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1. Introduction

During the last few decades, biomimetics has attracted increasing attention in both
basic and applied research and in various fields of industry and building construction.
Biomimetics has a high innovation potential and opens up possibilities for the develop-
ment of innovative technical products and production chains. The specific structures and
functions that the vast number of organisms have evolved in adaptation to differing envi-
ronments represent the basis for all biomimetic R&D projects. Novel sophisticated methods
for quantitative analyses and simulations of the form–structure–function relationship at
various hierarchical levels provide intriguing insights into multiscale mechanics and other
functions of biological materials and surfaces. For the first time, it is possible to transfer
biological structures and thus their properties into innovative biomimetic products by
means of newly developed production methods and at reasonable cost.

Animals, with their fascinating behaviour and movement processes, have long at-
tracted interest, with plants only more recently having also been recognised as valuable
concept generators for biomimetic research [1,2]. In general, from a material scientist’s point
of view, plants can be regarded as fibre-reinforced materials systems defined by a number
of material properties [3]. These plant materials systems consist of various components
with different material properties and, thus, are not only anatomically inhomogeneous and
mechanically anisotropic, but also possess a spatial and temporal heterogeneity attributable
to growth and their capacity to respond or adapt to changing environmental conditions.

2. Broad Spectrum of Topics

The articles published in this Special Issue, “Bridging the Gap: From Biomechanics
and Functional Morphology of Plants to Biomimetic Developments”, cover theoretical con-
siderations concerning the challenges of the biomimetic approach and potential pitfalls and
include the entire development chain from basic research in the field of biomechanics and
functional morphology of plants to simulations and the development of physical models
for a better understanding of functional principles, finally leading to biomimetic products
on the laboratory scale or demonstrator level. The size scale includes all hierarchical levels
from microstructure to the entire plants.

Niklas and Walker [4] detail the considerable challenges of the biomimetic approach,
which uses approaches to model and abstract the behaviour or properties of living systems
based on inference within structure–function relationships for the development of synthetic
bioinspired structures and systems. The authors discuss potential pitfalls by comparing
the ways in which engineering and biological systems are analysed operationally, address
the challenges of modelling biological systems, and suggest some methods for assessing
the validity of these models.

In the second contribution, Wunnenberg et al. [5] describe the strengthening structures
in the petiole-lamina transition zone of peltate leaves, in which the petiole is centrally
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attached to the lamina. In such peltate leaves, which are found in 357 plant species, the
transition from the rod-like petiole to plate-like lamina is characterised by a marked change
in geometry. The authors have analysed the connection between petiole and lamina in
41 species, with a particular focus on the reinforcing fibre strands. They have discerned sev-
eral design principles that can be used as models for plant-inspired lightweight supporting
structures.

Masselter et al. [6] present models for 3D reticulated actuator systems inspired by the
macroscopic cortical fibre networks found in some extant and fossil plants. The asymmetric
deformation of these networks caused by asymmetric secondary wood growth enable the
up-righting of inclined balsa and papaya stems. This functional movement principle has
been transferred to elastic technical hollow tubes that are surrounded by a net-like structure.
In addition, the influence of fibre angles on deformation behaviour under internal pressure
is analysed and described.

Klang and Nickel [7] describe the development of biomimetic freeze-casted graded
ceramics inspired by the spines of the lance sea urchin. These spines possess a plant-like
hierarchical lightweight construction and represent superstructures with several gradation
features including porosity, pore orientation and pore size. The spines have considerable
biomimetic potential for porous ceramics with predetermined breaking points and adapt-
able behaviour under compression up to failure. Some of these features can be included in
an abstracted way in ceramics manufactured by freeze-casting.

Poppinga et al. [8] show that a variety of complex plant movement principles can be
demonstrated with comparably simple handcrafted compliant systems based on paper,
wood, plastic foil and/or glue as construction materials. The handcrafted systems are self-
actuated by shrinking processes triggered by the anisotropic hygroscopic properties of the
wood or paper. The developed systems have a high potential for fast, precise and low-cost
abstraction and transfer processes in biomimetics and for the “hands-on understanding” of
plant movements in university and school courses.

Mühlich et al. [9] have analysed, through simulation and physical testing, the influence
of several design criteria, such as stiffness and hinge width, in compliant folding mecha-
nisms moved by bioinspired pneumatically actuated hinges composed of fibre-reinforced
plastic. The authors have developed a workflow within a finite element model software
that allows mathematical models to be inferred for the prediction of mechanical properties
and of deformation behaviour as a function of the parameters used as design criteria.

Krüger et al. [10] have developed a material design space for 4D-printed bioinspired
bilayer structures with hygroscopic actuation that takes into account unequal effective
layer widths and deflections under self-weight. The curvature of various bilayer strips has
been described using an adapted Timoshenko model, and its ability to predict curvatures
has been validated in experiments. This approach has led to an analytical solution space
enabling the quantification of the influence of Young’s moduli, swelling strains and densi-
ties on deflection under self-weight and curvature under hygroscopic swelling. In addition,
it allows the selection of a suitable material combination in bioinspired bilayer systems
with unequal layer widths.

The articles published in this Special Issue, “Bridging the Gap: From Biomechanics and
Functional Morphology of Plants to Biomimetic Developments”, thus, give an up-to-date
overview of current research topics in plant-inspired biomimetic research.
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