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Abstract: The vehicle routing problem with time windows (VRPTW) is a classical optimization
problem. There have been many related studies in recent years. At present, many studies have
generally analyzed this problem on the two-dimensional plane, and few studies have explored it on
spherical surfaces. In order to carry out research related to the distribution of goods by unmanned
vehicles and unmanned aerial vehicles, this study carries out research based on the situation of
a three-dimensional sphere and proposes a three-dimensional spherical VRPTW model. All of
the customer nodes in this problem were mapped to the three-dimensional sphere. The chimp
optimization algorithm is an excellent intelligent optimization algorithm proposed recently, which
has been successfully applied to solve various practical problems and has achieved good results. The
chimp optimization algorithm (ChOA) is characterized by its excellent ability to balance exploration
and exploitation in the optimization process so that the algorithm can search the solution space
adaptively, which is closely related to its outstanding adaptive factors. However, the performance
of the chimp optimization algorithm in solving discrete optimization problems still needs to be
improved. Firstly, the convergence speed of the algorithm is fast at first, but it becomes slower
and slower as the number of iterations increases. Therefore, this paper introduces the multiple-
population strategy, genetic operators, and local search methods into the algorithm to improve its
overall exploration ability and convergence speed so that the algorithm can quickly find solutions
with higher accuracy. Secondly, the algorithm is not suitable for discrete problems. In conclusion,
this paper proposes an improved chimp optimization algorithm (MG-ChOA) and applies it to solve
the spherical VRPTW model. Finally, this paper analyzes the performance of this algorithm in a
multi-dimensional way by comparing it with many excellent algorithms available at present. The
experimental result shows that the proposed algorithm is effective and superior in solving the discrete
problem of spherical VRPTW, and its performance is superior to that of other algorithms.

Keywords: chimp optimization algorithm; improved chimp optimization algorithm; spherical
VRPTW model; metaheuristic algorithm

1. Introduction

The vehicle routing problem (VRP) is a famous path-planning problem that was
first proposed by Dantzig and Ramser [1]. It has been widely studied in the field of
optimization problems and is a very practical model (Toth et al. [2]). In recent years,
many variants of the VRP have been developed, such as the VRP with time windows
(VRPTW) (Yu et al. [3]), green VRP (GVRP) (Xu et al. [4]), capacitated VRP (CVRP) (Zhang
et al. [5]), multi-depot VRP (MDVRP) (Duan et al. [6]), and heterogeneous VRP (HVRP)
(Ghannadpour et al. [7]). To sum up, there are mainly three kinds of classical algorithms to
solve VRPs, which are exact algorithms, traditional heuristic algorithms, approximation
algorithms, and metaheuristic algorithms. Exact algorithms (such as branch-and-price (Li
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et al. [8]), sophisticated branch-cut-and-price methods (Pessoa et al. [9]), mixed-integer
nonlinear programming algorithms (Xiao et al. [10]), approximate dynamic programming
algorithms (Çimen et al. [11], etc.) use mathematical methods to search for the optimal
solution. Although they can often find a good solution, there are also problems, such as
the single form of the solution, inability to avoid exponential explosion, and consumption
of a lot of computing time. The basic idea of traditional heuristic algorithms (such as
saving algorithms (Li et al. [8]), improved Dijkstra algorithms (Behnk et al. [12]), etc.) is to
start from the current solution, search for a better solution in its neighborhood to replace
the current solution, and then continue to search until there are no better solutions (Da
Costa et al. [13]). The traditional heuristic algorithm easily falls into the local optimum and
cannot easily achieve the global optimum. In addition, approximation algorithms (Das
et al. [14], Khachay et al. [15]) with theoretical performance guarantees and approximation
schemes have been widely used to solve the problems of covering non-Euclidean settings.
Metaheuristic algorithms have excellent performance and constantly perturb near the
current solution to search for better solutions. Therefore, this study uses the meta-heuristic
algorithm to solve the problem.

In recent years, many meta-heuristic algorithms have been proposed, and they are
mainly divided into three categories: evolution-based algorithms (Back et al. [16]), physics-
based algorithms (Webster et al. [17]), and swarm intelligence-based algorithms (Beni
et al. [18]). The algorithm based on the evolution principle simulates the evolution of
organisms. This method uses the crossover, mutation, and selection operators to update
the population after randomly initializing the population and then continues to search
for better solutions. The classical evolution-based algorithms mainly include the differ-
ential evolution algorithm (DE) (Storn [19]), genetic algorithm (GA) (Holland [20]), and
biogeography-based optimization (BBO) (Simon [21]). The algorithm based on physical
laws is inspired by physics and its individuals explore the solution space according to
the physical law. The classical algorithms mainly include the black hole (BH) algorithm
(Hatamlou [22]), gravity search algorithm (GSA) (Rashedi et al. [23]), big bang–big crash
algorithm (BBBC) (Erol et al. [24]), and so on. The swarm intelligence algorithm mainly
simulates the group behavior of organisms. Representative algorithms include the chimp
optimization algorithm (Khishe et al. [25]), mayfly algorithm (Zervoudakis et al. [26]), equi-
librium optimizer (Faramarzi et al. [27]), marine predator algorithm (Faramarzi et al. [28]),
squirrel search algorithm (Jain et al. [29]), bald eagle search algorithm (Alsattar et al. [30]),
Harris hawks optimization algorithm (Heidari et al. [31]), particle swarm optimization
(Kennedy et al. [32]), artificial bee colony algorithm (Singh [33]), ant colony optimization al-
gorithm (Neumann et al. [34]), firefly algorithm (Yang [35]), bat algorithm (Yang et al. [36]),
grey wolf optimizer (Mirjalili et al. [37]), and the whale optimization algorithm (Mirjalili
et al. [38]). Metaheuristic algorithms are widely used because of their excellent performance.
Bi et al. (Bi et al. [39]) applied the GSTAEFA algorithm to the SMTSP. Artificial neural
networks are widely used in image recognition and processing (Krizhevsky et al. [40]; Gu
et al. [41]), time-series analysis (Arulkumaran et al. [42]; Tian et al. [43]), natural language
processing (Juhn et al. [44]; Trappey et al. [45]), and building three-dimensional scenes
(Dmitriev et al. [46]; Gkioxari et al. [47]). Genetic algorithms have been applied to engi-
neering problems (Sayers [48]; Nicklow et al. [49]), classical optimization problems (Paul
et al. [50]), and protein folding (Islam et al. [51]). The ant colony optimization algorithm has
been applied to the traveling salesman problem (Dorigo et al. [52]; Dorigo [53]), engineering
problems (Dorigo [53]; Nicklow et al. [49]), vehicle routing problems, machine learning,
and bioinformatics problems (Dorigo et al. [52]), and the differential evolution algorithm
has been used to solve the design problem of a reconfigurable antenna array. In addition,
swarm intelligence algorithms have also been widely used in VRP. Solano Charris et al. [54]
developed a local search metaheuristic algorithm to find the optimal path with the lowest
cost in discrete scenarios. Wang et al. [55] used the multi-objective PSO algorithm to solve
the dual objective model considering the time-varying speed of shared traffic resources.
Chen et al. [56] proposed an intelligent water drop algorithm to solve the VRP of steel



Biomimetics 2022, 7, 241 3 of 32

distribution. Zhang et al. [57] developed an improved tabu search algorithm to solve the
cold chain logistics model. In GVRP, Zulvia et al. [58] solved the multi-objective model
(GCVRPTW) using the multi-objective gradient evolution algorithm (MOGE).

However, many studies on the VRPTW are generally carried out on two-dimensional
planes. In many research fields, the three-dimensional spherical structure is also of great
significance. For example, celestial bodies, particle structures, daily foods, proteins and
other nutrients, balls, buildings, and path-planning problems are all problems related to
spheres. Therefore, it is of great practical significance to expand the research on the VRPTW
from the two-dimensional plane to three-dimensional spheres. Zhang et al. [59] applied the
BBMA to the spherical MST problem. To sum up, in order to carry out research related to
the distribution of goods by unmanned vehicles and unmanned aerial vehicles, this paper
plans the path of a robot through these coordinates in three-dimensional space in order to
carry out research on the VRPTW in the spatial dimension.

ChOA has been applied to various practical problems, such as image segmentation for
medical diagnosis (Si et al. [60]), clustering analysis (Sharma et al. [61]; Yang et al. [62]), Said–
Ball curve degree optimization (Hu et al. [63]), and convolution neural networks (Chen
et al. [64]). In addition, Du and Zhou (Du et al. [65]; Du et al. [66]) improved this algorithm
and applied it to 3D path-planning problems and color image-enhancement problems. The
algorithm divides the population of each generation into four groups, namely attackers,
barriers, chasers, and drivers, and they cooperate against prey. Therefore, different groups
search different spaces, which enhances the searching ability of ChOA. The adaptive factor
of ChOA has a faster convergence speed and can adaptively balance exploration and
exploitation, but it also easily falls into the local optimum. In order to obtain a group of
better solutions with limited resources and time, this paper proposes an improved ChOA
(MG-ChOA) for solving the spherical VRPTW model. The main contributions of this paper
are as follows. Firstly, the proposed algorithm combines the ChOA algorithm with the
quantum coding, local search, multiple population, and genetic operators to ensure that
the algorithm can not only achieve adaptive and rapid convergence, but also find solutions
with higher accuracy. Secondly, this paper proposes a three-dimensional spherical VRPTW
and applies the proposed algorithm to solve this problem. Finally, by comparing with
the running result of popular swarm intelligence algorithms for eight different instances,
the effectiveness and superiority of the proposed algorithm in dealing with large-scale
combinatorial optimization problems are strongly verified.

The remaining organizational structure of this paper is as follows. Section 2, the
Related Work, briefly depicts works related to the model proposed. Section 3 analyzes two-
dimensional VRPTW and spherical VRPTW models to propose the mathematical model
of a spherical VRPTW. The proposed algorithm (MG-ChOA) for a spherical VRPTW, an
improved MG-ChOA algorithm based on ChOA, is presented in Section 4. The discussion
of the experimental results analyzes the performance of the algorithm in Section 5. The
conclusion and future work proposals are presented in Section 6.

2. Related Work
2.1. Geometric Definition of Sphere

A sphere refers to a set of points in 3D space with equal distance from the center point
of the sphere, and radius is the distance from the center point of the sphere to a point on
the sphere, as shown in Figure 1a. Therefore, a sphere with radius r can be defined by the
following formula.

x2 + y2 + z2 = r2 (1)

where x, y, and z are coordinate axes of three-dimensional space, which are used to describe
each point.
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Figure 1. (a) represents the geometric definition of the sphere; (b) represents the definition of points
on the sphere; (c) represents the geodesics between two points on the sphere, and the colors represents
the height z.

2.2. Definition of Points on the Sphere

The coordinates of points on the sphere can be described in detail with the following
equation (Hearn et al. [67]).

ps(u, v) = (x(u, v), y(u, v), z(u, v)) (2)

The coordinate of each point can be represented by x, y, and z, and they can be
expressed by normalized parameters (such as u and v) in [0, 1]. Equations (3)–(5) specify
the coordinates of each point on the sphere (Eldem et al. [68]).

x(u, v) = rcos(2πu)sin(πu) (3)

y(u, v) = rsin(2πu)cos(πu) (4)

z(u, v) = rcos(πu) (5)

where u and v respectively represent the longitude and latitude lines used to calibrate the
position, as shown in Figure 1b. Different combinations of u and v describe points of the
sphere (Uğur et al. [69]), as shown in Figure 1b. In order to save computing resources and
compare the performance of algorithms more conveniently, this study uses a sphere with a
radius of one to carry out experiments and discussions.
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2.3. Geodesics between Two Points on the Sphere

The big circle is a figure formed by the intersection of a plane passing through the
sphere’s center. The shortest path between two points on the sphere is a certain arc length of
the big circle, and the geodesic line is this arc (Lomnitz [70]). According to the description
above, the geodesic line between pi (point i) and pj (point j) on the sphere is shown in

Figure 1c, which can be described by vector
→
vi and vector

→
vj, respectively, and their product

is defined as follows.
→
vi
→
vj =

∣∣∣→vi

∣∣∣∣∣∣→vj

∣∣∣cosθ (6)

Or
→
vi
→
vj = xixj + yiyj + zizj (7)

where θ indicates the angle of two vectors, and the formula of the shortest path can be
expressed as follows.

∧
dpi pj

= rθ (8)

According to Formulae (6)–(8), we get

∧
dpi pj

= r arccos(
xixj + yiyj + zizj

r2 ) (9)

Calculate the distance between two points on a sphere with n points to obtain a
symmetric distance matrix Dis with the size of n × n, and the distance matrix can be
described as follows.

Dis =



∧
d11

∧
d12 · · ·

∧
d1n

∧
d21

∧
d22 · · ·

∧
d2n

...
...

. . .
...

∧
dn1

∧
dn2 · · ·

∧
dnn

 =


∞
∧
d12 · · ·

∧
d1n

∧
d21 ∞ · · ·

∧
d2n

...
...

. . .
...

∧
dn1

∧
dn2 · · · ∞

 (10)

where
∧
dij denotes the distance of the geodesic line formed by two points on the sphere and

∧
dij equals infinity, meaning that the point cannot reach itself.

3. Mathematical Model of Spherical VRPTW
3.1. VRPTW on a 2D Plane

VRPTW describes a path-planning problem of allocating goods from a distribution
center to different customers within a specified time, including K vehicles and N customer
nodes. The logistics network reasonably plans a series of routes to serve customers accord-
ing to the transportation demand, and vehicles must leave and finally return to the depot.
As the loading capacity of each vehicle is limited, the transportation company must serve
customers within a specified time to meet the customers’ needs. In addition, if the vehicle
arrives at the customer node in advance, it needs to wait for a period of time before starting
the service. Figure 2 shows the process of VRPTW. The parameters used in the model are
shown in Table 1.
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Figure 2. Routes of VRPTW, different colors denote the different routes, circles denotes the customers
in these routes, and the arrows denotes the routes.

Table 1. Notations and their descriptions.

N Number of customer nodes
C Set of customers as {0,1, . . . N}, where 0 is the depot
V Set of vehicles, V = {1, . . . ,K}
K Number of vehicles
k Index of vehicles (k ∈ V)
dij Distance between nodes i and j
tij Travel time between nodes i and j
ETi Earliest arrival time at node i
LTi Latest arrival time at node i
STi Service time of node i
qi Demand of customer i
Qk Capacity of vehicle k
Tik Arrival time of vehicle k to i
wik Waiting time at customer i

xijk =

{
1, if vehicle k travels from i to j;
0, other.

yik =

{
1, if node i is served by vehicle k;
0, other.

Therefore, the dual-objective mathematical model of VRPTW can be expressed as
follows:

TD = Min ∑
i∈C

∑
j∈C

∑
k∈V

dijxijk (11)

NV = Min ∑
j∈C

∑
k∈V

x0jk (12)

Subject to:
∑
i∈C

qiyik ≤ Qk, ∀k ∈ V (13)

∑
k∈V

yik = 1, ∀i ∈ C (14)

∑
i∈C

xijk = yjk, ∀j ∈ C, ∀k ∈ V (15)
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∑
j∈C

xijk = yik, ∀i ∈ C, ∀k ∈ V (16)

∑
j∈C

x0jk = ∑
j∈C

xj0k = 1, ∀k ∈ V (17)

ETi < Tik < LTi, ∀i ∈ C (18)

ETi < Tik + wik + STi + tij < LTj, ∀i, j ∈ C, ∀k ∈ V (19)

Equations (11) and (12) represent objective functions consisting of the travel distance
and the number of vehicles. Equation (13) indicates that each customer’s demands on
a route should not be greater than the maximum capacity of the vehicle. Equation (14)
denotes that one customer should only be served once. Equation (15) indicates that the
vehicle only serves one node before serving the next node. Equation (16) denotes that
vehicles only visit one node after visiting the previous node. Equation (17) indicates that
the start and end nodes of each vehicle should return to the depot. Equations (18) and (19)
are time window constraints.

3.2. Three-Dimensional Spherical VRPTW Model

The 3D spherical VRPTW model maps the customer nodes from the 2D plane model
to the 3D space. Therefore, each customer node of i can be defined as ci = (xi, yi, zi).
Therefore, the mathematical model of the three-dimensional spherical VRPTW model can
be defined as follows:

TD = Min ∑
i∈C

∑
j∈C

∑
k∈V

∧
dijxijk (20)

In the formula above,
∧

dij and the symmetric matrix Dis can be calculated by Equations (9)
and (10), respectively. Similarly, constraint conditions can be represented by Equations (13)–(19).

4. The Proposed Algorithm (MG-ChOA) for the Spherical VRPTW
4.1. The Chimp Optimization Algorithm (ChOA)

The ChOA was first proposed by Khishe and Mosavi [17] in 2020, and it simulates the
predatory behavior of chimps. The algorithm divides the population of each generation into
four groups, namely attackers, barriers, chasers, and drivers, and they cooperate against
prey. The ChOA has excellent adaptive factors that can help it balance exploration and
exploitation so as to find better solutions. The mathematical model of ChoA is as follows:

→
d =

∣∣∣→c→x prey(t)−
→
m
→
x chimp(t)

∣∣∣ (21)

→
x chimp(t + 1) =

→
x prey(t)−

→
a
→
d (22)

Equations (21) and (22) describe the chasing and driving processes of the algorithm.
Among them,

→
x chimp and

→
x prey represent the coordinates of the individual and prey, respec-

tively, and t represents the current number of iterations. In addition,
→
a ,
→
c , and

→
m represent

coefficient vectors, which are determined by Equations (23)–(25), respectively.

→
a = 2

→
f
→
r1 −

→
f (23)

→
c = 2

→
r2 (24)

→
m = chaotic_value (25)

where
→
f refers to a vector linearly decreasing in the interval of [2.5, 0],

→
r1 and

→
r2 represent

random vectors that each dimension falls in the interval of [0, 1], and
→
m represents a random

vector obtained from chaotic mapping functions.
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The model above describes the main flow of the algorithm. In each iteration, the
algorithm firstly selects the four best individuals, and then the remaining individuals
update their positions based on them. The specific mathematical model of the algorithm is
as follows:

→
d Attacker =

∣∣∣→c 1
→
x Attacker −

→
m1
→
x
∣∣∣, →d Barrier =

∣∣∣→c 2
→
x Barrier −

→
m2
→
x
∣∣∣

→
d Chaser =

∣∣∣→c 3
→
x Chaser −

→
m3
→
x
∣∣∣, →d Driver =

∣∣∣→c 4
→
x Driver −

→
m4
→
x
∣∣∣ (26)

→
x 1 =

→
x Attacker −

→
a 1
→
d Attacker,

→
x 2 =

→
x Barrier −

→
a 2
→
d Barrier

→
x 3 =

→
x Chaser −

→
a 3
→
d Chaser,

→
x 4 =

→
x Driver −

→
a 4
→
d Driver

(27)

→
x (t + 1) =

→
x 1 +

→
x 2 +

→
x 3 +

→
x 4

4
(28)

The random vector
→
c strengthens (c > 1) or weakens (c < 1) the moving range of prey.

When the random vector
→
a is greater than 1 or less than −1, the algorithm will be in the

exploration stage; otherwise, it will be in the exploitation stage. Therefore, the algorithm
can adaptively adjust exploration and exploitation to find a better solution. The pseudo
code of ChOA is shown in Algorithm 1.

Algorithm 1: The pseudo code of ChOA

1. Initialize the population
→
x i(i = 1, . . . , N).

2. Set f, a, c, m = chaotic_value, and u is a random number in [0, 1].
3. Calculate individuals’ fitnesses.
4. Select four leaders.
5. while Iter < Max_iter
6. for each individual
7. Update f , a, c, m based on Equations (23)–(25).
8. end for
9. for each agent
10. if (u < 0.5)
11. if (|a| < 1)
12. Update its position based on Equations (26)–(28).
13. else if (|a| > 1)
14. Select a random individual.
15. end if
16. else if (u > 0.5)
17. Update its position based on a chaotic_value.
18. end if
19. end for
20. Calculate individuals’ fitnesses and select four leaders.
21. t = t + 1.
22. end while
23. Obtain the best solution.

4.2. The Proposed MG-ChOA for the Spherical VRPTW

ChOA can adaptively adjust exploration and exploitation and its convergence speed
is fast, but it still has the shortcomings of limited exploration capacity, easily falling into
the local optimum, and not being suitable for discrete problems. Therefore, this paper
improves the ChOA algorithm to solve the three-dimensional spherical VRPTW. The pro-
posed algorithm (MG-ChOA) introduces the quantum coding method, multiple-population
strategy, genetic operators, and local search strategy to improve the search ability of the
algorithm. Using the quantum coding method to initialize the population can increase the
population’s diversity at the initial stage. Similarly, the multiple-population strategy can
increase the population diversity of the algorithm in the iterative process to find better
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solutions. Genetic operators enhance the exploration ability of the algorithm, and the local
search strategy helps the algorithm to search for better solutions in the neighborhood of
each solution.

4.2.1. Encoding and Decoding of the Spherical VRPTW

As shown in Figure 3, each code is divided into many small parts by the number of
0 that represents the distribution center, and the remaining numbers represent customer
nodes. Each independent small part above represents one path served by one vehicle.
Therefore, the path encoding of Figure 3 can be sequentially decoded into sequences of
[1, 2, 3], [4, 9, 8], and [7, 6, 5, 10].

Figure 3. The encoding and decoding processes, 0 represents the depot, and other numbers denote
customers.

4.2.2. Initializing Population Using the Quantum Coding

In this study, we used quantum coding to initialize the population. This method
enhances the population’s diversity at the beginning of the iteration, which is conducive to
enabling the algorithm to quickly find a better solution at the initial stage. The smallest
unit of quantum computing is the quantum bit (qubit), whose state is the superposition
state of 0 or 1. The quantum bit is defined as follows.

| ϕ〉 = α |0〉+ β|1〉 (29)

where α and β are complex numbers and
∣∣α2
∣∣ and

∣∣β2
∣∣ respectively represent the probability

of the state being 0 or 1, and they satisfy the equation of
∣∣α2
∣∣ + ∣∣β2

∣∣ = 1. The specific
representation of a qubit is as follows:

|ϕ 〉 =
[

α
β

]
=

[
cos(θ)
sin(θ)

]
, θ ∈ [0, 2π] (30)

Inspired by the quantum encoding, individuals of the population can be described as
follows:

QCi = (ϕ1, ϕ2, . . . ϕd) =

(
cos(θi1), cos(θi2), . . . cos(θid)
sin(θi1), sin(θi2), . . . sin(θid)

)
(31)

where QCi denotes the ith individual of the population, θ denotes the angle falling in
the interval of [0, 2π], and n and d represent the total number and dimensions of each
individual, respectively. Therefore, each individual has two candidate schemes, which can
be defined as follows:

QCic = (cos(θi1), cos(θi2), . . . cos(θid))
QCis = (sin(θi1), sin(θi2), . . . sin(θid))

(32)

The initialization population of the proposed algorithm consists of n individuals and
d dimensions, so the initialization population is to construct a matrix of n × d. According
to the rules of quantum coding, we firstly needed to initialize the angle matrix and then
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obtain the initialization population according to the angle matrix. The angle matrix can be
calculated by the following formula:

θij = lbij + rand(0, 1)•(ubij − lbij), 1 ≤ i ≤ n, 1 ≤ j ≤ d (33)

where lbij and ubij respectively represent the minimum and maximum values of each
of the individuals’ dimensions at the problem boundary, and their values are 0 and 2 π,
respectively, while rand indicates random numbers falling in the interval of [0, 1]. The
initialized angle matrix is as follows.

θ =


θ11 θ12 · · · θ1d
θ21 θ22 · · · θ2d
...

...
. . .

...
θn1 θn2 · · · θnd

 (34)

where QC represents a population of N individuals. Each individual has two positions
in the space, and they represent the candidate solution of the problem. Therefore, each
individual has two different candidate solutions. To sum up, the quantum population can
be defined by the following formula.

QC =


QC1
QC2

...
QCn

 =



QC1c
QC1s
QC2c
QC2s

...
QCnc
QCns


=



cos(θ11), cos(θ12), . . . cos(θ1d)
sin(θ11), sin(θ12), . . . sin(θ1d)
cos(θ21), cos(θ22), . . . cos(θ2d)
sin(θ21), sin(θ22), . . . sin(θ2d)

...
cos(θn1), cos(θn2), . . . cos(θnd)
sin(θn1), sin(θn2), . . . sin(θnd)


(35)

According to Equation (35), the distribution of individuals in the initial population
is closely related to two different trigonometric functions. The value distribution of sine
and cosine functions greatly affects the distribution of the population, which can not only
enhance the diversity of the population distribution in the solution space, but also balance
the initial exploration and exploitation; therefore, this is helpful for the algorithm to find
excellent solutions quickly. In addition, individuals obtained by the formula above are all
decimals in the interval of [0, 1]. Therefore, the proposed algorithm converts these decimals
into percentages and then multiplies them by the total number of customers, rounds them,
and obtains the route code. Finally, we removed and reinserted the duplicated part of the
route code to obtain the final initialization population.

4.2.3. The Multiple-Population Strategy for MG-ChOA

The main method of the multiple-population search strategy is to use multiple pop-
ulations with different parameters to search the target solution together, and it mainly
includes the immigration and manual selection operator. When the algorithm iteratively
searches for the target solution, the migration operator is used to contact and exchange the
optimal solution among various populations, and the optimal solution of each generation is
saved to the essence population by the manual selection operator as the basis of algorithm
convergence. The whole process above is shown in Figure 4. As shown in the figure, when
the population 1-N searches the solution space, the migration operator will replace the
worst individual of population i + 1 with the best individual of population i, and the best
solution of population N will be used to replace the worst solution of the first population.
Therefore, information exchange between populations is achieved.
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Figure 4. The description of the multiple-population strategy.

4.2.4. Genetic Operators

The proposed algorithm introduces genetic operators to help the algorithm update
the population to search for excellent individuals in the solution space. Specifically, the
proposed algorithm firstly selects some excellent individuals as a new population, then
assigns a probability pd to each individual in the new population; if it is greater than or
equal to 0.5, the current individual will cross with the next individual. Figure 5 shows
an example of the crossover operation, in which the numbers 3–8 represent the selected
individuals, and then the algorithm assigns a random value pd to each of them. From the
method above, pd of 3 and 5 are numbers greater than 0.5, so they were selected to cross
with their next individual. Moreover, mutation is also an integral part of genetic operators.
Similarly, the proposed algorithm assigns a probability pmd to each individual in the
population, and if it is greater than the mutation probability pm given in this paper, the
individual will perform the mutation operation. Therefore, a new route can be obtained by
exchanging randomly selected customers on two individuals. The introduction of genetic
operators enhances the exploration ability of the proposed algorithm.

Figure 5. The mechanism of the genetic operators, 0 represents the depot, other numbers denote
customers, and blue marks denote different probabilities.
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4.2.5. Local Search Strategy

The local search strategy is helpful for the proposed method to search in the neigh-
borhood of a specific solution to find a better solution. This method allows customers to
move on the path in a certain way, and finally obtains more potential individuals without
violating various constraints. The algorithm proposed in this paper uses a mechanism to
generate a number of customers to be removed in the search process, and then reinserts
the removed customers in a more reasonable location without violating the constraints
of the time window and capacity. Therefore, better solutions in the neighborhood will be
obtained. Figure 6 shows that a better route was obtained by randomly removing some
customers and reinserting them in a more appropriate location.

Figure 6. The local search method, 0 represents the depot and other numbers denote customers.

4.2.6. Computational Complexity Analysis

The complexity of the initialization stage is O (C × N × d), where C represents the
number of populations, N and d respectively represent the number of individuals in each
population and the dimensions of each individual. The complexity of calculating fitness is
O (T × C × N), where T indicates the number of iterations. The complexity of the essence
population extraction is O (C), and the complexity of updating the population through
ChOA is the same as that through genetic operators and local search, which is O (T × C ×
N × d). In general, the computational complexity of this method is O (T × C × N × d),
and the pseudo code and flow chart of the proposed algorithm in this paper are shown in
Algorithm 2 and Figure 7, respectively.

Algorithm 2: The pseudo code of the proposed MG-ChOA algorithm

1. Initialize f, a, c, m, the probability of crossover and mutation.
2. Initialize multiple quantum populations,xi (i = 1, . . . , N).
3. while Iter < Max_iter
4. Calculate the fitness of each population and obtain the essence population.
5. Select the top four solutions from the essence population as leaders.
6. Update each population by ChOA, and obtain new populations.
7. Perform the selection, recombination, mutation, and local search strategy to obtain the
offspring.
8. Update f, a, c, m based on Equations (23)–(25).
9. end while
10. Obtain the optimal individual and accomplish data saving.
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Figure 7. The flowchart of the proposed MG-ChOA algorithm.

5. Experimental Results and Discussion

This paper uses eight different cases to test MG-ChOA’s ability to solve spherical
VRPTW. All experiments were conducted on the premise that r equals one, and the numbers
of customer nodes in these instances were 80, 100, 200, 400, 600, 800, 1000, and 1200. For
cases with fewer than 100 customers, the time window and load data were from the
Solomon dataset (Solomon [71]), and these data of the remaining cases were generated
randomly. Owing to the strong randomness of metaheuristic algorithms, all algorithms
were independently run 30 times in each case to obtain the result. The structure of this
chapter is as follows. Firstly, Experimental Setup provides the parameter settings of all
algorithms and experimental configurations. Secondly, this paper presents the results of
the proposed algorithm running for 2D instances. Moreover, this paper compares the
search ability and results of the proposed algorithm with other algorithms in low- and
high-dimensional cases. Finally, this paper discusses the impact of different improvement
methods on the overall performance of the algorithm.

5.1. Experimental Setup

The code of all experiments carried out in this paper was compiled in MATLAB. The
computer system was configured with an Intel Core Intel (R) Core (TM) i7-9700 CPU, 16
GB RAM, and Windows 10 operating system. In this experiment, each algorithm iterated
300 generations and the population size of all algorithms was set to 100. This paper
also compares the performance of MG-ChOA with the GA, ant colony algorithm (ACO),
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PSO, slime mold algorithm (SMA), firefly algorithm (FA), chimp optimization algorithm
(ChOA), and gray wolf optimizer (GWO). The GA was integrated with the local search
strategy. Moreover, many excellent improved algorithms (RPSO (Borowska [72]), JADE
(Su et al. [73]), L-SHADE (Chen et al. [74]), learning CSO (Borowska [75]), and CMA-ES
(Tong et al. [76])) should also be used to comprehensively analyze the performance of
the proposed algorithm, and this study selected two of them (RPSO, JADE). In order
to verify the effectiveness and superiority of the MG-ChOA algorithm, this paper also
comprehensively compares the convergence curve, ANOVA test, fitness value obtained by
30 runs, Wilcoxon rank-sum test (Gibbons et al. [77]; Derrac et al. [78]), effects of different
improvement methods, and running results. In addition, the control parameter for each
algorithm was set as follows (Table 2) (Zhang et al. [59]).

Table 2. The control parameter settings of each algorithm.

Algorithms Authors Parameters

MG-ChOA This paper

P = 2, m was calculated by Gaussian mapping,
pc = 0.9, pm = 0.1, and the number of customers
deleted in the local search strategy was 15% of

the total
GA Holland [20] pc = 0.8, pm = 0.8

ACO This paper

The pheromone was set to 4, heuristic
information was 5, waiting time was 2, time
window width was 3, parameter controlling
ant movement was 0.5, evaporation rate of

pheromone was 0.85, and the constant affecting
pheromone updating was 5

PSO Kennedy et al. [32]
The inertia weight was 0.2, global learning

coefficient was 1, and the self-learning
coefficient was 0.7

RPSO Borowska [72]
The inertia weight was 0.6, acceleration

constants were c1 = c2 = 1.7, and the number of
particles with the worst fitness p was set as 3.

JADE Borowska [73] Parameters of the algorithm changed
adaptively

SMA Li et al. [79] The parameter controlling foraging was 0.03

FA Yang [35]
The basic value of the attraction coefficient was
0.8, the mutation coefficient was 0.8, and the

light absorption coefficient was 0.8

ChOA Khishe et al. [25] Parameters of the algorithm changed
adaptively

GWO Mirjalili et al. [37] Parameters of the algorithm changed
adaptively

5.2. Performance Comparison of Algorithms for Two-Dimensional Datasets

In order to analyze the performance of the proposed algorithm in multiple dimensions,
this chapter briefly analyzes the results of the proposed algorithm in the two-dimensional
plane. This research selected four different Solomon datasets to test the algorithm, which
were C101, R102, R201, and RC105. The differences between the algorithm and the most
famous results are provided in Table 3. Figure 8 shows the convergence speed of this algo-
rithm. Figure 9 shows the optimal path obtained by the algorithm for each dataset. Table 3
shows that the performance of the algorithm for four different datasets was significantly
different from the most famous results, with minimum and maximum values of 0 and 7%.
Figure 8 shows the superior convergence performance of the algorithm, which converged
to the optimal value quickly for all datasets. In conclusion, the results of four 2D datasets
show the effectiveness of the proposed algorithm.
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Table 3. The comparison of the results for four Solomon datasets.

Datasets
Best Known MG-ChOA %Difference

in TDNV Authors TD NV TD

C101 Rochat 10 828.94 10 828.94 0.00
R102 Rochat 17 1486.12 18 1473.62 −0.84
R201 Homberger 4 1252.37 9 1165.10 −7.49

RC105 Berger 13 1629.44 8 1234.1 −3.20

Figure 8. The convergence curve after 1000 iterations of the algorithm.

Figure 9. The optimal routes for four datasets, different colored lines denote the different routes, and
the red circles represent the customers.
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5.3. Performance Comparison of Algorithms for Low-Dimensional Instances

This part tests the performance of the algorithm through four instances of different
scales. All algorithms were independently run 30 times to obtain the results, and then
the optimal value, the worst value, the average value, and the standard deviation of the
result obtained were recorded. As shown in Table 4, the font marked in bold indicates the
best value of all algorithms. Figure 10 shows the convergence curve after 300 iterations
of the algorithms. Figure 11 shows the ANOVA test of the result after 30 runs. Figure 12
shows the result of 30 runs by algorithms, Figure 13 shows the optimal path found by
the proposed algorithm, and Table 5 shows the Wilcoxon rank-sum test, which shows the
significance of the difference between the proposed algorithm and other algorithms. It is
worth noting that the rank metric in Table 4 was obtained by the Friedman statistical test
(Zimmerman et al. [80]), and the fitness values shown in Figures 11, 12, 15, 16, 19 and 20
could be calculated according to the following formula, which represents the distance
from the coordinate composed of TD and NV to the coordinate origin. In addition, as
the convergence curve of TD is more representative, this paper will mainly analyze the
convergence speed of algorithms according to the TD.

Table 4. Experimental results of algorithms for instances of 80, 100, 200, and 400.

Instances Algorithms Best Worst Mean Std Rank

80

MG-ChOA 74.6915 89.1348 82.1517 3.5346 1
GA 77.8541 101.4105 91.6031 4.7625 2

ACO 94.4498 121.3766 107.9738 6.2796 7
PSO 105.8825 117.5272 113.3724 3.1874 6

RPSO 92.8541 116.4105 106.8345 4.9541 3
JADE 93.0822 115.5015 107.3124 6.6533 5
SMA 112.3210 126.2165 118.7991 3.4966 10
FA 113.1794 125.5953 117.9425 2.7192 8

ChOA 107.4037 123.4656 115.5410 3.8180 9
GWO 105.7460 118.7477 112.6344 3.0227 4

100

MG-ChOA 85.2594 109.3002 97.0352 5.8962 1
GA 102.7593 133.5235 114.7344 7.3826 2

ACO 153.0400 176.0259 162.3654 5.7970 9
PSO 152.1939 168.1939 160.8924 3.6269 7

RPSO 132.9432 159.1628 149.4894 6.7970 6
JADE 120.0249 157.4222 139.4843 8.3004 5
SMA 160.3001 174.0341 165.4979 3.8072 10
FA 158.1066 171.3606 165.7973 2.9858 8

ChOA 147.7598 157.5543 151.6967 2.5188 4
GWO 144.5013 156.8961 151.5078 3.4927 3

200

MG-ChOA 92.4894 171.5740 130.6591 16.0142 2
GA 185.4160 214.2204 199.0548 7.6380 1

ACO 269.0036 308.7602 284.6381 8.3779 5
PSO 283.7265 305.1323 292.6501 4.4139 4

RPSO 236.7104 282.2716 258.7564 10.2254 3
JADE 237.7484 293.4480 261.7672 10.8409 6
SMA 287.7402 323.2023 309.9585 7.7234 7
FA 285.0593 329.6599 307.5770 9.8884 8

ChOA 294.4387 326.0060 310.2144 8.7833 9
GWO 296.0258 328.0148 315.6643 7.8676 10

400

MG-ChOA 248.9622 319.9879 276.4939 18.1938 1
GA 366.3048 433.7308 401.4895 16.6535 3

ACO 454.0676 498.4261 482.8094 9.0784 6
PSO 451.2690 502.3332 476.5840 12.6521 7

RPSO 443.9548 480.0339 461.6864 8.34601 2
JADE 433.6780 480.9550 460.5177 10.7607 4
SMA 454.1847 502.8520 477.1359 12.5691 9
FA 471.2963 518.0317 492.6073 12.2617 10

ChOA 461.8166 493.2990 475.5718 9.2174 5
GWO 483.0315 502.0965 492.3936 4.2985 8
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Figure 10. The convergence curves after 300 iterations of algorithms.
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Figure 11. The ANOVA tests of the results after 30 runs, the blue box denotes the data distribution,
the red line represents the median value, and the red symbol denotes the abnormal value.

Figure 12. The results of 30 runs by algorithms.
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Figure 13. Optimal paths found by the proposed algorithm.

Table 5. The results of Wilcoxon rank-sum test results for low-dimensional instances.

Instances GA ACO PSO RPSO JADE SMA FA ChOA GWO

80 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

100 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

200 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

400 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

Fitness Value =
√
(TD)2 + (NV)2

It can be seen from the instance with 80 customers that the comprehensive performance
of MG-ChOA was better than that of the other algorithms. It obtained the optimal value
and the minimum average value, but did not obtain the optimal standard deviation. The
convergence curve in Figure 10 displays the excellent convergence ability of the proposed
algorithm, which converged to the optimal solution faster than the other algorithms. In
addition, GA ranked second overall, and the performance gap between algorithms was
very small. The ANOVA test in Figure 11 shows that the result obtained by the proposed
algorithm was relatively uniform, which means that it had strong stability and good
optimization ability. The running result of Figure 12 shows that the search ability of the
proposed method was relatively stable, and results obtained were better than those of other
algorithms. Figure 13 shows an optimal path obtained by the proposed algorithm for this
instance.

From the instance with 100 customers, we can see that MG-ChOA’s comprehensive
performance was superior to that of other algorithms, and it obtained superior average
and optimal values to all algorithms. ChOA obtained the optimal standard deviation,
which indicated that its performance was stable for this instance. The convergence curve
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in Figure 10 indicates that the proposed algorithm had excellent convergence ability for
the instance of 100 customers. It not only found a better solution, but also had the fastest
convergence speed. GA ranked second overall, and the solution searched by GA was
only second to the first. The ANOVA analysis in Figure 11 shows that the comprehensive
performance of the proposed algorithm was relatively good for this instance, and it had
stable search capability. The running result of Figure 12 shows that results obtained by the
algorithm were generally better than those of the other algorithms. Figure 13 shows the
excellent solution for the proposed algorithm for this instance.

The comparison result of the instance with 200 customers indicated that the proposed
algorithm had the strongest capability, and not only was the minimum average value
obtained, but also the search result was the best among all algorithms. GA ranked first
overall—its performance was more stable than that of the proposed algorithm—and PSO
achieved the best standard deviation. The convergence curve in Figure 10 shows that
the convergence ability of the proposed algorithm was faster and better than that of the
other algorithms for this instance. The ANOVA analysis in Figure 11 shows that, although
the search ability of the proposed method was not stable, it could find better solutions
than the other algorithms. The running result in Figure 12 shows that results obtained by
the algorithm were generally better than those of the other algorithms, and the gap was
increasingly obvious. Figure 13 shows a good path obtained by the proposed algorithm for
this instance.

The comparison result of the instance with 400 customers indicates the superior ability
of the proposed algorithm in this instance, and GWO achieved the best standard deviation;
in addition, RPSO ranked second overall. Compared with small-scale instances, except for
the genetic algorithm, the other algorithms were relatively stable for this instance, but their
search ability was greatly reduced. The proposed algorithm and GA both hadbetter search
ability and they found better solutions, but the proposed algorithm had better convergence
ability and could find good solutions faster than GA. The ANOVA analysis in Figure 11
indicates that the proposed algorithm’s performance was very strong, although it was not
as stable as other algorithms. It had the best optimization ability, and the gap between GA
and other algorithms is getting smaller and smaller. Figure 13 shows a feasible route found
by the proposed algorithm for this instance.

To sum up, the comparison result above shows that there was little difference in the
capability of the algorithms for small-scale instances. When the number of customers
increased, the performance of the algorithm started to show a significant difference. Com-
pared with small-scale instances, differences between algorithms for large-scale instances
increased significantly. The search ability of the proposed algorithm was still excellent for
large-scale instances, and it had fast convergence and search capability. The performance
of GA ranked second in the instance above, which was related to the strong search ability
of its genetic operators. Both ChOA and GWO are stable because they have adaptive
factors. With the increase in the instance’s size, the search ability of other algorithms be-
came weaker and weaker, and the gap between the genetic algorithm and other algorithms
became smaller and smaller. In general, the proposed algorithm performed best in the four
instances, but the stability of the algorithm needs to be improved, which is related to the
richness of improved methods. Finally, Table 5 shows the significant difference between
the proposed algorithm and other algorithms in each instance, with a significance level
of 0.05. This means that the difference between two groups of data is significant if the p
value is less than 0.05. Table 5 shows that the experimental results between the proposed
algorithm and other algorithms were significantly different in low-dimensional instances.
Therefore, the proposed method is better than other algorithms.

5.4. Performance Comparison of Algorithms for High-Dimensional Instances

In this section, the search ability of the algorithms is tested through four instances of
different scales, namely, instances with 600, 800, 1000, and 1200 customers. All algorithms
were independently run 30 times. Table 6 shows the best value, the worst value, the
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mean value, and the standard deviation of the result obtained, and the font marked in
bold represents the optimal value obtained by all algorithms. Figure 14 compares the
convergence curve of the algorithm after iterating for 300 generations. Figure 15 shows
the result of the ANOVA analysis of the algorithm after 30 runs, Figure 16 displays the
result of these algorithms for 30 runs, Figure 17 shows the optimal path of the proposed
algorithm, and Table 7 displays the Wilcoxon rank-sum test, which shows the significance
of the difference between the proposed algorithm and other algorithms.

Table 6. Experimental results of the algorithms for instances of 600, 800, 1000, and 1200.

Instances Algorithms Best Worst Mean Std Rank

600

MG-ChOA 337.9706 467.3819 393.3942 31.1964 1
GA 496.1133 668.4894 615.0010 37.3412 4

ACO 646.3231 738.3302 692.2071 26.8871 8
PSO 615.6234 732.0994 679.0999 25.8592 5

RPSO 646.1737 680.3887 663.5755 8.2341 2
JADE 634.4642 680.8589 654.7950 11.2532 3
SMA 624.6327 717.2041 670.4092 28.6820 6
FA 638.7109 730.8624 689.8933 23.4781 7

ChOA 671.0393 746.3261 709.2050 18.7072 10
GWO 696.4319 743.7724 716.6254 9.9470 9

800

MG-ChOA 357.7428 512.2769 436.7981 32.8699 1
GA 678.5272 851.5621 769.3450 44.8163 8

ACO 769.4406 851.4780 804.6975 19.5546 10
PSO 747.8239 846.6075 797.8163 21.5773 9

RPSO 728.5422 776.7191 748.1957 12.2668 2
JADE 721.68571 780.1052 750.1521 12.0138 3
SMA 688.8120 827.9618 757.8355 39.4238 6
FA 713.2352 824.3031 767.2942 24.4921 5

ChOA 664.0851 813.3595 733.6243 37.8625 4
GWO 756.3863 832.1562 791.0453 19.8800 7

1000

MG-ChOA 506.5729 552.8227 531.1736 10.5891 1
GA 1113.3512 1186.7736 1148.6414 14.9046 2

ACO 1132.8896 1197.7980 1161.3229 13.9392 3
PSO 1154.9312 1219.9879 1188.6006 15.3536 9

RPSO 1145.0236 1209.0242 1182.4126 15.3321 6
JADE 1143.6047 1212.5595 1177.5565 15.4292 8
SMA 1176.3676 1229.0331 1203.5824 12.5634 10
FA 1158.5719 1203.2321 1183.8478 11.3573 5

ChOA 1171.0874 1200.9404 1185.5053 9.2586 4
GWO 1176.2921 1203.2903 1190.6301 8.3314 7

1200

MG-ChOA 665.4418 705.5305 685.8351 9.0505 1
GA 1502.4781 1542.2096 1519.9860 9.4525 3

ACO 1535.6057 1601.0904 1567.2093 16.7193 7
PSO 1505.9321 1543.2443 1528.1268 9.0864 5

RPSO 1540.4621 1604.3669 1568.7338 14.3821 9
JADE 1554.5170 1598.9232 1577.1516 11.8324 8
SMA 1570.9568 1611.9386 1589.1695 9.2840 10
FA 1490.7260 1530.2589 1510.9637 8.8396 2

ChOA 1501.5574 1547.4414 1523.5250 11.8448 6
GWO 1505.9274 1547.6684 1522.6388 7.6334 4
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Table 7. The Wilcoxon rank-sum test results for high-dimensional instances.

Instances GA ACO PSO RPSO JADE SMA FA ChOA GWO

600 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

800 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

1000 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

1200 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

Figure 14. The convergence curves after 300 iterations of algorithms.
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Figure 15. The ANOVA tests of the result after 30 runs, the blue box denotes the data distribution,
the red line represents the median value, and the red symbol denotes the abnormal value.

Figure 16. The results of 30 algorithm runs.
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Figure 17. Optimal paths found by the proposed algorithm.

From the instance with 600 customers, we can see that MG-ChOA had a better search
ability than the other algorithms. It obtained the best value and the optimal average value,
and RPSO obtained the best standard deviation; in addition, RPSO ranked second. RPSO
and JADE also performed well and had little difference from each other. ACO, ChOA,
and GWO had relatively poor search ability. The convergence curve in Figure 14 shows
that the proposed method achieved faster convergence than the other algorithms. The
ANOVA analysis in Figure 15 shows that the search ability of the proposed method was
relatively stable in all algorithms, and the solutions found were better than those of other
methods. The running result in Figure 16 shows that, although the search ability of the
proposed algorithm fluctuated greatly, the result obtained was generally better than that of
other algorithms. Figure 17 shows an excellent solution for the proposed algorithm for this
instance.

From the instance with 800 customers, we can see that MG-ChOA obtained the optimal
and superior average values to all algorithms, and its comprehensive performance was
the best; moreover, RPSO ranked second overall, and JADE obtained the best standard
deviation. The convergence curve in Figure 14 indicates that, for this large instance, the
excellent convergence speed of the proposed method enabled the algorithm to constantly
search for better solutions; in addition, the convergence speed of the proposed method
was much faster than that of other algorithms and the solution found was better. Secondly,
the search ability of the chimp optimization algorithm was better than that of the GA,
which indicates that its adaptive factor well-balanced the search process of the algorithm.
The ANOVA test in Figure 15 shows that the search ability of the proposed method was
relatively stable for this instance, and the JADE’s performance was the most stable. The
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running result in Figure 16 shows that results obtained by the proposed algorithm were
much better than those of other algorithms, but the performance of most algorithms was
unstable. Figure 17 shows an excellent solution found by the proposed algorithm for this
instance.

The comparison result of the instance with 1000 customers indicates that the proposed
algorithm had the best search ability. It not only found the lowest average value, but
also obtained the best result among all algorithms, and the GA ranked second overall.
The convergence curve in Figure 14 shows that the proposed algorithm had the best
convergence ability for this instance, while the convergence ability of other algorithms
became slower and slower; this indicates that the proposed algorithm was still effective for
large instances. The ANOVA analysis in Figure 15 reveals that all algorithms were stable,
and the proposed algorithm found better solutions than the other algorithms. The running
result in Figure 16 shows that the result obtained by the proposed algorithm was generally
better than that obtained by the other techniques, and the performance gap between them
was obvious. Finally, Figure 17 shows a feasible path obtained by the proposed algorithm
for this instance.

The comparison result of the instance with 1200 customers indicates the superior
ability of the proposed algorithm for this instance. The performance of other algorithms
was relatively stable for this instance, and their search ability was greatly weakened com-
pared with that for small-scale instances. Compared with other algorithms, the proposed
algorithm still had a good convergence ability and obvious advantages, and it could find
excellent solutions faster. The analysis of the ANOVA test in Figure 15 indicates that these
algorithms were relatively stable with little difference from each other. The proposed
algorithm still had the best performance, and the gap with other algorithms was the largest.
Figure 17 shows a good solution obtained by the algorithm for this instance.

To sum up, the above comparison result shows that the differences in the search ability
of these algorithms for large-scale instances became more and more obvious, but the perfor-
mance of the proposed algorithm was still excellent, with fast convergence ability and good
search ability, and the gap was about 30% higher than that for instances with 80 customers.
Therefore, this shows that the adaptive factor of the algorithm well-balanced the search
ability, and the combination of genetic operators and local search strengthened the ex-
ploration and convergence ability of the algorithm; in addition, the multiple-population
strategy strengthened the communication between populations, allowing the algorithm to
find better solutions faster. Secondly, the performance of the GA generally ranked second,
which indicates that its genetic operator had strong search ability. The adaptive factor of
the chimp optimization algorithm could well-balance the exploration and exploitation.
Therefore, these two methods strengthened the performance and stability of the algorithm.
With the increase in the instance’s size, the performance of these algorithms became weaker
and weaker, and the gap between other algorithms became smaller and smaller. In general,
the proposed algorithm performed best for the above eight instances, but the stability of
the proposed method needed to be improved, indicating that the improvement method
for the proposed method was successful and efficient. Table 7 shows that the experimental
results between the proposed algorithm and other algorithms were significantly different
for high-dimensional instances. Therefore, the proposed method was obviously better than
other algorithms.

5.5. Performance Limit Test of MG-ChOA

In order to measure the boundaries of the algorithm proposed in this paper, this
section adds two additional instances to verify the limits of the algorithm, which are
instances of 1600 customers and 1800 customers. Table 8 records the best value, the
worst value, the average value, and the standard deviation of the algorithm for these
instances. Next, this section uses the GA for comparison with the proposed algorithm
in terms of their convergence speeds. Figure 18 shows the convergence speed of the
algorithm. Figures 19 and 20 respectively show the ANOVA test and the result statistics
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of the algorithms when run 30 times. To sum up, the convergence speed of the algorithm
became slower and slower. Compared with the 1200-customer instance, the 1600-customer
instance had a significant decline, and the convergence ability of the proposed algorithm
on the 1800-customer instance was close to the limit. Moreover, the analysis of the ANOVA
test of the algorithm showed that its stability became weaker and weaker. Therefore, there
is still much more room to improve the performance of the algorithm. Table 9 shows that
the results of these two algorithms were significantly different. Figure 21 shows an excellent
solution for the proposed algorithm for these instances

Table 8. Experimental results of algorithms on instances of 1600 and 1800 customers.

Instances Algorithms Best Worst Mean Std Rank

1600
MG-ChOA 1772.9074 1867.3117 1811.1547 25.8704 1

GA 1869.0448 1942.9288 1913.8718 19.4836 2

1800
MG-ChOA 2255.8563 2332.6466 2291.6476 20.7723 1

GA 2301.8192 2353.5944 2330.8980 13.3407 2

Table 9. The Wilcoxon rank-sum test results.

Instances GA

1600 1.73 × 10−6

1800 1.73 × 10−6

Figure 18. The convergence curves after 300 iterations of the algorithms.
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Figure 19. The ANOVA tests of the results after 30 runs, the blue box denotes the data distribution,
the red line represents the median value, and the red symbol denotes the abnormal value.

Figure 20. The results of 30 runs of the algorithms, the blue box denotes the data distribution, the red
line represents the median value, and the red symbol denotes the abnormal value.

Figure 21. Optimal paths found by the proposed algorithm.
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5.6. Performance Analysis of Different Strategies

This section analyzes the impacts of different improved methods on the overall perfor-
mance of the proposed algorithm to further test the effectiveness of these improved methods.
Figure 22 shows the search results of various improved methods on the 80-customer and
100-customer instances. In this paper, we propose initializing the population by using
quantum coding. The main idea is as follows. Firstly, the population generated by the
quantum coding technique is twice as large as the original population, which increases the
diversity of the initial population. Secondly, this method mainly includes two trigonometric
functions, which generate individuals with good probability distribution, and this method
well-balances the initial exploration and exploitation of the algorithm. As can be seen
from Figure 22, the method of initializing the population by quantum coding sped up the
convergence of the algorithm and caused it to find a feasible solution faster, but the effect
was not obvious.

Figure 22. The results of various improved methods on the 80-customer and 100-customer instances.

Moreover, genetic operators and the local search strategy were introduced into the
algorithm. Genetic operators have strong search ability and can broaden the search scope
of an algorithm. Their performance is very suitable for solving path problems, while
local search algorithms can find better solutions in the neighborhoods of these excellent
solutions found in each iteration. Therefore, the combination of the above two strategies can
greatly improve the exploitation and exploration ability of algorithms and help them to find
solutions with high accuracy. Figure 22 shows that this method made the largest proportion
of contributions to the performance of the proposed algorithm, which shows that this
method was suitable for this algorithm and enhanced the effectiveness of the proposed
algorithm. This paper also introduced a multiple-population strategy and generated
two populations. This method achieved communication between populations through
migration operators, so the algorithm could find multiple excellent solutions in each
generation, which enhanced the exploration ability. Figure 22 shows that the introduction
of this method significantly improved the convergence speed of the proposed method,
indicating that the proposed method could be feasibly integrated with multiple-population
strategies. In addition, this study also conducted experiments to select the best population
number, and the results are shown in Table 10, where p is the population’s number. Table 10
shows that the optimal result was obtained when the population number was set to 2, so
the population number of the method proposed in this paper was 2.
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Table 10. Effects of different population numbers on the result.

Instances P = 1 P = 2 P = 3 P = 5 P = 6 P = 7 P = 8

80 82.4214 74.6215 83.5353 83.3345 84.6859 86.2861 85.4101
200 124.7481 92.1894 128.2701 137.8198 153.1216 158.3709 171.8740
600 351.8525 337.4706 364.4159 392.7295 410.9527 421.8533 453.388
800 402.7831 387.2349 424.9258 443.1142 465.9428 477.8761 512.2769

6. Conclusions and Future Work

The chimp optimization algorithm (ChOA) is a new swarm intelligence algorithm
that has excellent search ability and is suitable for solving continuous problems. The
characteristic of this algorithm is that the convergence speed is fast during the initial stage
of iteration, and the solution’s accuracy is high, but the convergence ability is weakened
during the later stage of iteration, and it easily falls into the local optimum. Furthermore,
the algorithm can adaptively adjust its exploration and exploitation when searching the
solution space because the algorithm has well-designed adaptive factors to balance the
exploitation and exploration in the process of optimization.

Although the performance of the chimp optimization algorithm itself was superior,
it was not suitable for dealing with discrete optimization problems in real life, and the
convergence speed of the algorithm became slower and slower, so it easily fell into the
local optimum. Therefore, this paper improved the performance of the algorithm according
to the shortcomings above, and the multiple-population strategy, genetic operators, and
local search strategy were integrated into the algorithm to enhance the overall exploration
ability and convergence speed of the proposed method. The multiple-population strategy
initializes multiple populations, uses migration operators to exchange information among
various populations, and finally selects excellent individuals to enter the next generation
through manual selection operators. The combination of genetic operators and local search
strategy not only strengthened the overall search ability of the algorithm, but also improved
the convergence speed so that the algorithm could find better solutions faster.

In order to verify the effectiveness of the algorithm’s improvement, this paper analyzed
the performance of the proposed algorithm and several excellent algorithms for instances
of different scales. The test results indicated that the proposed method was effective and
superior in solving the spherical VRPTW model, and its results were better than those of
other algorithms. With the increase in the instance’s size, the gap became more obvious.
Finally, this paper analyzed the improvement method for this method, and the experimental
result showed that the improvement of the proposed algorithm was effective.

However, according to the NFL theorem, the proposed algorithm still has some
limitations, such as the search ability of the algorithm not being stable enough and the
running time being relatively long. Therefore, the performance of MG-ChOA will continue
to be explored and improved through practical applications in the future, and the spherical
VRPTW model studied in this paper will also be discussed and studied in combination
with green logistics, robot path planning, and other topics.
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