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Abstract: The rise of robots and robotics has proved to be a benefaction to humankind in different
aspects. Robotics evolved from a simple button, has seen massive development over the years.
Consequently, it has become an integral part of human life as robots are used for a wide range of
applications ranging from indoor uses to interplanetary missions. Recently, the use of social robots,
in commercial indoor spaces to offer help or social interaction with people, has been quite popular.
As such, taking the increasing use of social robots into consideration, many works have been carried
out to develop the robots to make them capable of acting like humans. The notion behind this
development is the need for robots to offer services without being asked. Social robots should think
more like humans and suggest possible and suitable actions by analyzing the environment where
they are. Belief-desire-intention (BDI) is one of the most popular models for developing rational
agents based on how humans act based on the information derived from an environment. As such,
this work defines a foundation architecture to integrate a BDI framework into a social robot to add
“act like a human” feature for proactive behaviors. The work validates the proposed architecture by
developing a vision-based proactive action using the PROFETA BDI framework in an indoor social
robot, Waldo, operated by the robot operating system (ROS).

Keywords: social robots; proactivity; belief-desire-intention (BDI) model; robot operating system
(ROS)

1. Introduction

In this section, we first discuss the basic concepts of social robots and proactivity and their
relevance in our daily lives. We then converge these concepts to form the primary objective of creating
additional value by adding proactivity in robot operating system (ROS) powered indoor social robots
by using a belief-desire-intention (BDI) model.

1.1. Social Robots

The idea of the robot gives an impression of human-like machines that are primarily created to
serve their creators. The way how robots serve the human has a broader scope. The robots can be
used in daily household chores to space exploration missions depending upon how they are built and
how much intelligence is installed on them. With the evolution of time, the way to define a robot has
changed from “a term for mechanical men that were built to work for assembling products in a factory” to “an
entity which humans can have social interactions with”. The inception of social robots was biologically
inspired, and social robots were initially used to study the swarms or the behavior of insects [1]. Later,
social robots were used for interaction with humans.
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According to social scientist Kate Darling, “A social robot is a physically embodied, autonomous agent
that communicates and interacts with humans on an emotional level” [2]. For this article, it is important to
distinguish social robots from inanimate computers and industrial or service robots (not designed
to elicit human feelings and mimic social cues). Social robots also follow social behavior patterns,
have various “states of mind”, and adapt to what they learn through their interactions. Usually, the
social robots are in humanoid or animaloid form to create an emotional connection with the human as
forms and shapes of social robots are very important. The social interaction is expected to be similar to
verbal communication with visual and tactile perception. Based on the interactions, social robots can
be classified into the following categories [3].

1. Socially evocative. These robots rely on human action to generate a particular set of feelings [4].

2. Socially situated. These robots react to the perceptions derived from the social environment
in which they are situated. The robots can distinguish the social agents and objects in the
environment [1].

3. Sociable. These robots have models for social cognition and proactively engage with the human
for some social aims [4].

4.  Socially intelligent. These robots try to replicate the social intelligence of humans based on the
model of cognition and social competence [5].

The rise of demand for personal care for ageing people and technological advancements have
made it possible for social robots to be used extensively for elderly care. Assistive technologies in
the form of social robots help the older population to live an independent life in their homes. Social
robots can provide a wide range of interactive services like telecare and robot-assisted therapy. Such
robots can be used for patient care for older people with mental and cognitive impairments as well [6].
Some of the social robots can monitor the movement, blood pressure, breathing or heart problems
and warn a related person in case of any danger or risk [7]. Social robots have been used for a wide
range of interactions with children as well. A social companion robot called "Arash’ was built to
provide therapeutic intervention in pediatric hospitals [8]. The social robot was also utilized to assist
the children with cancer [8]. Social robots have been recently reported to be used in the education and
care of children with developmental disabilities [9]. Proactive robots have been used as tutors and peer
learners to deliver education as presented in [10]. As such, social robots are currently used in hospitals,
homes, shopping malls, and convention centers to interact with people to either welcome, converse
or take care of the people [11]. Social robots have taken challenges of interacting with, assisting,
serving and exploring with humans to help humans in different ways. For these applications, proactive
behaviors are necessary for social robots.

1.2. Proactivity

Social robots are autonomous robots that communicate with humans following a set of social
rules defined for them [12]. These robots use three different control architectures to decide the actions
required to respond to the environment—deliberative, reactive and hybrid. In deliberative control,
robots have thoughtfulness in decision making as there are capacities to relate to the past or future
states, beyond the present sensor inputs and stimuli, to take relevant action. Reactive control is similar
to ‘stimulus-response’ control mechanism in which the robots respond very quickly to changing
and unstructured environments by tightly coupling the sensory inputs and effector outputs. In the
hybrid control, one component deals with planning the actions while other deals with immediate
reactions that do not usually require learning abilities. The coupling of two different mechanisms
in hybrid architecture can be difficult as two control mechanisms have to communicate with each
other continuously.

Based on these control architectures, a social robot can interact with humans in two ways.
The robots can be asked to do things for humans and in such cases, the robots are reactive. In contrast,
robots can automatically help the user without being asked, and in such cases, robots are proactive.
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The notion of proactivity in social robots can be a useful utility as social robots are primarily meant to
interact with the human in a more humanly ways. An example (adopted from [13]) to understand the
difference between reactive and proactive behavior in social robots is included in Appendix A.

1.3. Robot Operating System (ROS)

ROS is an open-source, C++ based, a general software framework for robot software development
which gives operating system functionalities [14]. Those functionalities are hardware abstraction,
low-level device control, implementation of commonly-used features, message-passing between
processes, and package management. It is based on a graph architecture where each node receives and
process several messages from/to sensor, actuators about their state. This operating system works
on top of Linux (Ubuntu) and can be used in Windows with some reduced features. ROS creates an
ecosystem where different components called nodes are interconnected using a system of message
communication between them. ROS is one of the key driving components, that power the commercial
indoor robots.

1.4. BDI

BDI is one of the major approaches to build a multi-agent system by intelligent programming
agents. This model is inspired by human reasoning and based on three entities, namely, beliefs, desire,
and intentions [15]. It gives a mechanism for separating the activity of choosing an action from the
execution of currently active plans. The agents in a system are defined in terms of these entities. This
model also considers the resource bound so that an intention will result after the agent’s reasoning.
BDI model expects the agent to act in a dynamic environment such that the agent’s reasoning should
take the environment changes into account to make an action. The three entities of a BDI model are
explained as follow:

1.  Beliefs. Beliefs are the entities that represent the informational state of the agent. Beliefs reflect
the knowledge of the robot. Beliefs are stored in belief sets.

2. Desires. Desires are the entities that represent the motivational state of an agent or the goals,
objectives or situation which the agent would like to achieve. Desires are what the agent wants
to accomplish.

3. Intentions. Intentions are the entities that represent the deliberative state of an agent. Plans are
sequences of actions that are taken by an agent to accomplish the goal.

For social robots, the sensor outputs build the belief sets to signify the environment around the
robots in terms of different values of different parameters. A particular belief set describes a specific
situation in which the robot is located in a specific instant of time. Based on the location, a goal is
defined for the robot which can be referred to as desire. A BDI interpreter or engine selects a particular
action (intention) from a plan library, which is a collection of intentions, based on the situation.

1.5. Rationale

Social robots have become integral and inseparable parts of our life. From the hospitals to
convention stores like home, social robots are being extensively used to interact with the human in one
way or another. The social robots are now considered as a substitute for human wherever and whenever
human is not able to be present for the specific tasks. The robots, therefore, are expected to act more as
humans and proactivity can be the feature in such robots that will enable this capability. Many studies
have tried to develop proactive behaviors in robots. But when it comes to the commercial indoor
social robots powered by ROS, there are no well-defined system architectures and implementations.
Given the influence of such robots in a commercial indoor environment, this study tries to explore the
possibilities of enhancing proactivity in such commercial indoor social robots. This work defines a clear
method to implement different activities of a social robot as proactive behaviors by integrating human
reasoning-based BDI framework into the system architecture. The work validates the implementation
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by developing a vision-based proactive behavior enabled by PROFETA (BDI) framework in an indoor
social robot, Waldo, operated by ROS. The specific contribution of the study are listed below:

1. A validated modular system architecture, with features such as modularity, flexibility, and
rational work distribution, that facilitates different logical blocks to be integrated with robots
controlled by ROS for proactive behaviors.

2. A foundation for the development of human-like behaviors in ROS-controlled robots for
daily-life applications.

The rest of the paper is organized as follow: Section 2 discusses the related work, while Section 3
explains the case study set up along with the system overview. Section 4 discusses the results, while
Section 5 concludes the paper.

2. Related Works

In this section, we describe the background of different BDI models and different frameworks built
to integrate behavior models in robots. Furthermore, we present different works where researchers
have tried to incorporate such models in robots for various daily life applications.

2.1. BDI Model

Whenever the design of the cognition model for software agents comes into play, the BDI model
is one of the most popular architectural choices. BDI models provide an explicit and declarative
representation of informational attitudes, motivational attitudes, and deliberative commitments.
Myers et al. [16] divided the BDI models into two broad categories of B-DOING and Delegative
models. In the B-DOING model, motivational attitudes are highly adapted, and desires correspond to
what the agent wishes. Furthermore, obligations corresponded to the responsibilities of other agents
and norms correspond to conventions derived from the agent’s role in the environment. The goal
created for the agent needs to be consistent and achievable [17]. According to the definition of the
goal, the intentions for executions are planned. In the delegative model, the goals are defined as
candidate goals and adopted goals [18]. Candidate goals are those that can be inconsistent internally
while Adopted goals are the consistent and coherent ones in the BDI model. This model can even
incorporate user-specified guidance and preferences from the user in the form of advice. The B-DOING
framework lacks the distinctions between types of goals for proactive assistance, while the delegative
BDI framework lacks the distinctions between types of motivational attitudes [16].

2.2. BDI Frameworks

Russel et al. [19] developed the agent factory framework as an open-source collection of
various tools, platforms and languages that ultimately facilitate the development and development of
multi-agent systems. Winikoff [20] built a highly portable, robust and cross-platform environment
called JACK for building, running and integrating commercial-grade multi-agent systems. In the
BDI framework called JADE [21], the agent platform can be distributed among different independent
machines and controlled remotely. The configuration can even be changed at run-time by the moving
agents from one machine to another one during the implementation. Braubach and Pokahr [22]
developed a framework called JADEX, based on XML and Java, that follows BDI model and facilitates
easier intelligent agent system construction with an engineering perspective. JASON is a super flexible
platform developed as an extension of AgentSpeak [23] by [24], that implements the semantics of
the language and provides a good platform for development of multi-agent systems with many
customizable features. The comparison between different behavior model platform is given in Table 1.
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Table 1. Comparison between different beleif-desire—intention (BDI) platforms.

. . Open Learn- Programming
Name Primary Domain Source  Ability Language
Agent General purpose agent based Yes Average Java, AgentSpeak
Factory purp 8 & + AGENLOp
JACK Dyr}amlc and Complex No Easy Java
environment
JADE Distributed applications B Yes Easy Java
composed autonomous entities
JADEX Distributed applications Yes Easy Java

composed autonomous BDI entities
BDI4JADE  Enterprise application Yes Average Java
Distributed applications

JASON composed autonomous BDI entities Yes Easy Java
PROFETA Distributed applications composed Yes Easy Python
autonomous BDI entities with Al applications
SPYSE Distributed AI applications Yes Average Python
SPADE Distributed Multi-agent No Average Python

ROS supports the C++ and Python programming languages for communication between different
distributed nodes in its ecosystem. Because of various BDI frameworks available in Python, a pythonic
framework is considered in this study.

2.3. Application of BDI Models in Robots

The behavior model was adapted to study the natural engagement of robots with humans to
show exhibit proactive behaviors. The proactive behaviors in robots were imagined to increase
the human-robot interaction and utility value in the use of robots. As such, the works related to
proactive behavior in robots were initiated with mixed-initiative approaches. Finzi and Orlandini [25]
developed an architecture based on a planner mixed-initiative approach for robots used in search
and rescue operations. The study had a model-based execution monitoring and reactive planner for
the execution of the tasks. Adams et al. [26] proposed an effect based mixed-initiative interaction
approach for human-robot interaction. The robot took initiatives upon changes in human emotions
like detecting drowsiness and inattentiveness. The robot, as developed by Acosta et al. [27] showed
some proactive behaviors by monitoring activities and defining tasks as a schedule. Satake et al. [28]
proposed a behavior model to initiate a conversation with pedestrians walking on the streets. The
appropriate instant of time to start the conversation or interaction with people was studied in work
done by Shi et al. [29]. Moreover, Garrel et al. [30] proposed a behavior model for a proactive model
that tries to convince people to initiate a conversation with different behaviors and emotions. The
study carried out by Araiza-Illan et al. [31] proposed the use of the BDI model to increase the level
of realism and human-like simulation of the robots. An automated testbench was implemented
for simulation of cooperative task assembly between a humanoid robot and people in the robot
operating system and Gazebo. A soccer-playing robot based on BDI architecture was developed
by Gottifredi et al. [32] which allowed the specification of declarative goal-driven behavior based
on high-level reasoning and reactivity when required. The work of Duffy et al. [33] developed
a multi-layered BDI architecture with an egocentric robot control strategy to make robots capable
of explicit social behavior. Pereira et al. [34] proposed an extension to BDI architecture to support
artificial emotions in the form of emotional-BDI architecture.

Given the current state of proactivity in social robots, this study tries to extend the capabilities of
such robots to include vision-based activity in a social robot. The integration is based on a modular
architecture onto which other logical blocks can easily be integrated for more advanced proactive
behaviors in a think-like-human fashion.
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3. Case Study Setup

In this section, we explain the use case scenario created to develop a proactive behavior in a social
robot Waldo. Furthermore, we define a system framework based on existing technologies to integrate
modular blocks of OpenCV and BDI reasoning with the ROS ecosystem with a detailed explanation of
each step as follows.

3.1. Use Case Scenario

For this study, we consider a visual image-based activity for adding a proactivity behavior in the
social robot. The indoor robot Waldo has cameras installed in its eyes which gather the image feeds
from the environment. This image-feeds help to set up a belief about the situation. The camera feeds
are processed using a module in OpenCV for person detection. This module establishes a belief for
the robot concerning the presence of a person in the environment. In case a person detected by the
OpenCV module, Waldo sets up a goal of greeting the person without any explicit commands from the
person. In this experiment, the robot can perform two precise actions. Upon the detection of the person,
using the BDI framework, the robot greets the detected people with a sentence. Upon continuous
detection of the person for a fixed time, the robot changes its belief and offers additional help to the
person by speaking a different sentence. For this work, the actions which Waldo can perform is only
limited to speech, but advanced services can easily replace these actions. This provision is made in the
experiment to show how beliefs can be changed according to the environment so that the actions taken
by the robot can be relevant and more interactive.

3.2. Social Indoor Robot—Waldo

The robot under consideration for this study is Waldo, which is a multi-service robot manufactured
by Immersive Robotics [35]. Waldo is a telepresence service robot with advanced vision capabilities.
The robot has an Arduino card for basic control functions and a Linux card with ROS installed as an
operating system for more advanced and elaborate functionalities. Waldo has an adjustable height of
130 cm to 170 cm. The robot is autonomous with LIDARs, sonars, microphones, and cameras. Waldo
is built in a humanoid shape as an indoor social robot for a welcoming, talking, understanding and
communicating with people. The movement of Waldo can be controlled remotely by using a mouse,
keyboard, joysticks, pads, smartphones, tablets or any other desired peripherals. Waldo is shown
in Figure 1.

Y
2

Figure 1. Waldo.
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3.3. System Overview

The main goal of this study is to develop a flexible and modular framework using existing
technologies that could facilitate the integration of different blocks as modules to the framework,
which ultimately contribute in the development of proactive behaviors in a social robot controlled by
ROS. The overall system overview for achieving the behavior model of the environment in indoor
models is reflected in Figure 2. Different sensors installed in the indoor robot Waldo collect the
information about the environment. The cameras, LIDAR and Kinect sensor help to collect information
about the environment for a given instant of time. The information is relayed to Waldo PC, which is
connected to the monitoring PC through a wireless connection. Because of the limited capabilities
of Waldo PC, the compute-intensive logical modules can be run on a more powerful monitoring
PC. The logical models are responsible for deriving various knowledge from the data about the
environment collected by sensors of the robot. Based on this knowledge base, the BDI framework
establishes the beliefs and set up goals for any given instant of time. The framework also chooses a
set of actions from the predefined plan list to accomplish the goal. The actions are relayed to Waldo
PC through a wireless connection that directs different actuators in Waldo to perform a wide range of
action. The internal mechanisms in ROS manage the communication between the nodes and Waldo PC.
The Waldo PC, which is equipped with Linux and ROS, can have several logical modules installed
on it or monitoring PC to establish one or more beliefs about the environment. The modules in the
logical layer can be BDI framework, OpenCV for vision processing and other intelligent bricks for
establishing important beliefs about the environment. The BDI framework responds to the established
beliefs and set up goals for any instant of time. The engine in the framework chooses a plan of actions
from the predefined libraries for goal accomplishment. The plan execution is relayed to Waldo PC,
which generates actual actions in the robot to respond to the environment. The flow operation can be
monitored using a monitoring PC connected to Waldo PC over a wireless network.

Workstation PC Logical Modules

C:D BDI Framework

ROS Application Kl Ry

(RVIZ, ROSCORE)

T~

\ Waldo

‘Wireless Router

‘Waldo PC

ROS

(opnni, gmapping,
global_planner)

hJ

I Waldo

(Sensors and Actuators)

Environment .

Figure 2. System overview.
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3.4. BDI Modeling

The BDI modeling of the problem should be able to answer the following question effectively
and efficiently.

e  When to act? The robot works whenever it detects a person inside the room. So, an efficient
mechanism for the detection of a person should be integrated into the robot. An effective block to
trigger actions has to be adopted.

e  What actions to take? The actions which are expected to be made by robots hugely depend upon
the detection of the people. The action can be a simple greeting message delivered to the person
or message delivered to the person offering some help or no action at all.

e  How to perform the actions? Based on the set of beliefs about the environment, the robot can
decide to take action. For any case of detection of a person, the robot employs its text to speech
node for speaking out sentences to either greet or offer help to the people. For non-detection of
the person, the robot can deliberate itself to stay idle or go to sleep mode.

The knowledge about the surrounding is collected by the cameras installed on the eyes of the
robot. For the experiment, the camera feeds are only used. The person detection block from OpenCV
is used to define the belief for the system design explicitly. Moreover, the goals and actions are defined
accordingly to realize a use case of proactive behavior. The possible actions which the robot could take
were limited only to the speech. The set of beliefs, desires, and intentions as per BDI model for the case
study are defined as follows:

Belief: personDetected(”Yes”), personDetected(“No”) and personDetected(“Next”)

Desire: DoNothing(), GreetPeople() and OfferHelp()

Intentions: stayldle(), speak()

The PROFETA framework can be implemented for behavior modeling using the following steps:

Algorithm 1 Implementation of PROFETA framework.

: Import necessary PROFETA libraries

: Define beliefs and goals as classes in the script

: Define user actions by creating classes and overriding the method execute()
: Start PROFETA engine

: Define rules by using declarative syntax

: Run the engine

AN U = W N =

Moreover, PROFETA framework also facilitates the definition of sensor class which can itself
add or remove a set of beliefs depending upon the environment. This can be done in PROFETA by
declaring a subclass Sensor, overriding the sense() method and informing the PROFETA engine about
the addition of a new sensor in the program. PROFETA uses declarative language so as to express the
behaviors of agents. The declarative syntax for the behavior of an agent is described below:

“Event” /“Condition” » “setofActions”

In this declarative syntax, an event can be any one of belief assert or retract, goal accomplishment
or request or even goal failures. The condition in the syntax refers to a particular set of knowledge base
while actions can be goal accomplishment request, user-defined set of actions, or adding or removing
beliefs. This syntax can be exemplified as:

+objectAt(”A”, “B”)/objectGot(“no”) » [moveTo(”A”,”B”), pickObject()]

3.5. Person Detection Using OpenCV

For person detection, open-source computer vision library (OpenCV), a freely available
open-source library for computer vision and machine learning, is used. The libraries and algorithms in
OpenCV are directly used in the experiments to detect a person based on the histogram of oriented
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gradient (HOG) features and support vector machine (SVM) classifier. The performance improvement
of the OpenCV algorithms for person detection is beyond the scope of this work. ROS has its own image
format used for communication between nodes through subscription and publishing. This image
format has to be converted into OpenCV format to use the OpenCV libraries for person detection.
CvBridge, a library in ROS, facilitates the conversion of ROS images to OpenCV image format and
vice-versa. The CvBridge interface is represented in Figure 3.

OpenCV | OpenCV Iplimage |

!

l

‘ CvBridge ‘
ROS }

‘ROS Image Message‘

Figure 3. CvBridge interface.
3.6. Experimental Setup

The test use case is implemented in Waldo with the works distributed over two PCS.
The workstation PC has Ubuntu 16.04 installed on an Intel i5-5300U processor with ROS Kinetic
whereas the Waldo PC has the same operating system installed on an Intel(R) Atom(TM) processor.
The proactive behavior of Waldo is well implemented using the BDI framework of PROFETA.

4. Results and Discussion

In this section, we present the validation of the proposed system design for the integration
of various logical modules like the BDI model and OpenCV into ROS for proactive behaviors.
The capabilities of the proposed framework are validated using a qualitative approach, where several
features such as modularity, flexibility, and rational work distribution are investigated. Furthermore,
we explain the associated findings in detail and include a quantitative analysis of the results for logical
OpenCV module.

4.1. Work Distribution in Proposed System Architecture

One of the key features expected from the proposed framework is the rational distribution of
works required in the development of proactive behaviors in the robot. The study implements the test
use case in ROS with an overlaid layer of the BDI framework of PROFETA. A module in the OpenCV
library does the image processing. The proposed system design distributed the operations over two
PCs, Waldo PC, installed in the robot and Workstation PC. The test experiments utilized the distributed
working architecture of ROS as the design offloaded the Waldo PC from heavy processing of image
feeds collected from the cameras. The bulky and more compute-intensive modules of person detection
and practical reasoning (BDI framework) are installed in a comparatively powerful Workstation PC.
The actual actions and the management of different ROS nodes are handled in Waldo PC. These
actions are not compute-intensive. As such, the proposed architecture supports a reasonable work
distribution in the development of proactive behaviors. Consequently, more advanced activities can be
thought of as an extension as more compute-intensive modular blocks can be easily integrated into the
robot, thanks to the architecture. More powerful machines can assume the role of Workstation PC for
such capabilities while Waldo PC can assume the light roles of information collection and effectors.
Moreover, the framework allows us to add additional computational devices to consider different
workloads required for various proactive behaviors. Such capabilities make the proposed framework
flexible as well.



Biomimetics 2019, 4, 74 10 of 16

4.2. Validation of Proposed System Design with Test Use Case

The validation of the proposed system design focused on investigating whether the features of
flexibility, modularity, and rational work distribution are achieved during the exhibition of proactive
behavior by Waldo. For validating the proposed system design, we created several distributed nodes
within and outside the ROS ecosystem. There is one ROS node each for camera feed, person detection
block and speech block. The different ROS nodes communicate with each other through the topic
messages. Roscore manages the communication between the nodes. As required, the nodes can be
created and removed for adding or removing functionalities. The nodes can be created in any of the
computing devices available within the proposed framework, providing flexibility and modularity.
Initially, the camera node publishes the image feed collected by the eyes of Waldo. The converter
node, with CvBridge interface, subscribes to the topic messages of camera node and converts the ROS
images to OpenCV images. The node then publishes the converted images. There is a node called
person detector running in Workstation PC, that subscribes to the converted image messages. This
node executes the person detection module of OpenCV library. There is an additional node called
BDI engine in Workstation PC that subscribes to the messages about person detection published by
the person detector. BDI engine executes all the necessary behavior modeling to publish the action to
be done by the robot finally. There is another node, listener, that subscribes to BDI engine node and
publishes messages for actuators in the robot to undertake the actions. The speech node that subscribes
to listener makes the robot speak out the sentences to achieve the goal. The entire interaction between
different nodes in a widely distributed ROS ecosystem is shown in Figure 4. As can be seen in the
figure, different workloads required for the proactive behaviors are distributed over Waldo PC and
Workstation PC. Such rational work distribution is one of the strengths of the proposed framework,
where computing devices can be easily added or removed based on the requirements. Furthermore,
additional logical blocks/modular can be created as new nodes within the ROS ecosystem in the
proposed framework to develop additional functionality in the social robot. In our study, we created
a node for the movement of the head of the robot during the person detection to demonstrate the
modularity in the proposed framework. The newly created node communicates with the person
detector node to create any movement.

Waldo PC

JopenCVImage

‘Workstation PC

|:| Node

[ Topic Message

Person Detector

.
i
i
i
i
i
i
i
i
i
i
i
i
i
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i
i
i
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i
i
i
i
i
I
i
i
i

/compressedimage | /detectedperson
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
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Converter

Speech

Camera BDI Engine

/sentence

Listener

/detectedperson

Figure 4. Interaction between different nodes in robot operating system (ROS) ecosystem.
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4.3. Performance Analysis

For the performance analysis and evaluation, Waldo is kept at a fixed position in the corridor.
The eyes of the robot, which have cameras, are at the height of about 162 cm. The tests are carried
repeatedly where both natural and artificial lights influence the lighting condition.

Figures 5 and 6 represent the execution of BDI actions and image feeds collected by the camera
installed in the robot, for no person detected and person detected cases, respectively. When a person is
not detected in the image feed, the BDI engine establishes the belief about the environment and create
a goal of not greeting the people. Accordingly, the engine selects the action of NoTalk to achieve the
goal, as shown in Figure 5a. Similarly, when a person is detected, the BDI engine asserts a belief of
encountering a person, enabled by the person detection module running on the Workstation PC. Based
on this belief set, the engine has to set up a goal of either greeting the people or offering additional
help to the people. For the distinction between the two, we add logical operation of tracking for how
long the person has been encountered, as represented by the counter in Figure 6a. Based on the value
of counter and person detected in the image feed, the BDI engine establishes two distinct belief sets
requiring two different goals. The greeting action to achieve the goal of greeting people is represented
as talk action in Figure 6a. The help action is executed to achieve the purpose of offering help to people
when the person is detected continuously for a more extended period.

count: ©

You entered NoTalk action

Belief Asserted

Message Published: No

The robot is not talking

people: False

count: ©OYou entered NoTalk action

Message Published: Belief Asserted
No

The robot is not talking

people: False

count: You entered NoTalk action
OMessage Published: No

The robot is not talking
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Figure 5. Case: no person detected (a) BDI execution and (b) image feed collected by eyes of Waldo.
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Figure 6. Case: person detected (a) BDI execution and (b) image feed collected by eyes of Waldo.
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Moreover, we tested the working of the overall system considering different distances from the
robot in two different scenes. The analysis of the performance is presented in Tables 2 and 3.

Table 2. Distance consideration for the validation of the work.

Distance Scene 1 Scene 2
(of Person from True False False True False False
Camera) Positives  Positives Negatives Positives Positives Negatives
<2m 253 160 187 175 160 265
2-10 m 401 87 112 354 114 132

Table 3. Precision and recall evaluation.

Distance Scene 1 Scene 2

(of Person from Precision Recall F1Score Precision Recall F1 Score

Camera)
<2m 0.612 0.575 0.593 0.52 0.398 0.451
2-10m 0.822 0.782 0.801 0.756 0.728 0.742

The performance analysis of the entire system showed that the robot performed quite poorly
for the region beyond 2-10 m. The respective values of precision and recall for Scene 1 are 0.822 and
0.782, while the same for Scene 2 are 0.756 and 0.728. Scene 2 had more lighting inconsistencies when
compared to Scene 1. The false negatives and positives (as shown in Figures 7 and 8) during the test
were caused by the change in lighting conditions brought about by the movement of objects. Moreover,
such negatives were caused by the shadows of the people formed by several sources of lights (natural
and artificial). Because of the unequal distribution of data sets, we also calculated the F1-Score for
each scenario. The best F1-score was obtained for Scene 1 as 0.801 for the region of 2-10 m. The high
value of F1-score (closer to 1) shows the efficiency of the module when detecting the person so that
the robot can exhibit proactive behavior in greeting and offering help to the person detected. Similar
to the analysis given by precision and recall, F1-score for Scene 2 in the region of <2 m is the lowest,
highlighting the fact that the logical block does not perform so effectively in that location. Furthermore,
we plotted the precision-recall curve for our experiments, which are shown in Figure 9. The curve also
confirms the findings and establishes the best performance of the module in Scene 1 (2-10 m region) as
the area under the curve for the case is the highest (see Figure 9). The performance of the module is
affected by several factors such as artificial light, shadow, multiple sources of light and the distance
between the camera and the person. The accuracy of the system design in the given test case can be
improved by enhancing the performance of the OpenCV logical block.

Figure 7. False negatives.
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Figure 8. False positives.
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Figure 9. Precision-recall curve.
4.4. Limitation

For this study, the image frames without the entire body of the person are not considered. Since
the cameras are placed at a certain height and the angular movement of the head is limited, the camera
cannot cover the distance that was less than a meter. Thus, the region in front of the robot, less than
2 m away, is a blind spot. Such blind spots give poor performance in relation to person detection.
Moreover, beyond the distance of about 10 m, the person detection module is not able to detect the
person. As for the system design, the architecture still offers modularity and flexibility. The accuracy
of the entire system is largely dependent upon the logical block used to develop proactive behaviors
in the robot. Apart from the limitation in the logical block, the study focuses more on the qualitative
validation of the proposed framework, where the features, such as modularity, flexibility, and rational
work distributions, are investigated. The work is primarily determined in developing a basic flexible
foundation using existing and freely available tools for the development of proactive behaviors in
social robots. Because of no readily available comparable architecture and case studies, a comparative
analysis is not included in the paper. Moreover, the advanced capabilities of the social robot are also
not considered as of now. These limitations of the study will be enhanced in the future.

5. Conclusions

The recent rise of humanoid and animaloid indoor social robots in commercial spaces, including
home has necessitated the “act-like-human” behavior in those robots for a more friendly human-robot
interaction. The proactivity in such social robots adds more utility to the robots. As such, in this
paper, we presented a validated use-case of such proactive behavior in an indoor commercial social
robot, Waldo enabled by the behavior model framework, PROFETA. We clearly defined a fundamental
system architecture with the features of flexibility, modularity, and rational work distribution to
integrate the BDI framework into the distributed ecosystem of ROS. In the architecture, multiple ROS
nodes can be independently created over multiple machines, connected by wireless communication.
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We demonstrated how an external module, such as OpenCV library, can be used to enhance the
capability of an indoor robot in a plug-and-play fashion. We expect the proposed system architecture
to lay a solid foundation to develop a wide range of proactive behaviors in an indoor social robot
to behave and act like a human. Such behaviors can be possible with the addition of various logical
modules into the proposed architecture.

This work validated the working of the proposed architecture with the basic actions of the robot.
Preliminary works are underway to integrate the blocks of artificial intelligence into the proposed
architecture to develop more intelligent actions in the robot. The expansion of the actions which Waldo
can perform, is also ongoing. The future work can be centered around establishing a more accurate
belief within the human reasoning paradigm, BDI, by using data collected by multiple sensors in
the robot. Other than the camera, LIDAR and Kinect sensor can be used to represent the state of the
environment better. In terms of the action of the robot, further works can focus on integrating the
autonomous navigation of the robot to achieve the goal set up based on different beliefs. The addition
of learning mechanisms, to keep improving, can be thought of as an essential extension.
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Appendix A
Table Al. Reactive vs. Proactive Behaviors.
Reactive Proactive
User  Could you help me?
It seems like your computer
Robot  Yes, What is wrong? is not responding, let me
know if I can do anything?
User It seems like my computer Could you help me?
is not responding
Robot  You should end the process You should end the process
by pressing ALT+CTRL+DEL. by pressing ALT+CTRL+DEL.
User  Won't that restart my computer? Won't that restart my computer?
Robot  Don’t worry; it will just Don’t worry; it will just
end the process. end the process.
User Hmm, it’s not doing anything. OK
Robot  Press ALT+CTRL+DEL together. Press ALT+CTRL+DEL together.
User Ok and now?
Then you should end the process.
Robot  Then you should end the process. Do you have a back-up?
User  But then I lost my work? I'm not sure.
Robot Don’t worry your computer makesa Don’t worry your computer makes a
backup every five minutes backup every five minutes
User How can I find a backup? Where is my backup?
Robot  You can open your program To find your program, you can

again and select the file.

open your program again and
select the file. Try it!

Note: The bold texts are the proactive behaviors (adopted from [13]).
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