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Abstract: Observability analysis of a bioinspired flexible flapping wing system provides a measure of
how well the states of flexible flapping wing micro-aerial vehicles can be estimated from real-time
measurements during high-speed flight. However, the traditional observability analysis approaches
have trouble in terms of lack of quantitative analysis index, high computational complexity, low
accuracy, and unavailability in stochastic systems with memory, including bioinspired flexible
flapping wing systems. Therefore, a novel derivative-free observability analysis method is proposed
here based on the generalized polynomial chaos expansion. By formulating a surrogate model
to represent the relationship between the cumulative measurement and the random initial state,
the observability coefficient matrix is calculated and the observability rank condition is stated.
Consequently, several observability indices are proposed to quantity the observability of the system.
Altogether, the proposed method avoids the disadvantages of the traditional approaches, especially
in assessing the observability degree of each state and the effect of stochastic noise on observability.
The validation of the proposed method is first provided by demonstrating the equivalence between
the traditional and proposed methods and subsequently by comparing the observability of the
Lorenz system calculated via three different approaches. Finally, the proposed method is applied on
a bioinspired flexible wing system to optimize the placement of sensors, which is consistent with the
natural configuration of campaniform sensilla on the wing of the hawkmoth.

Keywords: derivative-free observability analysis; stochastic system with memory; optimal sensor
placement

1. Introduction

Due to the high maneuverability and portable structure of birds and insects, bioin-
spired flexible flapping wing micro-aerial vehicles (FWMAVs) have attracted considerable
attention in the last decade [1–3]. A prerequisite to designing such agile FWMAVs is
the simultaneous and accurate estimation of vehicle states, such as position and rotation
rates, through the noisy information measured by the sensors on the wing. To solve this
state estimation problem, the observability analysis of a bioinspired flexible flapping wing
system is necessary in order to evaluate whether the system states can be inferred from the
measurements. Thereby, the guidelines for measurement selection, sensor placement, and
model optimization can be provided.

For a bioinspired flexible flapping wing system, deformation inevitably happens be-
cause of aerodynamic loads and inertial forces, and negatively influences the estimation
of rotation rates based on the measurements from sensors on the wing. In nature, insects
have sensing mechanisms that enable them to understand their flying states. For example,
the strain information of a flying insect is measured and saved by campaniform sensilla on
the wing, followed by conversion to action potentials (voltage spikes) in the sensory neu-
rons [4,5]. After the delivery of these neural-encoded spikes to the central nervous system,
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the rotation rates are detectable. Such sensing and signal processing mechanics ensure in-
sects’ fast and accurate sensory feedback and subsequent high agility [6]. Inspired by these
biological mechanisms, the neural encoding processing of strain data can be constructed as
neural encoding measurement model [7]. Unlike the raw strain measurement model used
previously [8], the neural encoding measurement model has strong nonlinearity, the same
as the flexible wing flapping dynamics model. In addition, the measurement at each time
contains the current and previous state information. Altogether, the strong nonlinearity
and memory function of the flexible flapping wing system make its observability analysis
a significant challenge.

For a linear time-invariant system, the traditional observability rank condition is the
simplest and most effective criterion to analyze whether the system is observable or not [9].
However, it fails in nonlinear systems, and even in linear time-variant systems. Hence,
several observability analysis approaches for nonlinear systems have been developed.
Rouhani et al. [10] applied the Lie-derivative-based observability analysis method to power
systems with the realistic synchronous generator model, and Seo et al. [11] used the same
method to analyze the observability of a missile interception system with line-of-sight
angle measurement. This method is feasible only for simple and small-scale nonlinear
systems, as it requires considerable derivation calculations. The empirical observability
Gramian method, which is developed from the observability Gramian method through
interval approximation, is more prevalent in practical applications because it does not de-
pend explicitly on the system models and reduces the computational complexity [12]. For
instance, Hinson et al. [8] utilized this method to determine the optimal sensor placement
on the wing of the hawkmoth. Hodzic et al. [13] and Hinson et al. [14] respectively applied
the empirical observability Gramian method to the sensor placement problem for generic
wide-body aircraft and the path planning problem for under-sensed vehicles. However, the
existing approaches are either derivative-based, which leads to high computational com-
plexity, or approximation-based, which may reduce the analytical accuracy. Furthermore,
these approaches are unable to measure the influence of stochastic noise on observability.

Recently, a derivative-free approach based on the generalized Polynomial Chaos (gPC)
expansion has been proposed by Zheng et al. [15] to address the aforementioned problems.
They further applied the derivative-free approach to a power system using the stochastic
dynamic model [16]. While this method has been proven feasible and computationally
efficient for nonlinear systems without control input and memory, it is impracticable for
systems with memory, such as a flexible flapping wing system.

In this paper, we propose a modified gPC-based observability analysis approach for
both linear and nonlinear systems incorporating memory and applying it to the analysis
of a flexible flapping wing system. The observability indices obtained by the proposed
approach are used to determine the optimal placement of sensors configured on the wing.
The main contributions are as follows.

(1) The traditional observability analysis approaches are extended to linear and non-
linear deterministic systems with memory. By extending the definition of observability to
deterministic systems with memory, a new relationship between the cumulative measure-
ment and the initial state is formulated. Then, according to the implicit function theorem,
the traditional observability rank condition for systems with memory is provided.

(2) A modified derivative-free approach based on the generalized Polynomial Chaos
expansion for linear and nonlinear stochastic systems with memory is proposed, signif-
icantly reducing the computational cost and resolving the stochasticity of the system.
Because the definition of observability is extended to stochastic systems with memory, it is
necessary to represent this new relationship through a surrogate model. Thus, a different
mapping between the stochastic input variable and standard normally distributed variable
is formulated, resulting in a more appropriate surrogate model. Based on this model, the
observability rank condition can subsequently be provided and its equivalence with the
traditional approaches proven mathematically.
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(3) Based on [15], several different observability indices, such as the first contribution
rate and interference binary value, are proposed to describe the observability degree of
systems, including the observability of each system state and the effect of measurement
noise on the system observability.

(4) Finally, the proposed method is applied to observability analysis of a flexible
flapping wing model inspired by the hawkmoth. Based on the proposed observability
indices, the optimal sensor placement on the bioinspired wing is discussed and compared
with the natural configuration of campaniform sensilla on the wing of the hawkmoth.

The remainder of the work is organized as follows. Section 2 formulates the flexible
wing flapping dynamics model and neural encoding measurement model. Section 3
extends the traditional observability analysis approaches to linear and nonlinear systems
with memory and discusses the shortcomings of the traditional approaches. Section 4
presents a derivative-free observability analysis approach and the observability indices
for the linear and nonlinear system with memory, followed by the equivalence between
the traditional and proposed approaches. Section 5 applies the proposed approach to the
Lorenz system with memory and the bioinspired flexible flapping wing system. Section 6
discusses the optimal sensor placement based on the observability analysis. Finally, our
conclusions are provided in Section 7.

2. System Model

This paper mainly focuses on the observability analysis problem of the bioinspired
flexible flapping wing model based on neural encoded strain measurements. In this
section, inspired by the North American hawkmoth, Manduca sexta, a low-order model of
flexible wing flapping dynamics is first derived, followed by a neural encoding model of
strain measurement.

2.1. Flexible Wing Flapping Dynamics

Here, the flexible flapping wing is considered as a thin and flexible cantilevered plate
A in a rotating coordinate system, as depicted in Figure 1. This coordinate system is called
the wing body frame, where xp are the positive axis points from the leading edge to the
trailing edge along the wing root, the positive axis yp is perpendicular to xp and points
from root to tip in the wing plane, and the positive axis zp is perpendicular to the wing
plane. The cantilevered plate is assumed to deform out-of-plane without in-plane stretching
or extension.

( , , ) 
O

 

 

 

  

Figure 1. Wing Model in the Wing Body Frame.

Hence, the out-of-plane plate deformation w(x, y, t) is described by a finite number of
orthonormal spatial modes, that is,

w(x, y, t) =
nm

∑
i=0

ϕi(x, y)ηi(t) (1)

where ϕi(x, y) are the free-vibration mode shapes, ηi(t) are the modal coordinates, and nm
is the number of chosen modes used to represent the spatial deformation.

Here, two main wing mode shapes, i.e., the first bending mode and the first torsion
mode, are chosen to capture the principle wing deformations [8], as illustrated in Figure 2.
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(a) (b)

Figure 2. Prescribed wing mode shapes showing deformations in mm: (a) first bending mode and
(b) first torsion mode.

We define the unit vectors in each axis direction as ip, jp, and kp, the position of a mass
element dA on the plate in the wing body frame is

r(x, y, t) = xip + yjp + w(x, y, t)kp (2)

and the velocity of dA is provided by

v = v0 +
∂

∂t
r + ω0 × r

= (U + Qw− Ry)ip + (V + Rx− Pw)jp + (W + ẇ + Py−Qx)kp

(3)

where v0 = Uip + V jp + Wkp is the velocity of the origin of wing body frame and
ω0 = Pip + Qjp + Rkp is the angular velocity of wing body frame.

We define the mass density of the wing as ρ(x, y), the thickness as h(x, y), the kinetic
energy as Te, and the potential energy Ue of the wing A as follows:

Te(t) =
1
2

∫
A

ρ(x, y)h(x, y)v(x, y, t) · v(x, y, t)dA

Ue(t) =
1
2

∫
A

h(x, y)3

12
Λ(x, y, t)T MΛ(x, y, t)dA

(4)

where M is the matrix of the material constants and Λ is the strain vector:

Λ =
[

∂2w
∂x2

∂2w
∂y2

2∂2w
∂x∂y

]T
(5)

Because the generalized coordinates describing the structural configuration are modal
coordinates η, Lagrange’s equation is formulated as

d
dt

(
∂Te

∂η̇i
)− ∂Te

∂ηi
+

∂Ue

∂ηi
= Qi, i = 1, · · · , nm (6)

where Qi are the exogenous non-conservative generalized forces.
Substituting Equations (1), (3), and (4) into Lagrange’s equation, the equations of

motion for the flexible wing in the wing body frame is

η̈+ Ωη+ Ma(

Ẇ
Ṗ
Q̇

− Ca) = Q (7)
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where the modal coordinate vector is η = [η1 η2]
T, the total aerodynamic force is Q = [Q1 Q2]

T ,
and the stiff matrix Ω, applied acceleration mass matrix Ma, and Coriolis force Ca are
provided by Equations (8), (9), and (10), respectively:

Ω =

[
ω2

1 − P2 −Q2 0
0 ω2

2 − P2 −Q2

]
(8)

where ωi = 2π fi and fi denote the corresponding mode frequency of the ith mode shape.

Ma =
∫
A

[
ρhϕ1 ρhϕ1y −ρhϕ1x
ρhϕ2 ρhϕ2y −ρhϕ2x

]
dA (9)

Ca =

QU − PV
−QR

PR

 (10)

Let the position of the feathering rotation axis relative to the origin of the wing body
frame be rr = xrip + 0jp + 0kp; then, the velocity and acceleration of wing body frame are
computed by

vo = −ω0 × rr

v̇o = −ω̇0 × rr −ω0 × (ω0 × rr)
(11)

Substituting Equation (11) into (7), the motion equation can be rewritten as

η̈+ Ωη+ Ma

xr(Q̇− 2PR)
Ṗ + QR
Q̇− PR

 = Q (12)

The aerodynamics force Q is modeled as the aerodynamics model provided in [8],
that is,

Q = Qt0 + Qa0 + Qtηη + Qaη̇ η̇ + Qaη̈ η̈ (13)

where Qt0 and Qtη denote the translational generalized force vector and translational
force stiffness matrix, respectively, and Qa0, Qaη̇ , and Qaη̈ represent the added mass force
vector, added mass damping matrix, and added mass acceleration matrix, respectively. The
detailed equations and corresponding derivations are omitted because the aerodynamics
model is not the focus of this work.

Let the state vector be x = [η η̇ P Q R]T and the control input vector be u = [Ṗ Q̇ Ṙ]T; then,
the flexible wing flapping dynamics model is formulated by substituting Equation (13) into (12):

ẋ =


η̇

(I −Qaη̈)−1[Qaη̇ η̇− (Ω−Qtη)η+ Qt0 + Qa0 + Ma1 xr(2PR− Q̇) + Ma2(−QR− Ṗ) + Ma3(PR− Q̇)]
Ṗ
Q̇
Ṙ

 (14)

Define the feathering angle as α, the elevation angle as θ, and the position angle as ζ,
as shown in Figure 3; these three Euler angles represent the motion of the wing body frame
with respect to the inertial frame.
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Figure 3. Wing model in a rotating reference frame.

Assuming that the 3-1-2 rotation sequence is used, ω0 and the Euler angles have the
following relationship:

ω0 =

cosα 0 −sinαcosθ
0 1 sinθ

sinα 0 cosαcosθ

θ̇
α̇
ζ̇

 (15)

where θ̇, α̇, and ζ̇ denote the feathering, elevation, and position angular velocity, respectively.
The control input u can be computed by taking the derivative of Equation (15) with respect
to time t.

2.2. Neural Encoding Measurement Model

Assuming that a strain sensor on the wing plane is located at rs = xs
−→
ip + ys

−→
jp + zs

−→
kp ,

the strain measurement ε(xs, ys, t) = [εxx(xs, ys, t) εyy(xs, ys, t) εzz(xs, ys, t)]T is provided by

ε(xs, ys, t) = −
nm

∑
i=1

zs


∂2 ϕi(xs ,ys)

∂X2
∂2 ϕi(xs ,ys)

∂y2

2∂2 ϕi(xs ,ys)
∂x∂y

ηi(t) (16)

where εxx, εyy, and εxy mean the chord-wise bending strain, span-wise bending strain, and
shear strain, respectively. Because the assumed structural modes do not have chord-wise
bending, εxx is effectively zero, and only εyy and εxy are assumed to be measured by the
sensors on the wing.

To determine the rotation rates, flying insects such as the hawkmoth Manduca sexta
deliver the strain data from the campaniform sensilla on the wing to the central nervous
system via sensory neurons, where the strain data are converted into action potentials
(voltage spikes). This transformation process is called neural encoding. Inspired by this
neural encoding mechanism, we constructed a neural encoding measurement model instead
of using unprocessed strain measurements (16).

Several experiments have verified that the neural encoding model of hawkmoth wings
is based on the two main functions [6,17], namely, the spike-triggered average (STA) and
a nonlinear activation (NLA) functions.

The STA function is a measure that relates continuous strain stimulus to the spike,
which represents the average stimuli taken during spike occurrences. This is approximated
as an exponentially decaying sinusoidal function with a delay a

STA(t) = cos(2π fSTA(−t + a))exp(
−(−t + a)2

b2 ) (17)

where b is the width and fSTA is the STA frequency.
The firing rate of a neuron κ(xs, ys, t) can be estimated by convolution of the strain

stimulus and the STA:

κ(xs, ys, t) =
1

Cκ

∫ tM

0
ε(xs, ys, t− τ)STA(τ)dτ (18)

where Cκ is a normalization constant and tM is the memory length.



Biomimetics 2022, 7, 178 7 of 28

Furthermore, a saturation function is added to properly reflect the neuron’s nonlinear
behaviour. Hence, by substituting κ(xs, ys, t) into the STA function, the probability of firing
Pf ire(xs, ys, t), which implies the probability of firing an action potential at the coordinate
(xs, ys) on the wing, is provided by

Pf ire(xs, ys, t) = NLA(κ(xs, ys, t))

=
1

1 + exp(−c(κ(xs, ys, t)− d))
(19)

where c is the slope, d represents the half-maximum position of the NLA function,
Pf ire(xs, ys, t) is regarded as the neural encoding strain measurement, and the neural en-
coding measurement model is provided by Equation (19).

3. Traditional Observability Analysis for Deterministic System with Memory

In this section, the traditional deterministic observability analysis methods are ex-
tended to both linear and nonlinear systems with memory; the limitations of the existing
methods are then discussed.

3.1. Linear System with Memory

Consider the following general linear discrete-time time-invariant system with memory:

xk+1 = Axk + Buk

yk =
N

∑
τ=0

Cτxk−τ

(20)

where xk ∈ Rn×1, uk ∈ Rnu×1, and yk ∈ Rm×1 are the state, control input, and measurement
vector at time k, respectively. Here, N is the memory length, which implies that yk explicitly
hinges on the information of states from time (k− N) to time k and that the measurement
information can be obtained if and only if k ≥ N.

Hence, the definition of observability can be extended to the discrete-time dynamics
system with memory (20) as follows:

Definition 1. The system is (locally) observable over the interval [k1, k2] if the initial state xk1−N
can be uniquely determined from yk, k ∈ [k1, k2].

The observability rank condition is determined by the following theorem:

Theorem 1. System (20) is (locally) observable if and only if the observability matrix

O =


C̄

C̄A
...

C̄An−1

 (21)

is a full column matrix where C̄ is defined as

C̄ =
N

∑
τ=0

Cτ AN−τ (22)

Proof of Theorem 1. Define the cumulative measurement vector Yk ∈ Rmn×1 as

Yk =
[
yk yk+1 · · · yk+n−1

]T (23)
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Substituting Equation (20) into Equation (23), the relationship between the arbitrary
initial state xk−N and its corresponding measurements Yk is provided as

Yk =


C̄

C̄A
...

C̄An−1

xk−N + D


uk−1
uk−2

...
uk−N

 (24)

where the (i, j) element of the feedthrough matrix D ∈ RN×(n−1) is

D(i, j) =
i

∑
τ=1

Cτ−1 AN+j−1−τ B (25)

According to the implicit function theorem [18], the initial state xk−N can be uniquely
determined from measurements Yk if and only if the Jacobian matrix

O =
∂Yk

∂xk−N
(26)

is a full column matrix.

The Gramian observability method provides an equivalent observability condition:
the system (20) is (locally) observable if and only if the observability Gramian matrix

W ok =
k

∑
τ=0

(AT)τC̄TC̄Aτ (27)

is nonsingular.
These observability rank conditions make the observability analysis of a linear system

simple and efficient. However, observability analysis become a significant challenge with
regard to nonlinear systems and even to linear time-varying systems.

3.2. Nonlinear System with Memory

Now, consider a general continuous-time nonlinear system with memory

ẋ(t) = f (x(t), u(t)) (28a)

y(t) = h(x(t), x(t− d1), · · · , x(t− dN)) (28b)

where x(t) ∈ Rn×1, u(t) ∈ Rnu×1 and y(t) ∈ Rm×1 are the state, control input, and
measurement vector at time t(t ≥ N), respectively, di = iDt and Dt is regarded as the time
step, and f and h are vector-valued functions.

The definition of observability of the continuous-time dynamic system with memory (28) is
then as follows.

Definition 2. The system is (locally) observable over the interval [t1, t2] if the initial state x(t1− dN)
can be uniquely determined from y(t), t ∈ [t1, t2].

According to Equation (28a), there obviously exists a function between x(t − τ),
τ = d0, d1, · · · , dN and x(t− dN); hence, the measurement (28b) can be rewritten as

y(t) = h̄(x(t− dN), ū(t)) (29)

where ū(t) is a combination of known control inputs u from time (t − dN) to time t,
denoted as ū(t) = [u(t− dN) u(t− dN−1) · · · u(t)]. For simplicity of notation, we write
h̄(x(t− dN)) instead of Equation (29).
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In this case, the observability rank condition is declared by the following theorem.

Theorem 2. System (28) is (locally) observable if and only if the observability matrix

O(t) =
[

∂L0
f h̄(x(t−dN))

∂x(t−dN)

∂L1
f h̄(x(t−dN))

∂x(t−dN)
· · ·

∂Ln−1
f h̄(x(t−dN))

∂x(t−dN)

]T
(30)

is a full column matrix in which the Lie derivative is defined by

L0
f h̄(x(t− dN)) = h̄(x(t− dN))

Lk
f h̄(x(t− dN)) =

∂Lk−1
f h̄(x(t− dN))

∂x(t− dN)
f (x(t− dN))

(31)

Proof of Theorem 2. Define the cumulative measurement vector Y(t) ∈ Rmn×1 as

Y(t) =
[
y(t) ẏ(t) · · · y(n−1)(t)

]T
(32)

According to the implicit function theorem [18], the initial state x(t − dN) can be
uniquely determined from measurements Y(t) if and only if

rank(
dY(t)

dx(t− dN)
) = n (33)

With the chain rule, it is simple to obtain

ȳ(k)(t) = Lk
f h̄(x(t− dN)) (34)

Hence, the system is locally observable if condition (30) holds.

This differential geometric method provides a derivative-based analytical observability
analysis approach for nonlinear systems called Lie derivative-based observability analysis.
However, it usually encounters computational difficulties when solving the higher-order Lie
derivatives of complex nonlinear systems, which makes it impracticable in real applications.

In analytically intractable cases [13], the most widely-used approach is the empirical
observability Gramian approach [12], which provides a numerical way to approximate the
traditional observability Gramian (27) by adding small perturbations in each initial state
and comparing the output for each perturbation.

Define y+i as the output with the ith nominal initial state x0,i affected by a positive
disturbance ε and let y−i be the output with x0,i affected by a negative disturbance −ε.
The change in the measurement caused by perturbations in each initial state is denoted as
∆yi = y+i − y−i, and the empirical observability Gramian can be computed by

W̃ o(t) =
1

4ε2

∫ t

0


∆yT

1
∆yT

2
...

∆yT
r

[∆y1 ∆y2 · · · ∆yr
]
dτ (35)

where r is the number of states of interest, which implies that the empirical observability
Gramian is computed by simulating the system 2r times in total.

3.3. Limitations of Traditional Observability Analysis

Although these traditional methods are effective at providing a binary answer to the
observability question, they have disadvantages which limit their practicality.

First, due to lack of a unified assessment metric, different systems correspond to
different observability rank conditions, leading to confusion in the understanding and use
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of observability analysis. Second, because multiple derivative calculations are generally
required in the analytical method for nonlinear systems, applying them to complex models,
such as our bioinspired flexible wing model, is impractical. Furthermore, the traditional
methods fail to precisely quantify each state’s observability. However, in observability
analysis it is crucial to determine which states are observable and which are not. Finally,
the existing methods are formulated in a deterministic framework, and hence, are not able
to assess the observability of stochastic systems.

Therefore, a derivative-free observability analysis method is proposed here to overcome
the above weaknesses. It is able to remarkably reduce the computational burden, analyze
the observability degree of each state, and evaluate the effect of noise on observability.

4. gPC-Based Observability Analysis for Stochastic System with Memory

In this section, based on a brief review of the gPC expansion, the surrogate model
of cumulative measurement is formulated, then the observability-coefficient matrix is
provided for qualitative analysis of observability. Consequently, observability indices are
proposed to quantify the observability of the system. Finally, the equivalence between the
traditional and gPC-based methods for linear systems with memory is proven.

4.1. The Generalized Polynomial Chaos Expansion

The generalized Polynomial Chaos expansion is an efficient uncertainty propagation
method that represents the stochastic output with a weighted sum of orthogonal polynomial
chaos basis functions of random input variables.

Let y and ξ =
[
ξ1 ξ2 · · · ξn

]
denote the output and random input variables,

respectively, following a known probability distribution. The stochastic output can be
expressed as

y =
np

∑
i=0

γiφi(ξ) (36)

where φi is a polynomial chaos basis function, γi is the ith polynomial chaos coefficient,
np = (n+p)!

n!p! − 1, and p is the maximum order of the polynomial chaos basis functions.

The mean µ and variance σ2 of output y can be directly obtained as

µ = γ0

σ2 =
np

∑
i=1

γ2
i

(37)

In general, higher orders yield higher accuracy. However, the number of unknown
coefficients and the computational burden increase with the order. Many tests have proven
that the increase in order has a negligible effect on the accuracy improvement when the
order is larger than 2 [19]. Hence, the second order truncated gPC expansion is adopted in
this paper, which is

y = γ0φ0 +
n

∑
i=1

γiφ1(ξi) +
n

∑
i=1

γi,iφ2(ξ
2
i ) (38)

where φ0, φ1(ξi), and φ2(ξ
2
i ) denote the zeroth-order, first-order, and second-order polyno-

mial chaos bases, respectively, and γ0, γi, and γi,i represent the corresponding polynomial
chaos coefficients. Note that only 2n + 1 polynomial chaos coefficients need to be determined.

Assuming that the random variable ξi follows a standard normal distribution, the
corresponding polynomial chaos bases are as follows [19]:

φ0 = 1

φ1(ξ) = ξ

φ2(ξ) =
ξ2 − 1√

2

(39)
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4.2. Observability Rank Condition

Consider a general nonlinear stochastic system with memory (28), where x = [x1 x2 · · · xn]
and the ith state random variable xi follows the known distribution.

Distinct from [15], the definition of observability of stochastic systems with memory is
extended as follows.

Definition 3. The system is (locally) observable over the interval [t1, t2] if the initial state x(t1 − N)
can be inferred from y(t), t ∈ [t1, t2] and its solution satisfies a 95% confidence interval.

In order to resolve probabilistic uncertainty propagation in such a system, a surrogate
model is formulated by the following steps to represent the above relationship between the
random initial state x(t− dN) and its corresponding cumulative measurement vector Y(t) (32).

First, we determine the mapping relationship between the ith element of the stochastic
input variable x(t− dN) and a random variable ξi following a standard normal distribution,
which is

xi(t− dN) = F−1
i (Ti(ξi)) (40)

where Fi is the cumulative probability function of xi(t− dN), F−1
i is the inverse function of

Fi, and Ti denotes the cumulative probability function of ξi.
Next, collocations points (CPs) are selected to construct the surrogate model. CPs are

a finite sample set of ξ, and the ith combination of CPs is expressed as ξi = [ξi,1 ξi,2 · · · ξi,n].
The element values of the CPs are generated by the roots of one higher-order one-dimensional
Hermite polynomial [19]. For example, three roots of the third order Hermite polynomial

φ3(ξ) =
ξ3−3ξ√

6
, which are {−

√
3, 0,
√

3}, are used to to comprise the CPs, as a second order
polynomial chaos expansion is adopted in this paper. Because there are 2n + 1 unknown
polynomial chaos coefficients, 2n + 1 independent combinations of CPs are chosen randomly
from the 3n possible combinations, which results in the matrix Ξ ∈ R(2n+1)×n, as follows:

Ξ =


ξ1,1 ξ1,2 · · · ξ1,n
ξ2,1 ξ2,2 · · · ξ2,n

...
...

. . .
...

ξ2n+1,1 ξ2n+1,2 · · · ξ2n+1,n

 (41)

which is the full rank where the value of the ith element of the sth CP ξs,i is chosen randomly
from {−

√
3, 0,
√

3}.
Then, 2n + 1 samples of stochastic input variables are transformed from 2n + 1

CPs based on Equation (40). Substituting them into Equation (32) in place of the orig-
inal input variables x(t− dN), the output matrix Y(t) ∈ R(2n+1)×mn is obtained, where
Y(t) = [Y1(t) Y2(t) · · · Y2n+1(t)]T and Yi represents the measurement output from the
ith sample.

Consequently, according to Equation (38), the surrogate model is provided by

Y(t) = HΓ(t) (42)

where the basis matrix of polynomial chaos bases H ∈ R(2n+1)×(2n+1) is provided by
Equation (43) and the coefficient matrix of polynomial chaos coefficients Γ(t) ∈ R(2n+1)×mn is
Equation (44); here, γl

0, γl
i , and γl

i,i represent the polynomial chaos coefficients with respect
to the ith state and lth measurement:

H =


φ0 φ1(ξ1,1) φ1(ξ1,2) · · · φ1(ξ1,n) φ2(ξ

2
1,1) φ2(ξ

2
1,2) · · · φ2(ξ

2
1,n)

φ0 φ1(ξ2,1) φ1(ξ2,2) · · · φ1(ξ2,n) φ2(ξ
2
2,1) φ2(ξ

2
2,2) · · · φ2(ξ

2
2,n)

...
...

...
. . .

...
...

...
. . .

...
φ0 φ1(ξ2n+1,1) φ1(ξ2n+1,2) · · · φ1(ξ2n+1,n) φ2(ξ

2
2n+1,1) φ2(ξ

2
2n+1,2) · · · φ2(ξ

2
2n+1,n)

 (43)
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Γ(t) =



γ1
0 γ2

0 · · · γmn
0

γ1
1 γ2

1 · · · γmn
1

...
...

. . .
...

γ1
n γ2

n · · · γmn
n

γ1
1,1 γ2

1,1 · · · γmn
1,1

...
...

. . .
...

γ1
n,n γ2

n,n · · · γmn
n,n


(44)

Because Ξ is full rank, it is obvious that H is nonsingular and its inverse matrix H−1

exists. Hence, the unknown polynomial chaos coefficients can be obtained by

Γ(t) = H−1Y(t) (45)

According to Equation (37) and the orthogonal property [20], the zero-order polyno-
mial chaos coefficient γl

0 denotes the mean of the estimated value for the lth measurement
and the first and second order polynomial chaos coefficients γl

i and γl
i,i represent the

contribution of the ith state to the uncertainty of the lth measurement. Supposing that
the contribution of the ith state to the uncertainty of the lth measurement is zero, the lth
measurement is unaffected by the change in this state, which implies that the ith state
cannot be uniquely determined from the lth measurement. In order to uniquely infer n
states from the given measurements, n valid measurements, for which the contributions of
the states to the uncertainties of the estimated values for these measurements are linearly
independent, are necessary.

Therefore, we define the observability coefficient matrix Φ(t) ∈ R2n×mn as follows:

Φ(t) =



γ1
1 γ2

1 · · · γmn
1

...
...

. . .
...

γ1
n γ2

n · · · γmn
n

γ1
1,1 γ2

1,1 · · · γmn
1,1

...
...

. . .
...

γ1
n,n γ2

n,n · · · γmn
n,n


(46)

and the observability rank condition is stated by the following theorem.

Theorem 3. System (28) is (locally) observable if and only if the observability coefficient matrix
Φ(t) has n linearly independent column vectors and the ith and (n + i)th rows are not zero vectors.

Note that by using a surrogate model to represent Yk in Equation (23), the proposed
gPC-based observability analysis method can solve the observability problem of linear and
nonlinear discrete-time systems with memory.

The detailed gPC-based observability analysis procedure is summarized in Algorithm 1.

Algorithm 1 gPC-based Observability Analysis Procedure

1: Determine the mapping between ith random variable xi(t− dN) and a normal variable
ξi via Equation (40);

2: Select CPs (41) based on the linear independence method and substitute them into basis
matrix (43);

3: Transform all CPs into the samples of stochastic input variables based on the mapping (40);
4: Compute output matrix Y(t);
5: Calculate the coefficient matrix (45) and the observability-coefficient matrix Φ(t);
6: Analyze Observability according to the observability rank condition Theorem 3.
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4.3. Degree of Observability

The observability rank condition can only draw a binary conclusion as to whether the
system is observable. However, it is limited to quantifying the observability of the system.
Hence, three more quantitative observability indices are proposed to further analyze the
observability degree.

1. Condition Number: The condition number κ(Φ) is the ratio of the maximum singular
value to the minimum singular value, which is utilized to show the numerical stability
of the system states, and is provided by

κ(Φ) =
σmax(Φ)

σmin(Φ)
(47)

where σmax(Φ) and σmin(Φ) are the maximal and minimal singular values of Φ, respectively.
Suppose that the condition number is enormous or even goes to infinity, the observability-
coefficient matrix Φ is ill-conditioned, and the system is weakly observable; this implies
that certain states are hard to observe. However, if the condition number is close to
one, Φ is well-conditioned and the system is brawny observable. Note that all system
states are considered equally observable when the condition number equals one.

2. Contribution Rate: Two different equations for the contribution rate are provided in this
paper, both of which are regarded as quantitative indices of each state’s observability.
The first contribution rate, χ1

i , is defined as the contribution of the ith state to the
uncertainty of all measurements. According to the surrogate model, it is provided by

χ1
i =

∑mn
l=1(γ

l
i)

2 + (γl
i,i)

2

∑n
i=1 ∑mn

l=1(γ
l
i)

2 + (γl
i,i)

2
(48)

which represents the influence of a specific state on the measurements. The ith state is
brawnier observable when its first contribution rate χ1

i is closer to one. Instead, the
ith state is weakly observable as χ1

i approaches zero.
The second contribution rate, χ2

i , is the maximum contribution of the ith state to each
measurement. We define the proportion of the contribution of the ith state to the
variance of the lth measurement as χ2

i,l , that is,

χ2
i,l =

(γl
i)

2 + (γl
i,i)

2

∑n
i=1(γ

l
i)

2 + (γl
i,i)

2
(49)

where the numerator means the contribution of the ith state to the variance of the lth
measurement and the denominator denotes the variance of the lth measurement.
Hence, χ2

i equals the maximum of (χ2
i,1, χ2

i,2, · · · , χ2
i,mn). As in the first contribution rate,

the larger the second contribution rate is, the more the state is brawnier observable.
3. Interference Rate: If the contribution of the ith state to the variance of the lth measure-

ment, (γl
i)

2 + (γl
i,i)

2, is smaller than the measurement noise variance σ2
v , the changes

in measurements contain too much environmental interference, and the initial state is
difficult to distinguish from noisy measurements with a high confidence level.
Therefore, we define the proportion of the measurement noise variance σ2

v to the
variance of the lth measurement as the interference rate:

Vl =
σ2

v

∑n
i=1(γ

l
i)

2 + (γl
i,i)

2
(50)

If the interference rates V1, V2, · · · , Vmn are larger than all the corresponding contribu-
tion of any states χ2

i,1, χ2
i,2, · · · , χ2

i,mn, the system is considered to be weakly observable
due to noisy measurements.
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To simplification simulation, an equivalent index called the interference binary value
Υ is used:

Υ =

0 max
i

min
l

Vl/χ2
i,l ≤ 1

1 otherwise
(51)

When Υ equals zero, the measurement noise has negligible effect on observability
analysis. Inversely, the states are hard to infer from noisy measurements when Υ
equals one.

4.4. Equivalence between the Traditional and Proposed Approaches

To further clarify the rationality of the proposed method from another perspective,
the connection between the traditional and proposed methods for a general linear system
with memory (20) is demonstrated as a particular case.

For a general linear system with memory (20), the relationship between the random
initial state xk−N and the cumulative measurement Yk at time k is provided by Equation (24).
We define ∆xk−N ∈ Rn×1 and ∆Yk ∈ Rm×1 as the state and measurement uncertainty
vectors, respectively; as the control input vectors u from time k− N to k− 1 are determined
at time k, the uncertainty propagation function is

∆Yk = O∆xk−N (52)

where O is provided by Equation (21).
Assuming that there exists an open neighborhood U of xk−N and that xk−N + ∆xk−N ∈ U,

we can find that xk−N and xk−N + ∆xk−N are distinguishable from their corresponding
measurements if and only if the observability matrix O has full column ranking based on
Theorem 4, which implies that system (20) is locally observable at time k.

Theorem 4. Consider a non-homogeneous linear system of equations as

Ax = b (53)

where A ∈ Rm×n, x ∈ Rn×1, and b ∈ Rm×1.
Then, there exists a unique solution if and only if the rank of the coefficient matrix A is n.

Taking n samples of stochastic input variables into consideration, the above equation
can be rewritten as

∆Y = ∆XO (54)

where ∆Y = [∆Y1
k , ∆Y2

k , · · · , ∆Yn
k ]

T and ∆X = [∆x1
k−N , ∆x2

k−N , · · · , ∆xn
k−N ]

T . ∆Y i
k, where

∆xi
k represents the measurement and state uncertainty vector from ith samples at time k.

In the proposed approach, the surrogate model of the relationship between xk−N and
Yk is expressed as

Yk = HΓk (55)

Because the second-order polynomial chaos coefficients are zeros for a linear system,
the surrogate model is simplified as

Yk = H̄Γ̄k (56)

where

H̄ =


φ0 φ1(ξ1,1) φ1(ξ1,2) · · · φ1(ξ1,n)
φ0 φ1(ξ2,1) φ1(ξ2,2) · · · φ1(ξ2,n)
...

...
...

. . .
...

φ0 φ1(ξn+1,1) φ1(ξn+1,2) · · · φ1(ξn+1,n)

 (57)
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Γ̄k =


γ1

0 γ2
0 · · · γmn

0
γ1

1 γ2
1 · · · γmn

1
...

...
. . .

...
γ1

n γ2
n · · · γmn

n

 (58)

As mentioned above, γl
0 is the mean of the lth measurement and γl

i stands for the
contribution of the ith state to the uncertainty of the lth measurement. Hence,

∆Y = ∆XΦ̄ (59)

where

Φ̄ =

γ1
1 γ2

1 · · · γmn
1

...
...

. . .
...

γ1
n γ2

n · · · γmn
n

 (60)

System (20) is locally observable if and only if rank(Φ̄) = n.
The same observability rank condition for linear systems with memory are derived

from the traditional and proposed method. This convincingly proves that gPC-based
observability analysis is equivalent to the traditional method.

5. Simulations

In this section, the observability of a Lorenz system with memory is first analyzed by
the traditional and proposed methods to validate the feasibility of gPC-based observability
analysis. Then, we apply the proposed method to observability analysis of a bioinspired
flapping wing system based on the hawkmoth, Manduca sexta.

5.1. Lorenz System with Memory

Consider the following Lorenz system with memory:
ẋ1(t) = −10x1(t) + 10x2(t)
ẋ2(t) = 28x1(t) + x1(t)x3(t)− x2(t)
ẋ3(t) = x1(t)x2(t)− 8

3 x3(t){
y1(t) = x1(t) + 1

2 x1(t− d1) +
1
4 x1(t− d2)

y2(t) = x2(t) + 1
2 x2(t− d1) +

1
4 x2(t− d2)

(61)

with starting time t0 = 0s, final time t f = 10s, time step dt = 0.01s, and initial state
x1(0) = x2(0) = x3(0) = 1.

5.1.1. Lie Derivative-Based Observability Analysis

The observability analysis is first performed by using the Lie derivative-based ap-
proach. The observability matrix O(t) is calculated by Equation (32), and its rank is shown
in Table 1. In addition, the condition number of O(t) is shown in Figure 4 to measure the
observability degree.

Table 1. The rank of observability matrices calculated via three approaches.

Observability Matrix Rank

Lie Derivative-Based Observability Matrix 3
Empirical Observability Gramian Matrix 3

gPC-based Observability Coefficient Matrix 6
gPC-based First Order Observability Coefficient Matrix 3
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Figure 4. Lie Derivative-based observability analysis: condition number of observability matrix.

It can be seen that the system is observable, as the observability matrix is full rank
and the value of the condition number changes drastically and reaches large values at
intervals, revealing that the system is weakly observable. However, this approach can
neither quantify the degree of observability for each state nor account for the effect of the
observation noise, thereby reducing its reliability in practice.

5.1.2. Empirical Observability Gramian Analysis

Empirical observability Gramian is the most widely used method in practical appli-
cations due to its avoidance of the need to calculate the complicated Lie derivatives of
nonlinear systems. The rank of the observability matrix W̃ o(t) computed by Equation (35)
is shown in Table 1, and the condition number is present in Figure 5.
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Figure 5. Empirical observability Gramian analysis: condition number of observability matrix.

The same conclusion that the system is weakly observable is drawn via empirical
observability Gramian analysis, as the observability matrix maintains full rank while the
condition numbers are far from one. However, the condition number is more stable than
that computed by the Lie derivative-based approach, most likely due to the inaccuracy of
the approximation.

5.1.3. gPC-Based Observability Analysis

Here, the proposed observability analysis approach is utilized. The observability
coefficient matrix is computed through Equation (44). In the observability coefficient
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matrix, the first order polynomial chaos coefficients are larger and more significant than
the second order polynomial chaos coefficients [16]; thus, we name the first n rows of
the observability coefficient matrix as the first order observability coefficient matrix. The
ranks of these two observability matrices are shown in Table 1. It can be seen that both
of the observability coefficient matrices are full rank at all times, meaning that the system
is observable.

Then, the first and second contribution rates of each state are shown in Figure 6.
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(a) First contribution rate.
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(b) Second contribution rate.

Figure 6. gPC-based observability Gramian analysis: contribution rates.

It is evident from Figure 6 that the contribution rate of the third state is much lower
than that of the first two states and varies periodically with time, which implies that the
third state is weakly observable while the others are brawny observable.

This conclusion can be proven by the condition number. The condition number of the
first order coefficient matrix is displayed in Figure 7a. It can be seen that it has enormous
values and a similar change to the contribution rate of the third state. This is because the
weak observability of the third state has a negative impact on the observability of the whole
system, thereby resulting in an ill-conditioned matrix.
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Figure 7. gPC-based observability Gramian analysis: condition number of observability matrix: (a)
first-order coefficient matrix and (b) active coefficient matrix.

The coefficients of the states with brawny observability extracted from the first-order
coefficient matrix constitute the active coefficient matrix. Its condition number is presented
in Figure 7b, showing that the condition number of the active coefficient matrix is very
close to one. This implies that the active coefficient matrix is well-conditioned and the first
two states are brawny observable. Therefore, it can be concluded that the condition number
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is strongly affected by the weak observability of any state. When the condition number has
large values, at least one state of the system is weakly observable.

In addition, the effect of the measurement noise on the observability is shown in
Figure 8. Two different noise variances are assumed, 1× 10−9 and 1× 10−11. When the
noise variance becomes larger, more interference binary values within the simulation time
equal one, which implies that the observability of the system is weaker.
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Figure 8. gPC-based observability Gramian analysis interference binary value: (a) large noise variance
and (b) small noise variance.

Finally, the computation complexity of the three approaches is compared by compu-
tation time in Table 2. The computation time was computed using MATLAB R2021b on
a 2.70 GHz Intel(R) Core(TM) i7 processor with 8 GB RAM.

Table 2. Computation time of the three approaches.

Approach Computation Time (s)

Lie Derivative-Based Observability Analysis 0.7940
Empirical Observability Gramian Analysis 87.1700

gPC-based Observability Analysis 1.7980

Though Lie derivative-based observability analysis has the shortest time cost in the
case where the derivation is completed, it is limited for systems with high nonlinearity
in actual application because of the complicated derivative calculation. The proposed
method effectively reduces the computational cost compared to empirical observability
Gramian analysis.

5.2. Bioinspired Flexible Flapping Wing System

Considering the system model as Equation (14) and the measurement model as Equation (19),
the proposed observability analysis approach is used to determine whether the neural
encoding strain measurements are sufficient to reconstruct the wing rotation rates (P, Q,
R). The observability analysis plays a vital role in the optimal placement of sensors on the
wing in practice, which is further discussed in the next section.

The simulation of the full bioinspired flexible flapping wing model requires several
steps. First, the wing-beat period and the total simulation time are assumed to be Tbeat
and 2Tbeat, respectively. The time step is set as Tbeat/50. The first period is used to fill the
memory, and the observability analysis is based on the measurements at the second period.

Second, the control input sequence u(t) = [Ṗ(t) Q̇(t) Ṙ(t)]T is generated by deriva-
tion of Equation (15) with respect to time t. According to [21,22], the Euler angles are
provided by
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θ(t) = 0

α(t) =
π

2
− Aαtanh(

π

2
sin(

2πt
Tbeat

))

ζ(t) = −Aζ cos(
2πt
Tbeat

)

(62)

where Aζ is the position angle amplitude and Aα is the feathering angle amplitude.
Then, the stiff matrix Ω, applied acceleration mass matrix Ma, and aerodynamics force

Q are computed using the wing structural mode shapes ϕi(x, y), their corresponding fi,
the mass density ρ(x, y), and the thickness h(x, y). We assume that the mass density of the
wing is constant and model the thickness as an exponential decrease from root to tip and
from the leading edge (LE) to the trailing edge (TE) [23], that is,

h(x, y) =
1
2
(tLEe

−aLE
y

cwing + tROe
−aRO

x−xLE(y)
dwing ) (63)

where tLE and tRO are the leading edge and the root thickness, respectively, cwing and dwing
are the chord and spanwise length, respectively, aLE and aRO are the respective decay rates
along the two directions, xLE(y0) means the x-ordinate of the intersection point at the
leading edge, and y = y0.

Finally, bysubstituting these pre-processing data and the detailed parameters listed in
Table 3 into Equations (14) and (19), the full bioinspired flexible flapping wing model is
constructed and the observability indices are calculated using the gPC-based observability
analysis approach.

Table 3. Detailed parameters used in the simulation.

Parameter Symbol Value Unit

Wing-Beat Period Tbeat 40 ms
Memory Length tM 40 ms

Feathering Angle Amplitude Aα 45 deg
Position Angle Amplitude Aζ 60 deg

Mass Density ρ 220 kg/m3

Chord Length cwing 22 mm
Spanwise Length dwing 50 mm

Leading Edge Thickness tRO 0.26 mm
Root Thickness tRO 0.26 mm

Decay Rate from LE to TE aLE 0.24 −
Decay Rate from Root to Tip aRO 0.24 −

Mode Frequency of First Bending Mode f1 50 Hz
Mode Frequency of First Torsion Mode f2 55 Hz

Rotation Axis xr −4.68 mm
Air Fluid Density ρ f 1.225 kg/m3

Delay of STA Function a 5 ms
Width of STA Function b 4 ms

STA Frequency fSTA 159.155 Hz
Slope of NLA Function c 0.15 −

Half-Maximum position of NLA Function d 0.005 −
Normalization Constant Cκ 1.084× 10−4 −

To account for the observability changes on different locations of different sensors, the
wing’s surface is meshed into a 50× 22 grid. One shear sensor and one bending sensor are
placed at each point of intersection on the wing. Here, the first contribution rate is adopted
to describe the observability degree of each state, while the minimum contribution rate
provides a measure of the weakest observable state.

The averaged contribution rate of the three wing rotation rates for all sensors is shown
in Figure 9.
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Figure 9. Averaged first contribution rates of wing rotation rates for all sensors.

The above illustrates that R is the weakest observable state when only shear or bending
strain measurements are obtained, while P and Q are brawnier observable. In addition,
shear strain measurements result in brawnier observability of the whole wing model.

On the other hand, bending strain measurements provide the smaller condition num-
ber, with a mean value of 52.5629, while the averaged condition number of the shear strain
measurements is 87.049, which implies that the observability of all rotation rates are more
balanced when using bending strain measurements.

Then, the averaged minimum contribution rate for each sensor location and type
within the simulation time is obtained and normalized by the max-min normalization
method, depicted in Figure 10.

Figure 10. Averaged minimum contribution rate on the wing normalized via the max–min normal-
ization method.

This indicates that the rotation rates can be accurately estimated when bending strain
sensors are concentrated in the wing root and shear strain sensors are placed in the upper
part of the trailing edge, as because the bending strain at the wing root and shear strain at
the upper part of the trailing edge are the largest and contain more information about the
rotation rates. In addition, bending strain sensors located in the wing root provide more
measurements to encode the rotation rate compared to the shear strain sensors at their
best location.
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Consequently, we chose five typical locations, namely, the root, the tip, the middle of
the leading edge, the middle of the trailing edge, and the center of the wing, to show the
changes in observability degree during the simulation time. The minimum contribution
rates of the rotation rates for the two types of sensors are shown in Figures 11 and 12.
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Figure 11. Minimum contribution rates for shear strain sensors located in different places.
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Figure 12. Minimum contribution rates for bending strain sensors located in different places.

It can be seen that the bending strain sensor at the wing root results in the brawniest
observability, while the shear strain sensor at the same place leads to the opposite result.
For shear strain sensors, similar observability degrees can be achieved from the other
four locations; in particular, the sensors at the tip and the middle of the trailing edge are
capable of obtaining the most valuable measurements. However, the effective bending
measurements are mainly obtained from the sensor at the root. This result is the same as
that demonstrated in Figure 10.

The condition numbers of the rotation rates for each sensor location and type are
shown in Figures 13 and 14. It can be seen that the condition number for each sensor
location and type varies dramatically over time. The observability of the states is primarily
more balanced when the shear strain sensors are located at the root and the bending strain
sensors are located at the middle of the trailing edge.
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Figure 13. Condition numbers for shear strain sensors located in different places.
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Figure 14. Condition numbers for bending strain sensors located in different places.

When the sensors are assumed to be inaccurate, the noise variances of the shear and
bending strain sensors are 1× 10−18 and 1× 10−19, respectively; the interference binary
values from noisy measurements are shown in Figures 15 and 16.

The figures reveal that the observability based on the bending strain measurements is
more sensitive to measurement noise than that based on noisy shear strain measurements.
Furthermore, for sensors of the same type in different locations, the same measurement
noise shows a different effect on the observability. This is because the same sensors at
different locations encode different information about the wing rotation rates.

These observability indices provide the main metrics for optimizing the placement of
sensors, which is discussed in the next section.
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Figure 15. Interference binary values for shear strain sensors located in different places.
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Figure 16. Interference binary values for bending strain sensors located in different places.

6. Observability-Based Optimal Sensor Placement

Here, all sensors are assumed to be located at the wing veins, as this is more consistent
with the characteristics of the hawkmoth [24]. The optimal sensor problem is to find the set
of sensors that can encode the most information about wing rotation rates based on the
proposed observability indices when the possible location and type are given.

As mentioned in Section 4.3, the observability degrees of the rotation rates are more
balanced when the condition number is smaller, and the system becomes more observable
as the minimum contribution rate becomes larger. In addition, only when the interference
binary value equals zero can the negative effect of measurement noise on observability be
neglected. Thus, we define the observability-based criterion for the ith sensor as Ji, which is

Ji = κi + ωvv(χ1
min,i) + ωΥΥi (64)

where the normalized condition number of the ith sensor is denoted as κi, χ1
min,i stands for

the minimum contribution rate of the ith sensor, the max-min normalization function is
v(x) = (max− x)/(max−min), Υi is the interference binary value of the ith sensor, ωv



Biomimetics 2022, 7, 178 24 of 28

and ωΥ are the weights, and Ji shows the ith sensor’s ability to encode information about
the wing rotation rates, which increases as Ji decreases.

To obtain the optimal sensor placement, a set of possible locations of sensors is first
determined by sampling the points at every 2 mm along each vein. Then, the observability-
based optimal sensor placement problem can be modeled as

min
βi

p

∑
i=1

βi Ji

s.t.
{

βi ∈ 0, 1
∑

p
i=1 βi = r

(65)

where βi is a binary activation function, analogous to an off/on switch, and the number of
potential sensors in the set p = 336, r is the desired number of sensors for placement on
the wing.

Based on the convex optimization problem and the traversal method, r optimal lo-
cations out of all potential places on the wing veins are obtained at each time step. The
optimal locations change with flexible wing motion and external noise during flight, and
thus each possible point’s cumulative number for being an optimal location is counted.
A larger cumulative number indicates that a strain sensor placed here is more conducive to
improving the observability of the flexible wing flapping system by following the estima-
tion accuracy improvement of rotation rates. The areas where more optimal locations are
clustered suggest the most suitable places to arrange the strain sensors.

We assume that the sensors are inaccurate and that measurements inevitably contain
noise, as sensors are usually imprecise in practical applications due to technical or external
environmental reasons. The noise variances of the shear and bending strain measurements
are set as 1 × 10−18 and 1 × 10−19, respectively. Let ωv be 5, ωΥ be 100, and r be 20;
then, each possible location’s cumulative number for being an optimal location during the
simulation is plotted in Figure 17 (when over 5).
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Figure 17. Cumulative numbers for being the optimal location when measurement noise variance is
large: ωv = 5, ωΥ = 100, and r = 20.

The figure shows that the optimal locations for strain sensors on the wing are divided
into three groups: one near the root, one in the center, and one on the upper part of the
trailing edge. The wing root is the best location, followed by the upper part of the trailing
edge, then the center.
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When the weight of the minimum contribution rate ωv is reduced to 1, the numerical
stability of the states becomes more critical. The cumulative number for each possible
location to be optimal in this case is shown in Figure 18. Obviously, more optimal locations
are concentrated at the wing root, while the number at the other locations decreases.
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Figure 18. Cumulative numbers for being the optimal location when measurement noise variance is
large: ωv = 1, ωΥ = 100, and r = 20.

With r = 30 the numbers for all three groups are increased, as illustrated in Figure 19.
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Figure 19. Cumulative numbers for being the optimal location when measurement noise variance is
large: ωv = 5, ωΥ = 100, and r = 30.

When the noise variance of the shear and bending strain measurements diminishes
to 1× 10−19 and 1× 10−20, respectively, the best locations on the wing are those shown in
Figure 20. In this situation, the numbers for the best locations at the center and upper part
of the wing increase.
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Figure 20. Cumulative numbers for being the optimal location when measurement noise variances is
small: ωv = 5, ωΥ = 100, and r = 20.

Finally, process noise with the variance of [0.01 0.01 0.01 0.01 1 1 1] is considered,
which is mainly caused by inaccuracy of the dynamic model and unknown control inputs.
The best locations on the wing are shown in Figure 21.
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Figure 21. Cumulative numbers for being the optimal location when process and measurement noise
variance is large: ωv = 5, ωΥ = 100, and r = 20.

The best sensor locations are again clustered into three similar areas, although now
most of them are located on the wing root. This is because the observability of the wing
system is the brawniest, and the least affected by process noise when the sensors are located
at the wing root.

Although the optimal sensor placement varies slightly with the different parameter
selection, it remains concentrated in three main areas of the wing: one at the wing root,
one in the center, and one on the upper part of the trailing edge, which is consistent
with the measured locations of the campaniform sensilla on the hawkmoth wing depicted
in Figure 22 [24]. The similar optimal placement we obtained based on the gPC-based
observability analysis approach proves its validity and practicality.
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Figure 22. The measured locations of Campaniform Sensilla on the Hawkmoth wing.

7. Discussion and Conclusions

This paper proposes a derivative-free observability analysis approach based on the
generalized Polynomial Chaos expansion for stochastic systems with memory. The observ-
ability rank condition provides a binary answer to the observability question, followed
by several observability indices to describe the observability degree of the system from
different perspectives. For instance, the contribution rate quantifies the observability degree
of each state, the condition number presents the numerical stability of all states, and the
interference rate measures the influence of measurement noise on the observability. In
addition, the equivalence between the traditional and proposed approach for linear systems
with memory is proven. The effectiveness of the proposed approach is mathematically
demonstrated by applying three different approaches to analysis of the Lorenz system
and comparing the results. Sequentially, the proposed approach is utilized to analyze the
observability of a flexible wing system and determine the optimal sensor placement. The
results show that bending strain sensors should be located at the wing root, while shear
strain sensors should be placed at the center and upper part of the wing. The optimal
placement we obtained based on the proposed method is similar to the natural distribution
of campaniform sensilla on the wing of the hawkmoth.
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