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Abstract: The widespread availability of digital image-processing software has given rise to various
forms of image manipulation and forgery, which can pose a significant challenge in different fields,
such as law enforcement, journalism, etc. It can also lead to privacy concerns. We are proposing that
a privacy-preserving framework to encrypt images before processing them is vital to maintain the
privacy and confidentiality of sensitive images, especially those used for the purpose of investigation.
To address these challenges, we propose a novel solution that detects image forgeries while preserving
the privacy of the images. Our method proposes a privacy-preserving framework that encrypts
the images before processing them, making it difficult for unauthorized individuals to access them.
The proposed method utilizes a compression quality analysis in the encrypted domain to detect
the presence of forgeries in images by determining if the forged portion (dummy image) has a
compression quality different from that of the original image (featured image) in the encrypted
domain. This approach effectively localizes the tampered portions of the image, even for small pixel
blocks of size 10 × 10 in the encrypted domain. Furthermore, the method identifies the featured
image’s JPEG quality using the first minima in the energy graph.

Keywords: image forensics; tampering localization; copy-move forgery; Paillier encryption

1. Introduction

The advancement of digital image-processing software has made it effortless to create
manipulated images without any noticeable signs [1]. Consequently, people are losing faith
in the trustworthiness and authenticity of digital images. This erosion of trust in digital
imagery has far-reaching implications, impacting domains such as journalism, forensics,
and legal proceedings. Hence, developing technologies to determine whether an image is
altered is important.

Joint Photographic Experts Group (JPEG) [2] is the most widely used image format.
Human eyes are less sensitive to high-frequency signals [3]. JPEG compression compresses
the high-frequency information without losing the image quality. The tampered region
has a different JPEG compression than the authentic region in a tampered JPEG image.
Thus, it is difficult for the human eye to identify tampered digital images. However, such
images usually have hidden clues and statistical artifacts [4]. Existing JPEG digital forensic
technologies use these clues or artifacts to detect the tampering of images [5].

In this work, we investigate the following research question:

• RQ1: In the encrypted domain, how do we detect tampering in JPEG images when a
low-quality JPEG image is inserted into a higher-quality JPEG image and vice versa?

The main objective is to develop a method that can effectively identify such forgeries
while considering the practical applications in forensics investigations, where preserving
the utility and privacy of user data is crucial. This approach is particularly relevant in
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real-world scenarios, where image tampering may occur for various malicious purposes. By
detecting and locating forgeries, our method aids forensic investigations while minimizing
the risk of compromising the privacy and utility of the original image data. We use forgery
and tampering interchangeably throughout this paper.

This paper suggests a way to detect image forgery in a passive method [6]. We
present a technique for detecting tampering in low-quality and high-quality images in
the encrypted domain. This approach detects tampering when a low-quality JPEG image
is placed into a higher-quality JPEG image and vice versa. It can come from combining
two separate photographs of people into a single composite image, for example, or by
splicing one person’s head onto another person’s body. In this method, part of the image
is explicitly determined to be compressed at a quality different from the rest of the image.
The method relies on examining the differences in the JPEG qualities between the forged
part and the rest of the image in the encrypted domain. The original image is named
the “featured” image, while the manipulated portion is named the “dummy” image. The
technique involves identifying and locating the forged portion by saving the manipulated
image multiple times with different image qualities and finding the range of JPEG qualities
that best detect the forgery. Through experimentation involving various combinations of
dummy and featured image qualities, the obtained results are analyzed to ascertain the
most effective techniques for localizing image forgery in an encrypted domain.

We propose a novel approach for passive image forgery detection and explore resaving
at different image qualities to improve forgery localization. The key contributions of the
paper are as follows:

• The proposed method is evaluated using various scenarios of copy–move forgeries
in the encrypted domain. Copy–move forgeries involve duplicating and pasting a
portion of an image onto another part of the same image. During the testing, vari-
ous combinations of images were used, including high-quality dummy images with
low-quality featured images, low-quality dummy images with high-quality featured
images, and equal JPEG quality for both dummy and featured images. The pixel block
size of the manipulation area ranged from 50 × 50 to as small as 10 × 10. The test
results showed that the proposed method successfully identified the tampered parts
of the image in the encrypted domain. The technique worked well in finding manipu-
lated areas, regardless of the image quality and block size variations. These findings
suggest that the proposed method is useful for detecting and locating copy–move
forgeries in images in an encrypted domain.

• The forgery detection results were analyzed, and it was found that the quality of the
featured image is predicted by the first minima in the energy plots, demonstrated in
the experimental analysis in Section 7.

The rest of the paper is organized as follows. In Section 2, we review the related work.
Section 3 describes the research hypothesis. Section 4 presents a brief overview of Paillier
encryption. Section 5 describes the system and the threat model of the architecture, details
of the proposed PP-JPEG, and the solution. The security analysis is performed in Section 6.
The performance of the proposed approach is outlined in Section 7. And the summary of
the conclusion of the results is in Section 8. Furthermore, Section 9 concludes the work and
discusses the future scope of the research.

2. Related Work

Various techniques have been studied in the field of detecting image forgery. Here, we
provide a concise overview of some of these approaches.

Dospinescu et al. [7] propose fingerprint recognition; its significance lies in its role as a
distinct identifier. This article covers its applications, evolution, and image pre-processing.
An Android app called BioFinger, utilizing the SourceAFIS library, is introduced for finger-
print recognition using mobile device cameras, with results and future directions presented.

Amerini et al. [8] propose a step forward in this direction by analyzing how a single or
double JPEG compression can be revealed and localized using convolutional neural net-
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works (CNNs). Zhou et al. [9] propose a two-stream Faster R-CNN network for tampering
detection in manipulated images. This method combines RGB and noise features, outper-
forming others on standard datasets and remaining robust to resizing and compression.

Ting et al. [10] propose a data-embedding method for the JPEG XT format, utilizing co-
efficient count variations between base and residual layers. Swapping MCUs between these
layers embeds data while maintaining image quality or introducing distortion. Experiments
were conducted to evaluate the effectiveness of the method.

Diallo et al. [11] propose a framework for detecting image forgery, which consid-
ers various transformations, such as compression and resizing. The framework is based
on a convolutional neural network and considers the image quality for the application.
Doegar et al. [12] address privacy and tampering issues in medical imaging and bioinfor-
matics caused by cloud computing. Image-tampering detection is proposed using a deep
learning architecture to identify tampered components efficiently. The proposed approach
is evaluated on the MICC-F220 dataset using k-fold cross validation.

Rani et al. [6] propose a framework in detecting image manipulations like copy–move
and splicing. It introduces a new pixel-based forgery detection framework using enhanced
SURF and template matching. Evaluation on CASIA dataset shows 97% accuracy with
enhanced SURF and 100% with template matching.

Doan et al. [13] introduce a novel method for detecting image manipulation in JPEG
natural images using a signal-dependent noise model. It employs two fingerprints within
a hypothesis-testing framework, supported by generalized likelihood ratio tests (GLRTs).
Various types of forgery, such as resampling and filtering, are addressed, with experiments
on real and simulated images demonstrating its effectiveness.

Ghaffarian et al. [14] explore the integration of attention mechanisms with deep learn-
ing in computer vision and remote sensing image processing. Attention mechanisms
enhance deep learning performance. The research reviews 270 papers, finding that incor-
porating attention mechanisms consistently improves accuracy across tasks like image
classification, object detection, and change detection in remote sensing.

Lu et al. [15] introduce an interpretable image forensics approach to counter image
tampering, combining suspicious tampered region detection (STRD) and cooperative game
modules. The STRD module detects tampering types, including small regions, in complex
scenes. The cooperative game module employs the Shapley interaction index to measure
information gained from pixels, focusing on the low-order effects of tampering. This
approach showcases strong interpretability and outperforms other methods in experiments.
Singh et al. [16] propose a framework that can detect image forgeries. The framework
identifies the forged portion of the image, called the ghost image. It has a compression
quality different from that of the cover image.

Rahmati et al. [17] propose a new method for detecting double JPEG compression in
images using a convolutional auto-encoder and convolutional neural network. The method
outperforms previous algorithms on standard datasets and is robust to perturbations in
JPEG compression quality factors. Results are based on small-sized image patches.

Yu et al. [18] propose NOStyle, a noise-optimized stacked StyleGAN2, for secure, high-
quality image synthesis. It works through two stages: the first generates a benchmark image,
while the second adapts stochastic variation using a noise-secure optimization network.
This yields secure images suitable for data hiding and maintaining quality. Experimental
results show success and reveal a trade-off between image security and fidelity.

Kumar et al. [19] propose a method for detecting copy–move forgery in images using
a reduced feature-based algorithm. It uses stationary wavelet transform to obtain the
low approximation band of the subject image and then extracts significant features using
block-based DCT and SVD. The approach only extracts three feature vectors to reduce
the computational overhead but still achieves the precise detection of forged areas and is
robust against post-processing attacks.

Our proposed image tamper detection scheme is highly robust and efficient, capable
of detecting tampering in encrypted images with all possible combinations of JPEG quality
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for both dummy and featured images. By operating in an encrypted domain, our scheme
ensures the privacy and security of the images while providing reliable tamper detection.

3. Research Hypothesis

Our work proposes a framework to detect image forgery in an encrypted domain.
Earlier studies have focused on image forgery detection techniques that work in the plain-
text domain. However, since we are working in an encrypted domain, we examine whether
any difference exists between the pixel intensities of tampered and untampered images in
the encrypted domain.

The existence of differences in pixel intensities between tampered and untampered
images enables a framework to detect image forgery in the encrypted domain. We examine
if the mean pixel intensities of tampered and untampered images in the encrypted domain
are different. Based on this, we have the following hypotheses:

H0: The mean pixel intensities of tampered and untampered images are the same.

Ha: The mean pixel intensities of tampered and untampered images are different.

Based on this, we perform a significance test, wherein we take samples of encrypted
tampered and untampered images of different qualities and perform a t-test. Since the p-
value < 1.525× 10−19, we can reject the null hypothesis and accept the alternate hypothesis.

4. Preliminaries
4.1. Paillier Encryption

The Paillier cryptosystem, created and named after Pascal Paillier in 1999, is an
asymmetric cryptographic algorithm used for public key cryptography with homomorphic
properties [20].

4.1.1. Key Generation

Choose two large prime numbers p and q, and a random value g, where g is a generator
of Z∗

n. Set n = p · q and λ = lcm(p − 1, q − 1). The public key is (n, g), and the private key
is µ = L(gλ mod n2)−1 mod n, where L(x) = (x − 1)/n.

4.1.2. Encryption

To encrypt message m, choose random r such that 0 ≤ r < n, and compute c = gm · rn

mod n2. c is the encrypted message.

4.1.3. Decryption

To decrypt message c, compute m = L(cλ mod n2) · µ mod n.

4.1.4. Homomorphic Properties

Paillier encryption supports additive homomorphism, which means that given two
encrypted messages c1 and c2 that represent messages m1 and m2, respectively, we can
compute an encrypted message c3 that represents the sum of m1 and m2, without decrypting
any of the values.

This is done by simply multiplying c1 and c2 together, modulo n2. That is,

c3 = c1 · c2 mod n2

When we decrypt c3 using the private key, we obtain the sum of m1 and m2 modulo n:

m1 + m2 ≡ Dec(c1 · c2 mod n2) (mod n)
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We can also compute a scalar multiplication of an encrypted message c1 with a plain-
text value a by raising c1 to the power of a, modulo n2:

c2 = ca
1 mod n2

When we decrypt c2, we obtain the plaintext value m2 that is equal to a · m1 modulo n:

m2 ≡ a · m1 (mod n)

These homomorphic properties make Paillier encryption a useful tool for secure
computation on encrypted data, as it allows for the manipulation of data without the need
to decrypt them first.

5. The Proposed Framework

Our proposed framework consists of three entities: the system model, the threat model,
and the proposed methodology. These entities are shown in Figure 1.

Figure 1. An overview of the proposed methodology.

5.1. System Model and Threat Model

The system model defines the structure of the system being analyzed, while the threat
model identifies potential security threats. The proposed methodology outlines the steps
used to assess and mitigate these threats within the system. This comprehensive framework
provides an effective approach to addressing security concerns:

• Investigator: As an investigator, the role is to identify the forged region in an en-
crypted image without compromising the confidentiality of the image content. The
forged images, denoted as I(x, y)F, are created by copying and pasting a portion of an
image onto another region within the same image and then saving the resulting image
at different JPEG qualities [21]. The investigator performs this task by outsourcing
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the encrypted forged image to a cloud service provider (CSP), who is assumed to be
honest but curious.
The image is encrypted using Paillier encryption, a public-key encryption scheme
that supports homomorphic operations to maintain the confidentiality of the image.
The CSP follows the proposed protocol for detecting forged regions but may also
be interested in learning about the content of the image. However, since Paillier
encryption is semantically secure, the encryption scheme reveals no information about
the underlying image content. This ensures the privacy of the original image while
allowing the identification of any tampered regions. It is assumed that the investigator
is a reliable and trusted entity.

• Cloud service provider (CSP): The cloud service provider is an entity that resaves
the encrypted forged image at different JPEG qualities and computes the difference
between the encrypted forged image with the resaved image of different qualities.
This ensures the confidentiality of the original image content throughout the process.
Once the CSP has computed the encrypted differences, they can be outsourced to a
third-party server for further analysis. We consider the communication channel to be
insecure between the investigator and CSP, implying that the CSP is deemed to be an
honest yet curious entity.

• Third-party server: As a third-party server, the primary responsibility is to assist
the investigator in detecting forged regions in an encrypted image. This involves
decrypting the encrypted difference between the resaved image received from the CSP.
Once decrypted, the difference must be squared to amplify it before being sent back to
the investigator. His role is to ensure that the decryption process is performed securely
and that the squared difference is sent back to the investigator without any loss of
data or privacy concerns. The third-party server is assumed to be a trusted entity.

5.2. Proposed Methodology

The proposed methodology presents a framework for verifying the integrity of an
image in an encrypted domain as shown in Figure 1. This approach uses the characteristics
of JPEG compression to find areas in images that have been altered, all while keeping the
original image content confidential. The steps below provide a detailed explanation of
the process:

• Investigator
To verify the integrity of a potentially tampered image, the investigator follows
these steps:
Step 1: An image is provided to the investigator so that its integrity can be checked.
For example, suppose that a section measuring 30 by 30 pixels from an image, which
was saved with JPEG quality 50 and is referred to as a “dummy image”, is copied onto
another image, known as the “featured image”, which was initially saved at quality
80. In this scenario, the resulting image is determined to be a manipulated image.
Step 2: The forged image is encrypted using the public key of Paillier encryption [22]
E(I(x, y)F). It is sent to the CSP.

• CSP
Step 3: The integrity of the forged image E(I(x, y)F) is checked by resaving at different
JPEG qualities E(I(x, y)Fq), where q is the quality of the image. We performed this for
a range of [15, 90] with a step size of 5.
Step 4: To compute the difference image E(S) in the encrypted domain, the operations
involved are addition and scalar multiplication, which are supported by Paillier
encryption. The sum of two plaintexts I1 and I2 is equivalent to the decrypted product
of corresponding ciphertexts E(I1) and E(I2). The product of a scalar with a plaintext
I1 is equivalent to the decrypted exponentiation of the corresponding ciphertext
E(I1) with the scalar. In the plaintext domain, the difference image S is obtained by
computing between the plaintext forged image I and the resaved image Iq as shown
in Equation (1). In the encrypted domain, the difference image E(S) is obtained by
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computing between the encrypted forged image E(I) and the resaved image E(Iq) as
shown in Equation (2):
Difference in plaintext domain:

S(x, y) = [(I(x, y)Fi − I(x, y)q
Fi]i=1,2,3 (1)

Difference in encrypted domain:

E(S(x, y)) = [(E(I(x, y)Fi)× (E(I(x, y)q
Fi))

−1]i=1,2,3 (2)

where E(I(x, y)Fi) and E(I(x, y)q
Fi) represent the pixel value at (x, y) co-ordinates of

the ith color channel (red (R), green (G), and blue (B) channels) of the forged image
and resaved forged image, respectively.

• Third-Party Server
Step 5: After receiving the encrypted difference E(S) as shown in Equation (2) from the
CSP, the third-party server decrypts it using the private key of the Paillier encryption
scheme. As squaring cannot be performed in the encrypted domain, the decrypted
difference is squared to amplify the difference as follows:

D(S(x, y)) = (Dec[E(S(x, y))])2
i=1,2,3 (3)

Here, Dec represents the decryption operation and D(S(x, y)), referred to in Equation (3),
represents the squared difference value at the (x, y) co-ordinate of the i-th color channel.

• Investigator
Step 6: The decrypted and squared difference image D(S) is received from the third-
party server and converted to RGB format. This step allows the forged regions to be
visualized more clearly, and the tampered portions of the image can be identified with
greater detail in the experimental analysis in Section 7.

6. Security Analysis

Paillier encryption is a form of homomorphic encryption that is semantically secure
and probabilistically correct, and it can be useful in privacy-preserving protocols [20].

Theorem 1. If the Paillier encryption is semantically secure, PP-JPEG is also semantically secure.

Proof. The proof of semantic security in Paillier encryption is based on the decisional
composite residuosity assumption (DCR). DCR states that given a composite number n and
a random number a, it is computationally infeasible to determine whether gcd(a, n) = 1 or
aλ(n) = 1 mod n2, where λ is the Carmichael function.

To prove the semantic security of Paillier encryption, we show that given any two
plaintexts m1 and m2, the difference between their corresponding ciphertexts C1 and C2 is
statistically indistinguishable from a uniformly random value in Zn2 .

Let us consider the ciphertexts

C1 = (gm1 · rn) mod n2

C2 = (gm2 · rn) mod n2

where g is a generator of the group, n is the public key modulus, r is a random value chosen
during encryption, and mod denotes the modulus operation.

The difference between the two ciphertexts can be expressed as

(C1 · C−1
2 ) mod n2

= [(gm1 · rn) · (g−m2 · r−n)] mod n2

= gm1−m2 mod n2
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Now, let us consider a hypothetical attacker who is trying to distinguish between two
ciphertexts C1 and C2 without knowing the corresponding plaintexts.

The attacker can compute the value gm1−m2 mod n2 based on the ciphertexts. How-
ever, under the DCR assumption, this value is computationally indistinguishable from
a uniformly random value in Zn2 , unless the factorization of n is known. Therefore, the
attacker cannot gain any information about the difference between the plaintexts m1 and
m2 solely based on the ciphertexts. This demonstrates the semantic security of the Paillier
encryption scheme. In conclusion, the Paillier encryption scheme is semantically secure
under the decisional composite residuosity assumption (DCR). Without knowledge of the
private key, an attacker cannot determine the corresponding plaintext from the ciphertext,
as the difference between ciphertexts reveals no information about the plaintexts.

Theorem 2. If the Paillier encryption is probabilistically correct, PP-JPEG is also probabilistically
correct.

Proof. Let m be the plaintext message, r be a random value, g be a generator of the group,
and n be the public key modulus.

The ciphertext C is computed as

C = (gm · rn) mod n2

where · denotes multiplication, mod denotes the modulus operation, and all operations
are performed within the group.

This formula ensures the probabilistic correctness of Paillier encryption, as the random
value r is added to the plaintext before encryption and removed during decryption. The
resulting ciphertext C is a representation of the encrypted message that cannot be easily
reversed to obtain the original plaintext without knowing the private key.

7. Experimental Analysis

Our experiments were conducted using Intel(R) Xeon(R) Silver 4214R CPU @ 2.40 GHz.
We considered various scenarios to test the effectiveness of our proposed method. We
tested the method on different combinations of dummy and featured images, such as
high-quality dummy image with low-quality featured image, low-quality dummy image
with high-quality featured image, and dummy and featured images with the same quality.
Additionally, we examined the method’s ability to detect even small forgeries by testing it
on dummy images of sizes ranging from 50 × 50 to 10 × 10 pixels. The results for each of
these scenarios are presented in the following section:

Result Analysis

1. In the first scenario, there are three conditions where the forgery portion size in all the
conditions is 50× 50 as shown in Figure 2. The first condition involves a dummy image
with higher quality than the featured image, while the second condition involves the
featured image having higher quality than the dummy image, and the third condition
involves the featured image having equal quality to the dummy image.

(a) Featured Image (b) Dummy Image (c) Forged Image

Figure 2. Forged image, where the forgery portion is 50 × 50.

(a) In Figure 3, the featured image quality is 40 and dummy image quality is 70 of
size 50 × 50 inserted at coordinate (50, 50).
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Figure 3. The forged portion is 50 × 50, where the featured image quality is 40 and dummy image
quality is 70.

(b) In Figure 4, the featured image quality is 90 and dummy image quality is 70 of
size 50 × 50 inserted at coordinate (50, 50).

Figure 4. The forged portion is 50 × 50, where the featured image quality is 90 and dummy image
quality is 70.

(c) In Figure 5, the featured image quality is 90 and dummy image quality is 90 of
size 50 × 50 inserted at coordinate (90, 90).
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Figure 5. The forged portion is 50 × 50 where the featured image quality is 90 and dummy image
quality is 90.

2. In the last scenario, there are three conditions, where the forgery portion size in all
conditions is 10× 10 as shown in Figure 6. The first condition involves a dummy image
with higher quality than the featured image, while the second condition involves the
featured image having higher quality than the dummy image, and the third condition
involves the featured image having equal quality to the dummy image.

(a) Featured Image (b) Dummy Image (c) Forged Image

Figure 6. Forged image, where the forgery portion is 10 × 10.

(a) In Figure 7, the featured image quality is 60 and dummy image quality is 85 of
size 10 × 10 inserted at coordinate (90, 90).
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Figure 7. The forged portion 10 × 10, where the featured image quality is 60 and dummy image
quality is 85.

(b) In Figure 8, the featured image quality is 85 and dummy image quality is 60 of
size 10 × 10 inserted at coordinate (90, 90).

Figure 8. The forged portion 10 × 10, where the featured image quality is 85 and dummy image
quality is 60.
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(c) In Figure 9, the featured image quality is 90 and dummy image quality is 90 of
size 10 × 10 inserted at coordinate (90, 90).

Figure 9. The forged portion is 10 × 10, where the featured image quality is 90 and dummy image
quality is 90.

Our experiments show that the proposed approach effectively detects the forgery in
the encrypted domain. In simpler terms, our approach works well for all JPEG quality
levels and all potential combinations of dummy and featured encrypted images.

Additionally, we examine another experimental scenario based on the difference
between the forged and resaved versions of the image and the difference is calculated as
shown in Equation (2). P(x,y) is the energy of the image as shown in Equation (4):

P(x, y) =
dim

∑
d=1

rows

∑
x=1

col

∑
y=1

S(x, y, d) (4)

where P(x, y) represents the sum of the amplified pixel values of the decrypted difference
as shown in Equation (3). The quality of the featured image is indicated by the first minima
in graphs of “energy of image” against its “compression quality”. In Figures 10 and 11, the
first minima occur at a compression quality that corresponds to the quality of the featured
image; along with that, the minute forgeries can be identified using our proposed scheme.
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(a) (b)

Figure 10. Energy graph for the forgery portion 50 × 50. (a) Energy graph where featured image
quality is 40 with reference to Figure 3; (b) energy graph where featured image quality is 90 with
reference to Figure 4.

(a) (b)

Figure 11. Energy graph for the forgery portion 10 × 10. (a) Energy graph where featured image
quality is 60 with reference to Figure 7; (b) energy graph where featured image quality is 85 with
reference to Figure 8.

8. Discussion

In Section 3, we validated through the t-test that the p-value < 1.525 × 10−19, so we
can reject the null hypothesis and accept the alternate hypothesis. Thus, there exists a
difference in the pixel intensities of tampered and untampered images in the encrypted
domain, and a framework can work to detect image forgery in this domain. Our method
effectively detected forged regions across various JPEG quality levels and image combina-
tions in the encrypted domain, regardless of image quality and composition. In contrast
to Singh et al. [16], who focus on JPEG image forensic techniques based on compression
quality differences, our work addresses privacy concerns alongside forgery detection. We
propose a privacy-preserving framework that encrypts images pre-processing, ensuring
confidentiality. Highlighting localization and JPEG quality identification, our approach
uniquely emphasizes confidentiality and provides a valuable solution for image forgery
detection in sensitive contexts. Our proposed work presents a more comprehensive and
advanced solution than Rani et al. [6]. While Rani et al. [6] address limitations in detecting
specific manipulations, the proposed work tackles the broader challenges of privacy and
authenticity in image processing. Our privacy-preserving framework encrypts images
before processing, ensuring confidentiality, a dimension not covered by Rani et al. [6].
This approach’s sophistication lies in employing compression quality analysis within the
encrypted domain to identify forgeries. Moreover, our work has the ability to pinpoint tam-
pered regions, even in small pixel blocks. Doan et al. [13] focus on signal-dependent noise
models and hypothesis testing theory to detect manipulation using noise patterns. Our
proposed work prioritizes privacy with encryption and compression analysis. It connects
manipulation, privacy, and real-world contexts like law enforcement. It highlights data
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privacy importance and provides evidence of effectiveness, including small pixel block
detection (10 × 10). The proposed framework can be used in various tampering detection
scenarios within the encrypted domain. It can effectively detect tampering in multiple
contexts, such as fingerprint images by ensuring the integrity of biometric data, legal
image evidence by verifying the authenticity of legal evidence, remote sensing imagery
by detecting any fraudulent changes in satellite or aerial images used for remote-sensing
applications, document images identifying any falsification or alterations in digital docu-
ments, preserving the integrity of textual information, etc. The framework is valuable in
safeguarding data integrity across multiple domains. However, one limitation is observed
when the feature image quality is equal to that of the dummy image, which could be further
improved in future research.

9. Conclusions and Future Work

In this paper, we described a privacy-preserving framework for detecting tampering
in JPEG images in the encrypted domain. In our experiments, we found that combining
two different JPEG images of different quality is quite likely to lead to forgery detection.
The energy graph can be used to determine the quality of the featured image. As shown
in the energy graph, the quality of the featured image is the first minima. However, the
chances of forgery detection are quite low when the JPEG quality is the same. No matter
whether the images were captured from the same camera device or not, this holds true. In
future work, we can extend to other image formats, as our paper focuses on JPEG images.
Further, we intend to extend our work by using our architecture in a multi-CPU setup. This
configuration would enable us to leverage multiprocessing techniques for the encryption of
images. Furthermore, it would be interesting to explore how the proposed method could be
adapted in a multiprocessing setup and to extend our approach with other image formats,
such as PNG, BMP, or TIFF.
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