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Abstract: Flapping-wing micro air vehicles (FWMAVs) that mimic the flight capabilities of insects have
been sought for decades. Core to the vehicle’s flight capabilities is the mechanism that drives the wings to
produce thrust and lift. This article describes a newly designed flapping-wing mechanism (FWM) inspired
by the North American hawk moth, Manduca sexta. Moreover, the hardware, software, and experimental
testing methods developed to measure the efficiency of insect-scale flapping-wing systems (i.e., the lift
produced per unit of input power) are detailed. The new FWM weighs 1.2 grams without an actuator and
wings attached, and its maximum dimensions are 21 × 24 × 11 mm. This FWM requires 402 mW of power
to operate, amounting to a 48% power reduction when compared to a previous version. In addition,
it generates 1.3 gram-force of lift at a flapping frequency of 21.6 Hz. Results show progress, but they have
not yet met the power efficiency of the naturally occurring Manduca sexta. Plans to improve the technique
for measuring efficiency are discussed as well as strategies to more closely mimic the efficiency of the
Manduca sexta-inspired FWM.

Keywords: flapping-wing micro aerial vehicle (FWMAV); flapping-wing mechanism (FWM); power
measurement; lift measurement; Manduca sexta; mechanical efficiency

1. Introduction

In recent years, there has been increased usage of miniature aircraft controlled remotely with
semi-autonomous capabilities. These aircraft, colloquially referred to as “drones”, have a multitude of
applications including aerial photography and videography, short-range communication, meteorology,
transportation and delivery, surveillance and reconnaissance, and search and rescue. These many
applications, in addition to improvements in ease of use and a reduction in cost, have generated an increase
in demand for these vehicles.

Smaller drones are of particular interest due to their potential for increased agility and mobility in
smaller spaces and decreased visual detectability. A small drone with a wingspan of less than 15 cm
and weighing less than 50 g is sometimes referred to as a micro aerial vehicle (MAV); a term established
by the Defense Advanced Research Projects Agency (DARPA) in 1997 [1]. Current MAVs suffer from a
number of shortcomings or performance barriers that need to be overcome. Increasing flight duration,
range, durability, and safety while decreasing noise are important topics in advancing the development of
MAVs. Researchers are seeking novel solutions to address these problems, and many have turned toward
a biologically inspired approach. In nature, flight forces are generally achieved through flapping wings.
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In contrast, engineered aircraft most commonly utilize continuous rotary motion with a propeller or rotor
to generate lift.

Animals with the capability of sustained flight are found in three categories: The class Insecta (insects)
within the arthropod phylum, the class Aves (birds) within the Chordata phylum, and the order Chiroptera
(bats) within the class Mammalia of the Chordata phylum. All have served as models for the technological
development of unmanned aerial vehicles. Advances in manufacturing of small-scale devices have enabled
a shift towards smaller MAVs that take advantage of improved electromechanical power densities and
power-weight efficiencies. Additionally, complexities in the wing structures and wing trajectories of birds
and bats have proven to be challenging to replicate mechanically. Insects, however, have passive wing
structures with no muscles or joints that actively actuate the exterior of the thorax. Insect-scale drones
fit into the specifications of MAVs and have the potential to address several of the performance barriers
previously discussed. It is for these reasons that we are basing our work on a flying insect.

For reference, our paper entitled “Artificial Manduca sexta forewings for flapping-wing micro aerial
vehicles: How wing structure affects performance” provides background information relevant to the work
presented here and is recommended as a precursor [2].

1.1. Flapping-Wing MAVs, Systems, and Mechanisms

Every successful flapping-wing micro aerial vehicle (FWMAV) must have a set of components that
produces the flight forces necessary for sustained flight. This set of components, referred to here as the
flapping-wing system, is often comprised of one or more actuators, a flapping-wing mechanism that
converts the motion of the actuator(s) into the desired motion of the wings, and the wings themselves.

The performance of flapping-wing MAVs, their systems, and mechanisms can each be evaluated in
a variety of ways. FWMAVs are most often characterized by overall aerodynamic lift for a given size
and weight of the vehicle. For example, experiments on a bio-inspired flexible flapping-wing MAV show
time-varying forces during the flapping period and the effect of wing layout and flexibility [3]. Methods
that determine the performance of a range of FWMAV configurations and show lift for a given power
consumption have been established [4–6]. Performance of component subsystems of a MAV, such as the
flapping mechanism, has been difficult to quantify in bench tests, where overall performance of an FWMAV
has been calculated in terms of lift produced as compared to natural weight of birds and insects [7].

Despite these challenges, researchers have been able to characterize flapping mechanism efficiencies
using a few different types of methods. Four-bar flapping mechanisms are often used due to the ease
of their modeling and fabrication, and characteristic low transmission loss. The essential mechanics of
flapping mechanisms in the insect thorax have been modeled and tuned for aerodynamic performance
with parameterized wings through perturbation analysis [8]. Torque generated by a flapping mechanism
rocker, in a crank-rocker four-bar mechanism, derived from strain gauge measurements has been used
to determine the optimum motor reduction gear and lengths of the mechanism for a dove-size MAV [9].
In another instance, a four-bar mechanism was used to minimize transmission loss for a dragonfly-size
MAV [10]. Furthermore, mechanism transmission momentum was modeled for a beetle-size scotch yoke
mechanism [11], and the overall performance of the wing and flapping mechanism was determined by
using a strain gauge to measure lift.

The complexity of wing design and mechanism design, in addition to the inherent coupling between
the two, suggests that it may be useful to separate the problem into two research areas. The design of
biomimetic wings involves optimizing size, structure, weight, and flexibility to be similar to animal wings,
while the design of flapping mechanisms involves optimizing mechanical devices to achieve performance
density similar to the animal’s muscles and mechanisms. The assessment of flapping-wing systems at
the hawk moth scale is challenging because unlike rotary-wing-powered craft, useful force must result
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from a continuous repetitive cycle of wing acceleration and deceleration. The approach we take is to keep
the wing design fixed and to evaluate flapping mechanisms by measuring overall performance of the
coupled wing-flapping system. We are using this approach for two reasons: we have previously published
a method for fabricating moth-like wings that we used for this study, and this approach simplifies the
process (Figure 1) [2].

Figure 1. (top) 2D scan of natural forewing excised from Manduca sexta (bottom). Artificial forewing used
in this study. These manufactured wings have an approximate wing length of 50 mm, chord length of
20 mm, and mass of 40 mg. Their membrane is made of Icarex™ ripstop polyester, and their venation
structure is constructed of Gurit prepreg unidirectional carbon fiber [2].

1.2. Efficiency as a Performance Metric

The amount of lift generated per unit of power input to a flapping-wing system is an essential
performance metric in assessing the efficiency of a flapping-wing mechanism. The more lift that the wings
produce while maintaining a constant power draw indicates greater performance and fewer energy losses
in the system. If we assume the size and weight of the power plant remains the same, a reduction in energy
losses results in longer flight durations and thus an increase in range. Alternatively, depending on the
desired flight characteristics, agility or payload capacity could improve if the power plant is reduced in
size and weight. Consequently, many of the performance metrics of MAVs can benefit from examining the
performance of individual components of a MAV and lead to improved overall MAV efficiency.

In addition to advancing many of the common characteristics of MAVs, the power required to produce
enough lift for flight for a given flapping-wing mechanism defines the criteria necessary for proper actuator
selection. Once the power requirements are determined, the actuator type and size can be chosen followed
by other MAV components such as energy storage.

Furthermore, efficiency of MAVs and their subsystems is a metric often found in literature and used
to compare alternate designs as well as theoretical limits. Flapping-wing system overall efficiency must
consider wing design and mechanism design together. Their performance is closely coupled. Wing design
is dependent on the design of the mechanism and vice versa. For example, a FWMAV with moth-like
wings should flap its wings in a moth-like trajectory and frequency.

1.3. The Hawk Moth Manduca Sexta

We narrow our focus towards replicating larger animals within the class of insects as it affords
us additional engineering design space. The larger insects are arguably easier to replicate since their
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components themselves are larger and can be recreated with a variety of traditional and conventional
manufacturing techniques such as subtractive and additive manufacturing. Another benefit to focusing on
larger flying insects is that as we scale up within this class of arthropods, they are capable of more payload,
which is useful in some FWMAV applications.

Analysis of power requirements and losses in actuators and transmission mechanisms suggest a
crossover between use of piezoelectric actuators at the fruit fly scale to use of rotary motor actuators
at the hummingbird scale and larger [12]. For nano-scale FWMAVs smaller than 1 mm, weighing less
than 1 g and with a flapping frequency greater than 100 Hz, non-spinning (linear type) actuators such as
piezoelectric or thermal actuators have suitable power efficiencies [13]. Micro-scale solutions typically
involve motor-driven crank mechanisms [14].

The hawk moth Manduca sexta is one of the most attractive model organisms for FWMAV development
because of its ability to hover in gusty conditions, its size for operating in confined areas, and its weight
relative to payload capacity. Manduca sexta is one of the largest flying insects. The wings and thorax are
the key functional elements of any flying insect and are of particular interest in mimicking for FWMAVs.
Researchers have analyzed and quantified the flight characteristics of Manduca sexta [15–19]. Hawk moth
wings and thoraces have been studied to provide detailed structure and performance data. The hawk
moth’s flapping mechanism incorporates an indirect flight muscle system where the muscles in the thorax
act on the exoskeleton to flap its wings (Figure 2). Reverse engineering this structure led to the idea that
the muscle energy transferred to the wings could be characterized by measuring the energy needed to
compress the insect’s thorax. Studies have determined that the elastic modulus of the tergum (tergal
plate) is approximately 5.02 ± 0.31 GPa and that the large flight muscles need to produce 31.4 ± 2.6 mW
of mechanical power to flap the wings [15,20]. Particular focus on measuring and characterizing thorax
muscle power output has produced experimental evidence and survey results to support robust models
and estimates of the thorax power density [21]. Experiments involving mechanical measurements have
determined the average mechanical power required to produce hawk moth upstroke and downstroke
flapping, and the power density of the hawk moth dorsal muscle groups [22]. Cranston and Palazotto
(2014) summarized Manduca sexta specific power output and input, and the most recent estimates are
112 W/kg and 1170 W/kg, respectively [15].

Figure 2. A cross section of an insect’s thorax depicting the indirect flight muscle system. Our latest
flapping-wing mechanism is overlain, indicating similarities between the thorax and the mechanism.
The Scotch-yoke of the mechanism encompasses both the dorsal longitudinal muscles (DLMs) and
dorsoventral muscles (DVMs) as it drives the wings in both directions [23].
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Researchers have also constructed models of the animal and analyzed the performance of their
reconstructions. Studies have produced finite element models of the hawk moth wings and thorax.
A physical wing-body model of the hawk moth has been constructed to evaluate the aerodynamic
performance, derive input power requirements, and evaluate performance improvements associated with
wing flexibility. Findings indicate flexible wing mechanisms enhance overall efficiency even though they
require more input power [24]. Notable general findings reveal that the inertial load associated with wing
acceleration and deceleration can require as much as half of the total power input [25]. These measurements
and models of hawk moth thorax power densities serve as goals for evaluating performance of functionally
equivalent mechanical flapping mechanisms.

2. Methods

2.1. Flapping-Wing Mechanism 2.1 Development Methods

This team previously presented two flapping-wing mechanism (FWM) designs [2,26,27]. These
mechanisms were developed by applying first principles of physics, implementing state-of-the-art practices
in the field of insect biomimicry, and through design iteration by qualitative observation of the mechanism
performance and inspection of Manduca sexta in flight. Furthermore, initial creation and advancement
of the mechanism benefited from investigations of the capabilities of the manufacturing process and the
mechanical properties of the material in use. In addition, a common approach to progress performance of
mechanical components is to address areas of weakness and points of failure. For instance, in a dynamical
model such as this, focusing on regions of high stress, unexpected or abnormal amounts of friction, or
locations of poor tolerance where undesired movement occurs can prove vital to meeting the expectations
of the design. In the case of biomimicry, the design specifications are determined by the model organism,
Manduca sexta. More specifically, we are attempting to meet or exceed the animal’s dynamics including its
size, shape, mass, efficiency (power-to-lift ratio), and wing motion. By continuing to employ this approach,
we were able to make more improvements to the design (i.e., develop a mechanism that more closely
mimics Manduca sexta).

2.2. Flapping-Wing Mechanism Efficiency Measurement Methods

To determine the efficiency of flapping-wing mechanisms, we measured five variables: load voltage,
load current, mechanism position, flapping frequency, and lift generation. Efficiency was calculated from a
ratio of input power consumption to output power generation. Input power was derived from estimates
of load voltage and load current. Output power was derived from measurements of lift. The position and
flapping frequency were also measured to discern component contributions and evaluate model compliance
with the expected performance characteristics of the hawk moth. The flapping-wing mechanism was run
at specific duty cycles, and the measurements were recorded. A range of duty cycles were used to sweep
through a range of flapping frequencies. Flapping frequencies were not controlled with feedback; they
were dependent on the mechanism configuration.

The design of the modified scotch-yoke flapping-wing mechanism converts continuous rotary motion
into oscillatory flapping motion (Figure 3). A 6 V 10:1 high-power carbon brushed dual-shaft Pololu micro
metal gearmotor was selected to drive the flapping-wing mechanism. This DC motor has a maximum
speed of 3000 RPM (50 Hz), maximum output power of 1.3 watts at 6 volts, specific output power of
136.8 W/kg, a size of 10 × 12 × 26 mm, and a mass of 9.5 g. These specifications meet or exceed the
specifications of what is known about the animal with the exception of mass. Meeting mass specifications
for the actuator was not deemed essential at this stage of development because we are focused on the
mechanism and its performance, not the entire system. A number of other factors also contributed to the
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selection of this particular motor. For example, its accessibility, reliability, ease of control, cost, performance
history, and familiarity were all considered when deciding to use this electric motor.

Figure 3. Complete flapping cycle of FWM 2.1 as viewed from the top. Starting from the top left corner of
the diagram, the wings begin at the top of their stroke with positive angle of attack (AoA). As we proceed
to the top middle picture, the crank (blue) rotates in the counter-clockwise direction, thus driving the yoke
(green) upward and the wings (pink) downward. Subsequently, the crank rotates another quarter of a
turn and the wings reach the bottom of their stroke. At this point, the wings passively flip from a positive
to a negative angle of attack (note that this does not occur instantaneously like depicted in the diagram
but over a brief amount of time and after the crank has rotated some small amount). The crank continues
to rotate, driving the yoke downward and the wings upward. Lastly, with the wings at the top of the stroke,
aerodynamic and inertial forces cause them to flip (passively rotate along the spanwise axis) into a positive
angle of attack. Like the previous wing flip, this motion also does not occur instantaneously but over a
short amount of time and after the crank has rotated a small amount.

Mechanism power input was recorded quickly and accurately. In its simplest form, instantaneous
electrical power is a function of load current and load voltage. Since a 20 kHz PWM signal was used to
control the electric motor, the load current and load voltage had to be sampled at a minimum 40 kHz to
guarantee that both the highs and lows of the signal were captured; otherwise, a bias could occur. After
procedures were refined and recording software incrementally improved, we were able to record power
measurements at a rate of 50,000 samples per second with a no-load standard deviation of 0.32 mW.

A high-speed position sensor was integrated into the system so that the mechanism position and
flapping frequency could be recorded. The lift was expected to vary throughout the wingbeat. Thus,
it was important to know the position of the mechanism and wings at the time lift and power were
measured. Additionally, by recording the mechanism position, data could be extracted over the course of
one wingbeat and processed to assess the mechanism’s cyclical performance. Flapping frequency could
also be calculated by taking the time derivative of the mechanism position. The microcontroller was
configured to capture velocity values every millisecond (1000 samples per second) and record the time at
each indexer pulse. A full wingbeat cycle was interpolated from the indexer pulses. The gearbox on the
motor has a ratio of (35 × 37)/(13 × 10): 1, or approximately 9.96: 1. Therefore, the indexer pulses occur
roughly 10 times every cycle.
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Lift was measured with a micro load cell and a 32-bit analog-to-digital converter. Samples were
captured at a rate of 7200 Hz. For each experiment trial, load cell data for more than one wingbeat were
captured. This affords the ability to calculate a variable moving average across the duration of the data
based on the most recent quadrature encoder information. The timing data recorded from the quadrature
encoder indexer were used to interpolate the amount that the motor rotated (i.e., the incremental location
of mechanism within the wingbeat) in terms of number of wingbeats for each load cell data point captured.
A leading moving average was applied to the filtered load cell data where the window size corresponds
to a full wingbeat as determined by the interpolated position. Once the moving average was applied,
the first and last 10% of the data was discarded in order to remove the edge effects caused by filtering.
This procedure (Figure 4) resulted in a number of estimates for the lift generated per experiment trial.
Lastly, these estimates were averaged and compared to other mechanism configurations.

Figure 4. (top) Filtered data from one trial of the flapping-wing system in each of the three configurations:
forewings attached (blue), mass simulators attached (red), and nothing attached (yellow). Highlighted in
red are the data subjected to edge effects from filtering and discarded. Highlighted in green is an example
of the region of interest (one wingbeat of data) that is averaged to produce one moving average sample,
shown in (bottom).

The Tiva C microcontroller has 256 KB of flash memory. At the sampling rates and sizes of the
recorded data, a maximum of 100 milliseconds could be captured by the microcontroller. Considering a
minimum of one full wingbeat was needed to assess the performance of the mechanism, 100 milliseconds
of data allows for flapping frequencies no less than 10 Hz. Manduca sexta flaps its wings at approximately
25 Hz, well above the minimum of 10 Hz, translating into 2.5 wingbeats worth of data. If it is desirable to
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record additional wingbeats or lower flapping frequencies, external memory could be added. All events
and sampling rates are shown in the event timing table (Table 1).

Table 1. Event timing table.

Sampling Rate (µs) Frequency (Hz) Event Type Device Comm. Protocol

20 50,000 Power (V × I) 2 × 12-bit Onboard ADC a Analog
50 20,000 Pulse Width Modulated Signal Tiva C PWM Module PWM

139 7200 Load Cell Acquisition Protocentral 32-bit ADC SPI
1000 1000 Motor Position AMS AS5147P Position Sensor ABI

40,000 25 Wing Beat Flapping Wing Mechanism USB
100,000 1 Sample Size Tiva C Flash Memory USB

a (ADC) Analog to Digital Converter; (PWM) Pulse Width Modulated; (SPI) Serial Peripheral Interface; (USB) Universal
Serial Bus.

Figure 5 presents a diagram containing all hardware and software components as well as
communication protocols used to obtain the desired performance metrics of the flapping-wing mechanisms
in question. For more details on the hardware components and their configurations, see Appendix A.

Figure 5. Complete system diagram. The system is comprised of three subsystems: electromechanical and
sensor hardware, microcontroller hardware and software, and MATLAB® software. Two analog signals
and four digital signals are used to communicate between subsystems. Pulse width modulation (PWM),
ABI quadrature encoder, serial peripheral interface (SPI), and universal serial bus (USB) are the four digital
communication protocols used.

2.3. Experimental Methods

Three experiments were contrived and conducted to analyze the performance of the newly developed
FWM and to compare it to other FWMs in literature as well as fabricated by this team. These experiments
are the Motor Load Calibration and Efficiency experiment, the System Load Comparison experiment,
and the System Lift Production experiment. The Motor Load Calibration and Efficiency experiment
established the relationship between motor power consumption and motor load and can be found in
Appendix B. The two other experiments are elaborated below.

An experiment trial consisted of start-up time, data capture, and stopping time. A MATLAB® program
sent a command through the PC’s serial port to trigger the experiment trial sequence. The command
indicated a desired pulse-width-modulated duty cycle (25–100%), a 5 s time delay before data were
recorded to allow the flapping-wing mechanism to reach a steady state condition, and the type of trial
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conducted (step input). Once the trial was completed, all data that were stored in the buffer on the
microcontroller were transmitted to the PC via the serial port. MATLAB read and stored the incoming
data and then performed all post-processing operations such as conversion from raw counts, resampling,
and filtering.

2.3.1. System Load Comparison

The most recently developed FWM was compared to its predecessor in its ability to convert continuous
rotary motor motion into oscillatory flapping-wing motion. The power consumptions of FWM 2.0
and FWM 2.1 were measured by performing trials at seven duty cycles from 25–100% in increments
of 12.5%. Comparing power consumption of FWM 1.0 was not necessary because FWM 2.0 already
exhibited significant improvements. FWM 2.0 and FWM 2.1 were tested in three different configurations:
with artificial forewings attached, with forewing mass simulators attached, and without anything attached
(Figure 6). Making measurements with these configurations allows the effects of forewing aerodynamic
forces and forewing inertial forces to be isolated and observed independently of one another. The forewing
mass simulators were thin spring steel bars (0.508 mm diameter, 38 mm length, 0.06 g) intended to
replicate the inertia of the forewings but had little cross-sectional area and thus produced minimal
aerodynamic forces.

Figure 6. (top) FWM 2.1 with artificial forewings attached. (middle) FWM 2.1 with metal rods attached
that are equivalent to the mass of the forewings but have minimal air resistance. (bottom) FWM 2.1 with
nothing attached.

2.3.2. System Lift Production

FWM 2.1 was tested in the three configurations (with forewings attached, with mass simulators
attached, and with nothing attached) for its ability to produce lift (Figure 6). For each configuration,
five experiment trials were conducted at duty cycles that have similar flapping frequencies (approximately
20 Hz). Power consumption, lift generation, and flapping frequency were all recorded for durations of
100 milliseconds, corresponding to two wingbeats of data at 20 Hz. Additionally, two wing orientations
were tested and their results are presented in Section 3.3. In order to compare performance results, the lift
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production was estimated by averaging the load cell measurements over the span of one wingbeat as
explained in Section 2.2 and seen in Figure 4.

3. Results

3.1. Flapping-Wing Mechanism 2.1

Through the implementation of the development methods discussed in Section 2.1, the flapping-wing
mechanism (FWM) has been improved and more closely mimics Manduca sexta in size and mass. All major
components were reduced in size and mass with the motor casing having the largest reduction of 94.6% by
mass (Table 2).

Table 2. Specifications of each flapping-wing mechanism.

Version 1.0 2.0 2.1

Linkage Type Crank-Slider Prismatic Joint
Scotch-Yoke Scotch-Yoke

Total Mass a (grams) 110 6.2 1.2
Max. Dimensions (mm) (L ×W × H) 76 × 76 × 64 33 × 33 × 21 21 × 24 × 11

Component Mass (grams)
2 DOF Shoulder Joint 1.03 0.30 0.07

Wing Adapter 0.16 0.08 0.03
Linkage 2.12 0.18 0.08

Crank Arm 0.47 0.12 0.05
Stators 49.4 0.21 0.06

Motor Casing 9.55 2.91 0.16

Sum b 62.7 3.79 0.45
a Total mass and maximum dimensions of the mechanism without the motor and forewings. b Sum of the major
components. Does not include additional hardware such as screws, ball bearings, or axles.

FWM 2.1 is lighter, more compact, more robust, and more precise and efficient (as shown in Section 3.3)
in its flapping motion. It incorporates several changes to the mechanism relative to FWM 2.0. First,
a smaller ball bearing (outer diameter decreased from 4.76 mm to 3.18 mm) was incorporated into the
shoulder joint (Figure 7), resulting in a shorter motor shaft and a corresponding lower profile. Second,
the stator was changed from a single-sided prismatic joint to a double-sided revolute joint. This improves
the directionality of the yoke, ensuring that the yoke maintains a linear path as it is driven by the crank
arm and greatly reduces the amount of contact surface area between components, thereby lessening
friction within the mechanism. Hardware screws were changed from stainless steel size 0–80 to brass
size 00–90. Decreasing the size of the motor casing involved using two inverted 00–90 screws partially
milled to their cores as axles for the shoulder joints. Furthermore, we were able to remove additional motor
casing material by using two M1.6 × 3 mm screws and securing the mechanism directly to the gearbox
rather than making a clasp around the entire gearbox as was previously done. Profile reduction required
removing a large portion of the motor shaft, drilling and tapping into the motor shaft (along its major
axis), and securing the crank arm to the motor shaft with a 00–90 × 1/8” flat head screw. With this method,
we were able to reduce the length of the crank arm from 0.09” to 0.063”, resulting in geometrical changes
in subsequent linkages for FWM 2.1 and allowing for room for the double-sided revolute joint design seen
in Figure 7.
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Figure 7. Progression of flapping-wing mechanism (FWM) development from left to right. In all versions
shown, the forewings (pink) are attached to a wing adapter (clear) and shoulder joint (clear), which are
driven by a linkage (green) between the shoulder joints and motor crank arm (blue). In versions 2.0 and
2.1, a ball bearing (yellow) is housed within the shoulder joint to allow minimal friction during spanwise
rotation of the forewings. The shoulder joints rotate around small axles (brass) to achieve the oscillatory
flapping motion. The motor is held in place via the motor casing, (gray) and stators (black) are used to
guide the linkages through their desired motion.

3.2. Motor Load Calibration and Efficiency

The Motor Load Calibration and Efficiency experiment (discussed in Appendix B) produced
second-order polynomials used to convert the measured electrical power input to the electric motor
into values that represent the mechanical power output from the motor (Figure 8). Data from this
experiment run at full duty cycle confirmed anticipated current, speed, efficiency, and power output
curves with r-squared correlation values greater than 0.985. The maximum observed efficiency throughout
this experiment was 34.03% and occurred at a speed of 2171 RPM and a torque load of 5.01 N·mm.
The maximum mechanical power output measured was 1327 mW.

Figure 8. Mechanical power output as a function of electrical power input from measured data of seven
duty cycles. Each duty cycle’s data set is fitted with a second-order polynomial, all of which have a
minimum correlation coefficient of 0.978. These polynomials were used to convert measured electrical power
consumption into mechanical power output when the motor is subjected to unknown loads. Although not
included in this diagram, the factory specifications for no-load and stall conditions support the measured
data and the resulting trend lines.



Biomimetics 2020, 5, 25 12 of 21

3.3. System Load Comparison

Table 3 summarizes the results from the load comparison experiment. This table presents data
post-conversion from measured electrical powered input to the motor to mechanical power output from
the motor (Figure 8). In all three configurations, the advancements made with FWM 2.1 vs. FWM 2.0
reduced the necessary mechanical power output from the electric motor (i.e., mechanical power input to
FWM) by at least 15%. When comparing the performance of the flapping-wing mechanism without the
forewings or forewing mass simulators attached, power reductions of 70.5% and above were observed.
For the configuration with the forewings attached to the mechanism and thus a complete FWM system,
necessary mechanical power output was reduced by a minimum of 24.9% to upwards of 53.2%, occurring
at 87.5% duty cycle and 25.0% duty cycle, respectively.

Table 3. Mechanical power input (mW) to FWM 2.0, FWM 2.1, and percentage reduced (R).

Duty Cycle
FWM Only FWM w/ Simulated Masses FWM w/ Forewings

v2.0 v2.1 (R) v2.0 v2.1 (R) v2.0 v2.1 (R)

25% 48 ± 9 9 ± 6 82% 34 ± 8 20 ± 6 42% 54 ± 8 26 ± 4 53%
37.5% 78 ± 16 10 ± 18 87% 78 ± 17 49 ± 18 37% 124 ± 19 89 ± 10 28%
50% 128 ± 32 4 ± 18 97% 140 ± 33 88 ± 24 37% 301 ± 22 207 ± 28 31%

62.5% 195 ± 17 58 ± 15 71% 270 ± 13 202 ± 29 25% 503 ± 17 334 ± 10 34%
75% 312 ± 30 65 ± 26 79% 424 ± 37 361 ± 45 15% 780 ± 4 540 ± 33 31%

87.5% 468 ± 33 91 ± 28 81% 644 ± 43 461 ± 40 28% 1061 ± 12 797 ± 37 25%
100% 808 ± 51 182 ± 13 78% 903 ± 25 704 ± 13 22% 1354 ± 6 940 ± 36 31%

The results from Table 3 and their respective flapping frequencies for each duty cycle were fitted with
a second-order polynomial and interpolated at the flapping frequency of 24.7 Hz (approximate frequency
of the animal). Analyzing the full system with forewings attached, the new flapping wing mechanism
(FWM 2.1) required 48.6% less mechanical power from the electric motor than the old flapping wing
mechanism (FWM 2.0) at the animal’s flapping frequency. Throughout the span of all duty cycles, FWM 2.1
with forewings attached reduced power consumption by an average of 33.2%.

3.4. System Lift Production

System lift production results (lift generated, power input measured, and flapping frequency observed)
for five trials of FWM 2.1 in three configurations are shown (Table 4). These results indicate that, in the
configuration with nothing attached and the configuration with the mass simulators attached, a negligible
amount of lift was detected, as expected.

Table 4. System lift production results of FWM 2.1.

FWM Configuration Lift
(mg Force)

Mechanical Power Input
(mW)

Flapping Frequency
(Hz)

FWM Only 91 ± 20 739 ± 145 19.9 ± 0.4
FWM w/Simulated Mass 84 ± 31 745 ± 156 19.7 ± 0.6

FWM w/Forewings 1299 ± 73 1261 ± 249 21.6 ± 0.7

4. Discussion

4.1. Measurement Hardware and Procedures

The measurement procedures mentioned within this manuscript provide detailed descriptions on how
a low-cost, high-precision, and high-accuracy testbed was developed for determining power consumption
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and lift generation of insect-scale FWMs. The procedures produce consistent results with low standard
deviations when averaged across five or more trials. However, it should be possible to obtain more
consistency with lower standard deviations through faster sampling rates, higher signal-to-noise ratios,
faster communication speeds, and longer trial durations (limited by the amount of memory onboard the
microcontroller). For example, an alternate configuration for the position sensor provides potential for
improving wing position estimates. The AMS AS5147P high-speed position sensor was configured for ABI
communication, which replicates an incremental encoder with an indexer. A higher-bandwidth and more
precise option would be to utilize the sensor’s built-in Serial Peripheral Interface (SPI) communication
protocol, which provides absolute position measurements. This should result in a more accurate estimation
of the timestamps and number of data samples of one wingbeat, thereby providing better approximations
of the average lift generated across the entire wingbeat.

The Phidgets micro load cell performed well in our tests. In its calibration, we observed linear,
repeatable results, with a small amount of hysteresis that was accounted for in the experiments. We were
able to achieve load cell measurements accurate to ±30 mg force, sampling at 7200 Hz. While this
was sufficient to detect discrepancies in lift measurements between configurations, we would like to
achieve measurement accuracy of ±1 mg force. As such, areas of improvement include vibration isolation,
increased measurement precision and accuracy, and additional degrees of freedom. Vibration frequencies
greater than the flapping frequency are irrelevant, make it difficult to discern the lift data results, and should
be discarded. This work utilizes a low-pass filter to remove the high-frequency vibration observed in the
load cell measurements. However, there are alternatives to consider, such as mechanical dampening or
more robust filtering. For example, a linkage to decouple the diametric magnet from the extended motor
shaft and only transmit torque was conceived but not implemented. Lastly, additional degrees of freedom
would help to observe moments and forces vital to determining flapping wing system stability.

Electrical power measurements achieved results accurate to less than ± 1 mW in best-case scenarios
but varied up to ±200 mW under large loads and at high motor speeds. Two options that may reduce
these variations are switching to a digital current sensor (from Texas Instruments INA169 to INA219) and
using a brushless motor instead of a 6 V brushed DC motor. The data showed that much of the noise in
voltage and current measurements occurred because of spiking (presumed to be from the brushes) as well
as the 20 kHz Pulse Width Modulated (PWM) signal used to control the speed of the motor. A brushless
motor configuration would likely remedy this.

In summary, this work resulted in measurement hardware and procedures that are capable of
capturing power draw and lift generation with enough accuracy and at a high enough sampling rate to
observe and identify performance specifications of insect-scale FWMs. This much-needed capability paves
the way for thorough analysis of future design iterations of FWMs in which geometrical configurations,
material selections, and hardware component selections can be optimized based on empirical data.

4.2. Experiment Results

The load calibration procedure resulted in a maximum efficiency of 34% for the electric motor and
motor controller. Determining the curve fit for each duty cycle (Figure 8) permits isolation of the power
produced by the motor from the motor controller. The efficiency losses of the motor controller and motor
are accounted for when converting from electrical power input to mechanical power output. Maximum
mechanical power output is consistent with the manufacturer’s listed specifications at approximately
1.3 W. Additional load experiments were considered in order to determine the motor’s transient response
by running experiments with various angular moments of inertia attached to the motor’s shaft. This could
prove useful in developing accurate motor simulations but was not necessary to obtain initial performance
data on the FWMs.
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Comparing the equivalent mechanical power output of the electric motor (i.e., power input to the
FWM) required by FWM 2.0 to FWM 2.1 yielded positive results with FWM power input reductions
observed in all FWM 2.1 configurations. In particular, when the FWMs were run without anything attached,
reductions of 71% to 97% were observed in FWM 2.1. At the animal’s flapping frequency of 24.7 Hz power
reductions of 82%, 22%, and 48% were calculated for FWM 2.1 by itself, FWM 2.1 with forewing mass
simulators attached, and FWM 2.1 with forewings attached, respectively (see Section 3.2 for information
regarding how these values were calculated). Furthermore, at the same frequency and with FWM 2.1,
the power required was measured to be 24 mW, 161 mW, and 402 mW, respectively. Therefore, we can
conclude that the power required to overcome aerodynamic forces is 1.7 times that of the power required
to overcome inertial forces with FWM 2.1.

Initial experiments involving the FWMs with forewings attached showed insignificant amounts of
lift generated. Upon reviewing high-speed video of both the flapping wing mechanism with artificial
forewings and the animal, it was determined that the forewings’ rotations were slow compared to the
animal’s, lagging substantially behind the time of stroke reversal within the wingbeats. Modifications
to the forewing adapters were needed in order to enable them to rotate faster and earlier within the
downstroke and upstroke of the wingbeat cycle. The forewing adapters were originally designed for the
flip axis of the forewings to pass through the maximum wing length. However, it was thought (and later
confirmed through observation of the animal) that the flip axis resides along the leading edge of the wing
(Figure 9). The original orientation of the forewing with respect to the spanwise rotation prohibited passive
rotation, thereby preventing lift production. This change in forewing orientation drastically improved the
lift production.

Figure 9. The original orientation (semi-transparent) and new orientation (opaque) of the forewings are
shown. Points of interest associated with the forewing are included; center of mass (green), area centroid
(red), and center of pressure (blue). In the new orientation, all three points of interest have moved farther
from the flip axis (dashed line) to improve passive pronation and supination of the forewing.

Lift production over the course of a trial period varied greatly (Figure 4). It was necessary to develop a
technique to estimate the length of the wingbeat and calculate the average lift generated over the wingbeat
in order to obtain a number representative of the flapping wing system’s performance. Ultimately, a lift
force of approximately 1.3 g force was calculated at a wingbeat frequency of 21.6 Hz. Manduca sexta hawk
moths typically weigh between 1–2 g; therefore, we have measured enough lift to hover smaller hawk
moths at a lower flapping frequency. One can expect that if the flapping frequency were increased to
24.7 Hz, even more lift would be produced. However, flapping at a specific frequency would require
implementing a control algorithm, which could affect power estimates.
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The advancement from FWM 2.0 to FWM 2.1 is substantial in our findings. However, in comparison
to the power output estimates of Manduca sexta found in literature, the latest flapping wing system
(FWM 2.1 with forewings) is still less efficient. For instance, Cranston and Palazotto reported body-mass
specific power output densities between 33–54 mW/g [15]. Assuming an average body mass of 1–2 g,
this corresponds to a power output of 33–108 mW [28]. FWM 2.1 outputs 361 mW of mechanical power
while producing 1.3 g force of lift. Additionally, using the same approach, power input is estimated to be
191–936 mW based on literature, whereas the power input of FWM 2.1 with forewings is measured to be
1260 mW. These results suggest that the inefficiencies of the current flapping wing system lie within the
conversion of the forewing motion into lift.

The findings presented in this paper are representative of FWM 2.0 and 2.1 in combination with the
Manduca sexta-mimicked artificial wings used in the experiments. They may serve as a benchmark in
evaluation of combined flapping mechanisms and forewing configurations. The Manduca sexta forewings
and FWM interaction is closely coupled, involving dynamic load feedback within the wingbeat cycle that
would be difficult to simulate on independent components. However, flapping mechanism subsystem
designs can be individually evaluated through measuring the performance of the coupled system.
Additionally, modifications to the current FWM, forewing alterations, and new flapping-wing systems can
be analyzed with the hardware, software, and experimental procedures discussed.

5. Conclusions

The need for agile MAVs with long flight durations and extended range is well established.
One potential solution is to implement an FWM inspired by Manduca sexta as they have been shown to be
highly efficient in hovering and extremely agile in their flight maneuvers. Researchers have taken different
approaches towards developing insect-inspired FWMAVs and have considered, and analyzed, a variety
of FWMs.

This manuscript describes a portion of an ongoing project with the goal of mimicking the hawk moth
Manduca sexta in hopes of achieving similar flight performance. Previous work described the development
and analysis of artificial forewings and suggested that the forewings developed would produce comparable
amounts of lift if used in an FWMAV [2]. To advance the design and fabrication process of the artificial
forewings and the FWM that drives the wings, improvements to the existing testbed for measuring
flapping-wing system efficiency were needed. The hardware, software, and measurement procedures
used in data collection of the flapping-wing system are now capable of power measurements with less
than ±1 mW standard deviation at a sampling rate of 50 kHz, and lift measurements with less than
±30 mg-force standard deviation at a sampling rate of 7200 Hz. This was accomplished by calibrating the
voltage, current, and lift sensors and performing a controlled applied torque experiment that established
the relationship between electrical power input and mechanical power output of the electromechanical
components. We were able to achieve high resolution and accuracy with our testing apparatus even though
it was entirely constructed from inexpensive commercially available components.

The most recent iteration of artificial forewings attached to the latest design version FWM produced
1.3 g force of lift while consuming 1.26 W of electrical power and flapping at a wingbeat frequency of
21.6 Hz. This FWM weighs just 1.2 g without the actuator, power source, and forewings attached. In our
experiments, it is shown to require 82% less power than the previous FWM at the animal’s average wingbeat
of 24.7 Hz to convert continuous rotary motion from the electric motor into oscillatory flapping-wing
motion. The entire flapping-wing system (the actuator, FWM, and artificial forewings) requires 48% less
power than the flapping-wing system with the prior FWM. The new FWM accomplishes this level of
performance because of improved placement of the forewing adapter for faster passive spanwise forewing
rotation and the implementation of a newly designed smaller yoke within the scotch-yoke mechanism.
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While these outcomes indicate substantial improvement from previous designs, there is still work to
be done. In comparing the power requirements of the current FWM to those of Manduca sexta, we see that
the FWM demands more power to achieve similar amounts of lift. Mechanical power output demand of the
FWM was measured to be 361 mW, whereas the animal is estimated to use 33–108 mW. We need to further
optimize the design for better efficiency with the goal of reaching numbers closer to what is reported for
the animal. One way that this could be accomplished is by incorporating a form of energy storage into
the drive train that activates during stroke reversal [29]. Additionally, literature proposes that torsional
springs be introduced into the forewing pronation and supination, resulting in greater lift production [30].
Once the desired efficiency of the FWM is reached, our focus should turn towards the electronics required
to drive the flapping-wing mechanism (i.e., the microcontroller, battery pack, motor, and motor driver).
The electronics implemented in our testing apparatus were chosen to accommodate the sensors needed to
evaluate the performance of the flapping-wing system. A new suite of electronics that are smaller and
lighter must be selected for the purpose of developing a flight-worthy FWMAV. These advancements could
potentially allow for an FWMAV that realizes the flight characteristics of Manduca sexta.
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Appendix A. Hardware Configuration Details

Appendix A.1. Hardware Component List

Table A1. List of hardware components.

Part Name Manufacturer Part Number Website/URL

Tiva™ C Series TM4C123G LaunchPad Microcontroller Texas Instruments EK-TM4C123GXL http://www.ti.com/tool/EK-TM4C123GXL

Tattu LiPo Battery Pack 1300mAh 45C 3S 11.1V Tattu TA-45C-1300-3S-XT60
https:

//www.genstattu.com/tattu-1300mah-45c-
3s1p-lipo-battery-pack-with-xt60-plug.html

eBoot LM2596 DC to DC Buck Converter eBoot/Texas Instruments LM2596S-ADJ https://www.ti.com/product/LM2596

DRV8838 Single Brushed DC Motor Driver Carrier Pololu/Texas Instruments 2990 https://www.pololu.com/product/2990

INA169 Analog DC Current Sensor Breakout Adafruit/Texas Instruments 1164 https://www.adafruit.com/product/1164

AS5147P Position Sensor Adapter Board AMS AS5147P https://ams.com/as5147padapterboard

Phidgets Micro Load Cell (0–100 g)—CZL639HD Phidgets 3139_0 https://www.phidgets.com/?prodid=230

Protocentral ADS1262 32-bit Precision ADC Breakout Board Protocentral/Texas Instruments PC-4143 http://www.ti.com/lit/ds/symlink/ads1262.pdf

Appendix A.2. Motor Power and Control

The motor was powered by an 11.1 V 3-cell lithium polymer battery that was stepped down to 6 V
using an LM2596 buck converter step-down module. A 20 kHz Pulse Width Modulated (PWM) signal
was used to control the DC motor. Two electrical components create the 20 kHz PWM signal: A Texas
Instrument’s Tiva C Launchpad EK-TM4C123GXL microcontroller and a Texas Instrument’s DRV8838
motor driver. The microcontroller served many purposes, one of which was generating the PWM signal.

http://www.ti.com/tool/EK-TM4C123GXL
https://www.genstattu.com/tattu-1300mah-45c-3s1p-lipo-battery-pack-with-xt60-plug.html
https://www.genstattu.com/tattu-1300mah-45c-3s1p-lipo-battery-pack-with-xt60-plug.html
https://www.genstattu.com/tattu-1300mah-45c-3s1p-lipo-battery-pack-with-xt60-plug.html
https://www.ti.com/product/LM2596
https://www.pololu.com/product/2990
https://www.adafruit.com/product/1164
https://ams.com/as5147padapterboard
https://www.phidgets.com/?prodid=230
http://www.ti.com/lit/ds/symlink/ads1262.pdf
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The DRV8838 motor driver is an H-bridge that amplifies the PWM signal, making it suitable to drive the
selected motor. See Figure 5 for a complete system diagram.

Appendix A.3. Power Measurement

Power measurement was accomplished by using the Tiva C microcontroller’s onboard analog-to-digital
converters (ADCs), a voltage divider comprised of two 10 kΩ resistors, and an Adafruit INA169
current sensor. The microcontroller’s ADCs have 12-bit resolution and an input voltage range of
0–3.3 V and are capable of up to 2 million samples per second with 180-degree phasing. The ADCs
were configured to take four samples, each being four microseconds apart. This ensured adequate time
in between samples for the current sensor to settle. In order to do this, the ADC clock was slowed to
250 kHz. The first sample of each channel was disregarded and the second sample of each channel recorded.
The ADCs were configured to trigger their sequence of four samples at intervals of 20 microseconds
(50 kHz sampling rate). MATLAB’s built-in low-pass filter was applied to the raw data from the ADCs
with a passband frequency of 50 Hz (well above the target flapping frequency of 24.7 Hz), steepness of 0.85,
and stopband attenuation of 60 dB, which is similar to approaches found in the literature [15]. The voltage
divider was used to halve the load voltage to approximately 3.0 V, thereby falling within the input range of
the ADCs. The sensitivity of the current sensor was modified to be 2.2 V per Amp by soldering a 22 kΩ
load resistor to the breakout board. Therefore, at the electric motor’s stall current of 1.5 A, the current
sensor output, the ADC full range value of 3.3 V.

Appendix A.4. Position and Flapping Frequency Sensing

The AS5147P provides 12-bit resolution at a maximum speed of 28,000 RPM and sends angle position
data through an ABI incremental encoder interface. A neodymium, 6 × 2.5 mm, diametric magnet is
attached to the extended shaft of the electric motor. The Tiva C microcontroller has quadrature encoder
interface (QEI) modules built in. The QEI modules integrate position over time, determine direction of
rotation, and capture an estimate of the velocity of the encoder.

The micro load cell is a shear-type load cell with a rated output of 600 µV/V and supply voltage
between 3–10 V DC. The Tiva C microcontroller communicates with the ADS1262 via SPI. The ADS1262
was configured for 7200 SPS with a Sinc4 filter and 32× gain.

Appendix A.5. Measuring Lift Production

Lift was measured with a Phidgets micro load cell (0–100 g) and a Protocentral ADS1262 32-bit
analog-to-digital converter capable of 38.4 kSPS with a 32 PGA. Preliminary testing of the devised lift
measurement technique showed large oscillations in the raw lift values while the motor was running.
The frequency of these oscillations was observed to coincide with the motor speed and not the flapping
frequency (due to the gearbox, the motor rotates approximately 10 times faster than the flapping frequency).
The cause of these oscillations was determined to be vibrations transmitted to the load cell from a slight
eccentricity of the rotating diametric magnet and not the flapping motion of the wings nor an imbalance
in the rotating armature of the electric motor as initially suspected. Post-processing the raw lift data by
resampling and filtering the data achieved the necessary reduction in noise to observe the load cell signal.
Data from the ADS1262 were captured as soon as they became available, and despite it being configured
for 7200 Samples per Second (SPS), the data were not always precisely recorded every 138.8 microseconds.
They were therefore resampled at 7200 Hz to reflect a fixed sampling rate. After testing band stop, low pass,
and moving average filters, a low-pass filter was selected with a passband frequency of 30 Hz, steepness
of 0.99, and stopband attenuation of 10 dB to remove the noise from the vibrations caused by eccentricity
of the diametric magnet (Figure A1).
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Linearity of the load cell was checked by applying multiple loads of varying amounts. As evident from
the experiment, the r-squared value from linear regression of the data is extremely high (greater than 0.99).
To account for drift and hysteresis in the load cell, a calibration sequence was performed prior to every
experiment trial. The procedure was as follows; first, 700 samples were collected from the load cell without
operating the mechanism. The average of these 700 samples establishes the baseline zero value (no lift) of
the load cell. Second, a mass of 7291.2 milligrams was added on top of the mechanism to the load cell,
and subsequently another 700 samples were recorded. The average of these samples along with the average
of the no lift samples established the conversion between raw data counts from the ADS1262 to lift in units
of milligrams. One more set of 700 samples was recorded without the additional mass and was used to
reduce any hysteresis effects in the lift calculations.

Figure A1. Filters designed to mitigate high-frequency noise. (Top) and (middle) have the same time scales;
however, the low-pass, steep low-pass, and moving mean filters drastically reduce the amplitude of the
signal and therefore require a smaller load cell voltage range for their results to be visible. (Bottom) The
impact of the filters on the power spectrum.

Appendix B. Motor Load Calibration and Efficiency

The Motor Load Calibration and Efficiency experiment established the relationship between motor
power consumption and motor load (Figure A2). A constant load was applied to the electric motor by
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fastening a pulley (12.32 mm in diameter and 14 mm in length) to its shaft and suspending weights (0.5, 1,
2, 3, and 4 ounces) from the pulley with high-strength monofilament fishing line. A step input was sent to
the motor with a programmed duty cycle, and power consumption data were recorded after allowing
the motor to reach steady state (300 motor rotations). Mechanical output power was calculated from
applied motor torque and RPM. Calibration tests were performed in seven configurations: the motor only,
the motor with pulley attached and no mass suspended, and the motor with pulley and five different
weights suspended. As a result, motor efficiency was assessed.

Results from the motor load calibration experiment indicate the electric motor’s ability to efficiently
convert electrically stored energy into mechanical power output. Values were adjusted to account for the
power required to rotate the pulley with no mass attached (Figure A3).

Figure A2. Depiction of motor load calibration experiment. Care was taken to ensure that the cord does not
spool, thus preventing the radius from changing and maintaining a constant torque applied to the motor
throughout the experiment.
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Figure A3. Electrical power input measurements at various duty cycles and load configurations with
unadjusted (dashed line) and adjusted (solid line) data values shown. The adjusted values are determined
by finding the electrical power input difference between the experiments with and without the pulley
attached, interpolated at the speed of interest. This difference is then subtracted from the measurements of
the weighted pulley experiments to provide the adjusted electrical power input. As expected, the adjusted
values for the zero ounce measurement align with the short shaft and long shaft measurements. The impact
of the pulley’s inertia on the measured power input is most noticeable at speeds above 160 rad/s (25.5 Hz).
To accommodate both flapping-wing mechanisms, different gearboxes with the same gear ratios but unique
shaft lengths were used. This test showed that the different gearboxes alone did not alter the load on the
electric motor.
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