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Abstract: How much information with regard to identity and further individual participant
characteristics are revealed by relatively short spatio-temporal motion trajectories of a person?
We study this question by selecting a set of individual participant characteristics and analysing
motion captured trajectories of an exemplary class of familiar movements, namely handover of an
object to another person. The experiment is performed with different participants under different,
predefined conditions. A selection of participant characteristics, such as the Big Five personality
traits, gender, weight, or sportiness, are assessed and we analyse the impact of the three factor groups
“participant identity”, “participant characteristics”, and “experimental conditions” on the observed
hand trajectories. The participants’ movements are recorded via optical marker-based hand motion
capture. One participant, the giver, hands over an object to the receiver. The resulting time courses of
three-dimensional positions of markers are analysed. Multidimensional scaling is used to project
trajectories to points in a dimension-reduced feature space. Supervised learning is also applied.
We find that “participant identity” seems to have the highest correlation with the trajectories, with
factor group “experimental conditions” ranking second. On the other hand, it is not possible to find a
correlation between the “participant characteristics” and the hand trajectory features.
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1. Introduction

1.1. Information Content of Short Motion Sequences

In this study, we are interested in the information content of short motion sequences, especially
on individuality. There are many examples of willfull transport of information by motions, like finger
spelling. An interesting technical approach in this field was presented by N. J. Kuch in 1989 [1].

However, there is also a vast amount of information about identity and personal properties, which
is transported via motion unknowingly by the performer.

There are several studies dealing with this type of information (for comparison, see the subsection
“Related Work”). Our approach is the use of hand-over motions to derive information about the
individuals performing the motions or the experimental conditions. The benefit of hand-over motions
is the possibility of an exact definition of the conditions and the task. In addition, it is a kind of
motion, which is not evident as a method of communication as it is primarily used for another,
practical use, namely the handling of objects. This means that our study has a strong focus on the
question: how much information about the performing person and the experimental condition is
transported unwillingly.

Hand-over motions are a class of movements, which can be subdivided in different types of
motion, which occur in everyday situations, and are well-practiced. This suggests using them in a
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study which focusses on unwilling information transport. As a side-effect, a study like this could
also help to enhance the performance of robots to assess intended motions of human partners, as the
information content of human movements has to be known for this.

Short motion sequences are potentially rich sources of information, for example about the
experimental conditions, under which they were performed, or the individuals, who performed
them. Do similarities between motion sequences allow conclusions, what commonalities exist between
all trajectories, which were performed under the same conditions by the same individual or by an
individual with similar properties? In the case of formerly unknown trajectories, is it possible to
identify the conditions, the individual or the properties of the performing participant just by an
automatic classification, after training a suitable neural network? We studied these questions for the
example of the human hand-movement, to be more specific, for the hand-over of objects between
two participants.

1.2. Potential Factors Identifiable by Trajectories

One possibility is that differences and similarities between the motion sequences are related to
differences and similarities between the individuals who performed the motions, to their identity,
or to the experimental conditions, under which the motions were performed, so that the observed
trajectories allow conclusions about the properties of the individuals, their identity, or properties
of the performed trial. The participants differ in physical, cultural, interpersonal and psychological
factors. In detail, we are interested in identity, gender, age, body size, weight, profession, sportiness
and citizenship of the persons. Further factors, such as the time since the last meal, the familiarity of
each subject with his or her experimental partner and the medical history of the participants could
have influence on the hand-over movements.

The given task [2], the identity of the participant [3–11], his or her properties like gender [12–15],
body height and weight [16], or movement disorders [17] were already found in several studies to be
factors, which can be identified by evaluating motion trajectories. In addition, the influence of age,
psychological factors, occupation, ethnicity or the nutritional status on motoric observables like grip
strength is already identified. [18] The influence of practice on motorical skills is also well-known [19].
More details on other studies are given in the subsection “Related Work”.

All of the mentioned factors are different properties of the participants. Under given experimental
conditions, is it possible to determine the participant, who performed the motion or some of his
or her properties by an automatic classification of the trajectory? As mentioned in the preceding
subsection, the experimental conditions are further factors, which could be determined in the same
way. Before the experiments, the properties of the participants were assessed. Then, we studied if there
is a statistically significant correlation of factors like the experimental conditions, the participant
identity or the participant properties and the hand trajectories, or if the correlation between these
factors and the trajectories is overshadowed by random fluctuations. The studied factors and the
possible connections between them are sketched in Figure 1.
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Figure 1. Tentative hierarchy of the factors, which could have an influence on the trajectories.
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The asked question can be reformulated in more detail as follows:

1. When the participants or the experimental conditions are similar or the same, do the trajectories
also show similarities, so that a matching between the trajectories and factors like the participant
identity or the experimental conditions is possible?

2. Do the trajectories have different properties, indicating distinguishable behaviours, if the
experimental conditions or the properties of the participants are different? Is there a statistically
significant relation between a classification of the trajectories on one side and differences between
the persons and the experimental conditions on the other side?

3. Can we find a hierarchy of similarity in factors like the experimental conditions, the participant
identity or the participant properties, which is mirrored by a hierarchy of similarity of the
trajectories, so that the trajectories are more similar, if the experimental conditions or the properties
of the participants are more similar? What hierarchy level do the factors or factor groups
“individuality”, “participant properties” and “experimental conditions” have, when we ask
for their correlation with the hand trajectories? Which factor has a higher or lower correlation?
What shapes a hand-over motion most, what shapes it least?

An additional interesting question, which could be answered in the described way, is how
stereotypically hand-over motions are performed, by the same participant under constant external
context conditions. Are the differences between the trajectories significantly smaller, if these factors
are kept constant, in comparison to the differences between trials with different conditions or
different participants?

1.3. Experimental Design

To answer these questions, it was essential to use a set of well-defined, repeatable experimental
conditions, which was the same for all participants. The following considerations lead to a suitable set.

To get comparable conditions for the chosen hand-over scenario, at first, we needed standardised
test objects which are similar to objects used in everyday life. We used plastic cans with a constant
diameter. To generate differences in the free space, which is available for the participants to apply
a grip to the beaker, two different beaker heights were used. To induce further differences in the
grasp-behaviours, we used both filled and empty cans. When filled, the beakers have a much higher
weight (790 g in the case of the high, and 535 g in the case of the low beakers) than the empty ones (40 g
in the case of the high and 35 g in the case of the shorter beakers). It could be that different persons
behave differently in the same one of both roles (giver or receiver) because of individual differences
and differences in the position. Because of this, in one experiment, both participants sometimes served
as the giver and sometimes as the receiver. The degree of necessary information transport between the
participants depends on the task. If an object is handed over directly from the hand of the giver to the
hand of the receiver, the latter needs more information about the performed, ongoing and intended
motions of the giver than in the case when the object is put down and released by the giver, before
the receiver grasps for it; in this case, the receiver only needs information about the position of the
object itself, not about the motions of the giver, who placed it there. This is one reason why we expect
completely different grasp-behaviours, when we test both direct and indirect hand-over. We also
expect that two people could try to avoid direct contact to the other participant, when they both have
to touch the object at the same time, depending on their psychological and interpersonal properties.
Other differences, which can be tested, are those between hand-over motions in different heights or
those between hand-over motions with more or less restricted space. For this purpose, we introduced
a platform that can be placed between the participants in a part of the trials or left out in other trials.
A small wooden rack can be used for this.

1.4. Feasible Motion Primitives for Artificial Systems

As we have a number of factors, in which both the experimental conditions and the participants
differ, we expect to get motion trajectories, which also differ in many aspects. In addition,
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the mechanically possible solutions for the human hand to solve a single one of all given tasks
can be seen as nearly infinite. On the other hand, the resources of the nervous system are limited.
Evolution tends to reduce nervous tissue to the necessary minimum, as the energy consumption of
neurons is relatively high. This allows the question of if the high number of all possible combinations
of muscle activations to solve a given task is reduced in reality to a much smaller set of co-activations
with a much lower redundancy. This would mean that the same participant in the same experimental
situation could react with similar motions, based on a similar sequence of co-activations which could
be addressed as motion primitives, as the activation of the nervous and muscular system could also be
similar. We try to find a stereotypy like this in the reactions of our participants on a given situation.
If this stereotypy is distinct enough, it could be possible to determine the underlying motion primitives.
These could be transferred to an artificial system like the shadow hand (see, for example, Röthling
et al. [20]) in further studies. The experiment described here is restricted to the biological side of
the question.

1.5. Related Work

Other studies have already shown that it is possible both for humans and for artificial systems to
derive information about the identity or properties like the gender of people or the task they had to
perform, from their movements, e.g., from their head and facial motions (human observers: Hill and
Johnston [12], Girges et al. [10]), from their eye motions (artificial identification: Bednarik et al. [6]),
from their gait (human observers: Cutting and Kozlowski [3], Troje et al. [8], artificial identification:
Little and Boyd [5], Lu et al. [15], comparison of human and artificial identification: Troje [13]),
from traditional Japanese dance sequences (artificial identification: Perera et al. [2]), or from a database
with different types of motions (human observers: Loula et al. [7], database for artificial identification:
Ma et al. [14]).

Human movements can be used to identify the person, who performed them, and can even be used
as part of an authentication system (Cunado et al. [4], BenAbdelkader et al. [16], Green and Guan [17],
Bednarik et al. [6], Lin et al. [9], Neverova et al. [11]). A high correlation between individuality and the
characteristics of hand-over motions in our study could show that also hand-over can be used as a
kind of motion finger print.

Some of the methods we use are also applied in some of the mentioned studies, like the data
acquisition via motion capturing (e.g., Hill and Johnston [12], Girges et al. [10], Perera et al. [2],
Ma et al. [14], Lin et al. [9]) or the classification by a Self-Organizing Map (Lin et al. [9]).

For example, how knowledge about non-verbal communication can be used in robotics was
presented by Hameeteman [21]. He tried to enhance the acceptance of robots by equipping them
with more human-like movements. The motion sequences collected in our study could also serve
as examples of natural human motions for the same purpose as a side effect. We are focussing
on interactive motions, and, in this case, it can be very helpful to equip an artificial system with
human-like motions, as this enhances the predictability of the movements and therefore the efficiency
of the interaction.

2. Materials and Methods

2.1. Participants

Our study is performed with human participants. For one experiment, two persons are needed,
as hand-over motions between both are analysed.

The participants differ in their properties, namely physical, cultural, interpersonal and
psychological aspects. In more detail, we are interested in identity, gender, age, body size, weight,
profession, sportiness and citizenship of the subjects. Concluding the identity of a participant from the
trajectories means uniquely identifying individual persons from their motions. In addition, the time
since the last meal, the familiarity of each participant with his or her experimental partner and
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the health state of the participants could have an influence on the hand-over movements. To get
information about the mentioned properties, the subjects had to fill out a query. The results are listed
in Table 1. “Sportiness” is measured as the time for doing sports in one week. “Satiety” is measured
as the time since the last meal of the participant. “Familiarity” means the familiarity of the subject
with the other one, assessed on a scale from 1 (don’t know) to 5. For the factor “health”, the answer
to the question, if there are any problems with arms, shoulders or hands, is given. As all analysed
participants have the same citizenship, this factor is dropped in the analysis.

Table 1. Physical properties of the analysed participants.

Factor Unit

identity number 1 2 3 4 5 6 9 10
gender nominal male male female male male female male female

age years 28 25 26 24 73 72 25 44
body size m 1.72 1.75 1.65 1.76 1.82 1.70 1.76 1.64

weight kg 72.0 68.0 70.0 65.0 77.0 58.5 72.0 60.0
profession nominal student student student student pensioner housekeeper student staff
sportiness hours 4.0 5.0 1.5 1.5 2.0 1.0 7.0 5.0
citizenship nominal German German German German German German German German

satiety hours 0.2 2.0 2.0 2.5 3.0 3.0 2.0 5.0
familiarity 1 to 5 1 1 1 1 5 5 1 1

health nominal no no no no no yes no yes

For the example of grip strength, Lee et al. [18] have discussed an influence of psychological
factors on motoric phenomena. We are also interesed in finding an influence of psychological factors
on the motoric behaviour of our participants. Therefore, we are assessing the so-called “Big Five
personality traits”. This method advanced to a standard approach in many psychological studies,
as John et al. discussed in 2008 [22]. Correspondingly, our participants had to perform a Big Five Test.
We chose the test designed by Jeff Potter available online [23]. He used data from that project for a
high number of psychological research publications (e.g., as co-author of Srivastava et al., Robins et al.,
Carney et al., and Soto et al. [24–27]). The results of the test are five factors with values between 0 and
100, namely “openness” (to experience), “conscientiousness”, “extraversion”, “agreeableness” and
“neuroticism”. The factors for the different participants (P) of our study are given in Table 2.

Table 2. Results of the Big Five Test for the analysed participants.

Factor P1 P2 P3 P4 P5 P6 P9 P10

openness 05 53 12 84 70 24 76 76
conscientiousness 13 58 47 69 69 58 94 64

extraversion 48 37 09 53 37 48 42 59
agreeableness 74 32 00 83 50 50 50 94
neuroticism 27 22 22 18 37 22 32 11

2.2. Setting

The participants sit on stools (L and R in Figure 2) on two sides of a glass-plate (G) serving as a
rectangular table, the sides with the persons sharing a corner. (The setting is also shown in Figure 3).
A big cuboid metal rack serves as an attachment for the glass plate and the recording cameras.
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Figure 2. Schematic diagram of the experimental setup, seen from above. G is the glass plate, L the
stool of the left participant, R the stool of the right participant, P the wooden rack, which can be used
as platform, HL and HR the resting places for the right hand of the left or right participant, respectively,
SL and SR the start and destination positions of the plastic can, which can change their roles together
with the role of the participants, and T the place of the hand-over.

Figure 3. Photo of the experimental situation, seen from the position of the participant sitting on stool R.
(Denotations as in Figure 2.) His hand with 13 reflective markers is visible in the lower center. The low
number of markers is possible because of the application of inverse kinematics when determining the
joint angles—see Maycock et al. [28]. The participant on stool L is visible in the upper left, the rack
P in the upper right, one of the plastic cans standing in front of it. (Just for visualisation, normally,
the cans are stored on an extra table behind the experimenter.) The points HL and HR are visible as
small blue disks close to the left or right image border, respectively. (For better visualisation, white
arrows pointing to HL and HR were added.) The points SL and SR are the small yellow disks next to
HL and HR, respectively. Point T is the small red disk between them, close to the center of the picture.
The situation of a direct hand-over of a small, empty can in the moment is shown, when the giver on
stool L is holding the can over point T, and the receiver on stool R reaches for the can. (This would
be an example of an incorrect behaviour of the participants, as a green border of the can signalises an
indirect hand-over. Trials like this were sorted out. In the experiment, markers were also put at the
upper border of the cans.)
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A small wooden rack (P) can be placed at the point T between the participants, as it is shown
also in Figure 4, its two closed sides pointing to the persons. The rack can be removed by shifting
backwards. (This situation is shown in Figures 2 and 3.) If the platform is used in a trial or not is one
factor defining the experimental condition.

Figure 4. Sketch of the experimental setup, seen from the position of the experimenter.

The participants have to hand-over a plastic can at or over the point T between them, which is
marked visibly for them. We used cans of two different heights (141 mm and 103 mm) with equal
diameter (100 mm). The beaker size is another factor defining the experimental condition.

The beaker is either empty or filled with stained water. This difference defines a third factor of the
experimental condition. When they are empty, the higher cans have a weight of 40 g and the shorter
cans have a weight of 35 g. When filled, the higher cans have a weight of about 790 g and the shorter
cans have a weight of about 535 g, as mentioned above.

The colour of the border of the can gives the information to the participants, if they have to
perform a direct (yellow border) or indirect (green border) hand-over. In the case of a direct hand-over,
the can is handed over from the giver to the receiver over point T without touching the glass plate
or the wooden rack, after it was taken from the starting point (SL or SR) and before it was placed
at the destination location (SR or SL). (SL and SR change their roles as starting point or destination
location depending on the role of the participants. If the left person is the giver, SL is the starting point,
and SR is the destination location; if the right person is the giver, SR is the starting point, and SL is
the destination location.) In the case of an indirect hand-over, the giver puts the object down at the
hand-over point T. When the platform stands at point T, the object is put onto it, otherwise the can is
put directly onto the glass plate. The difference between a direct and an indirect hand-over symbolised
by a yellow or green border, respectively, is a fourth factor of the experimental condition.

Both participants stay at their places L and R in the entire experiment, but they change their roles
as giver or receiver depending on the trial, leading to different geometrical situations, as both persons
are asked to use only their right hand for handing over the can. The two possible choices of the subjects
as giver or receiver are a fifth factor defining the experimental condition.

We are testing all combinations of the five binary valued factors platform usage (with or
without rack), beaker size (big or small), border colour of the can (green or yellow), content of the
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beaker (full or empty) and side of the giver (right or left participant). As there are 25 = 32 combinations
of the five factors with two possible values for each, we get 32 different experimental conditions.
We decided to allocate three trials to each of these 32 conditions, leading to a total number of 96 trials.
The sequence of the trials was randomized, so that the 32 conditions appeared in an arbitrary order.

2.3. Experimental Procedure

Always one participant with an odd number and the following one are experimental partners in
the same experiment.

Before the experiment, the right hand of the left person rests at point HL in Figure 2 and the
right hand of the right subject at point HR. Both points are marked visibly for the participants.
The experiment starts with placing one of the plastic cans at a fixed starting place, also marked visibly,
close to the hand of the person chosen to be the giver. If the left participant is the giver, SL is the
starting place; if the right subject is the giver, SR is the starting place. The giver takes up the object and
moves it to the hand-over point T. (This moment is shown in Figure 3). The receiver takes the object
and puts it at a pre-defined destination location. If the left participant is the giver, SR is the destination
location; if the right subject is the giver, SL is the destination location. In other words, SL and SR
change their roles as starting point and destination location depending on the roles of the participants.

The right hands of the participants, which are used for the hand-over, are recorded using
motion-capture to get time-courses of their finger limbs in the hand-over process.

2.4. Measured Values

The kinematic data are acquired as time courses of three-dimensional positions of markers
attached to the different finger limbs of both participants.

For recording the right hand of both participants, we placed one marker at the tip of each finger
nail, one marker slightly distal of each knuckle (metacarpo-phalangeal joint) and three markers near
the center of the back of the hand (metacarpus), one of these proximal of the center, two distal of the
center, as it is shown in Figure 3. This leads to a total of 13 markers at the right hand of each participant.

We did not place markers proximal to the distal interphalangeal joints of the fingers or proximal
to the matacarpo-phalangeal joint of the thumb. In a classical approach, this would be necessary to
calculate all relevant joint angles. However, our model-based approach to estimate the joint angles uses
inverse kinematics. This means, a realistic hand posture is calculated from the marker data by using a
hand model which is fit to the marker positions. With our reduced number of markers, several joint
angle combinations could lead to the same marker positions, but our approach solves this redundancy
problem by inverse kinematics. Classical approaches with more markers cause problems with marker
occlusions and ghost markers, leading to less accurate results. Because of this, we used the approach,
which was developed by Maycock et al. [28].

At each of the beakers, three markers were attached in a plane at the circular upper border in
an angular distance of approximately 90◦. When the plane is seen from above and the beaker turned
in an appropriate way, one marker is visible on top, one on bottom and one on the left side. In this
perspective, a fourth marker is placed close to the upper one, but below the plane of the other three
markers, so that the markers can be used to form a three-dimensional coordinate system. To sum it up,
a total of 30 markers has to be tracked in each trial.

To record the positions of the markers attached to both participants and the object over time in
three dimensions, we use a VICON system from Prophysics AG (Kloten, Switzerland), which observes
them with a multitude of 17 cameras out of different angles. The exactness of the recording is in
the range of 0.5 mm. The system is calibrated at the beginning of each experimental day. For the
calibration, the sensitivity of the single cameras is optimized, disturbations from the infrared lights of
other cameras and reflections are masked, and a so-called “wand” with five markers in a rectangular
arrangement is moved in the relevant area to train the three-dimensional detection by the system.
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2.5. Data Analysis

VICON was used to track the markers and, to ensure a robust and efficient labelling was
performed, the Auto Tracker method developed by Maycock et al. [28] was employed. This fits
models into the scene— in our case, models for the two right hands and the beaker, and uses an inverse
kinematics approach to minimise the distance error to each marker. This allows for hand joint angle
values to be computed and extracted. To ensure accuracy and in order to take account of hand size
differences, a normalisation step was performed.

We assume each hand as containing joints with a total of 20 rotational degrees of freedom, which
are relevant for our study. Namely, in the view of our slightly simplified model, each finger, including
the thumb, has one basal joint with two degrees of freedom and two more distal joints each with
one degree of freedom, leading to a number of four degrees of freedom for each finger and a total of
20 rotational degrees of freedom per hand.

The values of these 20 angles were calculated by the Auto Tracker for each time step. The degrees
of freedom for the translation and rotation of the entire hand are not respected in this study, as it can
not be expected that they are similar in different trials, even not for the same participant under the
same conditions, as the absolute position of the person is not fixed, so that the translatory movement
of his or her hand is influenced strongly by random fluctuations from trial to trial.

We used Dynamic Time Warping for measuring the distances between all time courses of
the joint angles. Next, the distances contained in the resulting similarity matrix were evaluated
via multidimensional scaling. The multidimensional scaling applied on the similarity matrix
was performed as nonmetric multidimensional scaling with Kruskal’s normalized stress1 criterion.
This criterion is the stress normalized by the sum of squares of the inter-point distances.

We used the function “mdscale” of MATLAB’s Statistics and Machine Learning Toolbox (MATLAB
version R2018b, The MathWorks Inc., Natick, Massachusetts, USA) to perform the scaling. Our choice
of the parameters is given in Table 3; the names of the parameters are explained in the online help [29].

Table 3. Parameters of the multidimensional scaling.

Parameter Value

Start cmdscale
Replicates 1

MaxIter 200
TolFun 0.0001

TolX 0.0001

The further analysis of the data was performed by use of neural networks in two different ways.
We applied both supervised learning, as it is described in the next subsection, and unsupervised
learning, as it is described in the next but one subsection, to train the network.

2.6. Supervised Learning

A Learning Vector Quantization Network [30] was fed with the positions of the projections of the
trajectories and trained to recognize the value of one of the experimental factors by the trajectory.

In other words, after the training, the network should be able to classify the trajectories into
groups. To test this, if the network is able to classify also formerly unknown trajectories correctly after
the training in the described way, a Cross Validation was performed. The division of the dataset for
the Cross Validation was performed in two different ways.

“Trialwise”: Trials from all participants were assigned arbitrarily. “Participantwise”: In this case,
each partition contains all trials of only one participant. With this method, it can be tested if the
network is able to recognise the value of a participant property for a trial of one participant, when it
was only trained with trials of other participants.
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For all factors, the mutual information was calculated by use of the function “information”
presented in [31]. We left the descriptor unspecified in a first step. Then, the determination of the
mutual information was repeated in the sense of an N-unbiased estimate with the descriptor found
in the first step and the base two for the logarithm. When calculating the mutual information of the
trajectory and other factors, the Multidimensional Scaling was performed in the sense of a projection
into spaces with different dimensionality, so that the trajectory is represented by a number of factors
corresponding to the dimensionality.

2.7. Unsupervised Learning

If we want to find a connection between the experimental conditions, the participant identity,
and his or her properties on one side and the position of the projections of the trajectories in
the projection space on the other side by analysing the clustering in this space, we can also use
unsupervised learning. One possibility is the use of a Self-Organizing Map [32]. This is the option
we chose. The map was trained to recognise the positions of the projections of the trajectories in the
projection space. The training process was performed in that way that the weight positions of the map
corresponded as good as possible to the clustering of the positions of the projections of the trajectories
in the projection space afterwards. After the training, only one neuroid of the map gave a non-zero
output, when the positional data of the projection of a new hand trajectory was fed into the map.

In addition, in the case of unsupervised learning, Cross-Validation was applied, so that the
trajectories, which were used for testing the map, were not contained in the training subset. When
testing the map, the position of the neuroid, which gave a non-zero output, was determined. We used
an eight-dimensional map with a hexagonal architecture. Along each of the eight dimensions, the map
contained two neuroids, which leads to a total of 28 = 256 neuroids. In an eight-dimensional map,
the neuroid position is defined by row, column, plane, cube, tesseract, penteract, hexeract and hepteract.
For each trajectory, these eight numbers were determined for the respective neuroid giving a non-zero
output. A statistically significant relation between experimental factors and the neuroid position would
indicate a correlation between these factors and the hand trajectory. The experimental conditions,
the participant identity and his or her properties form a set of independent variables, whereas the
eight numbers, which define the neuroid position, form a set of dependent variables.

A suitable statistical method to test the relation between a set of independent variables on a set of
dependent variables is a MANOVA. The set of independent variables can be reduced to two, namely
the number of the experimental condition and the number of the participant. This was done in a first
statistical test.

3. Results

3.1. Multidimensional Scaling

The result of the multidimensional scaling for three dimensions is given in Figure 5. When the
Auto Tracker fits the hand models to the data, it can happen that it confuses the right hands of the two
participants with each other. It failed in this way in many trials of subjects 7 and 8. Because of this,
the data of these persons are not shown in Figure 5 and not used for the further analysis. The problem
did not occur or occurred very seldomly for the other participants.

In Figure 5, markers with the same colour represent the same participant and star-shaped and
convex markers represent the roles of each person as giver or receiver, respectively. As can be seen
from the distribution of markers with different colours in the tigure, hand trajectories of different
participants are concentrated in different regions of the space, separated from the trajectories of other
people. In addition, for each participant, markers belonging to the role as giver or receiver, respectively,
are concentrated in different regions and separated from each other.

The distances between the trajectories were additionally calculated for the two interacting partners
in a single experiment without respecting the trajectories of other experiments and then projected via
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multidimensional scaling into the three-dimensional space. As an example for this, the results for the
experiment with participants 1 and 2 are shown in Figure 6. The z-axis of the projection space is not
visible here, as it is pointing to the viewer.

Figure 5. Results of the multidimensional scaling into three dimensions for all participants except
“Subject 7” and “Subject 8”. The axes of the three-dimensional projection space are labelled with x, y
and z. Each trajectory is represented by one marker in this space. Different experimental conditions are
symbolized by different marker limits, and different participants by different colours of the markers,
as described in detail in the legend.

Figure 6. Results of the multidimensional scaling into three dimensions for the participants “Subject 1”
and “Subject 2”. The axes of the three-dimensional projection space are labelled with x and y. The z-axis
is pointing to the viewer. Use of markers equivalent to Figure 5, legend see there.

As can be seen from the distribution of markers with different colours, the markers for the two
participants form two distinct clusters, both consisting of two non-intersecting subclusters for the roles
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as giver or receiver (star-shaped and convex markers, respectively). Equivalent observations can be
made also in the case of the other single experiments (not shown here). Markers for trials with empty
cans are concentrated in the central area—those for a full container can also be found at positions
farther away.

The results for the analysis of the mutual information are shown in Figure 7.

Figure 7. Mutual information between the experimental factors and the trajectory. The different factors
including the trajectory are given on both axes, the mutual information of two factors is represented
by the colour at the intersection of the row and column belonging to the two factors. The colour
coding is given on the bar on the right side. The numbers on the bar represent percentiles of all mutual
information values. The different factors are abbreviated in the following way: he.: problems with the
right arm or shoulder, ge.: gender, fa.: familiarity with the other participant, pr.: profession, age: age of
the participant, ag.: agreeableness, me.: time since last meal, op.: openness, sp.: hours for sports per
week, ex.: extraversion, tr.: one-dimensional projection of the trajectory, id.: identity of the participant,
cs.: conscientiousness, we.: weight, ne.: neuroticism, t2x: x-component of the two-dimensional
projection of the trajectory, bs.: body size, t3x: x-component of the three-dimensional projection of the
trajectory, t2y: y-component of the two-dimensional projection of the trajectory, t3y: y-component of
the three-dimensional projection of the trajectory, t3z: z-component of the two-dimensional projection
of the trajectory, sd.: side of the giver, ct.: content of the beaker (full or empty), pu.: platform usage,
ki.: kind of handover (direct or indirect), be.: beaker size. The numbers at the abscissa and the ordinate
are referring to the components of the 20-dimensional projection of the trajectory.

The mutual information between the experimental conditions and the other factors except the
trajectory (one-, two-, three-, and 20-dimensional) is always close to zero; a statistical correlation
between experimental conditions and hand trajectory can be shown in this way, but not between
experimental conditions and the other factors like participant properties. Between the participant
identity and the participant properties, the mutual information is relatively high; identity is statistically
correlated with properties of the individuals. The mutual information between the participant
properties is high differently for the different pairs; some different properties are statistically correlated
with each other, others not. For the one-dimensional projection of the hand trajectory, the highest
mutual information exists with the participant identity (except for the mutual information with the
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one-dimensional trajectory itself), indicating that the statistical correlation with the hand trajectory is
highest for the identity. The factors that are correlated second highest with the participant properties
are, in descending order, agreeableness, openness, body size, neuroticism, weight, time since last
meal, conscientiousness, age, hours for sports, extraversion, health of the right arm or shoulder,
profession, familiarity with the other subject and gender. The algebraic sign of the mutual information
stays positive for these factors, which should be expected for this mathematical method. The mutual
information of a factor with itself gives the highest value for the respective row and column; for each
factor, the statistical correlation is strongest with itself. These diagonal values are quite different
depending on the analysed factor, indicating a different amount of information that is available for the
respective factor.

3.2. Supervised Learning

The results for the use of the Learning Vector Quantization Network with trialwise
Cross-Validation are given in Table 4. As the network works with a chance factor, this is only one
example; each use of the network leads to different results. However, the results presented here can be
seen as archetypical. The factors, on which the Learning Vector Quantization Network was trained,
are given in the second column. The first column separates them into interindividual factors (these are
the determined properties of the participants, corresponding to between-subject designs, abbreviated
in the table as “b”) and intraindividual factors (these are the experimental conditions, corresponding to
within-subject designs, abbreviated as “w”). The proportion of wrong classifications (mean value for
all partitions) is given in the third column. The number of partitions for the cross-validation is listed in
the last column. For each partition, when it was used as test dataset, a cross-tabulation was performed.
The mean value of the resulting p-values or, in other words, values of the asymptotic significance
is given in the fourth column. Only when the network was trained to distinguish hand trajectories
observed in trials with a platform from trajectories in trials without platform does the cross tabulation
lead to p-values over 5%, so that no significant relation between the classification of the trajectories by
the network and the presence of the platform could be proofed by the used methods. In the case of all
other explored factors, the p-values were under the 5%-level, indicating a significant relation between
the values of these factors found by the network and the real values. For the intraindividual factors,
both the error rate and the p-values are lowest for the factor “side of the giver”.

The results for the participantwise cross-validation is that, after training, the network was
assigning the values of the factors randomly to the trajectories; it was not able to recognise the
participants’ properties from the trajectories. One problem here could be that the participants of our
experiment have quite different properties, which means that there are only a few properties shared by
a higher number of participants.
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Table 4. Supervised learning: Results of trialwise cross-validation.

Design Factor Error Asympt. Sign. N

w side of the giver 0.0988 0.0000 12
b extraversion 0.0303 0.0004 44
b familiarity 0.0079 0.0020 43
b body size 0.0323 0.0006 45
b neuroticism 0.0317 0.0009 43
b age 0.0242 0.0012 45
b health 0.0301 0.0011 43
b profession 0.0364 0.0009 45
b conscientiousness 0.0303 0.0012 45
b weight 0.0323 0.0013 45
b hours since last meal 0.0283 0.0016 45
b agreeableness 0.0343 0.0014 44
b openness 0.0222 0.0023 45
b hours for sports 0.0342 0.0016 45
b gender 0.0281 0.0045 45
b participant identity 0.0419 0.0066 43
w kind of handover 0.3327 0.0013 4
w content of the beaker 0.2984 0.0059 7
w beaker size 0.3427 0.0055 4
w platform 0.5403 0.1727 2

3.3. Unsupervised Learning

Looking at the 20-dimensional case, the results for a MANOVA with the factors “experimental
condition” and “participant” as independent variables are given in Table 5. The asymptotic significance
or p-value for the impact of the identity of the participant on the position of the neuroid, which
specialised in the identification of a single subject, is under 5% for all partitions. (Only the mean value
for training processes with all permutations of the choose of the testing partition is given in the table.)

Table 5. Unsupervised learning: Results of MANOVA.

Factor Statistic Mean Asympt. Sign. (p) N

(intercept) Pillai 0.2030 8
(intercept) Wilks 0.2030 8
(intercept) Hotelling 0.2030 8
(intercept) Roy 0.2030 8
condition Pillai 0.3927 8
condition Wilks 0.3480 8
condition Hotelling 0.3063 8
condition Roy 0.0011 8

participant Pillai 0.0065 8
participant Wilks 0.0024 8
participant Hotelling 0.0005 8
participant Roy 0.0000 8

When the impact of the single conditions and participant properties was evaluated using
MANOVA, the model reduction led to a model with the remaining factors “gender”, “weight”,
“sportiness”, “satiety”, “openness”, “conscientiousness” and “extraversion”. The results of a further
MANOVA are given in Table 6.
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Table 6. Unsupervised learning: MANOVA, participant properties.

Factor ppartition 1 ppartition 2 ppartition 3

(intercept) 3.86E-03 1.36E-04 1.62E-05
gender 5.93E-19 1.21E-05 7.00E-16
weight 1.57E-04 5.36E-03 6.28E-09

sportiness 8.63E-16 7.76E-11 8.36E-09
satiety 1.55E-15 4.98E-07 1.84E-12

openness 6.21E-15 1.13E-06 3.99E-11
conscientiousness 4.93E-10 2.32E-02 4.10E-07

extraversion 1.11E-06 3.29E-07 1.01E-10

In the case of a RANOVA, it was not possible to reduce the Repeated Measures Model in a way
that the p-value for the correlation between one analysed factor with the position of the specialised
neuroid was under 5% in all partitions.

4. Discussion

4.1. Multidimensional Scaling

As we have seen in Figure 5, hand trajectories of different participants are concentrated in
different regions of the space, separated from the trajectories of other people, forming different clusters.
In addition, for each participant, markers belonging to the role as giver or receiver, respectively,
are concentrated in different parts of these clusters and separated from each other, forming two
sub-clusters.

This kind of clustering leads to the conclusion, that the identity of the participant has a higher
correlation with the hand trajectory than the experimental condition.

A change in the factor “side of the giver” causes a complete inversion of the trajectory. The effect
of the other factors of the conditions can be considered to be smaller. It can be expected that the identity
of the participant who produced a certain trajectory and his or her role as giver or receiver can be
concluded from the position of the projection. The subdivision of the clusters indeed indicates that
the same role of the subject (giver or receiver) leads to similar hand trajectories, a different role to
dissimilar trajectories.

The analysis of a single experiment with its two participants leads to the same results, as shown
in Figure 6. The division between different participants is even better visible.

As two different factors are mirrored by a clustering along two different dimensions,
differences between trajectories caused by the respective other factor have another nature.

There is a bigger spreading of markers representing trials with a full beaker than for an empty
beaker. Thus, a full beaker leads to a higher impact of the other factors.

The mutual information analysis (Figure 7) shows that the five factors of the experimental
condition are independent from each other. As the choose of the factors for each trial was accidental,
this is the expected result. The relatively high mutual information between the participant identity
and the participant properties shows that an identification of a person and his or her properties are
closely related. Some pairs of participant properties have a high mutual information, others not.
The one-dimensional trajectory seems to be correlated most with the participant identity, followed by
the participant properties in the sequence agreeableness, openness, body size, neuroticism, weight,
time since last meal, conscientiousness, age, hours for sports, extraversion, health of the right arm or
shoulder, profession, familiarity with the other subject, and gender. According to the definition of
mutual information, it has to be highest for the comparison of a factor with itself. This is visible in our
results. The value of the mutual information of a factor with itself depends on the total information
content of the factor. The number of different values differs between the factors, which influences the
information content of the factors. These differences are also visible in the results for the determination
of the mutual information.
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4.2. Supervised Learning

Trialwise cross-validation allowed for training the network to identify an experimental factor
by trajectories. A correct classification needed training with trajectories from the test participant;
it was not possible with participantwise validation. The participant can be identified by the position
of the trajectory’s projection, as the correlation between trajectory and identity is highly significant
(Table 4). This exactness of the identification of the participants is possible, as the projections of the
trajectories for the same participant are close to each other but separated from the projections for
others. The analysis confirms that the experimental conditions can be identified by a classification of
the trajectory.

Individuality correlates most with trajectories. The conditions (except platform usage) also
correlate with trajectories, especially for the side of the giver, overshadowed by individuality.
The participant properties do not correlate with the trajectories in a way which could be separated
from individuality.

4.3. Unsupervised Learning

The positions of the projections of the markers in the projection space are learned correctly by the
Self-Organizing Map, connecting neuroid positions with experimental factors. Differences between
trajectories caused by differences in the other factors are weaker than differences between trajectories
caused by the individuality of the participants. This is only a first impression when interpreting the
two-dimensional case visually; an exact analysis is done for the case of the 20-dimensional projection
space: The results of the unsupervised learning confirm the higher impact of the participant identity
on the hand trajectories, when compared to the impact of the condition. It is not possible to distinguish
if the participant properties or identities were learned, or to divide the correlation of the properties
with the trajectories from the correlation of the identity with the trajectories. Statistically relevant
differences between hand trajectories are mostly caused by the individuality of the participants
and not by definable properties of the participants or the experimental conditions. The analysis
by means of unsupervised learning therefore confirms the findings, which were made when using
supervised learning.

4.4. Answers

After our study, the questions asked at the beginning can be answered in the following way:

1. When the participants or some of the experimental conditions are similar or the same,
the correspondent points in the projection space are contained in the same cluster or subcluster.
This means that a matching between the clustering in the projection space on one side and the
participant identity or some of the experimental conditions on the other side is possible. Therefore,
most of the experimental conditions can be recognized by a classification of the resulting kinematic
time courses.

2. Some differences between experimental conditions and a change of the participant identity were
causing the projections of the resulting trajectories in the projection space to be contained in
different clusters, indicating distinguishable behaviours. They were less related than trials with
the same participant in the same condition, which is stressing that the differences are causing
different behaviours. When the points in the projection space were classified by a Learning Vector
Quantization Network, which was trained in a suitable way, it was possible to show a statistically
significant relation between the result of the classification on one side and the participant identity
or the experimental conditions on the other side. Therefore, different experimental conditions
lead to results that are distinguishable by the data, also in the sense of the possibility of an
automatic classification.

3. A hierarchy of the impact of different factors on the hand trajectories can be shown in the sense
that individuality is the factor with the highest influence on the hand trajectories, followed by the
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experimental conditions, whereas the definable properties of the participants have no influence
that could be separated from the influence of their individuality.

4.5. Outlook

As individuality seems to have the strongest correlation with hand trajectories, it could be
difficult to find a general model of human hand-over movements. However, within one individual,
the movements could be seen as more or less reproducible reactions on a given situation. With this
background, it could be fruitful to explore the motion primitives underlying the hand motions of this
individual. This could be done in other studies. For our experiment, a collection of human hand-over
motions under standardised conditions was won, which can be used for further comparative studies.
The motion primitives found in those studies could be transferred on an artificial system—for example,
the shadow hand (see, for example, Röthling et al. [20]).

The only information source about the motions used in this study are the positions of the markers
attached to the hands of the participants. Further studies can include information about the forces
applied to the object in the hand-over process. For this, the plastic cans used in this study could be
replaced by an object, which contains the necessary sensory equipment. A device, which could be
used for this purpose, is the so-called iObject, as it was developed by Kõiva et al. [33]). From the study
presented here, we know which factors could have a statistically significant correlation with the hand
trajectories. When designing a study using the iObject, we could have a closer look at these factors,
hoping to find a stronger correlation, when data about force distributions are added to the motion data
that is analysed here.
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