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Abstract: Metals, such as silver, gold, and copper are known for their biocidal properties, mimicking
the host defense peptides (HDPs) of the immune system. Developing materials with such properties
has great importance in medicine, especially when combined with 3D printing technology, which is
an additional asset for various applications. In this work, copper nanoparticles were used as filler in
stereolithography (SLA) ultraviolet (UV) cured commercial resin to induce such biocidal properties
in the material. The nanocomposites developed featured enhanced mechanical responses when
compared with the neat material. The prepared nanocomposites were employed to manufacture
specimens with the SLA process, to be tested for their mechanical response according to international
standards. The process followed was evaluated with Scanning Electron Microscopy (SEM), Atomic
Force Microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetric anal-
ysis (TGA). The antibacterial activity of the fabricated nanocomposites was evaluated using the
agar-well diffusion method. Results showed enhanced mechanical performance of approximately
33.7% in the tensile tests for the nanocomposites filled with 1.0 wt.%. ratios, when compared to the
neat matrix material, while this loading showed sufficient antibacterial performance when compared
to lower filler loadings, providing an added value for the fabrication of effective nanocomposites in
medical applications with the SLA process.

Keywords: stereolithography (SLA); 3D printing; antibacterial; additive manufacturing (AM); cop-
per (Cu); resin; mechanical; nanocomposites

1. Introduction

Microbial contamination of air, water, and soil by a variety of microorganisms pro-
duces problems in both living and non-living things, as well as in public health and
industry. Antibiotic resistance genes have thus become more frequent in a wide range
of microorganisms, including people and animals [1]. The host defense peptide (HDP)
has mechanisms to inhibit or kill bacteria, and their physicochemical characteristics are
imitated by various materials, such as copper, silver, titanium, and zinc, which exhibit
antibacterial efficacy [1,2]. Metal Nanoparticles (NPs) are the most promising in this field,
having demonstrated considerable antibacterial characteristics and being more commonly
used in industry [3]. Still, the mechanisms underlying metallic nanostructures’ biocidal
action are not fully understood [4].

The development of additive manufacturing (AM) has gained interest from both aca-
demic and industrial perspectives [5,6]. In the past decades, a wide range of AM techniques
have been invented and commercialized, utilizing a variety of polymeric, composite, and
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metal materials [7–9]. Among the most known and those with enough impact in indus-
trial applications technologies are Fused Filament Fabrication (FFF), stereolithography
(SLA), and Selective Laser Sintering (SLS) [10–13]. All these technologies differ in their
technical parameters and utilized materials; however, they all share the same operating
principle of layer-by-layer manufacturing [14,15]. While FFF has gained the greatest mar-
ket share and interest in composite material development, SLA is gaining continuous
advancement [16,17].

SLA 3D printing technology is an AM method that utilizes resins in liquid form,
which are introduced into a tank with a transparent bottom [18–20]. The laser light is
electronically driven through reflective mirrors to the bottom of the tank [21–23]. The laser
spot follows a path specified by the software at each layer. This introduction of light enables
the polymerization of the photosensitive resin, and the process is repeated to fabricate
each layered component [17,21,24,25]. As a result of the SLA 3D printing method, the
fabricated parts are solid, in contrast to the typically hollowed parts of other 3D printing
methods [26–28]. The laser spot size enables the fabrication of micro-sized layers, usually
ranging from 25 to 100 µm, resulting in the manufacturing of parts with smooth and
consistent surface and structure [23]. Additionally, the specifications of the SLA 3D printing
process enhance the capability of manufacturing complex geometry structures [12,29].

SLA, followed by AM techniques such as DLP and LCD are mostly utilized in medical,
dental, and coherent implementations [21,22]. Prototyping applications of sectors, such as
automotive and aerospace, also utilize SLA technology; however, in dental and medical
utilization, components are additionally fully operational [30,31]. The recent pandemic has
led to a wide range of problems in many economic sectors, including the sensitivity of the
supply chain to such situations [26,32]. The worldwide 3D printing community has exhib-
ited the forward momentum of AM by reducing the deficits, and in many cases, eliminating
them [32,33]. Sufficient case studies have been presented regarding the manufacturing of
face shields and respiratory components during this period [34,35], initiating a potential
for further 3D printing implementations in the medical sector [11,36].

Medical, dental, and other similar applications require excellence in design, manufac-
turing, quality control, and the entire production process [37–39]. Most strict regulations
worldwide are introduced for medical devices, and the materials used in such applications
are evaluated in depth for their reliability, safety, and effectiveness [39]. The development
of such composite materials to be introduced in SLA AM technology could enable the devel-
opment of stiff reliable composites with advanced electrical conductivity properties [40–42],
antibacterial performance [14,31,43], etc. In this way, the manufacturing capabilities would
be greatly increased, while the manufacturing cost could be reduced with the introduction
of AM technology.

Nanotechnology can introduce such specifications when used in composites fabri-
cation [44]. Extensive research has been conducted on the introduction of nanoparticles
in various forms, sizes, and combinations [40,45,46]. Nanocomposites have been widely
introduced in FFF materials [13,14,47,48], while the development of nanocomposites in
SLA materials is still not widely investigated [12,13,23]. Copper (Cu) is a metallic material
that has been used in several applications over the years [49–51]. Its ductile behavior and
antibacterial properties introduced a definite advantage for composites’ development. Cop-
per nanoparticles have been introduced in matrix materials for nanocomposites’ fabrication,
for catalysts due to large surface-to-volume ratio, antibacterial surfaces, and electrical
applications [52]. Sufficient research has also been conducted on AM, mainly in materials
for the FFF process [53–56].

This work is an attempt to develop materials suitable for SLA 3D printing, mimicking
the properties of HDPs, to be used in engineering and medical applications. Copper’s
biocidal properties were used to accomplish this. A common ultraviolet (UV)-cured pho-
tosensitive SLA resin was used as a matrix material, and it was filled with copper (Cu)
nanoparticles at various loadings. Low filling ratios were selected for the study. The
method used common laboratory equipment to investigate the potential of nanocomposites’
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fabrication. To the best of the authors’ knowledge, no similar study has been presented in
literature so far on the manufacturing of SLA nanocomposites with copper nanofillers for
plausible implementation in medical applications. The antibacterial performance of all the
nanocomposites developed was verified with the laboratory process followed in this work.
Additionally, the nanocomposites developed exhibited enhanced mechanical performance
when compared with the matrix material. Specimens were manufactured with the SLA
process and assessed according to international standards. Their mechanical, thermal, and
morphological properties were studied. Thus, the novelty of the work is related to the
process followed, and the nanocomposites developed, with a common low-cost commercial
UV resin for the SLA 3D printing process, which can be exploited in various demanding
applications, requiring enhanced mechanical properties in combination with antibacterial
performance. The results show the potential of the commercial SLA UV-cured resin Cu
nanocomposites, as the mechanical performance was enhanced in all filler loadings studied.

2. Materials and Methods

Figure 1 summarizes the steps followed in this work for the preparation of the
nanocomposites, the manufacturing of the specimens, and their characterization processing.
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2.1. Materials

The matrix material selected for the current study was Formlabs Standard Clear V4
(Formlabs Inc., Somerville, Massachusetts, United States) procured from a local supplier.
Standard clear V4 resin (SC) is a commercially available product, and according to the safety
data sheet consists of 55–75% urethane di-methacrylate, 15–25% methacrylate monomer(s),
and less than 0.9% diphenyl (2,4,6-trimethybenzoyl) phosphine oxide. Copper nanopar-
ticles (Cu) were used as fillers for the nanocomposite fabrication. Cu nanopowder was
procured from Nanografi (Nanografi Inc., Ankara, Turkey), and the size of the nanoparticles
ranged from 80 nm to 240 nm with a purity of 99.95%.

2.2. Nanocomposites and Specimens Fabrication

Nanocomposites were prepared using a high-rotational-speed laboratory mixer, which
enabled high shear forces during the mixing procedure. Cu nanoparticles were weighed
and introduced into the SC resin matrix material at filling ratios of 0.5 wt.%, 1.0 wt.% and
2.0 wt.% respectively. The mixing process of each nanocomposite had a duration of 30 min
to achieve the optimum dispersion of the nanoparticles in the nanocomposites. Before
the uncured nanocomposites were poured into the 3D printer tank, they were degassed
using a laboratory vacuum chamber. An SLA 3D printer was used for the specimens’
fabrication. Formlabs Form 2 (Formlabs Inc., Somerville, Massachusetts, United States),
equipped with a resin tank of Formlabs Tank LT, was employed, which is a 3D printer
equipped with a laser light source with a wavelength of 450 nm and a laser spot of 150 µm.
In Preform software version 3.16 (Formlabs Inc., Somerville, Massachusetts, United States),
the necessary G-code file and layer height setup were set at 100 µm. All specimens were
placed and oriented so that the widest side had a direct touch on the build platform, while
for the light source setting, the default setting for the matrix material was used for all
studied nanocomposites. The 3D printing process was followed by thorough washing of
the specimens in an isopropyl alcohol (IPA) bath with 90% purity, in a Formlabs Form
Wash machine for 10 min. The specimens were washed and thoroughly dried in room
conditions (22 ◦C, 50% RH). Then they were placed in a UV curing chamber, i.e., a Formlabs
Form Cure (Formlabs Inc., Somerville, Massachusetts, United States) machine. Surface
curing of the specimens was conducted for 30 min at 60 ◦C, according to the manufacturer’s
specifications for the matrix material. Figure 2 shows the fundamental 3D printing settings
used in this work.
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2.3. Mechanical Performance Testing

Tensile, flexural, impact, and Vickers microhardness measurements were performed
to evaluate the mechanical performance of the studied materials. The tensile properties
were studied according to the ASTM D638-02a international standard on five (5) type V
specimens of 3.2 mm thickness. For this purpose, an Imada MX2 (Imada Inc., Northbrook,
IL, USA) machine equipped with standardized grips was used. The tension speed was
set to 10 mm/min, while the tests were conducted in room conditions (21 ◦C, 50% RH).
The Imada MX2 machine was also used for the flexural tests. The grips were replaced
with the flexural setup of three-point bending (with 52 mm span), following the ASTM
D790-10 international standard. For the flexural test, five specimens of 3.2 mm thickness
were evaluated. The remaining specimens’ dimensions are shown in Figure 2. Charpy’s
notched specimens impact tests were conducted according to ASTM D6110-04 international
standard. Five (5) specimens were assessed using a Terco MT220 machine (Terco AB,
Huddinge, Sweden). Randomly selected specimens were used for Vickers microhardness
measurements according to the ASTM E384-17 international standard, which was followed.
Five (5) measurements were taken on each case.

2.4. Morphological, Thermal, and Antibacterial Analysis

To investigate the processing efficiency, Scanning Electron Microscopy (SEM) analysis
was conducted on the fractal and side surfaces of 3D printed tensile specimens. A JEOL
6362LV (Jeol Ltd., Norwood, MA, USA) apparatus was used for this purpose, while images
were taken on two (2) magnification levels. Samples were randomly selected and first
sputter-coated with gold (Au) to avoid charging effects. The electron microscope was set in
the high vacuum mode at 20 kV acceleration voltage. The same apparatus was used for
energy-dispersive X-ray spectroscopy (EDS) analysis on uncoated specimens to verify the
main elements in each material.

Atomic Force Microscopy (AFM) was used to investigate specimens’ surface morphol-
ogy and roughness in the micro-scale. A microscope solver P47H Pro (NT-MDT, Moscow,
Russia) apparatus was used for this purpose. Commercially available silicon cantilevers
with a scanning frequency of 1 Hz, cantilever spring constant of 35 N/m, tip cone angle
of 20◦, and tip radius of 10 nm were used at a resonant frequency of 300 kHz. Samples of
approximately 10 mg from the specimens were also assessed for their thermal behavior
by thermogravimetric analysis (TGA). A Perkin Elmer Diamond TGA/DTGA (Perkin
Elmer Inc., Waltham MA, USA) apparatus was used, and measurements were taken at a
temperature range from 40 ◦C to 550 ◦C. The temperature ramp was set at 10 ◦C/min.

The antibacterial activity of the fabricated nanocomposites was investigated using
the agar well diffusion method. Tests were conducted in a microbiological laboratory
for two (2) different bacteria. Gram-negative Escherichia coli (E. coli) and gram-positive
Staphylococcus aureus (S. aureus) were cultivated in 85 mm diameter Petri dishes. The
tested cylindrical specimens were 3D printed according to the specifications shown in
Figure 2, and their dimensions were 12.7 mm in diameter and 5.00 mm in height. Petri
dishes were placed in an oven at 37 ◦C for a period of 24 h targeting the optimized diffusion
of the antimicrobial agents in the agar and inhibiting the germination and growth of the
test microorganism. Subsequently, the inhibition zones developed peripherally of the 3D
printed specimens were measured using optical equipment.

3. Results
3.1. Mechanical Performance Analysis

The tensile test results are shown in Figure 3. Figure 3a presents a typical curve of ten-
sile stress (MPa) versus strain (mm/mm) for each tested nanocomposite. The introduction
of Cu nanoparticles in low rations has a clear effect on the ductility of the nanocomposites.
The ductile behavior of copper affected the brittle behavior of the SC resin for all cases
studied, except SC Cu 2.0 wt.%. Such a change can be attributed to saturation effects or
low-quality polymerization processing, due to the increased filler loading. Figure 3b,c
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show the tensile stress at break (MPa) and tensile modulus of elasticity (MPa) to filler ratio
(wt.%). Figures showed an enhancement effect from the introduction of Cu nanoparticles
in the SC Cu 0.5 and 1.0 wt.% nanocomposites, while a similar degradation effect is shown
for the SC Cu 2.0 wt.%, which is consistent with the stress to strain curves of Figure 3a.
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The flexural test results are shown in Figure 4. As shown in Figure 4b,c, both the flexu-
ral strength (MPa) at 5.0% strain and the flexural modulus of elasticity were significantly
increased compared to those of the pure SC material, which is consistent with the tensile
test results. SC Cu 1.0 wt.% nanocomposite presented the highest flexural performance
among the cases studied and especially a 33.4% increase was measured at the flexural stress
and a 20.3% increase at the flexural modulus of elasticity. SC Cu 2.0 wt.% nanocomposite
presented vigorous degraded flexural strength and modulus of elasticity, which also agrees
with the tensile test results. Filling ratios higher than 1.0 wt.% enabled plausible agglomer-
ations in the nanocomposite, which could plausibly deteriorate mechanical performance.
Additionally, this degradation in the mechanical performance at higher loadings could also
be attributed to low polymerization of the material, due to the high concentration of copper,
which could enhance the diffusion effect during 3D printing.
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Figure 5 shows the results for the tensile toughness (MJ/m3) and the correspond-
ing flexural toughness (MJ/m3). These measures were calculated as an integral of the
corresponding stress–strain curves of all the tested specimens, and the average values
are presented below. Such toughness calculations show a generic view of the absorbed
energy during the tests. Following the tensile and flexural performances, the corresponding
toughness of the nanocomposites assessed was enhanced in the case of SC Cu 1.0 wt.%
nanocomposite. An increase of 68.5% was calculated for tensile toughness in comparison
to the neat SC material, while the same material absorbed 34.2% more flexural energy in
comparison to pure SC materials. Increasing the filler ratio over 1.0 wt.% showed a decrease
either in tensile or in flexural properties. Such a decrease could plausibly occur owing to
low polymerization effects. Plausible agglomerations could also introduce such behavior.
These phenomena are more thoroughly analyzed in the discussion section of this work.
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The mechanical performance analysis was also investigated with Charpy notched
impact tests and Vickers microhardness measurements, the results of which are presented in
Figure 6. In agreement with the other mechanical tests of this work, the impact toughness
increased by approximately 30% for SC Cu 1.0 wt.% nanocomposite in comparison to
pure SC resin. The ductile behavior of the Cu nanoparticles enabled the fabrication of
nanocomposites that absorb higher energy levels, which increased the impact strength on
the specimens. Similar performance was seen for the microhardness of the surfaces, which
was approximately 25% higher than that of the neat material. In general, the mechanical
performance results were in good agreement. Lower filler loadings (0.5 wt.% and 1.0 wt.%)
showed an increasing effect, while the highest SC Cu 2.0 wt.% nanocomposite had the
lowest performance in all mechanical tests conducted.
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3.2. Thermal, Morphological, and Antibacterial Analysis
3.2.1. Thermal Analysis

The TGA results are shown in Figure 7. Specifically, in Figure 7A, the weight (%)
of each nanocomposite to temperature (◦C) is presented, while in Figure 7B, the weight
loss rate is presented in comparison to the corresponding temperature. The remaining
nanocomposites were in good agreement with the corresponding filling ratios. Considering
the effect of copper, which reduced the mass reduction rate, as expected, it could be
assumed that the mixing procedure was of good quality. In agreement with the results
of other tests, the SC Cu 2.0 wt.% nanocomposite showed vigorous degradation. As the
effect of copper nanoparticles could not be responsible for such performance, a plausible
implication of low-quality polymerization could be assumed through the TGA graphs.
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3.2.2. Morphological Analysis

Figure 8 shows the side surfaces of tensile specimens for all studied materials. 30×
magnification level images verified the 3D printing specifications. Specifically, neat SC
and SC Cu 0.5 wt.% materials have a smooth surface, indicating a fine interlayer fusion. A
similar view is also shown for SC Cu 1.0 wt.% nanocomposite. Fusion is in fine agreement
with minor differences which could plausibly imply slight agglomerations. In the case
of SC Cu 2.0 wt.% nanocomposite, dimensional accuracy of layering shows a rather fine
quality, while the slightly more intense visible layers could assume lower interlayer fusion.
As per SLA technology, due to the operating principle, interlayer and intralayer fusion
quality depend on the polymerization process quality. Thus, a low-quality polymerization
assumption could plausibly be assumed for high filling loadings. Figure 8a,b, showing
the side surface of tensile specimens built with pure resin show a smoother external
surface of the specimens, typical for this type of manufacturing process, attributed to
proper polymerization and correct 3D printing settings. With the addition of 0.5 wt.%
filler (Figure 8c,d), a similar surface pattern appears, but with abnormalities, in this case,
attributed to low polymerization of the material during the process. Increasing further
the filler loading to 1 wt.% (Figure 8e,f) the pattern of the side surface changes. The
abnormalities are reduced, and the build layers are more clearly visible. At the highest filler
loading tested in this work (Figure 8f,h—2 wt.%), specimens’ side surface built-quality
seems to be reduced, when compared to lower filler loadings.

Figure 9 shows the fractal areas of tensile specimens for all studied materials. The
lower magnification images of the tensile specimens’ fracture area provided sufficient
information on the fracture mechanism. In particular, the introduction of Cu nanoparticles
enabled a more ductile performance on the fabricated nanocomposites, which is observed
at the fracture surfaces. The sudden brittle break of the neat SC specimen can be attributed
to the sharp surface presented in the corresponding image (Figure 9A). Nanocomposites
with filler loading of 0.5 and 1.0 wt.% showed a smaller region that failed in a brittle way,
which can be observed at the start of the fracture arrows shown in the figure. The remaining
specimen’s area shows a more ductile fracture mechanism, which is in good agreement
with the corresponding mechanical analysis. In higher-magnification images, the ductile
behavior is visible, while significant agglomerations cannot be seen.
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Figure 9. Fracture surface of tensile specimens in 30× magnification for (a) Pure SC, (c) SC Cu 0.5
wt.%, (e) SC Cu 1.0 wt.%, (g) SC Cu 2.0 wt.%, same surfaces in 300× magnification for (b) Pure SC,
(d) SC Cu 0.5 wt.%, (f) SC Cu 1.0 wt.%, (h) SC Cu 2.0 wt.%. Arrows in the pictures show the fracture
evolution in the section.

Higher magnification images were taken in the fractal area (Figure 10a–c). At the
highest magnification level, slight agglomerations were observed, which did not create any
processing problems, although the implications of the reduced polymerization quality at
higher loadings still exist. EDS analysis (Figure 10d–f) verified the presence of copper in
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the materials, and graph peaks reveal an indication of good dispersion of the filler in the
matrix material.
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Figure 10. Fracture area high magnification captures at 5000× level (a) SC Cu 0.5 wt.%, (b) SC Cu 1.0
wt.%, (c) SC Cu 2.0 wt.% and the corresponding EDS analysis results (d) SC Cu 0.5 wt.%, (e) SC Cu
1.0 wt.%, (f) SC Cu 2.0 wt.%. White squares indicate the areas for EDS analysis.

Finally, through AFM analysis of the cured 3D printed specimens’ surfaces, their
morphology is further investigated. Figure 11 presents three-dimensional images of the
specimen surfaces captured with AFM, along with the corresponding average calculated
roughness of each studied nanocomposite. The increase of the filler, as expected, further
enhances the deterioration of the surface quality.
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3.2.3. Antibacterial Analysis

In this work, to imitate the biocidal properties of HDPs, copper nanoparticles were
used as fillers in commercial SLA resin. While lower filler ratios could not provide results
with clearly visible antibacterial performance with the method employed in this work, the
SC Cu 2.0 wt.% showed an intense inhibition zone, which was measured approximately
4.5 mm wide. A narrow inhibition zone was observed for the nanocomposite with 1.0
wt.%, while 0.5 wt.% could not provide visible antibacterial activity for gram-negative E.
Coli bacteria. Images acquired after 24 h of cultivation of E. coli for each tested material
are shown in Figure 12. Similar behavior was also observed for gram-positive S. aureus
bacteria, as shown in Figure 13. In this case, the nanocomposites filled with 1.0 wt.% and
2.0 wt.% created a similar inhibition zone of approximately 5.5 mm. Correspondingly,
the neat SC and SC Cu 0.5 wt.% nanocomposite did not show antibacterial activity for
S. aureus bacterium. The filler ratio for introducing antibacterial performance on the
specific nanocomposites exhibits a threshold of 1.0 wt.% loading as per the two (2) assessed
bacteria. In lower ratios, Cu concentration on the specimens’ surface is not adequate to
repel bacterial growth.
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4. Discussion

In this study, a common resin for the SLA process was used as a matrix material for
the development of nanocomposites mimicking HDPs’ biocidal properties. To achieve
that, copper, in nanoparticles form, was used as filler in various concentrations. The
nanocomposites developed showed at the same time enhanced mechanical response when
compared with the matrix material. All mechanical tests conducted in this work, i.e.,
tensile, flexural, and impact tests, showed a similar trend in the results on the effect of Cu
nanoparticles on the matrix material. Cu nanoparticles showed an enhanced mechanical
performance up to filling ratios of 1.0 wt.%, while degradation occurred over such filler
ratios. The morphological analysis provided significant feedback on the processing quality
and confirmed the increase of the ductile behavior of the fabricated nanocomposites, while
it revealed valuable information for the fracture mechanism on the tensile specimens. The
antibacterial activity of the nanocomposites was adequate at higher filler ratios, while
the threshold for mechanical performance enhancement was lower, with the 1.0 wt.%
nanocomposite depicting both enhanced mechanical response and antibacterial activity.

The 2.0 wt.% filler ratio implicated plausible agglomeration effects, which may have
deteriorated the total performance of the material, as its results were comparable with neat
SC. The laser spot size of the utilized 3D printer is 85 microns diameter, and a local agglom-
eration with a size smaller than 10 microns could diffuse the laser beam. Such an effect
could provide low-quality polymerization locally in the interface area of the nanoparticles
with the matrix material. This plausible low-quality polymerization enables the possibility
of lower fusion in either the intra- or interlayer direction. Even in the SC Cu 1.0 wt.%
nanocomposite, minor agglomerations were seen, although the mechanical performance
was significantly enhanced. In this case, it could be assumed that the agglomeration size,
which is affected by the filler ratio, is important for the polymerization process, the interface
quality of the nanoparticles, and the matrix material. Further studies could provide more
information about the mechanisms and exact threshold points.

The antibacterial performance results, in combination with the corresponding mechan-
ical performance results, generally indicate a high potential for SLA UV-cured resin Cu
nanocomposites. It was found that the 1.0 wt.% loading is sufficient composite material.
Such nanocomposites can be easily processed in SLA 3D printers, and the fabrication
procedure could be implemented without high-end technology mixing equipment. Similar
behavior was also observed for the SC Cu 0.5 wt.%, which further enables a prospect for
a more in-depth analysis for the threshold, to fabricate resin Cu nanocomposites with en-
hanced mechanical performance and antibacterial activity. Such optimized nanocomposites
can be used in SLA technology for high-end medical applications.

5. Conclusions

In this study, an attempt was made to develop SLA 3D printing materials mimicking
the biocidal properties of the HDPs, through an affordable process, using a common low-
cost commercial resin suitable for this use. Nanocomposites were developed at various
concentrations and their antibacterial performance was investigated using the agar well
diffusion method for gram-negative E. coli and gram-positive S. aureus bacteria. The
results show high potential for the introduction of Cu nanoparticles in UV-cured resins
in SLA implementations. Cu nanoparticles enhanced the mechanical performance of the
nanocomposites, while such an enhancement was conducted with low filler ratios of 0.5
and 1.0 wt.%. Additionally, antibacterial activity was found at higher filler ratios, which
further confirmed the great potential of the fabricated materials.

Considering the previously mentioned results, in combination with the processing fol-
lowed during the current study, it should be mentioned that innovative solutions could be
prepared, using commonly used equipment. SLA 3D printing, enabling the manufacturing
of high-complexity geometries, along with the enhanced nanocomposite properties, is a
strong combination for exploitation in medical implementations. Furthermore, the recent
pandemic has led to problems in the existing supply chain systems, which are vulnerable
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in emergencies and 3D printing can also be exploited in such situations. SLA UV-cured
resin Cu nanocomposites were evaluated as key materials, as their fabrication could be
implemented in local laboratories, and the 3D printed parts could provide solutions to
problems locally. The materials produced in this work could further exploit 3D printing us-
age during the present pandemic in medical- and engineering-related fields which require
materials with antibacterial performance and enhanced mechanical response, such as the
materials developed in this work. As future work, the antibacterial performance could be
further investigated with more advanced methods and the mechanical and antibacterial
performance loading threshold could be further optimized by statistical analysis tools and
modeling, which were not among the purposes of the current study.
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