
over the centroids of the faces of the net instead of an integral over the whole net. We use
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this computation instead of the integral one because it produces nearly the same ranking of
nets from least to most compact, while only sacrificing a small amount of specificity.

R2
g =

1
N

N

∑
i=1

[
(xi − x)2 + (yi − y)2

]
In this formula, N is the number of faces in the Dürer net, (xi, yi) is the center of the

ith face of the Dürer net under some arbitrary enumeration of the faces, and (x, y) is the
center of mass of the entire net. This formula does the same computation of the first, but
instead of integrating over the entire net, it just performs the calculation for the center
of each face. Regardless of definition used in the literature, several independent studies
have found a strong correlation between a decrease of Rg and an increase in the rate of
successful foldings. In our data on the radius of gyration for various Dürer nets, we used
the computationally simpler summation equation. One discrepancy in the literature is that
both of these formulas are quadratically dependent on the side length of the faces of the
net. Therefore, when researchers calculate the radius of gyration for a net, it is comparable
to other nets in their paper, but may not be comparable to another researcher’s results who
has used a different side length in their experiment. Therefore, we propose a normalization
of the side lengths to 1 unit in this calculation. This allows radius of gyration of nets to
be comparable between experiments even if the nets are printed physically with different
side lengths. Regardless of definition, several independent studies have found a strong
correlation between a decrease of Rg and an increase in the rate of successful foldings.
Another way we can measure compactness geometrically is by considering the convex hull
of a Dürer net. The convex hull of a Dürer net is the smallest convex polygon that encloses
it (Figure 21).
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hull of the net are so positively correlated with their respective radius of gyration that we 
do not feel anything is lost (Figures 22 and 23). 

Figure 21. The convex hull (blue line) is defined by a convex polygon attaching all vertices on the
exterior of a Dürer net configuration (red polygons) excluding any edges on the periphery that do
not contribute to its convexity. The perimeter of the convex hull is the length of the blue line. The
area of the convex hull is the area in the interior defined by the blue diagonal lines.

We can measure both the area and the perimeter of the convex hull. Since the side
lengths of a Dürer net are fixed to 1 unit in all of our calculations, then the area of the
convex hull measures how much empty space is added that is not part of the Dürer net.
This gives us a measure of how much space is “wasted” and thus a measure of compactness.
However, the smallest area of a simple polygon is typically a thin rectangular shape, so
while radius of gyration prefers more spherical compactness, the area of the convex hull
picks up on more 1-dimensional compactness.

On the other hand, perimeter is minimized the closer the convex hull comes to being
circular. Therefore, the perimeter of the convex hull has a very high correspondence with
the radius of gyration. Graphs of linear regression of area and perimeter of convex hulls to
radius of gyration.
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Therefore, measuring radius of gyration, area of the convex hull, and the perimeter of
the convex hull all tell us different things about how we might consider a particular Dürer
net to be compact.

These geometric factors, however, are often driven by topological ones, which are
the main factors we consider herein. These topological factors are the number of vertex
connections and number of leaves on the net, as well as the degree distribution (Table 4)
and diameter of the spanning tree of the net (Figure 16). Instead of using the radius of
gyration as a geometric factor, we use the more visually easier to conceptualize: the area
and perimeter of a convex hull of the net. Statistically, both the area and perimeter of a
convex hull of the net are so positively correlated with their respective radius of gyration
that we do not feel anything is lost (Figures 22 and 23).
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vertex connections ranging from 2 to 10. 

  

Figure 22. For all 43,380 Dürer nets of dodecahedra, we did a scatterplot of the perimeters of their
respective convex hulls with their respective radii of gyration. We standardized the length of an
edge of a pentagonal face of a dodecahedron at “1”. The R2 value was 0.738 and the probability of
being due to randomness was less than 10−6. This significant linear relationship held for all nets with
vertex connections ranging from 2 to 10.
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analyzed the folding of dodecahedra and icosahedra, they only examined models with 
the maximal number of vertex connections. Therefore, we chose to investigate the exam-
ples of self-folding of dodecahedra of all nine categories of Dürer nets from 2 to 10 vertex 
connections with different perimeters of their convex. 

In experiment, true parallel self-folding rarely occurs due to limitations induced by 
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be lifted. However, to fold along the red-green edge, 2 panels must lift, and to fold against 
the green-yellow edge the assembly pathway has to resist the inertia of three panels. 

Figure 23. For all 43,380 Dürer nets of dodecahedra, we did a scatterplot of the areas of their respective
convex hulls with their respective radii of gyration. We standardized the length of an edge of a
pentagonal face of a dodecahedron at “1”. The R2 value was 0.142 and the probability of being due to
randomness was less than 10−6.
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This confirms our hypothesis that the radius of gyration and area of the convex hull
measure two different types of geometric compactness [35], whereas the perimeter of
the convex hull captures an extraordinarily similar type of compactness as the radius of
gyration. Since the relationship between the perimeters of their respective convex hulls was
much stronger than that of areas and captured much of the sense of the radii of gyration, we
primarily use the perimeter of the convex hull as our geometric measure in our exploration
of folded structures.

As defined above, we have identified seven topological and geometric variables that
play a role in measuring a nets compactness and how well it folds.

• vertex connections
• leaves
• length of spanning tree
• degree distribution
• area of a convex hull
• perimeter of a convex hull
• radius of gyration

While Menon et al. [31], Pandy et al. [32], Kaplan et al. [33], and Pigrim et al. [34]
analyzed the folding of dodecahedra and icosahedra, they only examined models with the
maximal number of vertex connections. Therefore, we chose to investigate the examples
of self-folding of dodecahedra of all nine categories of Dürer nets from 2 to 10 vertex
connections with different perimeters of their convex.

In experiment, true parallel self-folding rarely occurs due to limitations induced by
inertia, and thus more closely resembles inverted radial serial folding. In Figure 24, even if
folding begins simultaneously across the surface of the net, the outer panels will begin to
lift first. This is because for the net to fold along the red-blue edge, only one panel must be
lifted. However, to fold along the red-green edge, 2 panels must lift, and to fold against the
green-yellow edge the assembly pathway has to resist the inertia of three panels. Ultimately,
to form the folded polyhedron, the outer panels need to travel farther than the inner panels.
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Figure 24. This Dürer is colored to illustrate the order of difficulty of folding at an edge between
two individual polygons within the net. The left most blue panel will lift and fold to the inner green
panel to its right and the bottom left red panel will lift and fold to the inner yellow panel to its right
simultaneously in a true parallel self-folding.

In addition to the 3D-printed Dürer net of an icosahedron that we described above
(Figure 14) that successfully self-folds into a complete icosahedron, we have successfully
printed two different Dürer nets of dodecahedra that partially and fully self-fold (Figure 25).
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derstanding of the biological function in nature but also inspire the creation of high-

Figure 25. Two 3D-printed Dürer net of dodecahedra with flexible hinges for self-folding were chosen
with 2-vertex connections (a) and 10-vertex connections (b), respectively. In (c) the Dürer net of a
dodecahedron with 2-vertex connections did not fold successfully even when submerged in a warm
water bath for an extended period of time. Supplemental Movie S2. On the other hand, consistent
with our experience with “Radial Serial Folding” (Figure 6), the figures above (d–f) represent a correct
assembly pathway and the one we observe when submerging the Dürer net of a dodecahedron with
10-vertex connections into a warm water bath. In the first figure (d) you can see that each of the
leaves have folded first forming two almost complete halves of the dodecahedron. These fold first
as there is less force required to lift a single leaf into position as compared to the other hinges. To
complete the formation of the dodecahedron there are three edges that remain to be closed. If the
two on the sides fold before the hinge in the middle the dodecahedron will correctly fold into its final
shape. Supplemental Movie S3. In our experiments, these hinges do indeed fold before the middle
hinge. An incorrect pathway occurs if the middle hinge closes before the two remaining that are to
its left and right. In this case, the faces of the two halves of the dodecahedron would need to pass
through each other to complete the folding procedure.

5. Random Folding

Random folding occurs when there is no one ideal assembly pathway, or the assembly
pathway is determined by random events in the environment around the net. For example,
a net that folds while subject to natural or simulated turbulence (Löthman et al., [36]) where
panels are pushed and folded not by intelligent design but by random forces.

6. Conclusions

Kuang et al. [37] assert that: “theoretical models and design methodology are needed to
accurately predict and optimize the shape shifting . . . Biomimetic design for 3D printing, as
powerful tools for building hypothetical models, can not only facilitate better understanding
of the biological function in nature but also inspire the creation of high-performance
materials and functional engineering materials”. We believe that our explorations add
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significantly to the literature by moving beyond self-assembly of cubes and dodecahedra
and beyond self-folding of cubes, octahedra, and a few dodecahedra and icosahedra.

We are extending our work in three directions: (1) More extensive, and conscious
sampling from the 43,380 Dürer nets of dodecahedra and icosahedra. For example, we are
examining 27 dodecahedra with three examples each from 2 to 9 vertex connections with
quite different perimeters of their convex hulls. (2) Analysis of the thermodynamics and
kinetics of self-assembly and self-folding. Besides our movies of self-assembly in different
shapes and volumes of containers and experiments with shakers and rock-tumblers, we
plan to build a device similar to Lothman et al.’s [36] and Abelmann et al.’s [38] self-
assembly reactor so that we use video data to explore the impact of various degrees of
turbulence. They conclude that their work “implies that we can generalize the outcome of
these experiments to the design of electrostatically interacting objects of micrometer size
for 3D self-assembly, aimed at applications such as photonic crystals, supermaterials, 3D
electronics, or memories”. Re extending our self-folding experiments, we will not only
vary the temperature of the water that we immerse models in, we also are experimenting
with immersing the models in different orientations to study the seriation of folding.
(3) Agent-based modeling: Models are needed to explore the interactions of subunits in
self-assembly experiments from a bottom-up approach. Previous work by Troisi, Wong,
and Ratner [39] extol some advantages of applying agent-based modeling; “Common
features of the agent rules are as follows. (i) Nonlinearity: The rules have thresholds
and if-then conditions. (ii) Locality: Some of the decisions are taken considering only the
local environment and not the global average. (iii) Adaptation: The rules may change in
time through processes of learning”. Theoretically, we also are “examining whether it is
interesting to use knowledge on “morphogenesis” (cf. Alan Turing) and other conceptual
ideas of spontaneous self-organization to achieve a desired shape [40].

A classification of self-assembly developed by Mastrangeli, Mermoud and Marti-
noli [41] lays out a wider spectrum of potential approaches to investigating self-assembly.
They note: “SA represents the main embodiment of the bottom-up approach to the fabrica-
tion of heterogeneous and articulated micro- and nanosystems. Rooted in, and constantly
inspired by, biology and supermolecular chemistry, such an approach is complementary to
the top-down fabrication approach established at (though not exclusive to) the macroscale
because of its highly de-centralized, massively parallel, and largely unsupervised control,
which, together with intrinsic redundancy, makes it also highly robust and, in principle,
scalable to the control of larger structures”. We believe that our work that has drawn upon
the power of biological self-assembly and self-folding to explore their three fundamen-
tal features of biomimetic design: “highly decentralized, massively parallel, and largely
unsupervised control”.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomimetics8010012/s1, Movie S1: Self-assembly movie of twenty
subunits to form an icosahedron. See Figure 9. Movie S2: Self-folding movie of a Dürer net of a
dodecahedron that doesn’t completely fold. See Figure 25c. Movie S3. Self-folding movie of a Dürer
net of a dodecahedron that completely folds. See Figure 25d–f.
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