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Abstract: The accuracy assessment of three different Normalized Difference Water indices (NDWIs)
was performed in La Salada, a typical lake in the Pampean region. Data were gathered during April
2019, a period in which floods occurred in a large area in the Southwest of the Buenos Aires Province
(Argentina). The accuracy of the estimations using spaceborne medium-resolution multi-spectral
imaging and the reliability of three NDWIs to highlight shallow water features in satellite images
were evaluated using a high-resolution airbone imagery as ground truth. We show that these indices
computed using Landsat-8 and Sentinel-2 imagery are only loosely correlated to the actual flooded
area in shallow waters. Indeed, NDWI values vary significantly depending on the satellite mission
used and the type of index computed.

Keywords: multi-spectral imaging; airborne imagery; normalized difference water index; geographical
measurements

1. Introduction

Remote sensing has a large number of applications, among which the most common is
classification of land covers and analysis of the changes that occur therein through time. One
of the most vital Earth resources is surface water, which is undergoing changes in time and
space as a consequence of land use types and global warming [1]. Also, analyses of surface
water provision are important as a means to determine the predisposition to flooding in
a given region [2]. In this context, satellite imagery is a valuable tool for monitoring land
use in general and occasional floods in particular. Remote sensing techniques are the most
cost- and time-effective methods available to quantify and map flooded areas, taking into
consideration the spatial and spectral resolution of the sensors and the periodicity of the
takes. Optical sensors aboard the satellite constellations are designed to register specific
spectral bands that allow the differentiation of flooded from non-flooded areas.

The variation in size of different water bodies, which undergo changes due to various
factors, has been analyzed over multiple periods, using remote sensing and Geographi-
cal Information System (GIS) techniques in conjunction with field validation. Generally,
the normalized difference water Index (NDWI) is used to rate changes in the water area [3].
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In this regard, several studies have been conducted using remote sensing data to detect
spatial and temporal changes in flooded areas, study their changes, and assess actual or
potential flood damage in urban regions. The majority of the flood maps were developed
from surface reflectance using MODIS (Moderate-Resolution Imaging Spectroradiometer)
data given the short revisit times and the wide area coverage of this mission [4,5]. Studies
carried out by Pekel et al. [6] developed an innovative method for detecting water bodies
by means of colorimetric analyses. The methodology is generic and can thus be applied to
sensors with similar bands with adequate reliability, but it has been devised to be applied
only on continental scales. Although MODIS sensors provide near-global coverage twice
daily, the pixel resolution ranges between 250 m and 1 km, so it does not have an optimal
spatial resolution for use in small areas [7]. Arguably, the most extensively utilized data
source for remote sensing are Landsat images, which are available (in different constella-
tions and thus different sensors) from 1972 to the present, offering the longest continuous
global record of the Earth’s surface. This record has gathered spectral information from
the Earth’s surface, granting scientists the ability to assess land cover changes that can
be traced and evaluated over a span of 50 years. This extended time-frame offers robust
statistical significance in numerous studies. Despite this valuable information, Landsat-8
(L8) imagery has a moderate spatial resolution and a long revisit time [8]. This limits their
applicability in various situations [1]. For instance, in the study of inland water bodies,
the actual shape and size of relatively small water bodies (with areas ranging between 1 m2

and about 5 ha [9]) is difficult to assess. This is due to the mixed pixel phenomenon that
arises when a pixel footprint over the surface covers a varying proportion of water [10].
To address these limitations and improve land cover monitoring and change-detection
mapping, the Sentinel-2 (S2) mission may be employed [11]. This mission provides a
finer spatial resolution and shorter revisit times, which makes it more adequate for land
cover monitoring and associated applications, such as deforestation studies, monitoring
and modelling climate-induced changes, etc. [12–14], allowing smaller water bodies to be
thoroughly studied [15,16].

Lakes and lagoons have been a relevant research subject, which in particular require
water quality monitoring at different scales [17]. Specifically in Argentina, during late 2018
and early 2019, infrequent heavy precipitation led to an unusual increase in the size of lakes
and small water bodies, and also a portion of otherwise productive areas becoming flooded.
Even though large areas were flooded or damp in specific departments of the Buenos Aires
province, the NDWI indices provided by satellite missions (especially MODIS) consistently
overestimated the actual proportion of flooded areas, sometimes by significant percentages.
An adequate assessment of the actual impact of the condition was frequently required by
crop producers, governmental agencies and other actors, but in this particular context, the
adequacy of remote-sensing-based information appeared to be of little use. For this reason,
in this study, we attempt to determine the bias and variance in the determination of actual
NDWI products using several indices (Xu, Gao, McFeeters) computed from Landsat-8
and Sentinel-2 imagery. We used airborne images as ground truth, in which the very
high resolution allows determination of the actual proportion of dry and wet surface in a
satellite pixel footprint, and thus the study of the actual influence of the mixed pixel effect
of different water indices. We chose a typical water body in the Southwest of the Buenos
Aires Province as a specific case of study, which makes our results a feasible reference for
other similar water bodies along the entire geographical region.

2. Materials and Methods
2.1. Study Area and Sample Preparation

The La Salada lake is located in the South West (SW) of the Buenos Aires province
(Argentina) (39◦28′ S, 62◦42′ O), at about 6 km from the Pedro Luro city (Figure 1). It has an
approximate area of 4 km2 and a mean depth of 2.5 m. It is a typical endorheic lake where
two water channels discharge the excess water from the agriculture usage of the Colorado
river basin [18,19]. In the Northeastern portion of the lake, a recreational environment
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is placed, which is widely forested. This type of small lake is common in the Pampean
region, in which sizes and depths of water bodies are dependent on rainfall, presenting
periods when they become dry, and other periods with overflow conditions where flooding
of the surrounding fields arises. These aspects were extensively confirmed by [20], where
it was shown that the topography of the geographic region, the low permeability of the
soil, and the shallow character of these lakes cause water to evaporate in periods of
drought, reducing its area, and, on the other hand, flooding in periods with more than
average rainfall.

Figure 1. Geographic location of the study area. (a) Image of the lake in Google Earth. (b) Location of
the lake in Buenos Aires Province and in Argentina.

2.2. Data Acquisition

Airborne RGB imagery from an unmanned aerial vehicle (UAV) and L8 and S2 multi-
spectral images were used to carry out this study. Aerial images were acquired within a
small time interval with respect to the satellites passing by in a way to avoid temporal
variations in the lake that could negatively impact the obtained values. The UAV images
were captured on 11 April 2019, at 12 p.m., with optimal atmospheric conditions. For
this, a DJI Phantom 3 Standard (DJI, Shenzhen, China) carrying a 12-megapixel camera
was used which has a CMOS sensor and a differential GPS sensor. Flight programming
and UAV operation were performed using Litchi app installed on a smart device. The
images were captured at a height of 70 m for a Ground Sample Distance (GSD) of 2.5 cm,
with an overlap of more than 80%. To georeference the photogrammetric model, ten control
points were manually selected in the field. The planimetric coordinates were taken using
the Real-Time Kinematic (RTK) method in its NTRIP (Networked Transport of RTCM via
Internet Protocol) variant. The flight covered only the SW portion of the lake because a safe
distance away from the recreational section needed to be respected for legal reasons. With
the airborne imagery, a ground truth georeferenced mosaic was created using the Agisoft
Metashape Software V1.3.1 (https://www.agisoft.com/, accessed on 11 April 2019). For
georeferencing purposes, control points were selected and measured manually. Given that
the initial resolution of 2.5 cm/pixel is unnecessary fine for our purposes, and its processing
would require large processing times, the mosaic was re-scaled to 15 cm/pixel using the
nearest neighbour resampling method.

An L8 georreferenced image of the geographical region was downloaded from the
Earth explorer website (https://earthexplorer.usgs.gov/, accessed on 20 March 2023), cor-
responding to 12 April 2019 (path/row: 226/87) with processing Level-2. Landsat Level-2

https://www.agisoft.com/
https://earthexplorer.usgs.gov/
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products include surface reflectance (Bottom Of Atmosphere—BOA), which measures
the fraction of incoming solar radiation that is reflected from the Earth’s surface to the
Landsat sensor. Additionally, the Land Surface Reflectance Code (LaSRC) corrects for the
temporally, spatially, and spectrally varying scattering and absorbing effects of atmospheric
gases, aerosols, and water vapor. This correction is necessary to reliably characterize
the Earth’s land surface. A Sentinel-2B satellite image was downloaded from the same
website, corresponding to 12 April 2019 (tile number 20HNB) with processing Level-2A.
Level-2A products provide scene classification and atmospheric correction, and Bottom Of
Atmosphere (BOA) reflectance images derived from the associated Level-1C orthoimage
products. In other words, a Level-2A product is an orthoimage with atmospheric correc-
tion, resulting in a Surface Reflectance product. The satellite images and the mosaic were
georeferenced using the same reference system.

2.3. Data Processing

The processing workflow is composed of three major steps (the complete pipeline is
shown in Figure 2).

1. The lagoon shoreline is segmented by specialist geographers over the ground truth
mosaic (Figure 3). The resulting shapefile is overlapped over the registered Landsat-8
and Sentinel-2 images to establish a set of boundary pixels in each satellite image.

2. Different NDWI models are computed using L8 and S2 images specifically for the
mixed pixels, i.e., those arising over the vectorized shoreline using two different
criteria (nearest neighbor and linear reconstruction).

3. Actual water cover percentage over the satellite mixed pixels is estimated with the
ground truth mosaic, and the correspondence of these percentages with the corre-
sponding NDWI values are represented together.

Figure 2. Processing pipeline to estimate water cover percentage in satellite imagery and airborne
images.
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Figure 3. Lake shoreline segmented by expert geographers (in red).

Three NDWI indices (Xu, Gao, McFeeters) were computed to assess their performance
in mixed pixels. McFeeters [21] proposed a NDWI using green and NIR bands given that
water generates high reflectance in the green band and low reflectance in the NIR band
(Equation (1)). This index can effectively detect and quantify the presence of water in
most cases. It has the drawback that it is sensitive to built-up areas and can lead to an
overestimation of the size of water bodies.

NDWIMcFeeters =
ρgreen − ρNIR

ρgreen + ρNIR
. (1)

The method proposed by Xu is similar to that of McFeeters, but uses the SWIR band
instead of the NIR band (Equation (2)). This index detects the presence of water features
while being insensitive to built-up areas, as well as vegetation and soil-induced noise [22].

NDWIXU =
ρGreen − ρSWIR1

ρGreen + ρSWIR1
. (2)

Gao proposed another index that is sensitive to changes in the water content of
leaves [23]. It is computed using the NIR and SWIR bands (Equation (3)):

NDWIGAO =
ρNIR − ρSWIR1

ρNIR + ρSWIR1
. (3)

where ρgreen, ρNIR, ρSWIR1 are the reflectance of each bands. These NDWI indices were
computed using the raster calculator of QGIS, a free and Open Source Geographic Infor-
mation System (https://qgis.org/es/site/, accessed on 1 May 2023). The L8 NDWIs were
processed using Bands 3 and 6 in Xu, Bands 5 and 6 in Gao and Bands 3 and 5 in the
McFeeters index, respectively. In S2 images, Bands 3 and 11 (10 m and 20 m spatial resolu-
tion, respectively) were used to compute Xu NDWI; in this case, Band 3 was resampled to
have the same spatial resolution as Band 11. For Gao’s NDWI Bands 8A and 11 and for
McFeeters’s NDWI Bands 3 and 8 were used (Figure 4).

https://qgis.org/es/site/
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Figure 4. Landsat-8 (upper row) and Sentinel-2 (lower row) NDWI indices: (a) L8 McFeeters. (b) L8
Xu. (c) L8 Gao. (d) S2 McFeeters. (e) S2 Xu. (f) S2 Gao.

The actual shoreline (mixed) pixels in the satellite images were determined according
two different criteria. The first criterion is the modeling of the pixel acquisition as a zero-
order process, and therefore the pixel with its center closest to the segmented shoreline
is considered to be the raster representation of the shoreline in the satellite image. This
criterion is coincident with the so-called nearest neighbour in image processing. The
second criterion is the assumption of a first-order image generation process during satellite
acquisition. According to this criterion, the actual vectorized shoreline passes between
two pixel centers, and therefore these two pixels are, in fact, mixed pixels to some extent
(unless the very rare case in which the vectorized shoreline passes exactly over the very
center of one pixel). Figures 5 and 6 show these two criteria applied, respectively, over the
Landsat and Sentinel images.

(a) (b)

Figure 5. Mixed pixels in L8 Xu index image. (a) Zero-order criterion. (b) First-order criterion.

Each pixel footprint was aligned with the ground truth mosaic (where they occupy
hundreds or thousands of pixels, according to their respective resolutions), and, subse-
quently, the actual percentage of water pixels in the mosaic was computed. With these
two values for each satellite shoreline pixel corresponding, a scatterplot was built to test
the actual correlation between the NDWI and the actual percentage of water according
to the ground truth; then, the actual correspondence between NDWI and actual water
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coverage could be assessed (Figure 7). This gave rise to four different scatterplots for
each of the NDWI indices corresponding to each of the satellite missions and shoreline
determination criteria.

(a) (b)

Figure 6. Mixed pixels in the S2 Xu index image. (a) Zero-order criterion. (b) First-order criterion.

Figure 7. Overview of the method. (a) For each pixel in the contour (highlighted in blue), the NDWI
is computed with the selected method. (b) The footprint of the pixel is put into correspondence with
the aerial image and the percentage of water pixels therein is computed. (c) These two values (NDWI
and water pixel percentage) determine the coordinates of the given pixel. (d) Scatterplot of NDWI
value and water percetage in each pixel of the aerial image.

3. Results
3.1. Landsat-8 and Sentinel-2 Zero-Order Criterion

Figure 8a shows the NDWI values according to the McFeeters index. Values are
mostly negative (in the range of [−0.21, 0.05]) and the regression coefficient is the highest
(R2 = 0.763). Only a few positive NDWI pixels are actually covered by a higher water
percentage as per the ground truth. Xu’s proposal generates similar NDWI values (in the
range of [−0.14, 0.08]) and the regression coefficient is also similar to that of McFeeters
(R2 = 0.734) (Figure 8b). In both plots, the regression line has a low positive slope, showing
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a slight positive correlation between the computed NDWI value and the percentage of
water in the analyzed pixels. The NDWI values obtained from Gao’s equation are all
positive [0, 0.09], regardless of pixel water coverage (Figure 8c). The regression line is
almost horizontal, with a lower regression coefficient (R2 = 0.116), and NDWI values are
similar for pixels with either low or high water coverage.

For Sentinel-2 images, the Xu NDWI values are mostly negative (72%). Few pixels
with positive NDVI values are covered by a significant proportion of water, between 40%
and 100% (Figure 9b). The regression coefficient is the highest (R2 = 0.504). McFeeters
NDWI values are all negative (98%), and few pixels with positive values are covered by a
large percentage of water (higher than 90%) (Figure 9a). Gao’s NDWI values are mostly
positive (95%), regardless of pixel water coverage (Figure 9c). The correlation function
in the three plots are fitted to polynomial functions of the order of six, since these were
the functions which achieved the best regression coefficient. In these two latter models,
the regression coefficient is rather low (R2 = 0.185 and 0.132, respectively).

(a) (b) (c)

Figure 8. Water cover percentage and NDWI values obtained from the vectorized pixels according to
zero-order criterion using Landsat-8 image. (a) McFeeters NDWI. (b) Xu NDWI. (c) Gao NDWI.

(a) (b) (c)

Figure 9. Water cover percentage and NDWI values obtained from the vectorized pixels according to
zero-order criterion using Sentinel 2 image. (a) McFeeters NDWI. (b) Xu NDWI. (c) Gao NDWI.

3.2. Landsat-8 and Sentinel-2 First-Order Criterion

Figures 10 and 11 show the scatterplots computed using the first-order criterion (in
yellow), where the zero-order values are represented in blue for comparison reasons. In
the six cases (L8 and S2 for the three NDWI models), the regression coefficients are below
0.1, meaning that the actual influence of the water coverage in the mixed pixels has almost
no influence in the computed NDWI. With L8 images, Figure 10b shows that Xu’s values
are mostly negative (70%), and the few positive NDVI pixels have indistinctly low or high
water coverage. McFeeters’s NDWI values are mostly negative (87%) (Figure 10a). Gao’s
NDWI values are all positive, between 0.01 and 0.09 (Figure 10c). The fitting correlation
function in the three cases is a third-order polynomial function, which, again, yields the
highest regression coefficient.

For S2 images, Figure 11b shows that Xu’s NDWI values are mostly negative (77%),
whereas a few pixels with negative values are those with the greatest water coverage. On
the contrary, McFeeters values are all negative, between −0.64 and −0.01 (Figure 11a). As
with the zero-order criterion (Figure 11c), Gao NDWI values are mainly positive with values
between −0.17 and 0.29, regardless of pixel water coverage. The regression function in the
three plots is fitted to a polynomial function of the order of three. It can also be noticed
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that S2 values are much more dispersed with respect to the fitting function compared with
L8 values.

(a) (b) (c)

Figure 10. Water cover percentage and NDWI values obtained from the vectorized pixels according
to the first order using Landsat-8 image (in yellow). (a) McFeeters NDWI. (b) Xu NDWI. (c) Gao
NDWI. The zero-order values are represented in blue.

(a) (b) (c)

Figure 11. Water cover percentage and NDWI values obtained from the vectorized pixels according
to the first order using Sentinel 2 image (in yellow). (a) McFeeters NDWI. (b) Xu NDWI. (c) Gao
NDWI. The zero-order values are represented in blue.

4. Discussion and Conclusions

This research aimed to assess the quality of NDWI values and their correlation with
pixel water coverage in a small water body that is representative of similar lakes and lagoons
that are common in the SW of the Buenos Aires province (Argentina). Twelve different
evaluations were performed (three indices, two satellite constellations, and two criteria for
shoreline pixel selection). The results show that these values in the two most widespread
satellite constellations and using three different NDWI formulations do not have the ex-
pected accuracy and consistency. In general, the results show a bias towards negative NDWI
values, which is not a problem by itself, given that the indices require an interpretation in
order to be applied. Also, the fitting models (computed NDWI vs. actual water coverage)
were much more dispersed when using S2 images compared with the cases when L8 was
used. This result implies that for this specific land cover determination problem (shallow
inland waters, small water bodies, shoreline determination, etc.), L8 provides more robust
and consistent determinations. Therefore, a trade-off exists between this consistency and
the coarser spatial resolution when compared with S2 images. Regarding the shoreline
reconstruction criteria, in all cases, the zero order exhibited a stronger correlation. This is
counter-intuitive since the actual imaging process is indeed a first-order reconstruction of
the actual Earth backscatter. This criterion selects as mixed pixels several pixels with a very
high water coverage in the ground truth, but, as shown in Figures 10 and 11, the associ-
ated NDWI values are not high in these pixels (and are significantly below the mean in
S2 images). This can be attributed to differences in the actual spectral bands of the sensors,
and that the spectral bands used by Sentinel sensor are more affected by the water turbidity
than with the Landsat sensor.

Xu’s NDWI values were consistently more correlated with the actual water coverage
of the image pixels in all evaluations. This index presented a moderate positive correlation
to the actual water coverage of the pixels in the zero-order shoreline reconstruction method,
and a negative correlation in the second criterion. The values themselves were mostly
negative for the Landsat-8 image. This may be attributed to the fact that Xu’s equation
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has been shown to be effective on a wide range of sensors, and different studies show that
this index is accurate in water bodies with a shallow depth, in areas with high turbidity,
or where shallow waters are vegetated [24]. The NDWI index proposed by Gao shows a
tendency to overestimate the water covering percentage, detecting the presence of water
in bare ground and soil with vegetation. Compared to the other indices, it shows the less
accurate results, both for L8 and S2 images, and in both criteria. It is likely that the spectral
bands in the index computation are not sensitive to the variation of the reflectance of the
water in relation to the reflectance of the surrounding soil in this particular geographic
context. Finally, NDWI values obtained by the McFeeters index are almost always negative,
for both images and criteria. In the case of L8 images, this underestimation of the water
coverage is weaker, and for S2 images, the underestimation is stronger.

Since flood maps computed from satellite images almost in real time are becoming a
vital tool for decision-making in contingency management and disaster monitoring and
evaluation, the choice of imagery and index (and also the interpretation of the indices
themselves) should be taken with special care. Flooded areas contain mixtures of water
and land, vegetation, or even urban areas. Therefore, only a fraction of the pixel is free
water, which in turn may be turbid or carry a large amount of material in suspension.
This contribution shows that the choice of one index over another depends on the specific
characteristics of the satellite image and the water body being studied.
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