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Abstract: Bipedal robots have gained increasing attention for their human-like mobility which allows
them to work in various human-scale environments. However, their inherent instability makes it
difficult to control their balance while they are physically interacting with the environment. This study
proposes a novel balance controller for bipedal robots based on a behavior cloning model as one of the
machine learning techniques. The behavior cloning model employs two deep neural networks (DNNs)
trained on human-operated balancing data, so that the trained model can predict the desired wrench
required to maintain the balance of the bipedal robot. Based on the prediction of the desired wrench,
the joint torques for both legs are calculated using robot dynamics. The performance of the developed
balance controller was validated with a bipedal lower-body robotic system through simulation and
experimental tests by providing random perturbations in the frontal plane. The developed balance
controller demonstrated superior performance with respect to resistance to balance loss compared
to the conventional balance control method, while generating a smoother balancing movement for
the robot.

Keywords: biped robots; robot motion; intelligent robots; robot learning; behavior cloning

1. Introduction

As robot technologies advance, various types of mobile robots, such as wheeled,
legged, and tracked robots, are being investigated for a variety of applications. Many
robotic applications are designed for human-scale environments, in which both robots
and humans can physically coexist. A bipedal humanoid robot is considered the prime
candidate for robotic tasks in human-scale spaces because its shape and dimensions are
the same as those of the humans for which the space was designed. However, although
remarkable advances have been made in humanoid technologies, humanoid robots with
human-level mobility and manipulability are still a distant prospect. As demonstrated at
the DARPA Robotics Challenge held in 2015, state-of-the-art robotic systems struggle with
simple physical tasks that their human counterparts can easily perform in daily life [1].

Whereas a conventional industrial robot performs tasks on a fixed base, a bipedal
humanoid robot is an underactuated multibody system on a floating base. Owing to the
inherent instability of floating-base robots, it is difficult to control the balance of these
humanoids while they perform locomotion and object manipulation.

Humanoid balance control has been investigated in two categories: walking balance [2,3]
and standing balance. For their stable object manipulation and physical interaction with
environment, the standing balance of humanoids has been investigated based on position
control [4,5] and force control [6–12].

For standing balance control, force control methods are known to have several ad-
vantages over position control, by directly controlling the contact forces and moments
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by utilizing the low impedance of the humanoid mechanism even with a relatively small
number of sensors. Several studies have been conducted based on passivity theory [6–10]
for computing the joint torques necessary to generate the contact forces, which in turn
yields the desired wrench (force and moment) at the center of mass (CoM) of the humanoid.
Using the passivity theory approach, the humanoid can maintain balance while physi-
cally contacting with the environment at multiple contact points by producing the proper
wrench at the CoM. For example, by setting the desired wrench at the CoM, the contact
force produced by the manipulation task of the upper body can be compensated for by
generating the appropriate contact forces at the feet. Simple feedback laws [6–8] and model
predictive control (MPC) [9,10] have been proposed to compute the desired wrench at
the CoM.

These methods using the simple feedback law and the MPC set the desired wrench
to be proportional to the difference between the current states of the robot (e.g., position,
velocity, and momentum of the CoM) and a fixed reference configuration (FRC). However,
this approach is rather simplistic compared to the balancing control employed by humans.
In human motor control based on a human’s own experiences, complex neural activities
allow the human to maintain balance by changing the reference configuration pertaining to
the human’s surrounding environment, rather than by using an FRC.

Humans, unlike their humanoid counterparts, have the innate ability to maintain
balance by shifting their CoM. Human balance control is carried out by combining vari-
ous balance strategies [13]. Anticipatory postural adjustment, as one of human balance
strategies, suggests that human balance is recovered in a feedforward manner by predict-
ing and reacting to balance perturbations. This is analogous to the MPC approach used
for humanoid balance control. In addition, humans recover their balance using reflex
responses. This strategy utilizes the spring-like property of the neuromuscular system, as
in the case of the simple feedback control approach used for humanoid balance control.
Another strategy used for human balance control is pre-programmed reactions to postural
perturbations. This balancing strategy is based on tacit knowledge and is regarded as
originating from motor skills that are context-dependent and highly non-linear [14]. It in-
volves personal cognitive factors, the goal of balancing, and one’s own experiences [15,16].
Although a number of studies have been conducted on pre-programmed motor skills
for human balancing [17–19], these skills have not yet been implemented in humanoid
control algorithms.

Recently, artificial intelligence (AI) technologies have demonstrated capabilities that
approach or exceed the human level, in various fields of application. Machine learning
is a subfield of AI, in which AI algorithms learn from training data to make predictions
or decisions. Among machine learning techniques, deep neural networks (DNNs) have
shown superior performance in handling nonlinear problems with high robustness against
noise in the fields of computer vision [20], speech recognition [21], and video games [22].
In addition, DNNs have been successfully used to achieve sensor fusion and to control
dynamic systems, such as robots and vehicles [23–26].

Reinforcement learning and imitation learning are commonly used to train DNNs
for robotic applications. Reinforcement learning algorithms with well-designed reward
functions have been shown to be effective for locomotion applications [27–29]. However,
reinforcement learning requires a large number of trial-and-error experiments or computer
simulations to learn the best action strategy. Imitation learning is commonly used when
it is easier to make a human demonstrate the desired robotic behavior, for example, for
robot manipulation tasks [30–32], than when designing an appropriate reward function,
which is a more demanding task. Compared to reinforcement learning or model-based
automatic control, imitation learning can be more effective because it allows for the learning
of complex balancing strategies directly from human demonstrations.

This study developed a novel balance controller for a bipedal robot based on machine
learning techniques and robot dynamics. Behavior cloning, one type of imitation learning,
is used to mimic human balancing strategies to recover from unknown force perturbations.
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The unknown force perturbations considered as force applied to the bipedal robot by
environment while object manipulation. To cope with the perturbations, the desired wrench
at the CoM is computed using a behavior cloning model trained by human demonstrations
of balancing. To achieve the desired wrench at the CoM, the joint torques are calculated
based on the robot dynamics. In this study, each perturbation was modeled as the internal
force applied by the upper body on the lower body, while the upper body performed
manipulation tasks that required physical contact with the environment. The performance
of the balance controller was validated using a bipedal lower-body robotic system by
simulation and experimental tests under random perturbations in the frontal plane. The
results show that the developed balance controller is capable of generating a smooth
balancing motion against various types of perturbations, compared to the conventional
balance controller.

The remainder of this paper is organized as follows. Section 2 discusses the humanoid
balance control system and explains the proposed controller. Section 3 presents and analyzes
the simulation and the experimental results. Section 4 presents concluding remarks.

2. Materials and Methods
2.1. Overview of Developed Balance Control System

The humanoid under balance control can be modeled as two parallel-coupled subsys-
tems: the upper and lower bodies. The upper body is modeled as an impedance system
for manipulation, and the lower body is modeled as a floating base system for balanc-
ing [33,34]. The manipulation task performed by the upper body causes perturbation of
both the upper and lower bodies [35]. As shown in Figure 1a, a humanoid manipulation
task generates an interaction force at the contact point between the upper body and the
environment. This contact force in turn produces the internal force and moment between
the upper and lower bodies as an action-reaction pair, which are equal in magnitude and
opposite in direction (Figure 1b). In this study, we employed a bipedal lower-body robot
(Figure 1c), Little HERMES (Biomimetics Robotics Lab., MIT, Cambridge, MA, USA) [36],
to test the developed balance controller through a series of simulations and experiments. In
the balancing simulations and experiments, external forces were applied at random points
on the trunk of the lower-body robot (Figure 1c).
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The external force can be considered to have the same effect as the equivalent internal
force and moment at the interface between the upper and lower bodies (Figure 1c), as if it
was caused by the perturbation by the contact manipulation task (see Equation (1)).

Finter = Fext
Minter = r× Fext

(1)

Figure 2 illustrates a schematic of the humanoid balance control system developed in
this study. The external force along with the ground reaction forces on the feet creates the
resultant wrench at the CoM of the lower-body robot, as shown in the figure. The balance
controller commands the joint torques of the robot based on the measured CoM states. The
balance controller is composed of two components: a wrench estimator and a joint torque
controller. The wrench estimator uses a behavior cloning model that was trained using data
from human-operated balancing. The human demonstration data were acquired from a
human operator who used a force-reflecting human–machine interface (HMI) to teleoperate
the balance of the bipedal robot. After training, the behavior cloning model learned a
mapping from the measured robot states (Figure 2a) to the desired wrench at the CoM of
the robot (Figure 2b). Using the behavior cloning model, the wrench estimator predicts
the desired wrench at the CoM to maintain balance based on the human demonstration
data for balancing. Based on the prediction from the wrench estimator, the joint torque
controller calculates the joint torques in both legs of the bipedal robot via robot dynamics
(Figure 2c). The joint torques, in turn, produce the ground reaction forces (GRFs) required
to achieve the desired wrench at the CoM to maintain balance.
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2.2. Teleoperation System for Collecting Human Demonstration Data

To collect human demonstration data, we used a teleoperation system in which a
human operator controlled the balance of a bipedal robot with the approval of the Deliber-
ation Committee (KUIRB-2020-0277-01). While collecting the data, an actual robot and a
robot simulator were interacted with the human operator in a human-in-the-loop manner
to maintain the balance by using a custom-made HMI. The custom-made HMI, Balance
Feedback Interface (BFI), was developed by the MIT Biomimetics Robotics Laboratory [34].
The BFI synchronizes the dynamics between the human operator and the robot to transfer
the balancing strategy of the human operator to the robot.
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2.2.1. Bipedal Robot

The actual robot, Little HERMES (MIT Biomimetics Robotics Laboratory, Cambridge,
MA, USA), and the simulator for Little HERMES were used to acquire the data and evaluate
the performance of the developed balance control system. The design of Little HERMES
has several features that simplify its robot dynamics. The bipedal robot has spherical feet,
which makes each foot of the robot contact with the ground at a single point. At a single
point of contact with the ground, the GRF has only three directional force components
without any moment components. Each leg has three actuated degrees of freedom for hip
flexion/extension, hip abduction/adduction, and knee flexion/extension. Six actuators for
the two legs were placed in the body trunk using timing belts for the actuation of the knee
joints, as shown in Figure 3a. This feature effectively reduces the inertia of the leg, and
the total mass and inertia of the bipedal robot can be modelled to be concentrated at the
CoM of the body trunk. Owing to these features of the bipedal robot, the desired wrench at
the CoM divides into the GRF for each foot. The joint torques are calculated from the GRF
using the Jacobian matrices for the two legs.
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Figure 3. Bipedal robot platform used to acquire the human-operated balancing data and evalu-
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(b) Multi-body dynamics model of Little HERMES programmed via physics engine, MuJoCo.

The sensors implemented in the actual robot include an inertial measurement unit
(IMU) and six joint encoders. The IMU attached to the body trunk was used to measure the
orientation and three-directional angular velocities of the body trunk. The joint encoders
measure the joint angles of the two legs. The CoM states of the robot can be estimated
based on measurements from the IMU and the joint encoder.

We developed a dynamic simulator for Little HERMES. In the simulator, a multi-body
dynamics model of Little HERMES was programmed using the physics engine MuJoCo [37].
The model was programmed to have the same kinematic and dynamic structure as its
physical version, as shown in Figure 3b. The balance controller was first applied to the
multi-body dynamics model before being tested on an actual robot to prevent unexpected
behavior and breakdown of the actual robot.

2.2.2. Teleoperation System with Balance Feedback Interface

Figure 4 illustrates the human-operated balancing system using balance feedback
interface (BFI). The BFI is composed of two actuated arms and a force plate. The two arms
were designed to apply a force and moment on the body trunk of the human operator and
track its translational and rotational motion. The force plate measures the position of the
center of pressure (CoP) and the resultant GRF relative to the CoP.

Upon the application of an external force on the bipedal robot, the change in the
balance state of the robot is reflected by the force and moment applied by the two arms of
the BFI on the human operator. The feedback force and moment are applied on the trunk
of the human operator in the frontal plane (red arrows in Figure 4). This feedback allows
the human operator to perceive the difference between the balance states of the human and
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the robot, and the human operator reacts to the feedback force and moment by shifting
their CoM and applying force on the force plate. These human reactions to maintain one’s
balance are then captured by the net wrench at the CoM and the divergent components of
motion (DCM) of the human operator. The captured human reactions are scaled and used
to control the balancing motion of the robot.
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Figure 4. Human-operated balancing system using BFI: Desired wrench at the CoM of the robot
(WD) was computed using net wrench applied at the CoM of the human operator (WH), divergent
components of motion of the robot and the human operator (ξR and ξH) while feedback force was
exerted on human’s torso referring to measured robot states. Here, scale factors (a) α =

[
αx αz αy

]T for

WH (b) β =
[
βx βz βy

]T for ξH, and (c) γ =
[
γx γz γy

]T for ξR and control gains (d) K =
[
Kx Kz Ky

]T

in Equation (3) were used to convert the human reaction to WD.

In the frontal plane, the net wrench at the CoM of the human operator (WH) contains
two force components (x- and z-axes) and one moment component (y-axis). The two force
components at the CoM are equivalent to those of the resultant GRF measured by the force
plate. The moment at the CoM can be estimated based on the two force components of
the resultant GRF and the relative position between the CoM and the CoP, as described in
Equation (2). My,H denotes the moment at the CoM of the human operator along the y-axis
in Equation (2). The components of the resultant GRF along the x- and z-axes are denoted
by Fz,H , Fx,H . The position of the CoP along x-axis is given by px,H . xH , zH are the position
of the CoM along x- and z-axes.

My,H = −Fz,H ·(px,H − xH)− Fx,H ·zH (2)

The DCM [38], which is also referred to as the capture point, reflects the unstable
dynamics of the CoM and can be estimated from the measured position and velocity of
the CoM, as can be seen in Equation (3). The DCM in the frontal plane has two linear
components (x- and z-axes) and one angular component (y-axis).

ξi = Si +
.
Si·
√

h
g

(3)

Here,
x, z, y ∈ i
ξi: DCM along the i-axis
Si,

.
Si: Position and velocity of the CoM along the i-axis

h: Nominal height
g: Gravitational acceleration
As illustrated in Figure 4a,b, both the net wrench at the CoM of the human operator

(WH) and the DCM of the human operator (ξH) are scaled to provide the reference wrench
(Wref) and the reference DCM (ξref) for the bipedal robot. The reference DCM (ξref) is then
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compared with the measured DCM of the bipedal robot (ξR). The difference between the
reference DCM (ξref) and the scaled DCM of the bipedal robot (Figure 4c) is multiplied by
the control gain K (Figure 4d). The control gain K was determined by trial and error by
minimizing the error between the scaled DCM of the human operator and the scaled DCM
of the bipedal robot. Then, the result is summed with the reference wrench (Wref) to yield
the desired wrench at the CoM of the bipedal robot (WD). The computation of the desired
wrench (WD) to maintain the balance of the bipedal robot is expressed as in Equation (4).

WD =

αx
αz
αy

�WH +

Kx
Kz
Ky

�
βx

βz
βy

� ξH −

γx
γz
γy

� ξR

 (4)

Here,
�: Element-wise multiplication (also known as the Hadamard product)
WD =

[
Wx,D Wz,D Wy,D

]T : Desired wrench at the CoM of the robot

WH =
[
Wx,H Wz,H Wy,H

]T : Net wrench at the CoM of the human operator[
αx αz αy

]T
=
[

mR ·dR ·hH
mH ·dH ·hR

mR
mH

mR ·dR
mH ·dH

]T
: Scale factors for the WH[

KxKz Ky
]T

= [40 80 30]T : Control gains

ξH =
[
ξx,H ξz,H ξy,H

]T : DCM of the human operator along each axis[
βx βz βy

]T
=
[

1
dH

1
hH

IH
mH ·dH ·hH

]T
: Scale factors for the ξH

ξR =
[
ξx,R ξz,R ξy,R

]T : DCM of the robot along each axis[
γx γz γy

]T
=
[

1
dR

1
hR

IR
mR ·dR ·hR

]T
: Scale factors for the ξR

mi, di, hi, Ii: mass, distance between the two feet along the x-axis, nominal height, and
moment of inertia around the CoM of the human operator (i = H) and robot (i = R)

With the desired wrench at the CoM (WD), the GRFs on the feet of the bipedal robot
are determined based on the robot dynamics. The joint torques in the legs are computed
from the GRFs using Jacobian matrices, as shown in the following equation:[

τl
τr

]
=

[
Jl

T 0
0 Jr

T

]
·
[

Fl
Fr

]
(5)

Here,
τl, τr: Amounts of torque for three motors in the left and right leg
Jl, Jr: Jacobian matrices for the left and right legs
Fl, Fr: Contact forces on the left and right feet

2.3. Balance Controller Trained by Human Demonstration
2.3.1. Acquisition of Training Data from Human-Operated Balancing

Data were collected from the robot and the human operator during successful human-
operated balance control tasks. The collected data were used to train the balance controller
based on a behavior cloning model, which was designed to mimic the balancing skills of
the human operator (see Section 2.3.2 for more details). The data from the bipedal robot
were collected using the dynamic simulator for Little HERMES, as well as the actual robot
system. In both the actual robot system and its dynamic simulator, one human subject
(33-year-old male with the height of 185 m and the weight of 88 kg) operated the BFI
to maintain the balance of the bipedal robot when external forces were applied to the
robot in the frontal plane. When using the actual robot system, a human experimenter
manually applied external forces. The applied forces had irregular shapes with different
amplitudes, patterns, and durations for each trial. In the dynamic simulator, external forces
with square-wave forms were applied; the square waves had various amplitudes, whereas
the pulse width was maintained at 180 ms. The external forces were applied after the robot
had fully recovered its balance from the previously applied force.
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While collecting the human-operated balancing data, the loss of balance of the bipedal
robot was discerned under the following conditions: (1) at least one of the robot’s feet lost
contact with the ground, and the robot was no longer in the double support phase; (2) the
DCM moved outside the support line formed between the two feet of the robot in contact
with the ground; and (3) the angle between the midline of the robot trunk and the vertical
line in the frontal plane exceeded 20◦. If any of the three conditions were met, the bipedal
robot was considered to have lost its balance, and data acquisition was halted.

Figure 5 describes the data collected from the robot and the human operator. Figure 5a
shows the CoM states of the robot that serve as the inputs to the DNN model for the wrench
estimator: the linear position and velocity of the CoM along the x- and z-axes, the angular
position and velocity of the robot trunk around the y-axis, and the DCM along the x-, z-,
and y-axes. Figure 5b shows the data acquired from the BFI, which was then scaled to
serve as the target output of the DNN in the balance controller: the reference DCM and
wrench (ξre f and Wre f ). As described in Equation (3), the human DCM and wrench (ξH

and WH) were scaled by scaling factors
[
βx, βz, βy

]T and
[
αx, αz, αy

]T , respectively. The
robot states and human-operated data were sampled every 1.8 ms.

1 
 

 
Figure 5. Collected data used to train the balance controller: (a) Position, velocity, and DCM collected
from the bipedal robot, (b) DCM and net wrench data collected from the human operator, which
were scaled as shown in Equation (3) to be used for training data.

2.3.2. Balance Controller Trained by Human Demonstration Data

The balance controller was trained to control the balancing motion of the robot using
the human-operated balancing data described in the previous section. Figure 6 illustrates a
detailed schematic of the developed balance controller. The wrench estimator replaces the
role of the human operator in controlling the balance of robots by estimating the desired
wrench for the robot (WD), as shown in the figure. As the input to the wrench estimator, the
nine features of the robot states were accumulated over the past 100 time steps, including
the most recent time step. The nine features of the robot states were identical to the data
acquired from the robot to train the balance controller (see Figure 5a). The wrench estimator
was developed based on a behavior cloning method. The behavior cloning method is a
branch of imitation learning in which the algorithm learns a human-like policy from the
data of human demonstrations. The behavior cloning model used in the wrench estimator
has two separate networks: DCM Net and W Net.
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Figure 6. Schematic diagram for the control process of the robot balancing: (a) At each control loop,
the oldest robot state is removed, and the current robot state is inserted to update the data to be
provided to the wrench estimator. (b) The behavior cloning model with two separate networks: DCM
Net and W Net. The two networks use the same input data of robot states but yield different outputs:
ξre f and Wre f , respectively. (c) The desired wrench at the CoM (WD ) is computed from the outputs
of the behavior cloning model. (d) GRF of each foot is computed from desired wrench at CoM.
(e) Joint torques are computed from the GRF using the Jacobian matrix of each leg. (f) GRFs from
both feet generate the net wrench at the CoM to maintain balance.

The structure and hyperparameters of the DNN should be carefully determined before
training the DNN using human demonstration data. Among the various DNN structures,
long short-term memory (LSTM) is known to be suitable for handling time series data
because it can model complex nonlinear feature interactions [39,40]. However, other stud-
ies have reported that multi-layer perceptrons (MLP) and convolutional neural networks
(CNN) perform better than LSTM in processing time series data [41,42]. In this study,
three types of DNN structures were tested as candidate structures for both DCM Net
and W Net: MLP, CNN-MLP, and LSTM-MLP, where CNN-MLP and LSTM-MLP are
hybrid algorithms of a CNN and LSTM with a MLP, respectively. The hyperparameters
of the DNN are the variables to be tuned to optimize the DNN structure and learning
process. Table 1 lists the types and ranges of the hyperparameters that were explored
for the three types of DNN structures compared in this study. The Bayesian optimiza-
tion method was used to explore the hyperparameters for each DNN structure. The
Bayesian optimization method iteratively explores the predefined range of the hyperpa-
rameters (see Table 1). Since the Bayesian optimization method utilizes the results from
the previous exploration to find better hyperparameters, it is known to converge faster
compared to other hyperparameter tuning methods, such as grid search and random search,
wherein an explored combination of hyperparameters is independent of other previously
explored hyperparameters.

The best DNN structures of the DCM Net and W Net were selected by following the
process described in Figure 7. The selection process was performed using data collected
from both the actual robot-BFI system and the robot simulator-BFI system. Through
iterative explorations of the hyperparameter space using the Bayesian optimization method,
the hyperparameters of the three DNN structures (MLP, CNN-MLP, and LSTM-MLP) were
optimized to minimize the root mean square error (RMSE) and the computation time. The
RMSE indicates how closely the estimation by the DNN structure fits the human-operated
balancing data. The computation time is the time required for the DNN structure to process
the input data to yield the output, which is critical for the real-time control of the robotic
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system. The performances of the three DNN structures after optimization were compared
with respect to their RMSE and computation time to determine the DNN structures for
DCM Net and W Net (see Section 3.1 for the results).

Table 1. Explored hyperparameters and their ranges.

Hyperparameters Explored Range

Hidden Layer

MLP Structure

Number of fully connected layers Integers

Number of neurons in each fully connected layer Integers

Activation function for neurons {Tanh, ReLu, Linear}

CNN Structure

Number of CNN-pooling Layers Integers

Number of CNN layers in each CNN-pooling layer {1, 2, 3}

Number of filters in each CNN layer Integers

Kernel size {3, 5, 7}

Activation function for CNN layers {Tanh, ReLu, Linear}

Pooling size {2, 3, 4, 5}

Pooling method {Max, Average}

Padding {On, Off}

LSTM Structure
Number of LSTM cells in each LSTM layer Integers

Number of LSTM layers to be stacked {1, 2, 3}

Output Layer Activation function {Tanh, ReLu, Linear}

Loss Function Types of loss function {MSE, Hubber, Log-Cosh}

Optimizer Types of optimizers {SGD, Adam, RMSprop}

Training Process

Learning rate Real Numbers

Learning rate decaying schedule Real Numbers

Batch size Integers
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Figure 7. Optimization process for the hyperparameters of DCM Net and W Net. The Bayesian
optimization method iteratively explores (a) types and range of hyperparameters for (b) each of the
three types of DNN structures. (c) The three types of DNN structures were optimized to lower the
RMSE between the predictions from the DNN and the target values collected via the BFI system.
(d) The performance of the optimized MLP, CNN-MLP, and LSTM-MLP were compared to select the
best structure for the balance controller by considering the RMSE and the computation time (CP).
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After the optimization process of the hyperparameters, the DCM Net and the W Net
were trained in a supervised manner using different pairs of input-target data. For training
both networks, the nine features of the robot states and the reference DCM and wrench
(ξre f and Wre f ) were used as input data and target data, respectively. The trained DCM
Net and W Net mapped the robot states onto the reference DCM and wrench in a similar
way to the regression algorithms of supervised learning. The behavior cloning method,
however, is known to suffer from a compounding error that may cause the robot states
to drift away from human demonstrations [43]. In this study, the behavior cloning model
was combined with a feedback control method to compensate for the compounding error.
As shown in Figure 6b, the current DCM of the robot (ξR) was fed back to the wrench
estimator to compute the desired wrench (WD), as described in Equation (3).

The desired wrench for the bipedal robot (WD) was then fed to the joint torque
controller. Under the condition of double support, the GRFs at the two feet were computed
to produce the desired wrench that counteracted the external force [36], as shown in
Figure 6d. The GRFs were mapped onto the joint torques for the two legs using contact
Jacobian matrices (Figure 6e). The bipedal robot can maintain balance by applying a joint
torque to compensate for the external force (Figure 6f). The sampling time for the control
loop in Figure 6 was 1.8 ms, both for the actual robot and its dynamic simulator.

2.4. Simulation and Experimental Tests of Balance Controller

Most studies on humanoid balance have been based on an FRC [6–10]. In the studies
using an FRC, the desired wrench at the CoM was computed to be proportional to the
difference between the current configuration and the FRC of the robot, whereas the wrench
estimator developed in this study computes the desired wrench at the CoM of the robot
from the robot states by capturing human balancing skills without reference to an FRC.

The performance of the balance controller developed in this study was compared
with that of a conventional balance controller using an FRC, as illustrated in Figure 8.
In the conventional balance controller, the FRC is set as the upright posture of the robot,
and the desired wrench is set to be proportional to the difference between the current
configuration and the FRC. The joint torque is calculated in the same manner as that used
in the developed balance controller.
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2.4.1. Simulation Tests with Robot Dynamics Simulator

To avoid robot balancing motions that may cause unpredicted damage to the actual
bipedal robot, the developed balance controller was first tested using a dynamic simulator.
In simulation tests, the performance of the developed balance controller was evaluated
based on the resistance to balance loss and the jerk of the balancing motion. To evaluate
the balancing performance in the frontal plane, the bipedal robot in the dynamic simulator
was confined to move in the frontal plane, and external forces of square-wave forms were
applied laterally to the CoM of the robot.

To evaluate the capability of the robot to resist balance loss, external forces were
applied as a single pulse and as a series of pulses, which had different patterns from the
external forces used for training the balance controller. For the simulations, five values of
the pulse widths were provided: 180, 150, 100, 50, and 10 ms. The pulse amplitude was
increased from 0 N with an increment of 1 N until one foot of the robot lost contact with
the ground. The capability of the robot to resist balance loss was assessed by monitoring
the amplitude of the external force at which either foot slip or loss of foot-ground contact
occurred. A higher force amplitude indicated a greater resistance to balance loss. In the
case of the simulation using the series of pulses, the pulses were applied at intervals of
400 ms, so that the pulse was applied before the robot fully recovered its balance from the
previous pulse.

The jerkiness of the balancing motion was assessed by estimating the jerk cost function
of the CoM of the robot while applying a single pulse of external force with a pulse width
of 100 ms. The acceleration at the CoM was passed through a low pass filter of 10 Hz,
eliminating the higher frequency noise. The cut-off frequency was chosen to be 10 Hz
because the typical frequency of the body motion is often observed below 10 Hz [44]. The
jerk at the CoM of the robot was computed by numerically differentiating the filtered
acceleration at the CoM. The jerk cost functions of the linear and angular movements were
calculated as follows:

JL = ∑
(

...
Sx

2
+

...
Sz

2
)

(6)

JA = ∑
...
Sy

2
(7)

Here,
Jl , Jr: Linear and angular componets of jerk cost function
...
Sx,

...
Sz: Linear jerk along the x-and z-axes

...
Sy: Angular jerk around the y-axis
Several studies on robot manipulation have reported that a smooth low-jerk motion

can reduce actuator load and wear [45]. Additionally, a smoother motion with a smaller jerk
can be tracked faster and more accurately [46]. As one of many theories on which human
motor control is based, the minimum-jerk hypothesis suggests that humans minimize jerk
in skillful limb movements [47]. In this study, balancing movements with lower jerk were
interpreted as being more skillful movements.

2.4.2. Experimental Tests with Actual Robot

In the experimental tests using the actual robot, the motion of the robot trunk was
confined to the frontal plane using kinematic constraints. External forces were manually
applied to random locations on the trunk of the robot. Owing to the nature of manual
force applications, the force could not be exerted in a systematic manner with controlled
amplitudes, patterns, and durations. To address this problem, the integral of the force
over time or the impulse was monitored instead of the amplitude of the force, while the
magnitude of the force was controlled considering the simulation results. The resistance to
balance loss was assessed by monitoring the impulse at which either foot slip or loss of foot-
ground contact occurred. The loss of foot-ground contact was detected when the vertical
displacement of one foot of the bipedal robot exceeded a threshold. In the experiments
using the actual robot, a higher impulse at which balance loss occurred was interpreted
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as greater resistance to balance loss. The jerk of the balancing motion was monitored and
interpreted in the same way as in the experiment using the dynamic simulator.

3. Results and Discussion
3.1. Selected DNN Structures Based on Performance Comparison

With the hyperparameters described in the previous section, the three DNN structures
for DCM Net and W Net were optimized. The performances of the optimized DNN
structures are compared with respect to RSME and computation time in Tables 2 and 3. The
RMSEs for the DCM and the net wrench indicate the goodness of model fit to the human-
operated balancing data in the frontal plane (two linear components (x- and z-axes) and
one angular component (y-axis)). Based on the performance analysis, the DNN structures
for DCM Net and W Net were selected.

Table 2. Performance of Three Optimized DNN Structures for DCM Net and W Net of the Robot Simulator.

Type of DNN Optimized DNN Structure RMSE
in x-Axis

RMSE
in z-Axis

RMSE
in y-Axis Computation Time

DCM Net

MLP 0.0081 m 0.0042 m 0.0026◦ 0.235 ms

CNN-MLP 0.0091 m 0.0042 m 0.0021◦ 0.316 ms

LSTM-MLP 0.0072 m 0.0041 m 0.0021◦ 1.171 ms

W Net

MLP 0.00057 N 0.0019 N 0.0033 Nm 0.11 ms

CNN-MLP 0.0054 N 0.0019 N 0.0032 Nm 0.713 ms

LSTM-MLP 0.0055 N 0.0019 N 0.0031 Nm 4.153 ms

Table 3. Performance of Three Optimized DNN Structures for DCM Net and W Net of the actual robot.

Type of DNN Optimized DNN Structure RMSE
in x-Axis

RMSE
in z-Axis

RMSE
in y-Axis Computation Time

DCM Net

MLP 0.0113 m 0.0046 m 0.0033◦ 0.0755 ms

CNN-MLP 0.011 m 0.0044 m 0.003◦ 0.5104 ms

LSTM-MLP 0.0132 m 0.0044 m 0.0028◦ 2.5324 ms

W Net

MLP 0.0095 N 0.0018 N 0.0144 Nm 0.767 ms

CNN-MLP 0.0093 N 0.0018 N 0.0124 Nm 0.2918 ms

LSTM-MLP 0.0096 N 0.0018 N 0.0112 Nm 14.2904 ms

3.1.1. Comparison of DNN Structures for Robot Dynamic Simulator

By using a test data set that was not used for training, the performance of the three
candidates for the DNN structures was evaluated with the robot dynamic simulator.
Figure 9 compares the predictions from the three optimized DNN structure with the
target output. Figure 9a–c plots the outputs from DCM Net, and Figure 9d–f plots the
outputs from W Net. In the figures, the grey, green, blue, and red lines represent the target
output and the predictions from MLP, CNN-MLP, and LSTM-MLP, respectively. As can
be seen in the figure, the predictions from the three DNN structures are very close to the
target output, which makes it difficult to discern the performance of the three candidates
for the DNN structures.

The RMSE and computation time of the three DNN structures after optimization are
compared in Table 2 to determine the DNN structure for DCM Net and W Net. The MLP
structure was selected for the robot dynamic simulator as the DNN structure for DCM
Net. The results show that the RMSEs had comparable accuracies for all three optimized
DNN structures for DCM Net. In terms of the computation time, the LSTM-MLP structure
showed the slowest computation time, whereas the MLP structure showed the fastest
computation time for DCM Net. The MLP structure was selected as the DNN structure
for W Net for the robot dynamic simulator. Although all three candidates for W Net had
comparable accuracy, the MLP structure had a much shorter computation time compared
with the other two.
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The optimized MLP structures for DCM Net and W Net are described in Figure 10.
Both DCM Net and W Net employ MLP structures in the hidden layer with different sets
of hyperparameters. A 2D array of 9 by 100 was fed into both DCM Net and W Net. Since
the MLP structure uses a 1D vector as an input, DCM Net and W Net convert the 2D input
array into a 1D vector of size 900 using a flatten layer. DCM Net and W Net have six and
five fully connected (FC) layers, respectively. DCM Net uses ReLu activation function for its
six FC layers and a linear activation function for its output layer, whereas W Net uses Tanh
activation functions for all FC layers and the output layer. During the training process, the
Adam optimizer was used to update the weights of DCM Net and W Net. The learning rate
(LR), the decay rate of the LR (DR), and the batch size (BS) were set to 0.000719, 0.005219,
and 1024 for DCM Net and 0.002875, 0.009715, and 128 for W Net, respectively.
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3.1.2. Comparison of DNN Structures for the Actual Robot

The three candidates for the DNN structures were evaluated with the actual robot
using a test dataset that was not used for training. Figure 11 shows the target output and
the predictions from the three optimized DNN structure. The grey, green, blue, and red
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lines in the figure denotes the target output and the predictions from MLP, CNN-MLP,
and LSTM-MLP, respectively. Figure 11a–c compares the outputs from DCM Net, and
Figure 11d–f compares the outputs from W Net.
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The evaluation results are listed in Table 3. The CNN-MLP structure was selected
as the DNN structure for DCM Net to estimate the reference DCM (ξre f ) from the CoM
states of the actual robot. The CNN-MLP structure showed better accuracy than the other
two candidates. The MLP structure showed the fastest computation time, although its
accuracy was much lower than that of CNN-MLP. The computation time of the CNN-MLP
structure was sufficiently fast because it was still faster than the control-loop execution
time of the actual robot. The optimized CNN-MLP structure was selected as the DNN
structure for W Net to estimate the reference wrench (Wre f ) from the CoM states of the
actual robot. Although all the candidates for DNN structures showed comparable accuracy,
the CNN-MLP structure demonstrated slightly better overall accuracy. The CNN-MLP
structure was also superior to the other two candidates with respect to the computation
time. For both DCM Net and W Net, the computation time of the LSTM-MLP structure
was much slower than the control-loop execution time of the actual robot, which makes it
inappropriate for actual robot applications.

The CNN-MLP structures for DCM Net and W Net are illustrated in Figure 12. Both
DCM Net and W Net used CNN-MLP structures in the hidden layer with different sets of
hyperparameters. A 2D array of robot states was fed to both DCM Net and W Net. DCM
Net has two pairs of convolution-pooling (C-P) layers, whereas W Net has four pairs of C-P
layers. In both networks, the output of the last C-P layer was transformed into a 1D vector
using a flatten layer to be later used for the FC layer. Both DCM Net and W Net have nine
FC layers after the last C-P layer. During the training process, the RMSprop optimizer was
used to update the weights of DCM Net and W Net. The LR, DR, and BS were set to 0.0001,
0.000001, and 1024 for DCM Net and 0.0001, 0.000001, and 1024 for W Net, respectively.
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3.2. Performance of Balance Controller in Robotic Dynamic Simulator

In the robot dynamic simulator, the performance of the balance controller using the
behavior cloning model (BCBC) was compared with that of the conventional control based
on the FRC (BCFRC). With the robot dynamic simulator, the pattern of the external force,
including the amplitude, pulse width, and time interval, can be easily modified. The
performances of BCBC and BCFRC were evaluated in terms of the resistance to balance loss
and the jerkiness of the balancing motion.

3.2.1. Resistance to Balance Loss

The resistance to balance loss was evaluated by the amplitude of the external force at
which either foot slip or loss of foot-ground contact occurred. Figure 13 compares the force
amplitudes between BCBC and BCFRC at which the foot slip (blue bars) and the loss of foot-
ground contact (red bars) occurred when a single pulse (Figure 13a) and a series of pulses
(Figure 13b) of external forces with widths of 180, 150, 100, 50, and 10 ms were applied. As
can be seen in the figure, both foot slip and loss of foot-ground contact occurred at higher
force amplitudes with BCBC than with BCFRC, which demonstrates superior resistance to
balance loss with the behavior cloning model. The simulation results show that the robot
under the control of the behavior cloning model performed better than the conventional
FRC-based control in maintaining balance against a series of square pulses, as well as a
single square pulse with various pulse widths.

3.2.2. Jerkiness of Balancing Motion

The jerkiness of the balancing motion was evaluated based on the jerk cost func-
tion. The jerk cost functions of the linear and angular movements were computed using
Equations (6) and (7) when a single pulse was applied with varying amplitudes from 21 to
27 N and a pulse width of 100 ms. Table 4 compares the jerk cost functions with BCBC and
BCFRC during the application of a single square pulse.

Table 4. Jerk cost functions with different amplitudes of pulses.

Jerk Cost Function
Amplitude of External Force

21 N 22 N 23 N 24 N 25 N 26 N 27 N

Linear
Component

BCBC 61.4 75.5 88.2 99.1 106.7 103.6 113.1

BCFRC 75.1 134.5 Loss of Foot Contact

Angular
Component

BCBC 762.8 2595.4 4303.8 5356.3 5902.7 5749.5 7476.3

BCFRC 4073.9 20,555 Loss of Foot Contact
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The results show that the jerk cost functions with BCBC were lower than those with
BCFRC for both linear and angular balancing movements in the horizontal plane for the
pulse amplitudes of 21 N and 22 N. Particularly for the angular motion, the jerk cost
functions with BCBC were lower than those with BCFRC by an order of magnitude. As
described in the third column of Figure 13a, the robot controlled by BCFRC lost its balance
with a pulse amplitude above 23 N, whereas with BCBC, the balance loss occurred with
a pulse amplitude of 28 N. The simulation results show that the robot controlled by the
behavior cloning model generated smoother balancing movements for higher external
forces without losing its balance, compared to the conventional FRC-based control. This
feature is advantageous for improving the lifespan of the motors and other mechanical
parts of the robot by reducing jerky impact loads.

3.3. Performance of Balance Controller in Actual Robot

The performances of BCBC and BCFRC were tested with an actual robotic system, Little
HERMES. For experimental tests with the actual robot, external forces with irregular shapes
were manually applied as the disturbance to balance. The performances of BCBC and
BCFRC were evaluated in terms of the resistance to balance loss and the jerkiness of the
balancing motion.

3.3.1. Resistance to Balance Loss

In the robot dynamic simulator, the resistance to balance loss was evaluated using the
amplitude of the external force at the balance loss. In experimental tests with the actual
robot, we used the impulse (the time integral of the external force) with which foot-ground
contact was lost, rather than the external force itself, to compare the performance of BCBC
and BCFRC. The impulse is a more suitable measure than the force since the magnitude of
the manually applied force is difficult to control.

In the experiments, impulsive forces were manually applied to the trunk of the robot.
The impulse of the force was increased while its magnitude was monitored until foot-
ground contact was lost. We performed 10 sets of experiments, and each set of experiments
included five cases of foot-ground contact loss. The minimum value of impulse out of
the five cases was selected as the threshold impulse that initiated foot-ground contact
loss for each set of experiments. From the 10 sets of experiments, 10 threshold impulses
were selected.
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The bar graph in Figure 14 compares the mean and standard deviation values of
the threshold impulses with BCBC and BCFRC. The results show that the threshold im-
pulses with BCBC (mean = 2649.3, std = 178.4) was much higher than those with BCFRC
(mean = 1982.6, std = 177.9), with a statistically significant difference (p < 0.05). These
results further support the fact that the behavior-cloning model can improve the capa-
bility of the robot to maintain balance compared to the BCFRC against irregularly shaped
external forces.
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Figure 14. Mean and standard deviation values for the 10 threshold impulses observed from the
robot controlled by BCBC and BCFRC.

3.3.2. Jerkiness of Balancing Motion

The jerk cost functions for the linear and angular movements were computed for
the balancing motion of the actual robot. Figure 15 compares the averages of the jerk
cost functions for the linear and angular movements controlled by BCBC (blue bars) and
BCFRC (red bars). In the figure, the averages of the jerk functions were compared in four
different ranges of the impulse magnitude: [1500, 2000), [2000, 2500), [2500, 3000), and
[3000, 3500). The robots equipped with BCBC and BCFRC were able to maintain its balance
with impulse magnitudes up to 3500 N·s and 2500 N·s, respectively. For the jerk cost
function of linear motion, BCBC showed slightly larger cost values than BCFRC in the ranges
of [1500, 2000) and [2000, 2500). As for the jerk cost function of angular motion, however,
BCBC showed lower cost values than did BCFRC for the same ranges. The experimental
results show that the behavior cloning model can generate angular motion with higher
smoothness, and linear motion with comparable smoothness, compared to the conventional
FRC-based control.
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Figure 15. Averages of the jerk cost functions calculated from the balancing motion under the
external force whose impulse belongs to each sub-range: [1500, 2000), [2000, 2500), [2500, 3000),
and [3000, 3500). Blue and red bars representing the averages of the jerk cost functions calculated
from the robots controlled by BCBC and BCFRC, respectively. (a) Average of the jerk cost functions for
linear movement, (b) Average of the jerk cost functions for angular motion.
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4. Conclusions

In this study, we developed a novel balance controller for bipedal robots in the frontal
plane by employing a behavior cloning model, as one of deep learning techniques. Unlike
FRC-based studies on robot balancing, the developed control algorithm generates the
desired wrench at the CoM by capturing human balancing behavior from the robot states
without referring to a specific reference frame.

The developed balance controller consists of two components: a wrench estimator and
a joint torque controller. The wrench estimator calculates the desired wrench at the CoM
using a pre-trained behavior cloning model that employs two separate DNNs. The two
DNNs, DCM Net and W Net, were trained on human-operated balancing data acquired
using the BFI. The two DNN structures after training the map from the measured robot
states to the desired wrench at the CoM of the robot. The joint torque controller calculates
the joint torques from the desired wrench based on the robot dynamics model of the bipedal
robot. This structure allows the developed balance controller to cope with various contact
conditions, including changing the contact points and time-varying contact forces.

The performance of the developed system was evaluated experimentally using an
actual robotic system, as well as in simulations using a robot dynamics model. Both the
simulation and experimental results show that the developed controller outperforms con-
ventional FRC-based balance controllers with respect to the prevention of foot slip and
foot contact loss under various types of external perturbations. The results also show
that the developed balance controller can generate smoother angular movements com-
pared to conventional FRC-based controllers. These results confirm that the balancing
controller developed in this study outperforms the conventional FRC-based balance con-
troller by moving the reference configuration based on human balancing movements, while
employing the same PD-controller as in the conventional balancing method.

As a preliminary study, we investigated the balancing control of a bipedal robot in
the frontal plane. Although balancing in the sagittal plane involves different balancing
mechanisms, the behavior cloning-based control methodology developed for frontal plane
motion can be easily extended to achieve control balance in the sagittal plane. In our
future work, we plan to apply the balance controller to a bipedal robot performing power
manipulations in the sagittal plane, such as hammering and axing.
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