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Abstract: Visual-inertial odometry is critical for Unmanned Aerial Vehicles (UAVs) and robotics.
However, there are problems of motion drift and motion blur in sharp brightness changes and
fast-motion scenes. It may cause the degradation of image quality, which leads to poor location.
Event cameras are bio-inspired vision sensors that offer significant advantages in high-dynamic
scenes. Leveraging this property, this paper presents a new range and event-based visual-inertial
odometry (REVIO). Firstly, we propose an event-based visual-inertial odometry (EVIO) using sliding
window nonlinear optimization. Secondly, REVIO is developed on the basis of EVIO, which fuses
events and distances to obtain clear event images and improves the accuracy of position estimation
by constructing additional range constraints. Finally, the EVIO and REVIO are tested in three
experiments—dataset, handheld and flight—to evaluate the localization performance. The error of
REVIO can be reduced by nearly 29% compared with EVIO in the handheld experiment and almost
28% compared with VINS-Mono in the flight experiment, which demonstrates the higher accuracy of
REVIO in some fast-motion and high-dynamic scenes.

Keywords: visual-inertial odometry (VIO); range sensor; event camera; sensor fusion

1. Introduction

Location or state estimation is a fundamental and critical problem in areas including
Unmanned Aerial Vehicles (UAVs), robotics and autonomous driving [1–3]. Global Naviga-
tion Satellite System (GNSS) in outdoor non-obstructed environments can provide global,
drift-free positioning data. Various sensors can be deployed in autonomous vehicles for
high-precision sensing and location. While in GNSS-denied environments such as indoors,
buildings and jungles, Visual-Inertial Odometry (VIO), composed of cameras and an In-
ertial Measurement Unit (IMU), can play an important role for small UAVs, Augmented
Reality/Virtual Reality and other light and small equipment which neither have external
localization sources nor can carry sensors of larger size and weight such as Light Detection
and Ranging [4,5].

VIO can be divided into loosely coupled and tightly coupled according to the fusion
pattern. Additionally, the tightly coupled approach is more widely used than the loosely
coupled approach. Although the tightly coupled approach increases the dimensionality of
variables and computational effort, the association and constraints between data improve
the accuracy and enhance the robustness in different scenes. Tightly coupled approaches
can be further divided into filter-based and optimization-based methods. The optimization-
based approach mainly relies on image processing for feature extraction and optimization of
image alignment, such as Open Keyframe-based Visual-Inertial SLAM (OKVIS) [6], Visual
Inertial Navigation System (VINS) [7] and ORB-SLAM2/3 [8,9]. The filter-based approach
updates the IMU prediction by visual observation to achieve efficient estimation. Multi-
State Constraint Kalman Filter (MSCKF) [10] is the most classical filter-based algorithm, in
addition to some algorithms under the extended Kalman filter framework such as Robust
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Visual Inertial Odometry (ROVIO) [11] and Open-VINS [12]. However, there are many
high-dynamic scenes such as sharp lighting changes and fast motion in UAVs, robotics
and other applications. The image quality can be degraded by motion blur and exposure,
resulting in lower estimation accuracy. In addition, under constant acceleration, the IMU
cannot be effectively excited. The VIO cannot obtain accurate scale observation information,
leading to serious motion drift [13].

Event cameras are bio-inspired sensors developed in the last decade that asynchronously
output a high-frequency address-event stream. An event is generated when the luminance
change of each pixel exceeds a set threshold. Compared with conventional frame cameras,
event cameras have low latency (microsecond) and high dynamic range (140 dB) [14].
Conventional cameras obtain visual information at a constant speed called frames. It
outputs an image recording all the motion information at regular intervals. In fast-motion
scenes, the pixel value information is limited by the frame rate constraint, and the exposure
time cannot match the motion. It results in motion blur in the image and affects localization.
Motion causes changes in luminance, and the event camera senses changes in the brightness
of pixels on a microsecond scale. It means that the event camera can obtain all motion
information as soon as the movement occurs. Especially for high-speed motion, it does not
cause motion blur due to the frame rate limitation, which has the potential advantage for
application in highly dynamic scenes. However, the different working mode and data type
compared to frame cameras make the traditional visual SLAM algorithm cannot be directly
used in the event camera.

Due to the limited information carried by each event and the susceptibility to noise, it
is difficult to estimate the system state directly. Therefore, early studies mainly used the
Bayesian filter-based approaches to update the system state asynchronously through the
event generation mechanism [15–17]. In addition, there are also ways to package the event
streams into groups for processing. An event-based visual odometry (EVO) is proposed
in [18] as an event-based visual odometry method capable of running in real-time on the
central processing unit. The algorithm constructs a semi-dense map using the estimated
poses and events through the spatial scanning method while updating the poses with
the edge map formed by the accumulation of events and map matching. To improve
the robustness of localization, IMU can be fused to form the event-based visual-inertial
odometry. In [19], the events in spatio-temporal windows are cumulatively synthesized
into event images after motion compensation, and then feature extraction and tracking
are performed. Finally, the tracking of feature points and IMU data are fused to solve
the camera trajectory and sparse feature point maps by the keyframe-based nonlinear
optimization method. Based on [19,20] proposed an approach fusing image frames, events
and IMU to combine the respective advantages of events and images. However, there are a
few studies on event-based visual inertial odometry. Additionally, the event-based feature
tracking and data association algorithm still suffer from the short tracking time compared
with traditional methods. Research is necessary to take full advantage of event cameras to
suppress drift and accurately estimate the position in high-dynamic motion scenes.

Range sensors can measure distances with centimeter-level errors over tens of meters,
whose light weight and small size can complement vision-inertial modules without sig-
nificantly increasing the load on the system. Therefore, the algorithm of fusing VIO with
range sensors is investigated in some papers. The NASA mars helicopter is equipped with
a range-visual-inertial localization system [21], which implements a lightweight algorithm
to fuse range information to ensure scalability. However, the algorithm assumes that the
ground is flat and consistent, which limits the application scenarios of the algorithm. The
work in [5] assumes that the measurement area is a plane perpendicular to the measurement
direction and uses ultrasonic ranging to recover the visual scale information based on the
assumption. In [22], the scene is further relaxed to arbitrary structures where constraints
are constructed for the depth of visual feature points in the VIO using one-dimensional
range sensor measurements in the framework of the extended Kalman filter. The central
assumption is that the range measurement point and the nearest three visual feature points
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are considered to be in the same plane. However, this assumption also has limitations
and does not apply to stepped scenes with discontinuous depths. Although the scene
assumptions in the above papers have limitations, the localization effectiveness of the
algorithm is significantly improved with the incorporation of range information.

In this article, we present a new range and event-based visual-inertial odometry
(REVIO) for bio-inspired sensors to achieve more stable and accurate localization in high-
dynamic scenes with high speed and sharp brightness changes. The main contributions of
this paper are as follows:

1. An event-based visual-inertial odometry (EVIO) algorithm is proposed to achieve
the location in high-speed motion. Additionally, it is tested on the publicly available
event camera dataset.

2. A new visual-inertial odometry REVIO simultaneously fusing range and event. It
can improve the accuracy and robustness of the position estimation in typical high-
dynamic scenes such as weak textures, fast motion or drastic light changes. The
algorithm is validated in handheld experiments.

3. The REVIO algorithm is tested in an actual environment and applied to the flight
localization of an UAV.

The remainder of the paper is organized as follows. In Section 2, the preliminaries are
introduced. In Section 3, the framework of REVIO fusing range and event is introduced
in detail, including a new event-based visual-inertial odometry using sliding window
nonlinear optimization, and the fusion of range. In Section 4, three different experiment
results and discussions are presented. Section 5 summarizes the contribution of this paper
and presents future work.

2. Preliminaries

In this section, we introduce the notation that we will use throughout the rest of the
paper. We also introduce the event data and IMU model.

Coordinate Frame. A point P represented in a coordinate frame A is written as pA. A
transformation between coordinate frames is represented by a homogeneous matrix TB

A
that transforms points from frame A to frame B. Its rotational and translational parts are
expressed as rotation matrix RB

A and translation matrix tB
A, respectively. This paper mainly

involves four coordinate frames: world frame, IMU frame, camera sensor frame and range
sensor frame. The sensor body is represented relative to an inertial world frame W. Inside
it, we distinguish the camera frame C and the IMU-sensor frame B. An extrinsic calibration
of the camera + IMU system must be performed to obtain TB

C . The range sensor frame is R.
Event Data. Event cameras are bio-inspired sensors that work similarly to the gan-

glion cells in mammal retinae. It asynchronously outputs the information called “event”
containing three types of information: the pixel coordinates of the event, the trigger time,
and the polarity (the signal of the luminance change) information, expressed as:

e = [u t p] (1)

where u =
[
ux uy

]
is the event location on the image plane and p is the polarity.

IMU Model. IMU kinematic model [23] is as follows:

pW
Bi+1

= pW
Bi
+ vW

Bi
∆t +

s

t∈[ti ,ti+1]

[RW
Bt
(at − bat)− gW ]dt2

vW
Bi+1

= vW
Bi
+

∫
t∈[ti ,ti+1]

[RW
Bt
(at − bat)− gW ]dt

qW
Bi+1

=
∫

t∈[ti ,ti+1]

qW
Bi
⊗
[

0
1
2 (ωt − bgt)

]
dt

(2)

where gW is the gravity vector in world frame. pW
Bi

, vW
Bi

and RW
Bt

are the position, velocity,
and rotation of the IMU frame relative to the world frame in the ith frame. qW

Bt
is the
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quaternion of RW
Bt

and ⊗ represents quaternion multiplication. at and ωt are the measured
values of acceleration and angular velocity. bai ,gi are the bias of sensors.

3. Range and Event-Based Visual-Inertial Odometry (REVIO)
3.1. Framework

The REVIO pipeline is classically composed of two parallel threads. The front-end
fuses event, IMU and range information to obtain event images for visual feature point
detection and tracking. The back-end constructs an optimization problem using the con-
straints from the front-end to obtain the state estimation. The framework of our proposed
pipeline detailing all steps is illustrated in Figure 1.

Figure 1. Overview of the proposed pipeline.

The front-end implements pre-processing of various sensor data, including range,
event stream and IMU. Firstly, state prediction is performed by IMU, and the image depth
is estimated from the range information. Secondly, motion compensation is performed
on the event stream to synthesize event images with clear textures. Finally, corner point
extraction and optical flow tracking are performed on the event image, during which the
IMU data between two frames are pre-integrated and the image interpolation for each
frame is matched with the range measurement data at the corresponding moment.

The back-end is a nonlinear sliding window optimization. A fixed number of key
frames are maintained within the window. A nonlinear optimization problem on pose,
velocity, feature point inverse depth, and IMU bias is constructed to estimate the system
state using the visual correlation, IMU pre-integration, range constraints and marginalized
state prior constraints.

We improve the method proposed in [19] and integrate range observations into the
improved approach for a new VIO fusing range and event. We will present them in the
following parts.

3.2. EVIO Using Sliding Window Nonlinear Optimization
3.2.1. Front-End of Motion-Compensated Event Frames

The front-end is a pre-processing of the visual observations from the event camera.
The data output from the event camera is not image frames and cannot be used directly in
traditional image processing. Therefore, the events are first visualized to generate event
frames, and then feature extraction and tracking are performed on the images.
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(1). Motion Compensation.

The event is triggered by the luminance change. Assuming that the illumination is
constant, the luminance change can only come from the relative motion between the camera
and the objects in the field of view. The relative motion causes the same pixel to correspond
to different areas at different times, so the pixel luminance change also requires grayscale
changes of the object. This particular imaging mechanism of event cameras results in them
being more sensitive to edge areas. By accumulating a certain number of events, event
frame images that reflect edges and textures can be synthesized.

The observed event stream is partitioned into a set of spatio-temporal windows
(Figure 2). Each window Wi is synthesized into an event frame using the same number of
events. The intensity of each pixel on the event image positively correlates with the number
of events at that pixel coordinate.

f (x) = ∑
i∈Wk

δ(x− xi) (3)

Figure 2. Windows of event stream.

However, each event corresponds to a different timestamp. If the relative motion is
fast, direct accumulation of events can produce severe motion blur, which is detrimental
to subsequent feature extraction and tracking. Similar to the motion de-distortion of
LiDAR point clouds, motion compensation before accumulating event images can reduce
motion blur. As shown in Figure 3, events at t1 and t2 are projected onto the image plane
corresponding to tre f by motion compensation.

Figure 3. Motion compensation of event stream.

For the event stream in a period of time, one of the moments is selected as the reference
moment tre f . Then, the events of all other moments are projected onto the image plane
corresponding to the reference moment. For any event ek, whose corresponding moment is
tk, the new coordinate after projection is
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p′k = Ks−1
re f T−1

re f TkskK−1 pk (4)

where K is the internal reference matrix of the camera,Tk and Tre f are the incremental
transformation between the camera poses at tk and tre f , obtained through integration of
the inertial measurements,sk and sre f are the scene depth before and after projection, which
is approximated from the average depth of all feature points on the previous event image.
The algorithm operates in a planar environment. More accurate depth information can be
obtained from other channels, such as range observations and planar constraints, which
will be introduced in Section 3.3.

The front-end of the algorithm runs at a higher frequency than the back-end. The
frequency of front-end can even exceed 100 Hz. It is decided by the speed of event
generation. The timestamp of the newest observation is earlier than that of the latest state
at the back end, so the pose cannot be obtained directly from the back end. However, the
frequency of IMU is higher than that of the back-end. Based on the latest state of the back-
end, a relatively high-frequency, real-time state prediction can be output by integrating the
angular velocity and acceleration of the IMU. Then, the position corresponding to each
event is obtained by interpolating the timestamp. In this way, we synthesize more clear
event frames for image processing.

(2). Feature extraction, prediction and tracking.

Event images are not only related to the environment texture, but also the relative
direction of motion between the camera and the environment. In diverse motion patterns,
the intensity of textures in different directions can lead to distinct descriptors for the same
feature point at different moments. Therefore, we use the strategy of corner point detection
plus optical flow method tracking. The actual corner detection is performed with Harris
corners. In order to distribute the feature points evenly in each region of the image and
improve the accuracy of pose estimation, we divide the image into M × N regions and
maintain a finite number of feature points in each region.

For a newly arrived frame, forward optical flow from the previous to the current frame
is performed. This paper involves some fast-motion scenes where the feature points move
on the image with large amplitude, resulting in poor tracking quality of the optical flow
method. To solve the above problem, based on the multilayer optical flow method, we
provide predicted values of the coordinate on the next frame for each feature point of the
previous frame. For the triangulated feature point k, pki+1

is the normalized coordinate
of the feature point on the previous frame i. The pose Ti+1 of the current frame i + 1 is
predicted using IMU and projected onto the current frame as follows:

pki+1
= ski+1

T−1
i+1Tiski

pki
(5)

For the untriangulated feature points, different strategies are selected in diverse scenes.
The general sceneries are directly set to the coordinates of the previous frame. While for
the overhead view scene in this paper, the average optical flow is calculated to get the
predicted coordinates of the feature point in the current frame.

After getting the tracking values of the feature points in the current frame, we make
another reverse optical flow from the current to the previous frame to ensure the tracking
quality. The coordinates of the feature points in the previous frame are calculated in reverse.
The tracking is considered successful only when the error between the two calculations is
less than the threshold.

In the end, the matching relationship of feature points is used to remove a small
number of false matches by solving the fundamental matrix from the previous frame to the
current frame based on Random Sample Consensus (RANSAC). Thus, we obtain a more
accurate inter-frame correlation of feature points.
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3.2.2. Back-End with Sliding Window Non-Linear Optimization

The sliding window optimization with fixed window size is used in the back-end to
control the optimized scale and efficiency. The window size is N+1, and the optimization
variables are

χ = [x0, x1, . . . , xN , ρ0, ρ1, . . . , ρm]

xi =
[

pW
Bi

, qW
Bi

, vW
Bi

, bai , bgi

]
, i ∈ [0, N]

(6)

where ρk is the inverse depth of the feature point k on the starting frame, pW
Bi

, qW
Bi

and vW
Bi

are the position, rotation, and velocity of the IMU frame relative to the world frame in the
ith frame, bai and bgi are the biases of the accelerometer and gyroscope. Meanwhile, the
extrinsic parameter

[
qB

C, tB
C
]

between IMU and camera and the extrinsic parameter
[
qC

R, tC
R
]

between camera and the range sensor can also be calibrated online as variables.
To preserve the observation information and constraints carried by the old keyframes,

we use the marginalization strategy to transform them into state prior constraints within the
window. Thus, the overall cost function of the back-end includes the following three con-
straints: IMU pre-integration constraints, visual reprojection constraints, and marginalized
prior constraints. Figure 4 shows the back-end optimization factors.

Figure 4. Back-end optimization factors.

(1). IMU pre-integration constraints.

According to the IMU model in Section 2, we can obtain the following equation:

pBi
Bi+1

= vBi
Bi

∆t− 1
2 gBi ∆t2 + α

Bi
Bi+1

vBi
Bi+1

= vBi
Bi
− gBi ∆t + β

Bi
Bi+1

qBi
Bi+1

= qBi
Bi

γ
Bi
Bi+1

(7)

where α
Bi
Bi+1

, β
Bi
Bi+1

and γ
Bi
Bi+1

denote the pre-integrated quantities.

α
Bi
Bi+1

=
s

t∈[ti ,ti+1]

RBi
t (at − bat)dt2

β
Bi
Bi+1

=
∫

t∈[ti ,ti+1]

RBi
t (at − bat)dt

γ
Bi
Bi+1

=
∫

t∈[ti ,ti+1]

1
2 Ω(ωt − bgt)q

Bi
t dt

(8)
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The pre-integration provides position, velocity and attitude constraints between con-
secutive frames, and the residuals are constructed as follows:

δα
Bi
Bi+1

= RBi
W

(
pW

Bi+1
− pW

Bi
+ 1

2 gW∆t2 − vW
Bi

∆tk

)
− α

Bi
Bi+1

δβ
Bi
Bi+1

= RBi
W

(
vW

Bi+1
− vW

Bi
+ gW∆t

)
− β

Bi
Bi+1

δθ
Bi
Bi+1

= 2
[

qW
Bi+1
⊗ qW

Bi

−1 ⊗ γ
Bi
Bi+1

−1
]

xyz

δba = babi+1
− babi

δbg = bgbi+1
− bgbi

(9)

(2). Reprojection constraints.

Visual geometric constraints are provided by observing the same feature points in
different frames. We use the coordinates of the feature point at the start frame and the
inverse depth to represent its 3D coordinates. Each feature point is projected onto the other
keyframes using the inverse depth and the pose. The reprojection error is obtained by
calculating the difference between the projected coordinates and the observed coordinates
of the keyframe. For a feature point k, the projection from the ith frame to jth frame is
represented as:

p′kj
= (TB

C )
−1

(TW
Bj
)
−1

TW
Bi

TB
C

1
λk

pki
(10)

where pki,j
are the observed coordinates of the feature points in the ith and jth frame, p′kj

is

the projected coordinate in the jth frame, λk is the inverse depth of the feature point at the
starting frame.

The reprojection error is denoted as:

ekij
=

[
pjx
pjy

]
− 1

p′jz

[
p′jx
p′jy

]
(11)

(3). Marginalized priori constraints.

To control the dimension of optimization while maintaining the observation or con-
straint information carried by the old keyframes, the Schur complement is used to transform
past states and observations into state prior constraints within the window.

For a nonlinear optimization problem, the nonlinear cost function is linearized in
each iterative optimization to transform the nonlinear problem into a linear least squares
problem. Taking the Gaussian Newton method as an example, the optimization problem
eventually turns into solving the following equation:

Hδx = b (12)

where H = JT J, b = JTr, J is the Jacobi matrix of residuals r about the optimization
variables, and δx is the increment of variable x in the iteration.

The variable x is divided into parts that need to be marginalized and others, so δx is

δx =

[
δx1
δx2

]
(13)

Correspondingly, the matrices H and b are divided into:

H =

[
H11 H12
H21 H22

]
, b =

[
b1
b2

]
(14)
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In this case, δx1 and δx2 are coupled. The Gaussian elimination method is used to
marginalize δx2 and transform it into an a priori constraint of δx1.(

H11 − H12HT
22H21

)
δx1 = b1 − H12HT

22b2 (15)

3.3. Fusing Range and Event for VIO

The improved EVIO still relies on the vision for state estimation. However, in scenes
with weak textures or fast motion, the reduced number of visual feature points and shorter
tracking lengths can reduce the accuracy of image depth estimation and fail to provide accu-
rate constraint information, leading to increased localization estimation errors. In particular,
when the state undergoes constant acceleration motion, VIO exists scale unobservability,
and the state estimation drifts. We propose the REVIO algorithm fusing range and EVIO to
solve the above problems. The integration of range observation can provide absolute scale
information and use the planar structure in the scene to provide constraints for motion
estimation and feature point depth estimation to obtain more accurate estimations.

The algorithm in this paper is based on the following assumptions. The direction of
the range measurement is defined as the optical axis direction of the camera. The system is
mounted on a ground-facing carrier (e.g., a UAV), i.e., the visual information comes from
the horizontal plane.

3.3.1. Front-End Correction with Range Sensors

The integration of range observation provides more accurate image depth estimation
in the motion compensation of the front-end. All current feature points are assumed to
be on the same horizontal plane, and the range information denotes the distance from the
sensor to that plane. The coordinates of the range measurement point in IMU frame can be
expressed as:

pB
j = RB

C(RC
R

0
0
rj

+ tC
R) + tB

C (16)

where rj is the range observation in the jth frame, RB
C and tB

C are the rotation and transla-
tion external parameters between the camera and IMU, RC

R and tC
R are the rotation and

translation external parameters between the camera and the range sensor.
The distance from IMU to the plane in the jth frame is

dj = −nT Rj pB
j (17)

where Rj is the rotation of IMU in the jth frame in the world frame and n is the unit normal
vector of the plane in the world frame.

Therefore, the depth Skj
of the feature point in the plane at the jth frame can be

expressed as:

skj
=

nT RjRB
C(RC

R

0
0
rj

+ tC
R)

nT RjRB
C pkj

(18)

where pkj
is the normalized coordinate of the feature point k in the jth frame.

The depth information of feature points obtained by range observation is used for the
front-end motion compensation correction to acquire much clearer event images.

3.3.2. Back-End of Adding Range Constraints

Range observation can provide additional constraints for the back-end optimization
estimation: ground constraints and generalized scenario constraints. We can obtain more
accurate state motion estimation by adding the new constraints.
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(1). Ground constraints.

The coordinate of the feature point k in the jth frame in world frame can be denoted as:

pW
kj

= Ri(RB
C

1
λk

pkj
+ tB

C) + ti (19)

where Ri and ti are the rotation and translation of IMU, λk is the inverse depth of the
feature point at the starting ith frame. The feature point is located in the plane, and the
distance from IMU to the plane in the jth frame is the inner product of two vectors, which
are the line connecting the IMU position to the feature point and the normal of the plane.

dkj
= −nT(pW

kj
− ti) (20)

The range dj from IMU to the plane in the jth frame has been given by (17) through
the range observation. dj and dkj

should be equal, which means that the line between the
feature point and the range observation point is perpendicular to the normal vector of
the plane.

nT(pW
j − pW

kj
) = 0 (21)

The variables included in this constraint are the poses in the frame, and the inverse
depth of feature point. External parameters between IMU, camera and range sensors can
also be added for online optimization. Each image frame has the corresponding range
sensor data. Therefore, each feature point can establish constraints with all observed frames,
which is formally consistent with the reprojection error of vision.

(2). Generalized scenario constraints.

The image captured by the camera in the actual scene may not be a complete plane.
In Figure 5, the camera observes several points distributed in different planes at different
locations. If it is assumed that all feature points and range measurement points belong to
the same plane, this will introduce false constraints and lead to a decrease in the accuracy of
the back-end state estimation. Therefore, we should determine whether the feature points
and the range measurement points are in the same plane.

Figure 5. The feature point and range point are not in the same plane at the different moments of T1

and T2.



Biomimetics 2022, 7, 169 11 of 20

Determining whether the feature points and range measurement points are in the
same plane can be converted to determine whether the depth calculated based on this
assumption is reasonable. We can calculate the depth of the feature point in the jth frame by
(18). The estimated depth of the feature point k in the starting frame is s̃ki

. The reprojection
error of the feature point at two depths is calculated, and the results are compared to
determine whether the depth is reliable.

First, we calculate the reprojection error of feature point from the ith frame to the jth

frame based on the estimated depth s̃ki
. The coordinate of the feature point in the jth frame

in camera frame is

p̃C
kj
= RB

C
T
(RT

j (Ri(RB
C s̃ki

pc
ki
+ tB

C) + ti − tj)− tB
C) (22)

The coordinate is normalized and subtracted to obtain the reprojection error.

e1 = p̃C
kj
− pC

kj
(23)

Next, the reprojection error is calculated using the depth ski
.

pC
ki
= RB

C
T
(RT

i (Rj(RB
Cskj

pc
kj
+ tB

C) + tj − ti)− tB
C) (24)

The reprojection error is denoted as:

e2 = pC
ki
− pC

ki
(25)

If |e2| ≤ |e1|, it means that the depth estimated by the coplanarity assumption is rea-
sonable, and the feature points belong to the same plane as the range measurement points.
e2 is more consistent with the current positional constraint than e1, and the plane constraint
is added to the back-end optimization. Otherwise, the visual reprojection constraints of the
feature points are constructed and added to the back-end optimization. In addition, range
constraints can be considered to be added in the neighborhood around the range observa-
tion point to avoid introducing error constraints and reduce the computational effort.

4. Experiments

In this section, we perform three sets of experiments to test the accuracy of our pro-
posed pipeline. Both qualitative and quantitative results are provided, which demonstrate
the effectiveness of our method. The first set of experiments is dataset experiments. We
evaluate the accuracy of our improved EVIO algorithm on public datasets. The second set
of experiments compares REVIO with EVIO to prove the superiority of increased range
observation. The third set of experiments further demonstrates the performance of REVIO
algorithm through the actual flight.

4.1. Dataset Experiments: Our EVIO versus Other Algorithms

We use the Event Camera Dataset [24] to evaluate the accuracy of the proposed
pipeline. The Event Camera Dataset contains many sequences captured with a DAVIS-
240C camera with ground truth tracking information. Particularly, it contains extremely
fast motions and scenes with a very high-dynamic range. The DAVIS sensor embeds a
240 × 180 pixels event camera with a 1 kHz IMU and also delivers standard frames at
24 Hz.
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To demonstrate the advantages of our EVIO in a highly dynamic environment, we
conducted comparative tests on the dataset sequence using different algorithms, including
VINS-Mono, EVIO-KF, Ultimate-SLAM, etc. The estimated and ground truth trajectories
are aligned with a 6-DOF transformation in SE3 to evaluate the results. Then, we compute
the root mean squared error (RMSE) to compare the accuracy of algorithm. Table 1 shows
the results obtained when running these algorithms in six different dataset sequences. In
addition, in Figure 6, we use the relative error metric proposed in [25], which evaluates the
relative error by averaging the drift over trajectories of different lengths.

Table 1. The root mean squared error (RMSE) comparison between some algorithms.

Sequence Max Speed
(m/s)

Length (m)

RMSE (m)

Our EVIO
(E + I) *

EVIO-KF [19]
(E + I)

Ultimate_SLAM
[20]

(Fr + E + I)

VINS_Mono
[10]

(Fr + I)

poster_6dof 3.370 61.143 0.147 1.036 0.161 0.290

poster_translation 3.207 49.265 0.074 0.231 0.055 0.133

boxes_6dof 4.014 69.852 0.143 0.910 0.230 0.163

boxes_translation 3.853 65.236 0.158 0.686 0.187 0.162

hdr_poster 2.774 55.437 0.322 0.322 0.373 0.342

hdr_boxes 3.136 55.088 0.212 0.597 0.234 0.249

* E = Event, I = IMU, Fr = Figure.

From the results, we can see that the proposed pipeline outperforms the other three
methods on these dataset sequences. Using only events (E) and IMU (I), the accuracy of
our method is much better than that of EVIO-KF. The error can be reduced by about 80%
on the poster_6dof sequence of six degrees of freedom with strong motion. In contrast to
Ultimate-SLAM using images, events, and IMUs, our EVIO achieves comparable or even
better accuracy, with an error reduction of about 37% on boxes_6dof sequences. Compared
to VINS-Mono using images, the accuracy can improve by nearly 37% on dataset sequences
with small scene depth and intense motion.

However, in scenes such as stationary or motion along the optical axis, the signal-to-
noise ratio of the event stream can be too low for poor quality of the event image, which
affects feature tracking and increases the position estimation error. Traditional images
in such scenes provide better constraints, which is the reason why Ultimate-SLAM and
VINS-Mono can achieve higher accuracy. In scenes with continuous fast motion and high
dynamic range, our EVIO can achieve higher accuracy.

To further demonstrate the capabilities of our method, we chose one of the dataset
sequences for the experiment. For typical scenes with fast translations and rotations, such
as the poster_6dof sequence, the trajectories and error distributions estimated by the four
algorithms are shown in Figures 7 and 8.

The estimation accuracy of our proposed pipeline is better than that of VINS-Mono
and EVIO-KF. Although the accuracy is comparable to that of Ultimate-SLAM, Ultimate-
SLAM uses both event streams and images, which is more computationally intensive. In
fast-motion scenes, the algorithm in this paper can construct motion constraints more
accurately with less computation, and the estimation accuracy is higher.
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Figure 6. RMSE of proposed pipeline against others in Event Camera Dataset (a) poster_6dof;
(b) poster_translation; (c) boxes_6dof; (d) boxes_translation; (e) hdr_poster; (f) hdr_boxes.
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Figure 7. The position estimation of different algorithms for the poster_6dof.

Figure 8. The position error of different algorithms for the poster_6dof.

4.2. Handheld Experiments: REVIO versus EVIO

Considering that the current public dataset does not contain range observation data,
the dataset experiment cannot reflect the advantage of range, and the scenes of the dataset
do not apply to REVIO. To evaluate the properties of REVIO after fusing range, a sensing
system consisting of an event camera and a depth camera is constructed to test the accuracy
of REVIO in real devices and fast-motion environments through handheld experiments.

The sensor system for handheld experiments is shown in Figure 9 (a), which consists
of an IniVation event camera DAVIS 346 (bottom) and an Intel RealSense Depth Camera
D435i (top). The DAVIS 346 sensor embeds a 346 × 246 pixels event camera with a 1 kHz
IMU and also delivers standard frames at 24 Hz. The D435i delivers depth images at
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30 Hz. We choose the depth of the depth image centroid to simulate the range observa-
tion for testing the effect of the addition of range constraints on the performance of the
localization algorithm.

Figure 9. Equipment and scenarios for handheld experiments: (a) the handheld device; (b) the
environment in the hall.

The handheld experiments were performed in the experimental hall configured with
Optitrack (Figure 9b). The illumination information of the experimental hall is 5 Lux-145
Lux. Optitrack is a motion capture system developed by NaturalPoint Inc for applications
including movement sciences, robotics and more. The data obtained from Optitrack is
considered the ground truth. The accuracy is evaluated by calculating the relative position
error between the estimated trajectory and the Optitrack trajectory. Figures 10 and 11
demonstrate the position estimation of REVIO under the dataset with the maximum speed
of 3.489m/s and the remarkable accuracy of REVIO compared to EVIO.

Figure 10. The position estimation of handheld experiments.
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Figure 11. Comparison of the errors using E + I (left) with R + E + I (right) at maximum speed
3.489 m/s. The left is EVIO using events (E) and IMU (I). The right is REVIO using range (R), events
(E) and IMU (I).

To further demonstrate the capabilities of our method, we present several datasets
with different speeds for the experiment. Table 2 provides a comparison of the experiment
results performed between sequences of motion datasets at four speeds. At lower speeds,
the error of REVIO and EVIO is relatively close to each other. When the speed gradually
increases, the error of REVIO is reduced to nearly 29% than that of EVIO. The position
estimation accuracy is enhanced after fusing the range constraint, and the performance gap
between the two algorithms gradually widens with the increasing speed.

Fast motion produces more obvious motion blur, causing an increase in tracking error.
Further, it leads to a decrease in the depth estimation accuracy, the visual part cannot
provide effective constraints, and the position estimation produces drift. The addition of
range observation provides scale constraints, which depresses the drift and improves the
estimation accuracy.

Table 2. The root mean squared error (RMSE) of the proposed approach using range (R), events (E)
and IMU (I) against using event and IMU.

Sequence Max Speed
(m/s)

Max Mean Optical
Flow (Pixel/s)

Length (m)
RMSE (m)

REVIO
(R + E + I) *

EVIO
(E + I)

1 2.089 2210 31.52 0.111 0.105
2 2.349 1280 64.89 0.086 0.088
3 2.422 1740 55.43 0.094 0.109
4 3.489 1557 76.44 0.091 0.128

* R = Range, E = Event, I = IMU.

4.3. Flight Experiments: REVIO versus VINS-Mono

In order to show the potential of REVIO in real scenes, we ran our approach onboard
an autonomous quadrotor and used it to fly autonomously in fast-motion scenes. As
Figure 12a shows, the aerial platform is equipped with a DAVIS 346 event camera and a
D435i standard camera. The D435i camera is used to record depth images. Both standard
and event cameras are facing downward. The state estimation and the control algorithm
are run on a DJI Manifold 2C which contain an i7-8550U CPU running Ubuntu 18.04 and
ROS. The motor thrust commands from the control algorithm are sent to motors through a
CUAV V5 flight control board. Figure 12b shows the test site equipped with the Optitrack
optical motion capture system, whose positioning data is only used as the truth-value
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for evaluation. In addition, the sensor and Optitrack data during the flight are saved for
subsequent offline testing.

Figure 12. The quadrotor and environment for flight experiments: (a) quadrotor platform used for
the flight experiments; (b) the flying experiment.

The UAV achieves autonomous flight in PX4 Offboard mode with the estimated pose
from the REVIO algorithm. The comparison between the flight trajectory estimated by
REVIO and the truth-value of Optitrack is shown in Figure 13, where the average accuracy
can reach about 10 cm.

Figure 13. Flying experiment: (a) the estimated trajectory of flying experiment; (b) the position error
in flying experiment.

During the experiment, it was found that the tracking of feature points was not
stable in texture-less region, and errors in visual observations occurred, leading to drift
in the VINS-Mono positional estimates. Range observations can provide additional scale
constraints to compensate for the effects caused by visual tracking instability.

Figures 14 and 15 show the position estimation error comparison and estimated
trajectory comparison between REVIO and VINS-Mono. The position estimation error
of REVIO is smaller than that of VINS-Mono. The average position estimation error of
VINS-Mono is 0.148887 m against 0.107473 m for REVIO, which is about 28% less. In
addition, the high-frequency vibration of the motor introduces a large amount of noise
to the IMU measurements, and the constraints on the range observation scale of the VIO
system significantly reduce the position estimation error.
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Figure 14. Comparison of REVIO versus VINS-Mono.

Figure 15. Comparison of the position error between VINS-Mono (left) and REVIO (right).

5. Conclusions

In this paper, we propose a range and event-based visual-inertial odometry (REVIO)
for bio-inspired sensors running in real-time on drones. It constructs a joint cost function
to estimate the motion state of the system using event stream, range observations and
IMU data. The experiment results show that the integration of range constraints further
improves the accuracy and stability of the algorithm in structured environments and highly
dynamic scenes and reduces the drift of the system. The average position estimation
error of REVIO can be reduced by nearly 28% or more compared with other VIO methods.
We also propose an improved EVIO algorithm. The dataset experiment results show
that the estimation error of our EVIO algorithm is up to about 80% less compared with
other algorithms in high-dynamic scenes with fast motion or drastic illumination changes.
However, the method only applies to the coplanar constraint of range observation points
and horizontal surface feature points, which is inadequate in terms of constraint. In the
future, the integration of multi-plane observation constraints can be considered to provide
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accurate and robust state estimation in more complex scenes. In addition, the effect of
illumination and noise on the algorithm is not considered, which is also worth studying in
the next step.
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