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Abstract: Heat control has been a momentous problem in engineering areas which include
manufacturing, aeronautics, microchips and so forth for a considerable amount of time. The
control of material for thermal deformation, effective cooling are the key components of the aero crafts
and compactly laid out microchips are urgently needed for improvement. In a micro-scale, researchers
are mainly focused on the mechanism, design, improvement and heat transfer of straight channels
other than developing other types of channels. A previous study on the carnivorous plant, Nepenthes
alata, indicates that the water can be transported continuously and directionally on the surface of
the rim of the pitcher because of its multi-scale structures. Meanwhile, the transporting speed is
much higher than what was thought previously. Inspired by this unique phenomenon, the heat
management ability of this biological micro channel is investigated in this research. Firstly, based on
existing studies, the features of the biological channels are extracted. Then, the unidirectional channels
are designed and fabricated by elliptical vibration cutting accordingly. The experimental platform for
thermal control was established consequently. Both bio-inspired and straight triangular channels
of the same depth and width were set for comparison. Through the comparative experiments, it
is concluded preliminarily that the critical point of heat transfer performance of the two channels
exists, and the biomimetic structure can improve and strengthen the cooling effects at a large flow rate
because of the unique geometric structure. The temperature reduction of the bio-inspired channels
can be increased by up to 84 percent compared with straight channels in a single experiment when
heated up to 150 centigrade.

Keywords: heat management; cooling; micro channels; directional water transport

1. Introduction

Heat control is significant in engineering areas, especially for microchips and MEMS system.
As the technology advances, the systems are designed more compactly and more heat is generated,
lowering the control stability. However, heat causes temperature noise which influences the accuracy of
the measurement system. Therefore, micro cooling devices are in demand to avoid rapid temperature
rises and uneven temperature distribution [1].

Micro scale heat transfer has been an extensively discussed topic during the last 20 years [2].
The mechanism, design, improvement and heat transfer of parallel straight micro channels have
been numerically and experimentally studied extensively [3,4]. Kim et al [5] studied the annular
condensation heat transfer over micro channels with a hydraulic diameter of 1 mm and announced
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that maintaining annular flow in a large fraction of the micro channels with thin liquid film is the crux
to high condensation heat transfer. Naphon et al discovered the geometry configuration and the size of
roughness irregularities of the micro channels is significant to the enhancement of heat transfer [6],
and Sahar et al found aspect ratio is not a major factor by numerically analyzing the single-phase flow
and heat transfer in single channel [7]. While the heat transfer performance of deep channels is proved
to be better than that of shallow channels theoretically and experimentally [8–10].

Researchers come up with other ideas to enhance the heat transfer performance in a micro scale
instead of adjusting geometry parameters of the straight channels. Suspended nano particles are added
to the liquid to increase thermal properties as the thermal conductivity of solids is better than that of
liquid. There is a significant rise in the heat transfer performance using nanofluid as the transfer media
instead of deionized water at the same Reynolds number [11,12]. There are differences between the
various types, shapes and volume fractions of particles [12,13]. Thermal conductivity of the suspended
nanofluid can increase by over 20% with low particle concentrations (1–5 vol%) [14–16].

Other studies indicate that the alteration of the shape of the channels can enhance the heat transfer
performance. The micro-heat-exchanger using porous channels are shown to be better in heat transfer
than using micro channels [17]. Huang et al studied the three types of micro channel heat sinks,
finding the setup of the slot structure in the micro-channel heat sinks can improve the heat transfer
and the performance of trapezoidal stagger-slot channels was the best [18]. And the design of ladder
shaped micro channels by Brinda et al [19] decreases the thermal resistance and increases heat transfer
coefficient. However, the channels mentioned above are mainly fabricated by lithography, wire cutting
and laser beam machining. These manufacturing methods are very effective and economic while
processing simple structures in micro scale. But when it comes to repeated complex structures, this
technology becomes inefficient and costly. Therefore, the alternation is restricted. As the number of
studies on different types of channels is still limited, the design of the different types of micro channels
is still noteworthy. This research discusses the heat transfer performance of micro-channels inspired by
Nepenthes alata.

Directional water transport was discovered on the rim of the pitcher of the carnivorous plant,
Nepenthes alata [20]. The multiscale structure which optimizes and enhances the capillary rise in the
transport direction and pins the back flow on the surface plays a leading role in unidirectional water
transport. However, the transporting speed is much higher than what was thought previously and the
anti-gravity water transport can be realized without external added energy (Figure 1).
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Figure 1. Directional water transport on nature peristome surface of Nepenthes alata [20].

Inspired by this unique phenomenon, a bio-inspired micro channels was designed and the heat
management ability of this biological micro channel was investigated in this research. By comparing
the heat transfer performance of the bio-inspired channels and the straight channels in the experiments,
the biomimetic channels have proven to hold better temperature reduction performance in certain



Biomimetics 2019, 4, 70 3 of 11

conditions. This provides a foundation to design a micro-heat-exchanger without external power
working on an irregular surface.

2. Materials and Methods

2.1. Materials and Elliptical Vibration Machining (EVM)

The experiments take poly tetra fluoroethylene (PTFE), as a heat transfer medium whose thermal
conductivity is 0.24, respectively. The bio-inspired micro channels (BIMC) on PTFE and PMMA were
fabricated by the EVM extrusion method [21] and PDMS test samples were made by replicating
channels on PTFE.

The cutting tool motion trajectory (Figure 2) can be defined as follows:{
x = A sin(2π f t + φ) + vt
y = B sin(2π f t)

(1)

where x and y are the tool displacement along the cutting direction (µm) and the tool displacement
along the cutting depth direction (µm), respectively, A and B are the toll vibration amplitude in the
cutting direction and the cutting depth direction, respectively and f, φ, v and t are the tool vibration
frequency (Hz), the phase shift between the vibration of the x-axial and y-axial directions (rad), the
cutting velocities (µm/s) and the time (s), respectively.

In this experiment, the cutting length between the adjacent tool trajectories L was 450 µm, and the
maximum cutting depth was 120 µm. The frequency of the vibration was set as 3/4 Hz and the cutting
velocity was 450 µm/s. The phase shift between the x and y directions was set. The final trajectory is
as follows: {

x = 450 sin( 3
2πt + 1

6π) + 450t
y = −120 sin( 3

2πt)
(2)
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Figure 2. The trajectory of extrusion elliptical vibration machining (EVM) cutting.

2.2. Experimental Design and Set Up

The experiment platform is shown as Figure 3. Absolute ethanol was used as the heat
transfer media.
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Figure 3. Experiment platform.

All the test samples for experiments had the same geometry parameters of 40 × 30 × 10 mm.
Each test sample had five parallel bio-inspired micro channels (BIMC) and the control group had five
parallel straight triangular micro channels (STMC) that were set symmetrically (Figure 3). The holes
whose diameter was 1.2 mm are drilled every 5 mm on both the lateral sides of the sample. The holes
were 7.5 mm in depth so that the inserted thermocouples can test the temperature of the precise middle
of the channels. The axis of the holes were 1.7 mm to the surface of the sample (0.6 mm for the radius
of the drilled holes, 0.2 mm for structures in the channels and 0.9 mm for interval) to avoid the tilt of
drilling damaging the structures in the channels and to keep the distance to the surface as short as
possible in order to get the undistorted temperature data of the channels.

A cooper container of 2 mm thick was designed for the experiment to reduce heat loss (Figure 4a).
The size of the inner surface of the container was fully fit with the sample. The holes of 2 mm in
diameter were drilled for the insertion of the thermocouples. A hole of 5 mm in diameter was drilled
on the bottom, and therefore the sample could be withdrawn conveniently after the experiment.
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Figure 4. (a) The model of the test sample and the container; (b) The model shows the tested holes of the
intermediate and end section. (c) The picture of the test sample and the container with thermocouples.

A heating plate made of cast aluminum, which can be heated up to 300 centigrade, was placed
beneath the container for heating. A thermocouple was connected at the rear to monitor the temperature.
The temperature control system was connected to the thermal plate. The resolution of the temperature
control system is 1 centigrade.

K type thermocouples were used in the experiment. The nominal diameter of the thermocouple
was 1 mm. During the experiment, the thermocouples were inserted in the holes drilled on the lateral
side of the sample. As the thermal resistance of gas is ordinarily higher than solid, the end of the
thermocouples should touch the bottom of the drilled holes in order to test the precise temperature of
the channels. A multi-path temperature measurement instrument was connected to the thermocouples.
The temperature data updated every 4 seconds and 6-path real time temperature can be shown on the
screen. The historical data can be converted into excel for data processing.

The micro flowmeter can provide a liquid flow ranging from 7.23324 nL/min to 3.75573 mL/min,
using syringes with a diameter ranging from 1 to 5 mm. A syringe with a capacity of 2.5 mL was
mounted on the micro flowmeter for liquid injection. The hose joint to the syringe channels, and the
liquid to needle tubing hung above the test sample. The flux of the absolute ethanol varied from
50 µL/min to 1000 µL/min.

3. Results

3.1. Temperature Variation of the Test Sample

In this experiment, absolute ethanol was used as a medium. Its tested evaporation exists in
both BIMC and STMC with a heating temperature above 90 ◦C. The temperatures of the entrance,
intermediate section and the end section of the channels were tested. However, the temperature
change of the entrance was unstable due to the complex flow condition of the section. Therefore, the
temperature variation of this section has not being discussed in this paper.

The temperature variation of the intermediate section and the end section of BIMC and STMC
when heated at 150 ◦C at the flow rate of 200 µL/min and 600 µL/min are shown in Figure 5 respectively.

In Figure 5a, absolute ethanol is added in the channels when the temperature stabilizes at 132 to
138 ◦C. The temperatures of both channels dropped rapidly as the liquid was added. The liquid stopped
when the temperature variation was no more than 0.3 ◦C within 30 seconds. The scale of temperature
reduction of STMC is considerably larger than that of BIMC with the flow rate of 200 µL/min. In
Figure 5b, when the adding flow rate is 600 µL/min, the relative temperature reduction trends changes.
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The scale of temperature reduction of BIMC becomes larger than that of STMC at both intermediate
and end sections.
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3.2. Temperature Reduction Variation along with the Changing Flow Rate

Further experiments to test the influence of the flow rate to the effects of temperature reduction
were then carried out as shown in Table 1. No obvious temperature reduction occurs with the flow rate
lower than 200 µL/min and liquid overflows the channels and covers the surface of the test sample
when the flow rate is larger than 1000 µL/min. Therefore, only experiment data with the flow rate
between 200 µL/min and 1000 µL/min are recorded.

Table 1. Temperature reduction at heating temperature of 150 ◦C.

Measuring
Sections

Temperature
Measurement Items/◦C

Liquid Flow/µL/min

200 400 600 800 1000

Intermediate
section of

BIMC

Tmax 136.4 136.3 131.8 133.8 132.8
Tmin 116.5 115.5 111.5 108.3 111.8
∆T 19.9 20.8 20.3 25.5 21

End section
of BIMC

Tmax 135 134.3 133.2 134.3 133.6
Tmin 122.6 109 122.7 126.7 124.3
∆T 12.4 25.3 10.5 7.6 9.3

Intermediate
0 of STMC

Tmax 135 134.9 132.5 131.3 134.9
Tmin 113.3 116.5 119.7 115.3 117.4
∆T 21.7 18.4 12.8 16 17.5

End section
of STMC

Tmax 137.8 137.4 136 134.9 135.4
Tmin 118.5 128.7 130.3 129.5 126.9
∆T 19.3 8.7 5.7 5.4 8.5

Tmax means the maximum equilibrium temperature; Tmin means the minimum equilibrium temperature when
cooling; ∆T means the difference between Tmax and Tmin.

Tmax is measured when relatively stable without liquid. Tmin is measured after stabilizing with
liquid added. ∆T indicates the temperature reduction of different sections. No regular pattern is
found along with the change of the flow rate. However, the temperature reduction of STMC is larger
than that of BIMC at a lower flow rate and lower than the temperature reduction of BIMC at a larger
flow rate. The critical points when the temperature reduction of BIMC exceeds STMC occur at both
intermediate and end sections of the channels as shown in Figure 6. The critical point indicates the
shift of the optimal heat transfer performance from STMC to BIMC.
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The experiments were also conducted at the heating temperature of 90 ◦C and 120 ◦C. The range
of flow rates were selected according to the same principal as the experiment conducted at 150 ◦C. The
evaporation of ethanol is less violent at 90 ◦C and 120 ◦C, resulting in a lower range of the flow rate.
The temperature reduction is shown in Tables 2 and 3.

Figure 7 illustrates the trends of temperature reduction changing with the flow rate of BIMC and
STMC respectively. The critical points also occur at the intermediate section when heated up to 90 and
120 ◦C. While the effect of the temperature reduction of STMC maintains better than BIMC at the end
section. However, the difference between the effects of two channels declines in general as the flow
rate increases. It can be seen that the end section of BIMC and STMC have similar heat transfer at a
large flow rate.

Table 2. Temperature reduction at heating temperature of 90 ◦C.

Measuring
Sections

Temperature
Measurement Items/◦C

Liquid Flow/µL/min

50 100 150 200 250 300

Intermediate
section of

BIMC

Tmax 79.4 79.6 78.4 78.3 78.3 79.4
Tmin 78.5 70.3 67.6 66.9 67.1 67.1
∆T 0.9 9.3 10.8 11.4 11.2 12.3

End
section of

BIMC

Tmax 79.4 79.2 78.9 78.6 78.7 79.3
Tmin 78.3 76 72.6 70.5 69.8 69.2
∆T 1.1 3.2 6.3 8.1 8.9 10.1

Intermediate
section of

STMC

Tmax 80.1 79.9 78.5 78.5 78.5 79.3
Tmin 66.1 70.4 69.1 67.6 67.4 67.8
∆T 14 9.5 9.4 10.9 11.1 11.5

End
section of

STMC

Tmax 78.3 78.3 76.8 76.6 76.9 77.3
Tmin 76.4 71.7 68.3 67.3 67.1 65.8
∆T 1.9 6.6 8.5 9.3 9.8 11.5
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Table 3. Temperature reduction at heating temperature of 120 ◦C.

Measuring
Sections

Temperature
Measurement Items/◦C

Liquid Flow/µL/min

100 150 200 250 300

Intermediate
section of

BIMC

Tmax 104.5 104.3 104.5 104.4 104.6
Tmin 99.8 91.2 89.2 88.5 88.9
∆T 4.7 13.1 15.3 15.9 15.7

End section
of BIMC

Tmax 104.1 103.8 104.2 104.3 104.2
Tmin 102.3 100.7 93 94.3 93.4
∆T 1.8 3.1 11.2 10 10.8

Intermediate
section of

STMC

Tmax 104.1 104.5 104 104.8 104.5
Tmin 102.3 90.5 90.8 89.8 90.1
∆T 1.8 14 13.2 15 14.4

End section
of STMC

Tmax 104.5 104.7 105 102.2 101.6
Tmin 97.2 92.5 90.8 90.1 90.1
∆T 7.3 12.2 14.2 12.1 11.5

1 
 

 
(a) (b) 

 
(c) (d) 

 
Figure 7. (a) Temperature reduction at the intermediate section at the heating temperature of 90 ◦C;
(b) Temperature reduction at the end section at the heating temperature of 90 ◦C; (c) Temperature
reduction at the intermediate section at the heating temperature of 120 ◦C; (d) Temperature reduction
at the end section of the heating temperature of 120 ◦C.
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The relative coefficient (RC) is defined to indicate the heat transfer performance of BIMC compared
with STMC.

RC =
the temperaure reduction of BIMC − the temperaure reduction of STMC

the temperaure reduction of STMC
× 100%

The RC changing with the flow rate at different temperatures is shown in Figure 8. The RC over 0
means the heat transfer performance of BIMC is better, while RC below 0 means STMC is better. The
flow rate whose RC equals to 0 is the critical point of heat transfer as mentioned above.
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In Figure 8a,b, the RC of both channels increases at lower flow rate in general and enters a
relatively stable stage with low fluctuation. The critical points only occur at the intermediate section
at 90 and 120◦C. In Figure 8c, RC also increase sharply at a lower flow rate, but the fluctuation is
considerably larger at a larger flow rate. The critical points appear at both the intermediate and end
section and the heat transfer performance of BIMC can be 58% and 84% better than STMC at the
intermediate and end section respectively.

The flow resistance of BIMC is larger than that of STMC because of the repeated wedge-shaped
structure. At low temperatures, the liquid is mainly restricted in the entrance. The mass flow of
the liquid evaporates before getting to the intermediate and end section and those sections are only
covered with a thin film of ethanol. The liquid flows smoothly in STMC. Therefore, the flow reaching
the intermediate and end section of the channel is responsible for the poor temperature reduction
performance of BIMC. When the flow rate increases, the unidirectional transports of BIMC take effect
and the flowing speed becomes quicker. Besides, the repeated wedge-shaped structures disturb the
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smooth flowing conditions and enlarge the areas of heat transfer. Those combined reasons cause better
heat transfer performance of BIMC and the critical points occur in between them.

4. Conclusions

The heat transfer experiment of the biomimetic micro channels was investigated in this paper.
The heating temperature ranges from 90 to 150◦C and the flow rate varies from 50 to 1000 µL/min
during the experiments. Preliminary conclusions can be reached as follows:

1. With the increasing flow rate, the relative coefficient of BIMC compared with STMC also increases
in general. The temperature reduction of STMC is better than that of BIMC at a lower flow rate
and the critical points when the heat transfer performance of BIMC exceeds STMC.

2. The existence of a critical point is associated with both the heating temperature and transporting
distance of the channels.

3. The high heating temperature can have better heat transfer performance for BIMC. The temperature
reduction can be increased by 84 percent with the flow rate of 600µL/min at the heating temperature
of 150 ◦C.

In conclusion, compared to STMC, the appropriate application range for BIMC is 400 to 1000µL/min
at the heating temperature of 150 ◦C, 100 to 300 µL/min at 90 ◦C and 150 to 200 µL/min at 120 ◦C.
Furthermore, this paper provides researchers with a reference for further application of this BIMC.
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