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Abstract: Morphing aircraft are capable of modifying their geometry configurations according to
different flight conditions to improve their performance, such as by increasing the lift-to-drag ratio
or reducing their fuel consumption. In this article, we focus on the airfoil morphing of wings and
propose a novel morphing control method for an asymmetric deformable airfoil based on deep
reinforcement learning approaches. Firstly, we develop an asymmetric airfoil shaped using piece-
wise Bézier curves and modeled by shape memory alloys. Resistive heating is adopted to actuate the
shape memory alloys and realize the airfoil morphing. With regard to the hysteresis characteristics
exhibited in the phase transformation of shape memory alloys, we construct a second-order Markov
decision process for the morphing procedure to formulate a reinforcement learning environment
with hysteresis properties explicitly considered. Subsequently, we learn the morphing policy based
on deep reinforcement learning techniques where the accurate information of the system model is
unavailable. Lastly, we conduct simulations to demonstrate the benefits brought by our learning
implementations and validate the morphing performance of the proposed method. The simulation
results show that the proposed method provides an average 29.8% performance improvement over
traditional methods.

Keywords: airfoil morphing; shape memory alloys; hysteresis; deep reinforcement learning

1. Introduction

While unmanned aerial vehicles (UAVs) have played a crucial role in various civil
and military missions, studies demonstrate that birds usually possess higher flight maneu-
verability and agility than comparatively-sized aircraft in complex and varying environ-
ments [1,2]. One of the critical advantages of birds is that they morph their wings and tails
intricately to perform efficient behaviors including perching, hovering and maintaining
stability under different flight conditions [3]. Such aerodynamic adaptability has aroused
flourishing interest in the design and control of avian-inspired morphing UAVs [4–6]. In
this work, we focus on aircraft capable of morphing their wings by modifying the geometric
configuration of the airfoil shape, which refers to more specifically camber morphing [7].
Bird wings are usually cambered to generate sufficient lift force at a low angle of attack. The
camber does not remain constant through their flight, and many observations show that
birds actively control the camber of their proximal wing via remiges and modify the distal
wing airfoil shape via their primary feathers [8,9]. These investigations provide insight into
the study of airfoil-morphing aircraft. The benefits brought by camber morphing for aircraft
include increasing lift, reducing drag and airframe noise mitigation [10]. Applications of
camber morphing mechanisms include a lead-edge morphing combined smart droop nose
design, which achieves high-lift performance with significantly reduced complexity and
mass [11], and a flexible morphing trailing edge design with deformable ribs, which is
used to enhance the Fowler flaps and act as a substitution for ailerons for civil transport
aircraft [12].
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The ideal airfoil is usually generated using shape optimization techniques including
gradient-based methods and gradient-free methods [13], which optimize some aerodynamic
performance parameters of aircraft, such as the drag coefficient, the lift coefficient and the
lift-to-drag ratio [14–16]. Recently, deep reinforcement learning (DRL) approaches such
as proximal policy optimization (PPO) [17] have been exploited to learn the airfoil shape
directly according to performance metrics computed by computational fluid dynamics
(CFD) solvers [18]. In [19], a 3D-printed morphing airfoil model is developed, and the
optimal configuration is generated via Q-learning to match the desired pitching moment.
In [20], the transfer learning technique is combined with DRL for shape optimization, which
formulates a multi-fidelity framework and reduces the computational cost.

Although an optimized airfoil shape can be calculated given a certain flight condition,
it is challenging to morph into optimal shapes instantaneously during the flight procedure
due to the uncertainty and inconsistency of the environments and aircraft dynamics [2,21].
This galvanizes the utilization of data-driven methods including deep learning and rein-
forcement learning for morphing control. In [22], the morphing air vehicle was modeled
as a smart block in the shape of a rectangular parallelopiped, and the control policy was
learned by actor-critic methods. This framework was extended to an ellipsoid-shaped
aircraft with Q-learning methods to produce a more efficient policy [23]. The thickness and
camber of the airfoil shape were adjusted via Q-learning in [24], where the rewards were
related to aerodynamic parameters. The constant-strength source doublet panel method
was utilized in [25] to calculate the aerodynamic forces on the morphing air vehicle. In [26],
airfoil morphing by vertically moved control points was designed, where the unknown
drag and lift coefficients were estimated using neural networks.

Concerning the realization of morphing mechanisms, biologically inspired mechanical
joints are often adopted to control sweep-, dihedral- and twist-morphing wings [27–29].
However, the development and actuation for camber-morphing aircraft are more challeng-
ing, as they are required to permit smooth transitions in the airfoil shape [2]. Conventional
actuators for camber morphing include servo motors and hydraulic actuators [30,31], where
the wing is constructed by articulated rigid-linked components [32] or a deformable skin
with internal compliant mechanisms [33]. Recent advances in material technologies have
led to a proliferation of applications of smart materials, especially shape memory alloys
(SMA), for morphing aircraft [34,35]. Shape memory alloys are metallic alloys capable
of transforming their crystalline structures between two phases to deform and recover
their shapes through heating and cooling, which is suitable for morphing actuators be-
cause of their properties, including high-actuation energy densities and large recoverable
strains [35]. A morphing wing under subsonic cruise flight conditions was developed
in [36] using a flexible skin and a group of SMA actuators, which reduced the fuel con-
sumption. In [37], the authors designed an autonomous morphing helicopter rotor blade
where the SMAs equipped on the blade modify the section camber according to ambient
temperature. In [38], a super critic airfoil actuated by SMAs was developed, and the tran-
sonic aerodynamics are investigated. Nevertheless, to actively control the strain of SMA
wires is not straightforward due to the temperature hysteresis exhibited during the phase
transformation [39]. This gives rise to increasing investigations of learning-based control
for SMAs. Reinforcement learning methods including Q-learning and Sarsa have been
applied to adjust the strain of SMAs via resistive heating, where the hysteretic dynamics are
modeled as hyperbolic tangent curves [40,41]. However, there is no explicit consideration
for the hysteresis properties in the policy-learning procedure of these studies.

In this work, the morphing control for a deformable asymmetric airfoil based on
deep reinforcement learning techniques is investigated. The contributions of this work
are threefold, as follows. Firstly, the shape of the asymmetric airfoil is designed based
on Bézier curves, and the morphing mechanism of such airfoils is modeled via SMA
wires. Subsequently, a dynamic system between input voltages and airfoil shapes is
developed, which characterizes the hysteresis behaviors in the manner of Markov decision
processes. Finally, the morphing policy is constructed based on deep reinforcement learning
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approaches without accurate knowledge of system models, which adjusts the airfoils during
flight procedures to track the optimal shapes in different flight conditions.

The rest of this paper is organized as follows. In Section 2, the morphing method is
developed in three steps. In Section 2.1, the asymmetric airfoil is shaped using piece-wise
Bézier curves. In Section 2.2, the morphing airfoil is modeled by SMAs, and a dynamic
model is derived. In Section 2.3, a deep reinforcement learning-based morphing policy is
developed. In Section 3, simulations are conducted to validate the proposed methods. In
Section 4, this work is summarized.

2. Materials and Methods
2.1. Asymmetric Airfoil Shape Modeling

Well-known methods of curve synthesis for airfoil design and optimization include
splines (e.g., B-spline and Bézier curves) [42,43], free-form deformation (FFD) [44], and
class-shape transformations (CST) [45]. In this work, Bézier curves are selected for their
straightforward design procedure and simple calculations. The shape of the asymmetric
airfoil is parameterized via N control points, which are connected by Bézier curves [18,20].
To generate an untangled shape, the control points are distributed in an annulus with a
predefined inner radius R1 and outer radius R2. Moreover, the annulus is partitioned into
N sectors equally, in each of which a control point is placed. These points are sorted with
respect to the azimuth and denoted as pi ∈ R2 for i = 1, . . . , N in Cartesian coordinates.
Each pair of adjacent points is augmented by two other points and then connected via a
cubic Bézier curve. For each control point, pi, an auxiliary angle, is calculated to determine
the tangent to the curve at this point, which is given by

θ∗i = αiθi−1,i + (1− αi)θi,i+1 (1)

where θi,i+1 is the angle between point pi and pi+1, and αi ∈ [0, 1] is an averaging parameter
to modify the local smoothness of the curve. Then, two augmented points for the curve
between pi and pi+1 are calculated by

p∗i = pi + ηi‖pi+1 − pi‖ · ei

p∗∗i = pi+1 − ηi‖pi+1 − pi‖ · ei+1
(2)

where ei =
[
cos(θ∗i ), sin(θ∗i )

]>, and the scale parameter ηi controls the local curvature. The
curve connecting pi and pi+1 is given by

b(t) = (1− t)3 pi + 3(1− t)2tp∗i + 3(1− t)t2 p∗∗i + t3 pi+1, 0 ≤ t ≤ 1 (3)

An example of a valid shape is illustrated in Figure 1. The morphing wings in this
work take NACA-2424 [46,47] as the baseline airfoil.

2.2. Dynamic System of Airfoil Morphing

Denote the polar coordinate of each point pi as {ri, θi}N
i=1. Then the shape of the airfoil

is fully determined by the radius ri, the angle θi and the auxiliary angle parameters αi, ηi.
In the flight procedure of the aircraft, we aim to morph the airfoil to maximize desired
aerodynamic performances, such as the lift-to-drag ratio Cl/Cd, according to various
conditions, including flight position, velocity or attack angle. With the combination of CFD
solvers and optimization methods, the preferred airfoil shape at a given flight condition
can be determined previously. Such optimized shapes serve as the reference or target
airfoil shapes for the morphing task. Then, the problem of how to control the airfoil to
achieve optimized shapes during the flight procedure where the flight condition varies
is investigated.
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Figure 1. An illustration of a valid airfoil shape with six control points. The dashed circles denote
the minimum and maximum radius for each point. The dashed rays split the annulus into N
equal sections.

Since there has been a variety of investigations on the position control of DC mo-
tors [48], we assume that the polar angle of each control point tracks the reference trajectory
well via motors. Additionally, we assume that the auxiliary angle parameters can be ad-
justed rapidly and accurately. Therefore, in this work, we focus on the optimal morphing
in the aspect of modifying the radii of control points.

Smart materials, especially shape memory alloys (SMA), are adopted to realize the
airfoil morphing, where the radii of control points are modified via adjusting the length of
SMA wires. Firstly, the dynamic model is constructed between the wire temperature and
radii. An SMA wire changes its length through the crystal phase transformation between
martensite and austenite according to the temperature. The transitions to martensite and
austenite have different start and end temperatures, which leads to the hysteresis properties
of the strain with respect to the temperature. Instead of common methods such as Preisach
model and Krasnosel’skii–Pokrovskii model [49], the SMA hysteresis is characterized
using hyperbolic tangent functions for their efficiency in computation and accuracy in
curve fitting [41]. The strain is replaced by a radius factor γi = (ri − R1)/(R2 − R1)
equivalently such that γi ∈ [0, 1]. For heating and cooling starting with temperatures
outside the transformation region, namely that the initial temperature is not between the
end temperatures of the phase transformations, the hysteresis properties are modeled by
the major hysteresis loops as

f major
l (T) =

h0

2
tanh((T − ctl)cb) + w

(
T − ctl + ctr

2

)
+

h0

2
+ cs (4)

f major
r (T) =

h0

2
tanh((T − ctr)cb) + w

(
T − ctl + ctr

2

)
+

h0

2
+ cs (5)

where T denotes the temperature, and h0, ctl , ctr, cb, w, cs parameterize the shape of the
curves. Values of such parameters are chosen to fit the experimental data of SMA [40,41].
The radius factor γ varies according to the f major

l curve when the temperature decreases

and f major
r when the temperature increases. Furthermore, switching the temperature

direction during the transformation procedure causes a reverse transformation starting
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from the current temperature and strain, which is not on the major loop of the reverse
transformation. Such transforms are modeled using minor hysteresis loops, which are
modeled by hyperbolic tangent curves with similar shapes as the major loops. The function
of a rising minor loop is given as

f minor
r (T, h) =

h
2

tanh((T − ctr)cb) + w
(

T − ctl + ctr

2

)
+ h0 −

h
2
+ cs (6)

where h is selected to ensure the intersection of the consecutive curves at the current point
and is given by

h = gr(hprev, T) =
hprev (tanh((T − ctl)cb) + 1)− 2h0

tanh((T − ctr)cb)− 1
(7)

and hprev is the height parameter of the previous curve. Functions for the lowering curves
are analogous as

f minor
l (T, h) =

h
2

tanh((T − ctl)cb) + w
(

T − ctl + ctr

2

)
+

h
2
+ cs (8)

and

h = gl(hprev, T) =
hprev (tanh((T − ctr)cb)− 1) + 2h0

tanh((T − ctl)cb) + 1
(9)

An illustration of the transformation procedure is given in Figure 2.

Figure 2. An illustration on the hysteresis loops of SMA wires.

After constructing the temperature-strain model, resist heating is used to actuate the
SMA wires [50]. Given the applied voltage vi, the temperature T follows the heat transfer
model [39]

mwcwṪi =
v2

i
Rw
− hw Aw

(
Ti − Tf

)
i = 1, . . . , N (10)

where mw is the mass per unit length of the SMA wire, cw is the specific heat, Rw is the
electrical resistance per unit length, hw is the heat exchange coefficient, Aw is the wire
circumferential area, and Tf is the airflow temperature. Combining the temperature-strain
relationship and (10), it is shown that the dynamic system between the radius and the input
voltage are highly nonlinear due to the hysteresis characteristics. An illustration on the
dynamics of SMA wires driven by a sinusoidal voltage input is given in Figure 3.
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Figure 3. An illustration on the dynamics of SMA wires with sinusoidal voltage input.

In this work, we tackle the morphing problem for the airfoil constructed by the SMA
wires whose dynamics are given in (4)–(10). Note that the temperature-strain and voltage-
temperature relationships modeled above are not directly accessible to our controller, but
serve as the environment from which paths of the states can be sampled. We resort to deep
reinforcement learning methods to design the morphing policy.

2.3. Reinforcement Learning based Morphing Control

Reinforcement learning (RL) methods are capable of learning a control policy from
interactions between the given agent and environment, with no requirement on the knowl-
edge of system models [51]. The learning procedures are based on Markov decision
processes (MDPs), which are given by 4-tuples {S, A, R, P}, where S and A are the state
space and action space containing all the states and actions, respectively, R is the reward
function giving rk = R(sk, ak, sk+1) as rewards, and P is the transition function giving
P(sk+1|sk, ak) as state transition probabilities. In this section, the airfoil morphing problem
is solved in the RL framework, where we aim to find the optimal policy maximizing the
expected total rewards.

Before choosing the states and actions for the morphing problem, the morphing
system is investigated further to construct an MDP from it. Firstly, the voltage-temperature
dynamics (10) of SMA wires is discretized via Euler methods as

Ti,k = Ti,k−1 + ∆t · σ(Ti,k−1, vi,k−1) (11)

where ∆t > 0 is the discretizing time step, and

σ(T, v) =
v2

mwcwRw
− hw Aw

mwcw

(
T − Tf

)
(12)

With regard to the temperature-strain dynamics, since the minor loops converge with the
major loops outside the SMA’s transformation region, we assume that the major loops
determine the initial states of the wires, and minor loops dominate the dynamics during the



Biomimetics 2022, 7, 188 7 of 20

morphing procedure. We denote the function (8) as fl(T, h) and (6) as fr(T, h) for simplicity,
and introduce the signum function

sgn(x) =

{
1, x ≥ 0

0, x < 0
(13)

Then, sgn(Tk − Tk−1) is used to discriminate the status of raising or lowering the tem-
perature at time k. According to (11) and the fact that ∆t > 0, we describe the temperature
direction at time k by

χi,k , sgn(Tk − Tk−1) = sgn(σ(Ti,k−1, vi,k−1)) (14)

Note that the strain is dependent on the height parameter of the current loop. Recall
from (7) and (9) that the value of the height parameter changes when the direction of
temperature switches. Then, the time-varying parameter is determined by

hi,k =(1− χi,k−1:k) · (χi,kgr(Ti,k, hi,k−1) + (1− χi,k)gl(Ti,k, hi,k−1))

+ χi,k−1:khi,k−1
(15)

where
χi,k−1:k , sgn(σ(Ti,k−2, vi,k−2)σ(Ti,k−1, vi,k−1)) (16)

detects the reversal of temperature direction. Subsequently, the radius factor given the
temperature and height parameter is calculated by choosing the rising or lowering loop
according to the current temperature direction as

γi,k = χi,k fr(Ti,k, hi,k) + (1− χi,k) fl(Ti,k, hi,k) (17)

Summarizing the relationships (11), (15) and (17), it seems appropriate to select T and
h as states and v as actions to construct a RL environment for airfoil morphing. The radius
factor can be treated as an observation since it is dependent on only the current voltage,
temperature and height parameter. Since the length and temperature of SMA wires can
be measured directly via sensors equipped on the airfoils, these values are assumed to be
available. However, the height parameter is not a realistic physical characteristic but just a
coefficient fitting the hyperbolic tangent curves to the actual SMA properties, which makes
the measurement on h not available. Actually, we aim to adjust the position of control
points to achieve a reference airfoil shape, such that we want to learn a policy on modifying
the lengths (i.e., the radius factors). We observe from the loop functions (6) and (8) that,
given the temperature T, the function of γ with respect to h is bijective. Therefore, denoting
the relationship (17) as γi,k = f (hi,k, Ti,k, Ti,k−1, vi,k−1), we can obtain an inverse function as

hi,k = f−1(γi,k, Ti,k, Ti,k−1, vi,k−1) (18)

Combining (15) and (18), the dynamics of radius factors are described as

γi,k = f
(
(1− χi,k−1:k) ·

[
χi,kgr

(
Ti,k, f−1(γi,k−1, Ti,k−1, Ti,k−2, vi,k−2)

)
+ (1− χi,k)gl

(
Ti,k, f−1(γi,k−1, Ti,k−1, Ti,k−2, vi,k−2)

)]
+ χi,k−1:k f−1(γi,k−1, Ti,k−1, Ti,k−2, vi,k−2), Ti,k, Ti,k−1, vi,k−1

) (19)

Note that χi,k−1:k is dependent on the temperature and voltage at time k − 2. This
makes the transition function of γ a second-order difference equation.
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Proposition 1. Given a second-order MDP with states s′ ∈ Rns′ and actions a′ ∈ Rna′ satisfying

p(s′k|s
′
k−1, a′k−1, s′k−2, a′k−2, . . . , s0, a0) = p(s′k|s

′
k−1, a′k−1, s′k−2, a′k−2) k ≥ 2 (20)

select sk =
[
s′>k , s′>k−1

]> and ak =
[
a′>k , a′>k−1

]>. Then, an MDP can be constructed by states s and
actions a (with an additionally defined state transition function and reward function). Moreover, if
the second-order MDP with s′ and a′ has a deterministic state transition function

s′k = fs(s′k−1, a′k−1, s′k−2, a′k−2) (21)

then the MDP constructed by s and a satisfies the transition function

sk =
[

f>s
([

Ins′ , 0
]
sk−1,

[
Ina′ , 0

]
ak−1,

[
0, Ins′

]
sk−1,

[
0, Ina′

]
ak−1

)
,
([

0, Ins′
]
sk−1

)>]> (22)

This proposition can be derived directly via the properties of MDPs. According
to Equations (11), (19) and Proposition 1, it is reasonable to choose the radius factors{

γi,k−1, γi,k
}

and temperatures
{

Ti,k−1, Ti,k
}

as states with input voltages
{

vi,k−1, vi,k
}

as
actions. We restrict the states by γ ∈ [0, 1] and the actions by v ∈ [0, Vmax].

The reference radius factors of the optimized airfoil shape under certain condition ck
are denoted as γref

i,k (ck). When determining the reward, we expect the airfoil to morph to
reference shapes accurately and rapidly. Therefore, a sparse reward function comprised of
two components at time k is designed by

r′k = R(sk, ak, ck) =
N

∑
i=1

(rpos
k,i + rvol

k,i ) (23)

where the position reward conveying the requirement of morphing accuracy is given by

rpos
k,i =

{
rp, |γi,k − γref

i,k (ck)| ≤ ethr

0, |γi,k − γref
i,k (ck)| > ethr

(24)

and the voltage reward aiming to increase the morphing speed is given by

rvol
k,i =

rv, |γi,k − γref
i,k (ck)| > ethr and sgn(vi,k − vi,k−1) = sgn

(
γref

i,k (ck)− γi,k

)
0, otherwise

(25)

where rp > rv > 0 and ethr > 0 are tunable hyperparameters. When the position error is
small, the voltage reward is eliminated to mitigate the oscillation. The choice of adjacent
voltages as actions permits the calculation of the voltage reward in the MDP framework.
Furthermore, the total return to be maximized is given by

R(τ) =
K

∑
k=0

r′k (26)

where τ = (s0, a0, c0, s1, a1, c1 . . . ) denotes the sequence of states, actions and conditions.
After establishing the MDP, we proceed to tackle the morphing task based on deep

reinforcement learning techniques. Our learning method is designed based on the soft
actor-critic (SAC) algorithm [52], which is an off-policy reinforcement learning method
compatible with continuous state and action spaces. In the actor-critic framework, the
agent learns to interact with the environment and obtain maximum rewards via training
two types of neural networks iteratively. The first one is named a critic network and accepts
current states and actions as input to approximate the action-value function, which serves
as an evaluation of the current policy. The second one is denoted as an actor network and
generates actions according to the system states and optional external inputs. After the
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training is converged, the policy is determined by the actor network and conducted for
online executions, which in this work is the morphing task. In SAC, a stochastic policy
is learned with additional entropy regularization in the rewards, which improves the
ability of exploration and achieves faster convergence for a variety of control problems.
According to the MDP of the morphing procedure, we choose the state sk to be sk =[

s′1,k−1, s′1,k, . . . , s′N,k−1, s′N,k

]
and the action as ak =

[
a′1,k−1, a′1,k, . . . , a′N,k−1, a′N,k

]
, where

s′i,k = [γi,k, Ti,k] and a′i,k = vi,k. Note that since the reference airfoil shapes guide the
morphing, the flight condition should be incorporated for the generation and evaluation of
the actions. We denote the distribution of the stochastic policy as π(a|s, c).

With regard to the construction of the action-value function, instead of directly apply-
ing (23), we augment the reward with policy entropy as

rk = R(sk, ck, ak) =
N

∑
i=1

(
r′k,i + βHπ(si,k, ck)

)
(27)

where
Hπ(si,k, ck) = Eai,k∼π(·|si,k ,ck)

[− log π(ai,k|si,k, ck)] (28)

is the entropy representing the randomness of the policy, and β > 0 is the trade-off coeffi-
cient. According to (26), we define a finite-horizon undiscounted return to be maximized.
Nevertheless, a discount factor is applied when evaluating the value functions to focus on
recent rewards, since the future reference shapes are not accessible at the current time step.
Then, the action-value function with the regularized reward function is introduced as

Qπ(s, a, c, k) = Eτ∼π

[
−

K

∑
t=k

N

∑
i=1

ξtr′k,i +
K

∑
t=k+1

N

∑
i=1

ξtβHπ(si,t, ct)

∣∣∣∣sk = s, ak = a, ck = c

]
(29)

Afterwards, the Bellman equation for the action-value function is given as

Qπ(sk, ak, ck, k) =

rk +Esk+1∼P,ak+1∼π [ξ(Qπ(sk+1, ak+1, ck+1, k + 1)− β log π(ak+1|sk+1, ck+1))]
(30)

and following the schedule of SAC [52], we approximate the expectation by

Qπ(sk, ak, ck, k) ≈ rk + ξ(Qπ(sk+1, ãk+1, ck+1, k + 1)− β log π(ãk+1|sk+1, ck+1)) (31)

where {sk, ak, ck, sk+1, ck+1} are sampled from replay buffers, and the next action ãk+1 is
sampled from the current policy π(·|sk+1, ck+1).

For the learning of the action-value functions, the double-Q trick is applied to avoid
overestimation [53]. Two critic networks for Q functions are implemented as Qφ1(s, a, c, k)
and Qφ2(s, a, c, k), where φ1 and φ2 are parameters. Additionally, for the stabilization of
the training procedure, the target networks Qφ′1

and Qφ′2
, which are copies of Qφ1 and

Qφ2 , are used and updated by polyak averaging after each time we update the main critic
networks as

φ′ ← ρφ′ + (1− ρ)φ (32)

where ρ ∈ (0, 1) is the update hyperparameter. Summarizing all these settings, the loss for
critic networks is given by the mean squared Bellman error function as

L(φ) = ∑
b∈B

(
Qφ(sk, ak, ck, k)− y(sk+1, ak+1, ck+1, k + 1)

)
(33)

where B is the sampled batch with elements b = {sk, ak, ck, rk, k, sk+1, ck+1, k + 1} of the
replay buffer, and where

y(sk+1, ak+1, ck+1, k + 1) = ξ
(

Qφ′(sk+1, ãk+1, ck+1, k + 1)− β log π(ãk+1|sk+1, ck+1)
)

(34)
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is calculated using target networks. Stochastic gradient descent is applied to update φ1 and
φ2 with respect to the loss functions L(φ1) and L(φ2).

Subsequently, we aim to find the policy that maximizes the expected action-value
function with respect to the actions. Denote the parameters of actor network as θ. Since the
action at time step k is composed of the input voltages at k− 1 and k, the actor network
should be designed as πθ(sk, ck, ak−1), where an identity layer is applied to propagate the
previous voltages. However, the distribution of new input voltages is still only dependent
on sk and ck. Therefore, we use πθ(ak|sk, ck) to denote the density of action ak. Then, the
value function to be optimized is given as

Vπθ (sk, ck, k) = Eak∼πθ
[Qπθ (sk, ak, ck, k)− β log(πθ(ak|sk, ck))] (35)

The reparameterization trick is adopted here for the sake of the efficient computation of
gradients [54]. We introduce a standard normal distributed variable ζ ∼ p(ζ) = N (0, Ina)
and calculate the input voltage according to a deterministic squashing function as

vk =
Vmax

2
(1 + tanh(µθ(sk, ck) + σθ(sk, ck) ◦ ζk)) (36)

where µθ(s, c) and σθ(s, c) are parameterized neural networks and ◦ denotes element-wise
multiplication. Then, the expectation over ak ∼ π can be converted to the expectation
over the normal variable whose distribution is irrelevant to the states and net parameters.
Additionally, the squashed Gaussian policy constrains the input voltages in [0, Vmax]. Ac-
cording to (36), the action given sk, ck and ζk is written as ak = aθ(sk, ck, ζk). Note that this
is an invertible map between ak and ζk. Therefore, we can compute the log-probabilities in
closed form according to the change of the variable formula [55] as

log(πθ(ak|sk, ck)) = log(p(ζk))− log |det Jaθ
(ζk)|

= log
(

p(a−1
θ (sk, ck, ak))

)
+ log |det Ja−1

θ
(ak)|

(37)

where a−1
θ is the inverse function of aθ given sk and ck, and J denotes the Jacobian matrix.

With Qπθ approximated by the minimum of the two critic networks, the loss function
for the actor network is obtained as

L(θ) = ∑
b∈B

(
min
i=1,2

Qφi (sk, aθ(sk, ck, ζk), ck, k)− β log(πθ(aθ(sk, ck, ζk)|sk, ck)

)
(38)

Then, we conduct the training by updating the actor and critic networks iteratively. The
agent interacts with various randomly generated time-varying reference shape sequences
to acquire training data, which faciliates the exploration and enables the policy to handle
different morphing scenarios. When the training converges, we can use the actor network
to calculate the required voltages and morph the airfoil to the reference shapes. Finally, the
overall flowchart of the proposed morphing mechanism is given in Figure 4.
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Figure 4. Overall flowchart of the proposed DRL-based airfoil morphing framework.

3. Results

In this section, a simulation is conducted to validate the proposed morphing method.
The simulation is arranged in two stages. Firstly, we implement our method with random
generated reference shapes and perform ablation studies to examine the superiorities
brought by different parts of our algorithm. Subsequently, we apply the proposed method
to track optimized airfoil shapes in different flight conditions and show the morphing
procedures. The values of parameters in our simulation are given in Table 1 [40,41].
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Table 1. Values of system parameters used in simulations.

Parameter Value Parameter Value

mw 1.14× 10−4 Aw 4.72× 10−4

cw 837.4 Rw 50.8
Tf 20 hw 120
H 0.995 cb 0.147
cw 1.25× 10−5 cs 0.001
ctl 46 ctr 65

3.1. Tracking Random Shapes

In this stage, the superiorities of our method are illustrated in a variety of perspectives,
including the state/action selection, reward configuration and entropy regularization.
Without loss of generality, piece-wise constant trajectories of the radius factor for one control
point are generated to represent the reference shapes. Then, our method is compared with
three different settings of RL algorithms. The proposed method is denoted as RLM-SAC.

• Second-order state/action versus first-order state/action
In Section 2, second-order MDP is adopted to model the hysteresis characteristics of
the morphing system. Therefore, we chose the states and actions as combinations
of that in current step and previous step. We compared the performance with RL
algorithms where the policy is generated according to only current states, and the
value function was also evaluated with only current states and actions as inputs
that are applied in existing investigations on controling SMA wires. We refer to this
as RLM-FO.

• Sparse reward versus squared error reward
We designed a sparse reward taking value in {0, 1}, which is different from traditional
RL-based morphing research. We compared that with the square error rewards, which
is given by

r′k = R(sk, ck) = −
N

∑
i=1
|γi,k − γref

i,k (ck)|2 (39)

which is named RLM-SER.
• SAC versus DQN

The entropy regularization improves the capability of exploration in our algorithm.
A modified deep Q learning method was implemented as a comparison, where only
the entropy loss was removed, and both the double-Q setting and reparameterization
trick remained. We denote this as RLM-DQN.

All RL realizations were trained through 150 epochs, in each of which 5 episodes
with 40 s of time and 200 time steps were executed. The critic network was constructed
using multilayer perceptrons (MLP) of 3 hidden layers and 128 units per layer. The actor
network adopted similar structures, where additional fully connected layers were attached
to produce the mean and standard variations of the policy. The training was started with
actions uniformly sampled from the valid action space bounded by [0, Vmax] for 5000 steps
to explore the state space sufficiently. Then, the networks were updated every step with a
batch size of 200. A fixed learning rate was set as 0.002, and other hyperparameters used in
RL training are shown in Table 2. The actions were generated from the stochastic policy
in training phase but produced in a deterministic way according to the mean value of the
actor network in the testing phase.
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Table 2. Values of hyperparameters used in RL.

Parameter Value Parameter Value

ξ 0.98 α 0.2
ρ 0.995 Vmax 15
rp 1 rv 0.02

ethr 0.1

The results are shown in Figures 5–8. In Figures 5 and 6, we illustrate the rewards
acquired in the training and test trajectories, respectively, during the training procedure.
A Savitzky–Golay filter [56] was adopted to smooth the data such that the values and
trends of the rewards are illutstrated more clearly. Note that the reward of RLM-SER was
not included because of a different reward setting. After the training was finished, the
algorithms were executed on 100 random generated test reference trajectories. We present
the root-mean-squared error (RMSE) of the radius factor through the flight time in Figure 7.
Some of the trajectories and the corresponding results produced by the four RL realizations
are depicted in Figure 8 for an intuitive comparison.

From the results, we can see the benefits of each important component in our algorithm.
Firstly, RL using square error reward totally fails to produce effective actions in our envi-
ronment, which is shown from both the RMSE and example trajectories. RLM-FO acquires
inferior performance compared with RLM-SAC, especially in the temperature-switching
procedure, which can be validated by the middle sections of the example trajectories. This
is a result of the fact that the hysteresis cannot be characterized well by first-order states
and actions. Lastly, RLM-DQN obtains better performance than RLM-FO and RLM-SRE,
and it achieves a similar reward to RLM-SAC at the end of training. However, from the
illustrations of rewards in Figures 5 and 6, it is shown that RLM-DQN converges much
slower than RLM-SAC. This is due to the improvement of exploration capability provided
by entropy regularization.

Figure 5. Reward of different RL realizations over the training trajectories. The data are smoothed
via Savitzky–Golay filter with window size 15 and order 5.
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Figure 6. Reward of different RL realizations over the test trajectories. The data are smoothed via
Savitzky–Golay filter with window size 15 and order 5.

Figure 7. RMSE of radius factors generated by different RL realizations. The flight conditions in test
trajectories change every 5 s, and at this time, the airfoil is expected to morph to a new reference shape.
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Figure 8. Illustration of some reference trajectories and the performance of each RL method.

3.2. Morphing Procedure Simulation

In this stage, the trained actor network is applied to morph an airfoil controlled by
four points in a given flight procedure with varying flight conditions. Since the focus
of this work is morphing control, in each condition, the optimal shape is assumed to be
solved in anticipation by shape optimization techniques and determined by the radii and
angles of control points [14,18,20]. The average coefficient and scale coefficient are fixed as
α = [0.12, 0.4, 0.4, 0.12] and η = [0.5, 0.5, 0.5, 0.5]. The trajectory of flight conditions and the
corresponding parameters of optimal shapes are shown in Figure 9.

Figure 9. Trajectory of flight conditions. (a) Condition indexes. (b) Trajectories of optimal radius
factor for each control point. (c) Trajectories of optimal angle for each control point.

Since the position control technique of motors is relatively sufficiently developed, we
assumed that the angles of the points are controlled by DC motors with accurately known
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linear dynamic models, which can drive the points to desired angles rapidly with subtle
errors. Then we generate input voltages to heat the SMA wires and adjust the radius factors.
The voltages, temperatures and radius factors of all points are summarized in Figure 10. It
is shown that with constrained voltages, the wires can track the reference lengths well.

Figure 10. Voltages, temperatures and radius factors of control points. Each column represents the
values of a point.

Furthermore, we illustrate the morphing procedures in Figure 11. We can see intu-
itively that with the proposed RLM-SAC method, the airfoil is capable of morphing into
the optimized shape within about 3 s after encountering a new flight environment, which
validates both the morphing accuracy and morphing speed.

Quantitative comparisons on the length factor differences and shape differences are
given in Table 3. The average length factor differences are calculated according to the
reference length factor and actual length factor as

elength =
1

KN

K

∑
k=0

N

∑
i=1

|γi,k − γref
i,k |

γref
i,k

(40)

The difference between the actual and reference shapes are evaluated using distances
between the control points. An average shape difference over all time is calculated as

eshape−avg =
1

KN

K

∑
k=0

N

∑
i=1
||pi,k − pref

i,k ||2 (41)

where ||pi − pref
i ||2 is the L2 distance between the two Cartesian coordinates pi,k and pref

i,k .
Additionally, the steady shape error is evaluated by

eshape−end =
1

4N

4

∑
t=1

N

∑
i=1
||pi,kt − pref

i,kt
||2 (42)

where kt denotes the end time step of each flight condition. It is shown that our method
acquires the best performance on all metrics. The proposed RLM-SAC method provides an
average 29.8% performance improvement over the second-best RLM-DQN method. The
length differences and average shape differences, which are averaged over all time steps,
demonstrate that our method can morph the airfoil into desired shapes more rapidly, while
the steady shape difference validates the morphing accuracy. Lastly, in this work, we give
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the reference airfoil shape directly and focus on the morphing performance of the proposed
method. It will be interesting and meaningful to combine the shape optimization task with
the morphing control problem in the future.

Figure 11. Illustration of the morphing procedure. Each row represents a morphing stage.

Table 3. Quantitative comparisons of different morphing methods.

RLM-SAC RLM-FO RLM-SER RLM-DQN

elength 14.04% 31.44% 323.6% 23.24%
eshape−avg 0.0533 0.0645 0.2202 0.0601
eshape−end 0.0019 0.0055 0.0494 0.0031

4. Conclusions

In this work, a novel deep reinforcement learning-based morphing control method
is proposed for an asymmetric morphing airfoil. The airfoil is designed via Bézier curves
and is capable of morphing from a baseline shape to an asymmetric shape. The morphing
mechanism is modeled via SMA wires, which adjust shape parameters, especially the
radii of the control points. To actuate the SMA wires, resistive heating is performed, but
the hysteresis characteristics between the SMA strain and temperature make the dynamic
system nonlinear and non-Markovian, which brings difficulties to the design of the control
algorithm and the RL framework. Therefore, hyperbolic tangent curves are adopted to
model the strain-temperature relationship and derive a second-order MDP describing the
system, which is then transformed into a valid MDP and provides guidance for the selection
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of states and actions. Based on the constructed MDP, we modify the SAC algorithm and
develop an RL scheme where input voltages are generated to morph the airfoil instan-
taneously according to reference-optimized shapes. Lastly, ablation studies on random
generated reference trajectories are conducted to demonstrate the benefits brought by
different components of our RL implementations, and we perform simulations of morphing
procedures to validate that our method is able to morph the airfoil into the optimized
shapes rapidly and accurately. Future works include incorporating the aerodynamic per-
formance optimization directly into the morphing control and exploiting learning-based
morphing policies for more complicated bio-inspired morphing aircraft.
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