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Abstract: Image relighting, which involves modifying the lighting conditions while preserving the
visual content, is fundamental to computer vision. This study introduced a bi-modal lightweight deep
learning model for depth-guided relighting. The model utilizes the Res2Net Squeezed block’s ability
to capture long-range dependencies and to enhance feature representation for both the input image
and its corresponding depth map. The proposed model adopts an encoder–decoder structure with
Res2Net Squeezed blocks integrated at each stage of encoding and decoding. The model was trained
and evaluated on the VIDIT dataset, which consists of 300 triplets of images. Each triplet contains
the input image, its corresponding depth map, and the relit image under diverse lighting conditions,
such as different illuminant angles and color temperatures. The enhanced feature representation and
improved information flow within the Res2Net Squeezed blocks enable the model to handle complex
lighting variations and generate realistic relit images. The experimental results demonstrated the
proposed approach’s effectiveness in relighting accuracy, measured by metrics such as the PSNR,
SSIM, and visual quality.

Keywords: image enhancement; image relighting; depth-guided

1. Introduction

The task of relighting involves the transfer of the color temperature and the light
source direction from one illumination setting to another illumination setting. The setting
may either be user-defined or random. Despite the complexity involved in this task, there
are many implications, especially with the latest developments in technologies and their
applications. For example, with the recent innovations in digital and smartphone cameras,
the illumination in the images is controlled in real-time. However, maintaining the illumi-
nation setting mitigates the outdoor lighting effect, the weather conditions, the shadows
of nearby objects, sunlight reflections, etc. The digital cameras available on the market
offer techniques to remove unwanted lighting effects or add the required lighting effects.
Still, these techniques require much human expertise and intervention. Despite this, in
the age of augmented reality (AR) devices, different illumination settings, for example,
the distant light sourcesin both outdoor and indoor scenes, are greatly needed to enhance
the user experience in many domains, especially online shopping for interior furnishings.
Image relighting also has significant implications for the gaming industry, wherein scene
relighting is performed based on user instructions. Similarly, we cannot deny the utility
of image-relighting tasks in forensic analysis and surveillance applications. In forensic
analysis and surveillance applications, one-to-one relighting can enhance the details in
images captured under challenging lighting conditions. This can help investigators and
law enforcement agencies gain better insights regarding the evidence and scenes. Besides
medical image analysis, computer graphics and animation, artistic expression, and visual
effects, image relighting helps create better results. Recently, researchers have been explor-
ing the applications for training data augmentation by generating variations of images with
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different lighting conditions; models can be trained to be more-robust and -generalizable to
various lighting scenarios.

To manage the illumination settings, many techniques such as histogram equaliza-
tion, gamma correction, retinex-theory-based methods [1,2], low-light image-enhancement
methods [3], shadow removal [4,5], etc., are available. However, these techniques focus
on correcting the existing lighting conditions, rather than changing the current ones to
different lighting conditions. Transferring the images from the input lighting settings to
predefined lighting settings is a challenging task. This task involves the constraints of
existing shadows, different light source directions, existing unlit sources, etc. Some of the
examples from the VIDIT dataset [6] are presented in Figure 1. Deep learning methods
have proven their effectiveness in almost all the operations related to image-to-image-
translation. The benefits of using deep learning methods are that these techniques do
not require any prior information such as geometric priors, etc. Moreover, it is easy to
generalize the results, and no human intervention is necessary once the model has been
trained. Recently, some deep-learning-based methods [1,7–11] have been proposed without
explicit inverse rendering steps for estimating the scene properties.

Figure 1. Example images from the VIDIT dataset [6].

However, deep-learning-based methods suffer from substantial data requirements or
complex and high-cost computations, making them unsuitable for real-time applications.
Hence, there is a need for a new architecture that can achieve state-of-the-art results even
when trained on fewer images and that can effectively relight the images in real-time. The
proposed model tackles this problem using a bimodal encoder–decoder structure with
Res2Net Squeezed blocks, inspired by [12], integrated into each stage. The encoder module
separately captures multi-scale features from the input and corresponding depth images. In
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contrast, the decoder module reconstructs the relit image by progressively upsampling and
merging the RGB and depth features. The Res2Net Squeezed blocks within each module
provide increased receptive fields, allowing the model to capture fine-grained details and
high-level semantic information without any added computation. The proposed model
achieves state-of-the-art performance with only 454,159 parameters and works in real-time.
In short, the contributions of the proposed model are as follows:

• A new U-Net-based architecture characterized by fewer parameters is proposed. To
our knowledge, this is the smallest-size model among all existing methods for image
relighting that can achieve competitive performance.

• A modified version of the Res2Net blocks, known as Res2Net Squeezed blocks, which
implicitly extends the receptive field area and thus collects and retains more informa-
tion about the image, is proposed.

• A depth-guided stream is introduced, which is merged with the corresponding
RGB features of the same size and then progressively up-sampled to obtain the
target images.

• A bi-modal depth-guided model that extracts the features from the depth and RGB im-
ages using two streams is designed. This model implicitly enhances the receptive field
by utilizing the Res2Net Squeezed blocks for image relighting. Extensive experiments
and a comparative analysis demonstrated that our proposed method outperformed
the others while maintaining high computational efficiency.

2. Related Work

This section provides a concise overview of existing studies in the same context. Ma-
nipulating image lighting conditions is a complex task that demands meticulous execution.
Traditionally, the practice of inverse rendering [13] has been employed to facilitate mod-
ifying illumination conditions. Techniques such as using specialized optical equipment
to assess geometry [14–16], evaluating surface reflectance [7,17], analyzing environmental
illumination [18,19], and reversing global illumination within the scene [20] have gained
widespread popularity as fundamental approaches for inverse rendering. However, it is
important to acknowledge that these methods are inherently complex, resource-intensive,
and require significant manual intervention from domain experts.

Furthermore, image-based techniques such as histogram equalization, gamma correc-
tion, and solutions based on the retinex theory [1,2] are extensively used for illumination
estimation and manipulation. Nevertheless, these methodologies have certain limitations,
primarily in generating only rudimentary, low-level manipulations that are often vague
and ambiguous.

To address the challenge of producing ambiguous outcomes, image relighting, illu-
mination manipulation, and illumination estimation have shifted towards learning-based
methods [21,22]. Deep learning neural networks, in particular, have emerged as powerful
tools, demonstrating remarkable capabilities in various image enhancement tasks. These
tasks encompass a diverse range of subtasks, including colorizing black and white im-
ages [23], restoring damaged images [24,25], removing moiré patterns from images [26],
denoising noisy images [27], deblurring blurred images [28], and enhancing image resolu-
tion [29], among others.

In this context, it is crucial to highlight that image illumination manipulation comprises
various subtasks. Some of the widely addressed challenges include existing illumination
correction [30–32], shadow removal [33], estimation of illumination effects [34], determina-
tion of illumination direction [34], and the actual process of relighting images [8,9,34].

However, our present paper focuses on the specific problem of one-to-one image
relighting. This involves predicting an output image with a target illumination setting
based on an input image characterized by diverse and unknown illumination angles and
color temperature. Our research efforts are primarily centered around the VIDIT dataset,
which was ingeniously proposed by Helou et al. [6] and subsequently used in illumination
transfer and image relighting competitions, namely, AIM 2020 [8] and NTIRE 2021 [9].
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These competitions have witnessed the participation of various researchers, leading to
the development of winning solutions that incorporated and adapted existing modules or
networks, which have previously demonstrated impressive representation capabilities in
other domains.

To delve deeper into some noteworthy examples, the winners of AIM 2020, Puthessery
et al., devised WDRN [1], a novel approach leveraging wavelet transformations to enable
efficient multi-scale representations. Additionally, Paul et al. [35] skillfully integrated
pix2pix [36] into their framework, harnessing the power of adversarial learning to enhance
the quality of their generated images further. Moreover, Yang et al. [37] ingeniously
integrated depth maps into their relighting network, relying on an RGB-D saliency detection
method to guide their depth-guided relighting process. In another notable work, S3net [10],
the authors ingeniously combined RGB images with depth images during the feature
extraction stage.

Inspired by the winning solution [38], our proposed model utilizes two separate
streams in the encoder to estimate features from the RGB image and depth maps. Unlike
MBNet [38], our innovation lies in fusing the depth and RGB features together using an
attention mechanism within the decoder module before upsampling. The subsequent
section will delve into the details of our proposed architecture, highlighting its unique
features and improvements over existing methodologies.

3. Approach and Proposed Network
3.1. Task Definition

In a one-to-one relighting task, the input and the target lighting settings are pre-
determined and fixed for all the captured scenes. We have formulated this problem as

Iout = f (Iin, Depthin), (1)

where Iout is the target relit image, and Iin and Depthin represent the RGB input image
and depth image, respectively. f represents the model we designed to obtain the relighted
images. This is similar to almost all image-to-image-translation tasks; however, here, we
are adding the corresponding depth maps as the guide.

3.2. Detail of the Architecture

The proposed network architecture is designed to extract depth effectively and image
features through two encoder structures. The details of the architecture are illustrated in
Figure 2. The image and depth image each go through the coordinate convolution layer,
allowing the capture of spatial patterns and correlations specific to each modality. The
resulting feature maps from these blocks are further processed by their corresponding
encoder blocks. Each encoder block consists of two Res2Net Squeezed blocks [12,39],
followed by down-sampling layers that progressively reduce the spatial dimensions. This
hierarchical representation enables the extracting of local and global contextual information
from the input data. Specifically, the image encoder path comprises four encoder blocks,
while the depth encoder path also consists of four encoder blocks, ensuring comprehensive
feature extraction from both modalities.

To fuse the extracted features and generate the final output, the outputs of the two
encoder blocks are concatenated and passed to the decoder block. The decoder block
reconstructs the output by gradually increasing the size of the feature maps through
upsampling layers. Similar to the U-net [39–41] architecture, the decoder employs skip
connections to concatenate feature maps of the same size from earlier layers, facilitating
the integration of both low-level and high-level information. This process enhances the
network’s capacity to recover detailed and contextual features in the relit images. Notably,
a significant departure from conventional approaches is that our network is trained to learn
the residual information instead of directly predicting the full images. As a result, the final
output is obtained by taking the difference between the original and relit images. This
strategy of residual learning enables the network to focus on capturing and reconstructing
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the variations or changes induced by the relighting process. This approach promotes more
efficient training and empowers the generation of high-quality relit images with enhanced
fine details and subtle variations.

Figure 2. A detailed view of the proposed architecture. The proposed architecture consists of a two-
stream encoder for RGB images and depth input, respectively. The block outputs of the RGB stream
are concatenated with the decoder’s output using the skip connections, and the block outputs of the
depth stream are multiplied using element-wise multiplication. The network is trained end-to-end.

In summary, the proposed network architecture effectively integrates depth and image
features through separate encoding paths, leveraging the power of Res2Net Squeezed
blocks and skipping connections in the decoding stage. Training the network to learn the
residual information allows for accurately capturing variations between the original and
relit images. This results in superior relighting performance and a finer level of control in
the relighting process.

3.3. Coordinate Convolution Layer

The 2D coordinate convolution layer [41,42] is a fundamental component of convolu-
tional neural networks (CNNs) that operates on 2D spatial data, such as images. Figure 3
shows the detailed coordinate convolutional layer as given in the original paper. It performs
convolution by combining the input feature map with a set of learnable filters. In this layer,
each filter is associated with a specific 2D coordinate position, represented by its center.
The output at each spatial location is computed by convolving the corresponding filter with
the input feature map centered at that position, followed by a nonlinear activation function.
Mathematically, the output feature map can be expressed as

Yi,j =
M

∑
m=1

N

∑
n=1

Wm,n · Xi+m,j+n + b, (2)

where Yi,j denotes the output feature map at position (i, j), Xi+m,j+n represents the input
feature map at position (i + m, j + n), Wm,n is the learnable filter associated with the
coordinate offset (m, n), and b is a bias term. The resulting feature maps capture local
spatial patterns, enabling the network to learn hierarchical representations of the input data.

3.4. Res2Net-Squeezed

The Res2Net-Squeezed [12] block (Figure 4) is an extension of the Res2Net block,
designed to enhance the representation power of deep neural networks. It introduces
“squeezing” further to exploit the hierarchical features within a Res2Net block. In this
block, the input feature map is divided into multiple branches, each processing a different
scale of information. Convolutional layers with different dilation rates are applied within
each branch to capture multi-scale context. Additionally, the LeakyReLU [41] activation
function is incorporated within the convolutional block to introduce non-linearity. This
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modification helps alleviate the vanishing gradient problem by allowing a small negative
slope for negative input values, thereby enhancing the learning capability of the network.
The modified Res2Net-Squeezed block can be represented mathematically as

Y = F(X) = X +
n

∑
i=1

Wi ∗ LeakyReLU(X), (3)

where Y denotes the output feature map, X represents the input feature map, Wi represents
the weights of the i-th convolutional layer, and ∗ denotes the convolution operation. The
LeakyReLU activation function is applied element-wise within the convolutional block,
ensuring that the gradients can flow backwards even for negative input values.

Figure 3. Coordinate convolutional layer as proposed in the original paper [42] .

Figure 4. Block diagram of Res2Net-Squeezed block [12].

By incorporating the LeakyReLU [41] activation layer within the Res2Net-Squeezed
block, the modified architecture benefits from the multi-scale context captured by the
Res2Net mechanism and gains the ability to learn more expressive and robust representa-
tions by introducing non-linearity.

3.5. Squeeze-and-Excitation

The Squeezed block [43] is introduced to enhance further the selection of informative
features within each scale of the Res2Net block. It is designed to capture the most rele-
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vant contextual information while suppressing less useful information. By doing so, the
Squeezed block effectively promotes feature maps with high discriminative power, leading
to more effective feature representation.

The core idea of the Squeezed block is to employ global pooling operations, such
as global average pooling (GAP) or global max pooling (GMP), to reduce the spatial
dimensions of each feature map. This pooling operation aggregates information across the
entire spatial extent of the feature map, forcing the network to focus on the most salient
and discriminative features.

After the global pooling operation, the reduced feature maps undergo a squeeze-
and-excitation mechanism. The mechanism aims to recalibrate the channel-wise feature
responses to highlight important channels and suppress less informative ones. This step is
crucial in enhancing the feature selection process within each scale of the Res2Net block.

Let X ∈ RH×W×C be the input feature map. The Squeezed block operation is defined
as follows:

Zc =
1

H ×W

H

∑
i=1

W

∑
j=1

Xi,j,c, ∀c = 1, 2, . . . , C (4)

Ec = σ(FC2(δ(FC1(Zc)))), ∀c = 1, 2, . . . , C (5)

Yi,j,c = Ec · Xi,j,c, ∀i = 1, 2, . . . , H; j = 1, 2, . . . , W; c = 1, 2, . . . , C, (6)

where FC1 and FC2 are fully connected layers, δ(·) is the ReLU activation function, and
σ(·) is the sigmoid activation function.

The output Y represents the squeezed feature map, which is used in combination
with the original Res2Net block features to create a more expressive and discriminative
representation for downstream tasks.

4. Experimental Setup
4.1. Dataset

The novel VIDIT [6] dataset was employed for this study, comprising 300 training
scenes, while the validation and test set each consisted of 90 scenes, with an equal distribu-
tion between them. Notably, the scenes in each set were mutually exclusive. Each scene
was captured in the dataset 40 times, encompassing 8 equally-spaced azimuthal angles
and five different color temperatures for the illumination. The images had a resolution
of 1024 × 1024 and one sample consisted of input images, corresponding depth map and
ground truth. Except for the ground-truth test data, the complete dataset is publicly avail-
able online [6]. In research papers outside of the challenge, it is customary for authors
to present their results based on the validation set for reporting purposes. The same is
followed for result reporting in this paper. However, for training purpose, the training
data is split into an 80–20 ratio. Hence, out of 300 training images, 240 images are used for
training and 60 images are used for validating the model.

4.2. Data Augmentation

Data augmentation is vital for training an image-relighting model to enhance its
generalization and robustness. This augmentation process involves applying horizontal
shifting, vertical shifting, and 90-degree rotation to input RGB images, depth images, and
ground truth images. Horizontal and vertical shifting involves moving the images along
the x- and y-axes, introducing diversity in object positions and perspectives. The 90-degree
rotation augments the images by altering their orientation.

By applying these augmentations, the model can handle variations in lighting con-
ditions and object placements that may occur in real-world scenarios. The increased
variability in the training data improves the model’s ability to generalize across different
lighting scenarios, making it more reliable and accurate when applied to relight images.
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Consequently, this data augmentation strategy empowers the image-relighting model to
achieve better results and effectively adapt to various lighting conditions, enhancing its
overall performance and applicability.

4.3. Loss Function

The model is trained using three distinct loss functions: mean absolute error (MAE)
loss, structural similarity index (SSIM) loss, and gradient loss. Let N be the number of
samples in each batch, and the average mean squared error loss is defined as follows:

LMAE =
1
N

N

∑
i=1
‖ f (xi)− xi)‖. (7)

In this equation, xi represents the input degraded image and f (xi) represents the
restored image using our model.

Next, the SSIM loss is defined as

LSSIM =
1
N ∑ i = 1N(1− SSIM(xi, f (xi))), (8)

where SSIM is the structural similarity index function as defined in the paper [44].
Lastly, the gradient loss [45] is computed as the L1 distance between the gradients of

y and ŷ:

LGrad =
1
N ∑ i = 1N |∇xy−∇x ŷ|1 +

∣∣∇yy−∇yŷ
∣∣
1. (9)

Therefore, the final loss function is a weighted sum of these three losses:

TLoss = 0.15 · LSSIM + LMAE + LGrad, (10)

where the coefficient 0.15 is used to adjust the importance of the SSIM loss compared to the
other two losses.

4.4. Training

We normalized the images to a range of 0 to 1 during the training process. No
additional pre- or post-processing steps were applied to ensure simplicity and efficiency
during inference. To update the model weights, we utilized the Adam optimizer. The initial
learning rate was set to 0.001, and if the validation loss did not improve after 15 epochs, the
learning rate was reduced by 10%. With a batch size of 2, the model was evaluated using
the peak-signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Training took
place for 200 epochs, utilizing a 16 GB NVIDIA Tesla K80 GPU on Google Colab pro.

4.5. Ablation Study

In this section, we present ablation studies that demonstrate the effectiveness of our
method and provide detailed analyses of the proposed modules. The key components
of our model are the coordinate convolution layer and the Res2Net-Squeezed block. Our
primary focus is on examining the impact of these two components on the performance
of our proposed network. To begin, we verify the effectiveness of the residual learning
strategy when combined with its extended squeezed version. Following this, we discuss
the influence of using the coordinate convolution layer. All ablation studies were conducted
using the VIDIT [6] dataset.

4.5.1. Experiments on Residual Strategy

The Res2Net-Squeezed block plays a crucial role in the proposed network, serving as
a foundational component for both the encoder and decoder segments. By incorporating
multi-scale feature fusion, the Res2Net-Squeezed block enables the capture and combine
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of features from multiple receptive fields. The efficacy of the Res2Net-Squeezed block is
outlined in Table 1.

Table 1. Quantitative evaluation for residual strategy.

TYPE SSIM PSNR

w/o Residual Learning 0.6734 16.88
Vanilla Residual Block [46] 0.6801 17.34

Vanilla Res2Net [12] 0.7008 18.09
Res2Net-Squeezed block 0.7185 19.48

Table 1 illustrates the utilization of distinct block variations. The vanilla Res2Net
configuration employs the original Res2Net block [12] as its core. The vanilla residual
block [47] embodies the original residual block. In the absence of any variation of residual
learning, the model is trained using a plain convolution block as well, denoted as “w/o
residual learning”. Finally, the Res2Net-Squeezed block signifies the block integrated into
the proposed model.

It is evident from Table 1 that the evaluation metrics decrease significantly without
the residual learning strategy, indicating the importance of both residual mappings and
identity mapping. However, the vanilla residual block alone is not sufficient. By employing
squeezed attention in the Res2Net block, the model becomes capable of concentrating on
more relevant channel features while discarding irrelevant features. This results in a highly
efficient feature representation.

4.5.2. Experiments on Coordinate Convolutional Layer

In tasks involving image-to-image translation, where information about the spatial
relationships among different regions holds paramount importance, the inclusion of addi-
tional spatial information enhances the learning process. Table 2 illustrates the variations
in performance when employing the coordinate convolutional layer and when omitting it.

Table 2. Quantitative evaluation for coordinate convolutional layer.

TYPE SSIM PSNR

w/o Coordinate Conv layer 0.6878 16.88
w Coordinate Conv layer 0.7185 19.48

The metrics presented in Table 2 highlight the importance of spatial awareness created
by the coordinate convolutional layer. The coordinate convolutional layer facilitated the
model in effectively learning geometric transformations under varying lighting conditions,
particularly when dealing with varying shadow positions resulting from diverse lighting
directions in input and target images.

4.6. Results and Comparison with State-of-the-Art Methods
4.6.1. Comparison for Evaluation Metrics

This section provides a comparison between our method and other state-of-the-art
(SOTA) relighting techniques. We primarily utilized the winning and runner-up solutions
from both AIM 2020 [8] and AIM 2021 [9] challenges. This encompasses WDRN [1], which
secured the top position in AIM 2020 [8], and DRN [48], which attained the best PSNR
score in AIM 2020 [8]. We also consider MBNet [38], which claimed the first spot in AIM
2021 [9], and OIDDR-Net [49], the runner-up method from AIM 2021 [9]. Furthermore, we
incorporate some of the latest state-of-the-art methods designed for the same task, including
IAN [50] and S3Net [10], as well as typical image-to-image translation approaches such
as pix2pix [36] and DPR [51]—a state-of-the-art portrait-relighting method—for further
comparison. It is crucial to note that these results lack full reproducibility due to the absence
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of open-sourced code from multiple approaches. Consequently, the results are extracted
from their published research papers.

To conduct a quantitative assessment, we employ the PSNR and SSIM [44] metrics, fo-
cusing on the RGB channels of the relit outcomes. Additionally, the evaluation incorporates
the LPIPS metric [52], renowned for its strong alignment with human judgments. These
assessments are carried out across the VIDIT dataset [6]. The outcomes are comprehensively
summarized in Table 3, which provides a comparative overview of our model vis-à-vis the
other techniques discussed earlier.

Table 3. Quantitative comparison with state-of-the-art methods.

TYPE SSIM PSNR LPIPS

pix2pix [36] 0.489 15.59 0.4827
DRN [48] 0.6151 17.59 0.392

WDRN [1] 0.6442 17.46 0.3299
DPR [51] 0.6389 18.01 0.3599

OIDDR-Net [49] 0.7039 18.4 0.2837
S3Net [10] 0.7022 19.24 -

MBNet [38] 0.7175 19.36 0.2928
IAM [50] 0.7234 19.7 0.2755

Ours 0.7185 19.48 0.2831
All numbers in bold represent the results of the proposed model.

Table 3 shows that we achieve competitive results using models with fewer parameters
than the other competitive methods.

4.6.2. Comparison for Qualitative Results

In addition to the quantitative analysis, an assessment of the enduring quality of the
generated images across various state-of-the-art methodologies is undertaken. Despite
being relatively lightweight compared to the existing array of methods, the results under-
scored that the proposed model is capable of producing outputs of comparable or even
superior quality. To facilitate visual comparison between the proposed model’s predictions
and the actual ground truth images for each input sample, corresponding images are pre-
sented in Figures 5 and 6. These figures showcase the input images, the resultant outputs,
and their corresponding ground truth counterparts.

4.6.3. Comparison for Model Size

In terms of parameter count, the proposed approach showcased the lowest figures
among all the prevailing methodologies. We present Figure 7 and Table 4 to provide a com-
prehensive overview of this parameter-performance relationship for the VIDIT dataset [6].
These visualizations highlight the dominance of our method in terms of performance
and parameter efficiency. Our approach outperformed in delivering results of remarkable
perceptual quality while maintaining a notably diminished parameter count compared to
the state-of-the-art alternatives.
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Figure 5. Qualitative comparison of resulting images (our method v.s. AIM 2020 winners and latest
state-of art methods).

Figure 6. Qualitative comparison of resulting images (our method v.s. NITRE 2021 winners and latest
state-of art methods).
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Figure 7. Comparison of parameters and performance of state-of-the art methods.

Table 4. Comparison of parameters and performance of state-of-the art methods.

Method Parameters (in Millions)

pix2pix [36] 57
DRN [48] 117

WDRN [1] 8.5
DPR [51] 0.7

OIDDR-Net [49] 50
MBNet [38] 155

IAM [50] 2.67
Ours 0.45

All numbers in bold represents the results of the proposed model.

5. Discussion

The proposed network introduces a lightweight relighting model specifically designed
to incorporate squeezed attention into the channel slices of the input. This strategic ap-
proach enhances the model’s efficiency in capturing both global and contextual features.

Within the context of our study, a comprehensive ablation study (conducted in
Section 4.4) has effectively highlighted the crucial role played by each individual module
that constitutes the core of our proposed model. Furthermore, the comparative anal-
ysis presented in Section 4.5 provides clear evidence of the competitive edge of our
proposed method.

However, it is important to acknowledge that our proposed model does have certain
limitations. One such limitation becomes evident when examining the resulting images
presented in Figures 5 and 6. It is apparent that our model faces challenges in accurately
estimating target pixel values, particularly when the input image contains a significant
shadowed region. This limitation arises from situations where the original images con-
tain extensive shadowed areas, causing the model to struggle with estimating both the
foreground pixels/objects and the intricate details hidden within them. Moreover, it is
noteworthy that while the fusion of depth maps provides valuable front-facing spatial
information, it lacks multi-directional context. As a result, although the color tempera-
ture from the input images is faithfully transferred to the output image, the model may
sometimes struggle to accurately reconstruct the shadowed portion, leading to suboptimal
structural fidelity.
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Looking ahead, future research could focus on developing an end-to-end image
restoration approach to effectively address the challenges of shadow removal and relighting.
Such an approach holds the potential to further refine the capabilities and versatility of our
model, pushing the boundaries of its performance in this captivating field.

6. Conclusions

Image relighting, a foundational process in the realm of computer vision, involves
modifications in the lighting conditions while upholding the inherent visual content. In
the context of this study, we introduce a bi-modal lightweight deep learning framework
tailored for depth-guided relighting. Our model capitalizes on the prowess of the Res2Net
Squeezed block to capture long-range dependencies and enhance the feature representation
pertaining to both the input image and its corresponding depth map. The proposed model
adopts an encoder–decoder structure with Res2Net Squeezed blocks integrated at each
stage of encoding and decoding. The enhanced feature representation and improved
information flow within the Res2Net Squeezed blocks enable the model to handle complex
lighting variations and generate realistic relit images.

Thorough comparisons with previous state-of-the-art (SOTA) methods and detailed
studies conducted on the innovative VIDIT dataset [6] highlight the effectiveness and
efficiency of our proposed method. This is measured using metrics such as PSNR and
SSIM, as well as visual quality. Our proposed approach proves to be more effective,
achieving competitive performance with fewer parameters—only 0.45 million, to be precise.
Furthermore, the model’s size is just 3.4 MB, making it suitable for efficient use on a
range of edge devices. Taking into account the practical implementations discussed in
Section 1, our proposed model holds great applications across various fields. It opens up
possibilities for enhancing visual quality, realism, and user experiences in scenarios that
unfold in real-time. This model provides users and professionals with enhanced control
over lighting conditions, thereby boosting creativity, productivity, and precision in a variety
of applications, all at a minimal cost.
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