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Abstract: Image dehazing, a fundamental problem in computer vision, involves the recovery of clear
visual cues from images marred by haze. Over recent years, deploying deep learning paradigms
has spurred significant strides in image dehazing tasks. However, many dehazing networks aim to
enhance performance by adopting intricate network architectures, complicating training, inference,
and deployment procedures. This study proposes an end-to-end U-Net dehazing network model with
recursive gated convolution and attention mechanisms to improve performance while maintaining
a lean network structure. In our approach, we leverage an improved recursive gated convolution
mechanism to substitute the original U-Net’s convolution blocks with residual blocks and apply the
SK fusion module to revamp the skip connection method. We designate this novel U-Net variant
as the Dehaze Recursive Gated U-Net (DRGNet). Comprehensive testing across public datasets
demonstrates the DRGNet’s superior performance in dehazing quality, detail retrieval, and objective
evaluation metrics. Ablation studies further confirm the effectiveness of the key design elements.

Keywords: image processing; image dehazing; deep learning; U-Net

1. Introduction

Image dehazing represents a key research theme in computer vision. Its primary goal
is to retrieve the crispness and detail from images compromised by haze. Its relevance
extends across various sectors, including remote sensing image processing, autonomous
driving, video surveillance, and image restoration. Turbid substances such as haze, smoke,
and water droplets in the atmosphere lead to light refraction, scattering, and absorption
during transmission, causing image degradation, obscured details, contrast reduction,
and color distortion. This degradation process is typically captured by the atmospheric
scattering model [1–3]:

I(x) = J(x)t(x) + A(1− t(x)) (1)

Here, I is the observed hazy image, J is the latent haze-free image, t is the medium
transmission map, A is the global atmospheric light, and x represents the brightness or pixel
value of a location in the haze image. In more detail, J(x)t(x) is called direct attenuation
and describes the scene’s radiance and decay in the medium. A(1− t(x)) is called airlight,
results from previously scattered light, and leads to the shift of the scene color. If the
atmosphere is homogeneous, then the transmission t can be represented by t(x) = eβd(x),
where β is the scattering coefficient of the atmosphere. It indicates that the scene radiance
is attenuated exponentially with the scene depth d. Image dehazing methods aspire to
yield the latent haze-free image J, using the input hazy image I directly or indirectly. It is
important to note that Formula (1) represents a simplified expression of the Koschmieder
model, suitable for small scattering approximation. This approximation applies to a low
haze concentration, short light propagation distances, and isotropic scattering. While the
simplified scattering model might overlook certain complexities in real-world scenarios,
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it can suffice for experimental and algorithmic validation purposes. Therefore, it finds
widespread application in the field of image dehazing.

Traditional image dehazing methods, largely dependent on physical models and man-
ually designed priors, often fall short in complex scenes. However, with the advent of deep
learning, image dehazing methods rooted in deep neural networks have emerged as a focal
research area. Early dehazing networks, primarily based on the atmospheric scattering
model, calculated J by estimating A and t values separately. These methods, however,
lacked effectiveness in restoring details and textures in intricate scenes. Current advanced
dehazing networks deviate from the atmospheric scattering model, employing pairs of
hazy and haze-free images for model training and restoring high-quality haze-free images
by learning the mapping relationship between hazy and haze-free images. The significant
advantage of this approach lies in its capacity to generate haze-free images directly from
input hazy images, lessening the dependence on prior knowledge and strengthening model
robustness. Despite the remarkable progress in dehazing networks, their growing complex-
ity poses challenges as performance improves. To enhance the dehazing performance while
maintaining network simplicity, we integrated minor modifications to the classic U-Net [4]
architecture, resulting in a high-performance, lean, compact dehazing model: the Dehaze
Recursive Gated U-Net (DRGNet). In particular, we used the classic U-Net as our base
architecture, which possesses local residuals [5] and global residuals [6], thereby enabling
the extraction of multi-scale image information. We established residual blocks using
an improved recursive gated convolution mechanism [7], effectively infusing dynamic
weights and high-order spatial interactions into the model, thereby improving feature
extraction. We also improved the SK module [8] to embed a channel attention mechanism
into the model, enabling the dynamic fusion of low- and high-level features. To validate the
efficacy of the DRGNet, we engineered three variants of differing depths and executed trials
using numerous prevalent image dehazing datasets. As depicted in Figure 1, the DRGNet
delivers superior performance and comparatively lower computational overhead while
preserving a lean structure. Additionally, we performed an array of ablation studies to
explore the influence of specific design elements within DRGNet on the model’s dehazing
outcome.
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representative. This method first uses gamma correction coefficients to generate a set of 
front-exposed images, and then pixel-wise weight maps are constructed by analyzing 
both global and local exposedness to guide the fusion process. This method is very com-
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In summary, our work introduces a lean dehazing network: the DRGNet. Compared
to current mainstream dehazing networks, the DRGNet offers an outstanding dehazing
performance while requiring fewer parameters and incurring lower computational over-
head. A simplified network can be easier to train, infer, and deploy. It also shows that
we can still achieve better and better performance through careful design when not using
complex architectures.

2. Related Works

We can categorize mainstream image dehazing methods into four groups.: methods
based on image enhancement, methods based on prior knowledge, methods based on
fusion, and methods based on deep learning. In recent years, many research works have
used multiple methods simultaneously to enhance performance.

Image enhancement-based methods usually do not use the physical model of haze
generation and do not pay much attention to image quality. They use image enhancement
technology to increase the visual effect of foggy images, thereby highlighting specific
details. Standard image enhancement methods include histogram equalization [9,10],
Gamma correction [11–14], multi-scale retinex [15], white balance method [16], median
filtering [17,18], and others. However, dehazing methods based only on image enhance-
ment usually face problems such as pixel oversaturation.

Image fusion-based methods aim to select the best regions from multiple images to
synthesize high-quality images. Among these methods, the method proposed in [19] is
representative. This method first uses gamma correction coefficients to generate a set of
front-exposed images, and then pixel-wise weight maps are constructed by analyzing
both global and local exposedness to guide the fusion process. This method is very
computationally efficient and generates haze-free images. The color quality is good and
the details are precise. In addition, classic image fusion-based dehazing methods also
include [20,21], but they have high computational complexity.

Methods based on prior knowledge generally employ physical laws or manually
crafted rules to tackle image dehazing. Among them, the Dark Channel Prior (DCP)
method [22] stands out as the epitome. The DCP method, premised on physical assump-
tions, mainly targets outdoor hazy images. Guided by the atmospheric scattering model,
it exploits the dark channels within an image to estimate atmospheric light and transmit-
tance, subsequently restoring the haze-free image. Other notable prior knowledge-based
methods encompass the Color Attenuation Prior method [23] and the Edge-Preserving
Decomposition-Based method [24]. These methods are lauded for their robust interpretabil-
ity, efficiency, and simplicity, offering promising dehazing results in specific settings. How-
ever, they need more adaptability, resulting in a subpar performance in complex environ-
ments. These classic prior knowledge-based methodologies have played a crucial role in
early image dehazing research, setting the foundation and inspiration for ensuing studies.

On the other hand, learning-based methods utilize deep learning techniques for dehaz-
ing tasks, emerging as a research hotspot in recent years. Based on their dependence, these
methods can be further divided into two subcategories: those reliant on the atmospheric
scattering model and those that are not. Early dehazing networks [25–27] typically rested
on the atmospheric scattering model, accepting hazy images as inputs, outputting medium
transmission maps or global atmospheric light, and restoring latent haze-free images per
the atmospheric scattering model. However, in contrast to prior knowledge-based methods,
these early dehazing networks needed to exhibit substantial advancements in principles or
performance.

As deep learning has matured and our understanding of image dehazing has become
more nuanced, the most advanced dehazing networks have veered away from rigid physical
assumptions and manually designed rules. Instead, these networks now employ a data-driven
strategy, generating haze-free images directly from their hazy counterparts [28–37]. Depend-
ing on the architecture, commonly used dehazing networks, which function independently
of the atmospheric scattering model, encompass encoder–decoder networks, GAN-based
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networks, attention-based networks, and Transformer-based networks. These advanced
networks demonstrate superior generalization capabilities and robustness compared to
their early predecessors. As a result, they deliver a superior performance in complex
scenarios, such as those involving dense and uneven haze, thus asserting themselves as the
prevailing approach. Despite their advancements, intricate network architectures pose their
challenges. They enhance network performance and significantly escalate the network’s
complexity, making training, inference, and deployment more challenging. Balancing
performance enhancement and complexity is an ongoing area of investigation in dehazing
networks, and this is also the problem we intend to solve in this paper. In addition to the
methods based on supervised learning introduced above, some researchers have proposed
defogging methods based on unsupervised and semi-supervised methods. Ref. [38] pro-
posed a method to continue unsupervised learning, solely using real-world outdoor images
and tuning the network’s parameters by directly minimizing the DCP. Ref. [39] proposes a
semi-supervised learning network: SAD-Net. SAD-Net utilizes both synthetic datasets and
natural hazy images for training and uses an attention mechanism to increase dehazing
performance. These methods can reduce the dependence of the dehazing network on the
data set and have a more robust generalization.

3. Methods

The Dehaze Recursive Gated U-Net (DRGNet) is a 7-stage adaptation of the U-Net,
depicted in Figure 2. Each stage of the DRGNet comprises one or more stacked Recursive
Gated Convolution Blocks (RG-Conv Blocks), which employ the recursive gated convolu-
tion. We recognized the limitations of the original recursive gated convolution for image
dehazing tasks. As such, we implemented several enhancements. We also introduced SK
fusion modules, derived from the SK module, and can dynamically fuse features from the
encoder and decoder while introducing an attention mechanism to the model.
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Figure 2. The overall architecture of DRGNet.

3.1. Motivation

With the development of deep learning technology and the deepening of people’s
understanding of image dehazing tasks, dehazing models based on deep learning are
performing better and better in image dehazing tasks. However, as illustrated in Figure 1,
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we have observed that these high-performing dehazing models often come with complex
architectures, numerous parameters, and significant computational overhead. Such com-
plexity in models is detrimental to training, inference, and deployment. Therefore, a lean
model with excellent dehazing performance is necessary and holds significant research
value.

Owing to the haze effect precipitated by atmospheric scattering, the transmission of
light is disrupted by airborne particulates, causing specific pixel values in the image to
darken. Channels vary in their response to light scattering and absorption, resulting in
differential darkening effects. A typical method in the Prior-based approach is the DCP
method, positing differences in pixel value distribution across channels in a hazy image
window. To some extent, the DCP method’s success verifies the effectiveness of channel-
by-channel feature extraction. Recursive gated convolution operates by executing gated
convolutions recursively on the input information’s channel dimension to extract features.
Intuitively, superior to traditional convolution, recursive gated convolution more efficiently
merges features from different channels, thereby enhancing image dehazing efficiency. The
direct application of original recursive gated convolution to image dehazing is challenging,
leading to our adaptation of it to cater to image dehazing task specifics. U-Net is an
encoder–decoder convolutional neural network design characterized by simplicity, fewer
parameters, fast inference speed, and proficiency in image detail information. Combining
recursive gated convolution with U-Net architecture offers a lean, high-performance image
dehazing network. Attention mechanisms have gained significant attention in recent years.
Our study has revealed that by making subtle modifications to the SK module, it is possible
to introduce an attention mechanism to the model while dynamically fusing feature maps
from different branches.

3.2. Recursive Gated Convolution Block

We propose that the Recursive Gated Convolution Block (RG-Conv Block) is fun-
damentally rooted in the recursive gated convolution mechanism. Unlike conventional
convolution blocks, the RG-Conv Block improves model performance by explicitly model-
ing high-order interaction mechanisms. Figure 3 depicts the structure of an RG-Conv block
with a second-order interaction. Depending on the circumstances, we can easily adjust the
value of the order, thereby improving the model’s capability.
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Let’s define X ∈ RHW×C as the input feature map and C represents the channel
number of X. Initially, we leverage a projection layer to effect a dimensional transformation
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on X. Subsequently, the projection layer’s output is divided by channel dimension, leading
to the generation of a series of features:[

PHW×C0
0 , DHW×C0

0 , DHW×C1
1 , . . . , DHW×Cn−1

n−1

]
= Proj(X) ∈ RHW×2C (2)

In Equation (2), n symbolizes the value of the order while the channel number Ck of
each feature adheres to the following conditions: C0 + ∑n−1

k=0 Ck = 2C and Ck = C/2n−k−1.
We undertake gated convolution [40] in a recursive style. For an RG-Conv block

featuring n-order interaction, the execution of gated convolution is necessary n times. We
assume that the output of k-th gated convolution is Pk. The computation process of Pk+1 is
in line with the Equation (3):

Pk+1 = φk(Sigmoid(gk(P k))� fk(Dk)) ∈ RHW×Ck+1 (3)

In this context, fk stands for Depth-wise Convolution [41] and� represents element-wise
multiplication, with gk and φk being piecewise functions. In Equation (4), Linear(Ck−1, Ck)
denotes the mapping of the channel dimension of the feature vector from Ck−1 to Ck.
Equation (5) is the same.

gk =

{
Identity, k = 0

Linear(Ck−1, Ck), k > 0
(4)

φk =

{
Identity, k + 1 < n

Linear(Ck, C), k = n− 1
(5)

It is worth mentioning that we performed pertinent ablation experiments in the exper-
imental section. The findings demonstrated that bounded functions such as the Sigmoid
function [42] and the Hard-Sigmoid function [43] could effectively circumvent gradient
explosion. On the contrary, eliminating the activation function or utilizing unbounded
functions such as the ReLU function [44] leads to gradient explosion, while employing the
Tanh activation function could also trigger gradient explosion. This likelihood escalates
with increasing order n.

3.3. SK Fusion Module

The SK module is an attention module that can significantly improve the performance
of the model when applied to basic computer vision tasks [45,46]. The SK fusion module
we used is a variation of the SK module.

In DRG-Net, as depicted in Figure 2, there are skip connections between the encoding
and decoding stages, and the features of the encoding and decoding stages are fused to
help the network better restore the detailed information. We use the SK fusion module to
fuse features from different stages dynamically. For the feature map f1 ∈ Rc1×hw from the
encoding stage and the feature map f2 ∈ Rc2×hw from the decoding stage, their process of
dynamic fusion by the SK fusion module is shown in Figure 4.

For feature map f1, it undergoes a linear function g( f1) = Linear(c1, c2), which
matches its channel dimensions with f2. Subsequently, g( f1) and f2 are fused through
element-wise addition to generate a feature map denoted as s. Following this, global aver-
age pooling [47] is employed to generate channel-wise statistics, multi-layer perceptrons
and the softmax function are then used to obtain channel attention for the feature map s,
and the channel dimension separates the result to procure the fusion weights of separate
branches. The above process can be described by Equation (6).

{w1, w2} = Split(So f tmax(MLP(GAP(g( f1) + f2)))) (6)
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Lastly, feature maps from distinct branches are added to the fusion weights in a
weighted manner to produce the final output of the SK fusion module:

Out = w1g( f1) + w2 f2 (7)

3.4. Training Loss

In the training process of DRGNet, we elected to use the L1 loss function. The
principal distinction between the L1 and L2 loss (MSE loss) functions lies in their handling
of errors. The L2 loss function penalizes more significant errors more severely (as errors
are squared), making the model inclined to minimize these substantial errors. However,
this may also make the model excessively sensitive to noise or outliers. In image dehazing,
such sensitivity could lead the model to overcorrect hazy effects, resulting in the loss or
over-sharpening of image details. In contrast, the L1 loss function yields superior results
in image dehazing tasks. In the ablation experiments in the subsequent chapters, we also
verified this point of view.

3.5. Network Architecture Details

DRGNet is a 7-stage derivative of the U-Net blueprint. To simplify the model and
ensure performance and stability during training, DRGNet’s architecture details are as
follows: each stage accommodates RG-Conv blocks at a quantity ratio of {1:1:1:2:1:1:1}.
RG-Blocks in the same stage should have the same interaction order, and the interaction
orders of RG-Block in different stages are: {1, 2, 2, 3, 2, 2, 1}, while the kernel size of
DW-Conv within each RG-Block is 5. To rigorously evaluate the dehazing capabilities
of DRGNet, we engineered three depth-differentiated variants: DRGNet-T, DRGNet-B,
and DRGNET-L. Table 1 delineates the architectural details of each variant. In subsequent
ablation experiments we will verify the rationality of this design.
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Table 1. Architecture details of DRGNet with varying depths. “Depth” indicates the number of
blocks per stage, “Order” indicates the interaction order of blocks per stage.

Name Depth Order

DRGNet-T {2, 2, 2, 4, 2, 2, 2} {1, 2, 2, 3, 2, 2, 1}
DRGNet-B {4, 4, 4, 8, 4, 4, 4} {1, 2, 2, 3, 2, 2, 1}
DRGNet-L {8, 8, 8, 16, 8, 8, 8} {1, 2, 2, 3, 2, 2, 1}

4. Experimental
4.1. Data Set and Experimental Setup

Experiments were conducted on the RESIDE [48] and Haze-4K [49] datasets to validate
our method. RESIDE, with its diverse data sources and image content, is subdivided into
ITS (Indoor Training Set), OTS (Outdoor Training Set), and SOTS (Synthetic Objective
Testing Set). We utilized ITS (13,990 image pairs) and OTS (313,950 image pairs) to train the
dehazing network and the indoor and outdoor scenes from the SOTS dataset (500 image
pairs each) for testing. The Haze4K dataset, a synthetic dataset, includes 4000 paired images
from both indoor and outdoor scenes. A total of 3000 pairs were employed for training and
the remaining 1000 for testing.

We employed the PyTorch framework for coding and ran the training and testing
on an A100 (80 G) graphics card. During training, the input image dimension was set to
256 × 256. The mini-batch size for variants of DRGNet at varying depths was 32, with
1000 epochs of training. We found that the size of the learning rate significantly influences
training stability; hence, we opted for smaller learning rates for deeper variants. For the T,
B, and L variants, according to the linear scaling rule [50], we established learning rates
of {12 × 10−4, 8 × 10−4, 4 × 10−4}, respectively. We incrementally elevated the learning
rate using a warmup strategy for 50 epochs. Subsequently, the cosine decay strategy [51] is
employed to gradually reduce the learning rate to 1/100 of the initial value. In the training
process, we utilized the AdamW optimizer [52].

4.2. Quantitative Comparison and Qualitative Analysis

To corroborate the efficacy of our proposed method, we executed a quantitative per-
formance comparison between the DRGNet and the baseline methods. The results are in
Table 2. In this quantitative comparison, the DRGNet performed well on the extensive
RESIDE and more concise Haze4K datasets. Compared to existing methods, the DRGNet
strikes a balance between performance and model complexity. For example, when com-
pared with the classic dehazing network FFA-Net, the DRGNet-T only used about 1% of
the MACs and around 20% of the parameters, and improved PSNR [53] and SSIM [53]
by 2.47 and 0.005, respectively. Furthermore, when contrasted with the more advanced
MixDehazeNet-S, the DRGNet-T demonstrated a comparable dehazing performance while
reducing the MACs and parameters by approximately 76% and 47%, respectively.

Figure 5 showcases the visual dehazing outcomes of the DRGNet-T compared with
other methods. Our method outshines existing methods in terms of dehazing quality. The
DRGNet mitigates haze influence, resulting in amplified clarity, enhanced contrast, and
restored color images. It proficiently retains details and textures camouflaged by the haze,
ensuring aesthetically pleasing outputs. Moreover, our network performs robustly when
processing hazy images from various scenes, consistently delivering reliable dehazing
results. It efficiently mitigates haze while suppressing artifacts, representing an optimal
compromise between these two aspects of image restoration.
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Table 2. Benchmarking Dehazing Techniques on Three Datasets. We use a single A100 (80 G) graphics
card to train our dehazing network. For a fair comparison, we used a single RTX3090 graphics card
to test the overhead of DRGNet. Data for other methods in the table are taken from their respective
papers. ‘-’ indicates that there are no such data in the original paper.

Model
RESIDE-IN RESIDE-OUT Haze4K Overhead

PSNR SSIM PSNR SSIM PSNR SSIM MACs Param Latency

DCP [22] 16.62 0.818 19.13 0.815 14.01 0.760 - - -
DehazeNet [25] 19.82 0.821 24.75 0.927 19.12 0.840 0.581 G 0.009 M 0.919 ms

MSCNN [26] 19.84 0.833 22.06 0.908 14.01 0.510 0.525 G 0.008 M 0.619 ms
AOD-Net [27] 20.51 0.816 24.14 0.920 17.15 0.830 0.115 G 0.002 M 0.390 ms
GCANet [28] 30.23 0.980 - - 25.09 0.923 18.41 G 0.702 M 3.695 ms

GridDehazeNet [29] 32.16 0.984 30.86 0.982 - - 21.49 G 0.956 M 9.905 ms
MSBDN [30] 33.67 0.985 33.48 0.982 22.99 0.850 41.54 G 31.35 M 13.250 ms
PFDN [31] 32.68 0.976 - - - - 50.46 G 11.27 M 4.809 ms

FFA-Net [32] 36.39 0.989 33.57 0.984 26.96 0.950 287.8 G 4.456 M 55.91 ms
PMNet [33] 38.41 0.990 34.74 0.985 - - 81.13 G 18.90 M 28.08 ms
UDN [34] 38.62 0.991 34.92 0.987 - - - 4.25 M -

gUNet-T [35] 37.99 0.993 34.52 0.983 31.60 0.984 2.595 G 0.805 M 3.391 ms
MixDehazeNet-S [36] 39.47 0.995 35.09 0.985 - - 22.06 G 3.16 M 14.56 ms
DehazeFormer-T [37] 35.15 0.989 33.71 0.982 - - 6.658 G 0.686 M 10.59 ms

MAXIM [54] 38.11 0.991 34.19 0.985 - - 216 G 14.10 M -
SGID-PFF [55] 38.52 0.991 30.20 0.975 - - 152.80 G 13.87 M 20.92 ms

LKD-B [56] 38.57 0.993 34.81 0.983 - - 12.20 G 1.22 M -
DEA-Net [57] 40.20 0.993 36.03 0.989 33.19 0.99 32.23 G 3.653 M 7.093 ms

DRGNet-T 38.86 0.994 34.81 0.983 32.42 0.986 2.907 G 0.939 M 7.57 ms
DRGNet-B 39.82 0.995 35.32 0.984 32.89 0.987 5.207 G 1.675 M 13.70 ms
DRGNet-L 40.76 0.996 36.33 0.986 33.21 0.988 9.803 G 3.146 M 25.77 ms
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4.3. Ablation Study

To analyze the model’s key components, we conducted ablation studies. Table 3 shows
the results of ablation experiments, with Figure 6 showing the training process of the
DRGNet-T in selected ablation experiments.
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Table 3. Ablation study of network architectures.

Methods
RESIDE-IN Overhead

PSNR SSIM MACs Param Latency

Baseline 38.86 0.994 2.907 G 0.939 M 7.57 ms

RGC→ GC 38.34 ↓ 0.993 ↓ 2.607 G ↓ 0.806 M ↓ 6.21 ms ↓
Sigmoid→ Hard-Sigmoid 39.02 ↑ 0.995 ↑ 2.909 G ↑ 0.939 M 7.67 ms ↑

→ ReLU NaN NaN 2.907 G 0.939 M 7.81 ms ↑
→ GeLU NaN NaN 2.907 G 0.939 M 7.43 ms ↓

Order→ [1, 1, 1, 1, 1, 1, 1] 38.34 ↓ 0.993 ↓ 2.607 G ↓ 0.806 M ↓ 6.21 ms ↓
→ [2, 2, 2, 2, 2, 2, 2] 38.76 ↓ 0.994 3.036 G ↑ 0.918 M ↓ 7.54 ms ↓
→ [3, 3, 3, 3, 3, 3, 3] 38.07 ↓ 0.991 ↓ 3.181 G ↑ 0.951 M ↑ 9.26 ms ↑

SK Fusion→ Cat 37.59 ↓ 0.990 ↓ 3.115 G ↑ 0.958 M ↑ 7.31 ms ↓
→ Sum 37.32 ↓ 0.989 ↓ 2.904 G ↓ 0.934 M ↓ 7.10 ms ↓

Kernel Size = 5→ 3 37.64 ↓ 0.989 ↓ 2.69 G ↓ 0.904 M ↓ 7.11 ms ↓
→ 7 38.00 ↓ 0.991 ↓ 3.239 G ↑ 0.991 M ↑ 7.67 ms ↑

L1 LOSS→ L2 LOSS 38.49 ↓ 0.993 ↓ 2.909 G ↑ 0.939 M 7.81 ms ↑
Depth × 2 39.82 ↑ 0.995 ↑ 5.207 G ↑ 1.675 M ↑ 13.70 ms ↑
Width × √2 39.70 ↑ 0.995 ↑ 4.965 G ↑ 1.638 M ↑ 7.35 ms ↑

In the DRGNet, we used a series of recursive gated convolution blocks with different
orders to facilitate feature extraction. When the order was 1, the recursive gated convolution
block was degraded to a standard gated convolution block. Our ablation studies showed
performance differences between these two mechanisms, suggesting that the recursive
gated convolution mechanism significantly improves the model’s performance. Further-
more, we examined the activation function design within the recursive gated convolution
blocks. We incorporated a sigmoid function into the traditional recursive gated convolution
mechanism to prevent gradient explosion. Subsequent ablation studies confirmed the effec-
tiveness of our approach: on removing the bounded function or resorting to unbounded
functions such as ReLU, NaN values predictably emerged during the training phase. Lastly,
we explored the influence of order. The experimental results show that the order can affect
the model’s performance and efficiency. If the order is too small, it will affect the model’s
performance. If the order is too large, it will become difficult to train and infer the model.
Therefore, deploying blocks in different orders across stages at different depths is a feasible
strategy, which we adopt.

It is crucial to highlight that the RG-Conv block introduces a notably significant
increase in latency. We conjecture that this could stem from the recursive gating mechanism,
which engages DW-Conv at each recursion step. Conventional deep learning frameworks
often enhance computational efficiency through optimization libraries (e.g., cuDNN) and
hardware acceleration (e.g., GPUs). Nonetheless, these optimizations might not seamlessly
support DW-Conv in specific scenarios, resulting in suboptimal efficiency.

The original SK Module boasts a lightweight nature, seamlessly integrating without
imposing substantial additional computational costs. Conventional U-Net models com-
monly resort to concatenation fusion for amalgamating features sourced from diverse
branches. However, within the DRGNet, we utilized the SK Fusion module, resulting
in a conspicuous elevation in the model’s dehazing prowess. The improvement may be
attributed to the following factors: (1) The SK fusion module introduces an attention mech-
anism to the model. (2) Unlike concatenation fusion, the SK fusion module can dynamically
fuse features from different branches.
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Figure 6. Ablation Study: Training DRGNet-T on SOTS Indoor Dataset. The X-axis represents the
number of training iterations, and the Y-axis represents the dehazing performance of the model (we
use the Peak Signal-to-Noise Ratio (PSNR) to measure if PSNR = 0 indicates that Nan appeared
during the training process). For better visualization, we calculate the average every twenty points
and plot it.

The kernel size refers to the convolution kernel size in the DW-Conv of the recursive
gated convolution block. Our experiments revealed that kernel size 5 is an optimal choice
for the DRGNet-T. However, any increase or decrease in kernel size led to a significant drop
in performance.

The experimental results show that compared with the L2 loss function, the improve-
ment brought about by using the L1 loss function is significant. Simultaneously, the
simplicity of the L1 loss function also reduces the computational cost and latency of the
model.



J. Imaging 2023, 9, 183 12 of 14

Irrespective of whether the depth or width of the DRGNet-T is augmented, a significant
enhancement in the model’s performance ensues. This observation underscores the robust
scalability inherent in the DRGNet. It is noteworthy that, when compared to broader
networks, deeper networks exhibit an enhanced performance. However, this advantage
comes at the expense of increased parameters and computational demands. Simultaneously,
as the network depth expands, the count of RG-Conv blocks also rises, resulting in a
substantial escalation of latency in deeper networks.

5. Discussion

This paper introduces an efficient dehazing network: the DRGNet. We use the U-Net
with local and global residuals as the basic architecture to extract multi-scale information
of features. To enhance the extraction of features from various channels in hazy images, we
have improved the recursive gated convolution mechanism and created RG-Conv blocks
using it.

Simultaneously, we have leveraged SK fusion to supersede the conventional cascade
fusion. This innovation empowers the model’s fusion layer to dynamically integrate feature
maps from distinct branches while incorporating an attention mechanism into the model’s
framework.

We have presented three distinct variants of the DRGNet, varying in depth, and
evaluated their performance across multiple publicly available datasets. The test results
unequivocally showcase the exceptional capabilities of the DRGNet. We conducted exten-
sive tests to confirm the effectiveness of our proposed designs. This will provide valuable
guidance for future researchers to analyze the key designs that enhance the performance in
dehazing networks.
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