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Abstract: The widespread use of deep learning techniques for creating realistic synthetic media,
commonly known as deepfakes, poses a significant threat to individuals, organizations, and society.
As the malicious use of these data could lead to unpleasant situations, it is becoming crucial to
distinguish between authentic and fake media. Nonetheless, though deepfake generation systems can
create convincing images and audio, they may struggle to maintain consistency across different data
modalities, such as producing a realistic video sequence where both visual frames and speech are fake
and consistent one with the other. Moreover, these systems may not accurately reproduce semantic
and timely accurate aspects. All these elements can be exploited to perform a robust detection of
fake content. In this paper, we propose a novel approach for detecting deepfake video sequences by
leveraging data multimodality. Our method extracts audio-visual features from the input video over
time and analyzes them using time-aware neural networks. We exploit both the video and audio
modalities to leverage the inconsistencies between and within them, enhancing the final detection
performance. The peculiarity of the proposed method is that we never train on multimodal deepfake
data, but on disjoint monomodal datasets which contain visual-only or audio-only deepfakes. This
frees us from leveraging multimodal datasets during training, which is desirable given their lack in
the literature. Moreover, at test time, it allows to evaluate the robustness of our proposed detector
on unseen multimodal deepfakes. We test different fusion techniques between data modalities and
investigate which one leads to more robust predictions by the developed detectors. Our results
indicate that a multimodal approach is more effective than a monomodal one, even if trained on
disjoint monomodal datasets.

Keywords: deepfake detection; video forensics; audio forensics; multimodality

1. Introduction

Recent advances in deep learning and new media technologies have made the creation
and sharing of multimedia content more accessible than ever. Users can now generate
super realistic synthetic images, videos and speech tracks with minimal effort and with-
out requiring any particular skill. The growth of these technologies can have a twofold
effect. On one side, such techniques allow consumers to explore new creative and artistic
possibilities and introduce applications that make everyday life easier. On the other hand,
they can also lead to dangers and threats when misused. An example of the latter case are
deepfakes, synthetic multimedia content generated through deep learning techniques that
depict individuals in actions and behaviors that are not their own.

Deepfakes have already been used for several malicious purposes, including the
publication of fabricated results in scientific journals [1] or the attack of the identity tests
used by banks through synthetic voices [2] and videos [3], raising concerns about them
and their use. In response to this phenomenon, the research community has prioritized
the development of algorithms to discriminate real content from deepfakes [4]. Several
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approaches have been proposed and multiple deepfake databases have been created to
push the research in this direction. Since deepfake technologies continue to advance and
produce more realistic results, developing detection methods based on diverse strategies
and operating principles is crucial to combat this issue.

Focusing on the analysis of video sequences, the scientific community has put forward
methods for detecting deepfakes by analyzing both their audio and visual contents, as
the deepfake phenomenon has impacted each of these [5]. However, while the developed
detectors can demonstrate impressive performance in controlled environments, their ef-
fectiveness is somehow limited in other scenarios. For instance, most of the classifiers are
monomodal, meaning that they take into account only one data modality (i.e., either visual
or audio) at a time, which makes them ineffective against certain types of deepfake videos.

Visual-only detectors, for example, can be deceived by audio deepfakes, while audio-
only detectors are vulnerable to deepfakes that manipulate visual content [6]. Furthermore,
some information is lost during these analyses, such as the consistency between modalities,
which is sometimes crucial for detecting synthetic content. To overcome these limitations,
multimodal approaches have been recently proposed, able to combine information from
various domains to enhance the accuracy of the detection process [7,8].

Despite their excellent performances, even multimodal methods are not immune to the
problem of robustness. This refers to the ability of the detector to maintain high accuracy
also when processing new unseen data, different from those used in training. This aspect is
crucial in multimedia forensics, as it improves the applications of the developed systems in
real-world scenarios. To address the robustness issue, researchers have explored several
aspects, such as considering detectors based on different approaches and using a variety of
datasets in training.

For instance, there exists a set of detectors known as semantic, which base their
predictions on high-level aspects of the media under analysis [9,10]. The rationale behind
these methods is that deepfake generators can reproduce low-level features but struggle
with more complex aspects, making it possible to differentiate between real and synthetic
data. Furthermore, these high-level features are less subject to post-processing operations
applied to the data and domain changes, allowing for more robust and reliable predictions.

Regarding the use of different training datasets, it helps the developed detector not to
overfit a single data type but to generalize as much as possible, improving the robustness
of the final model. However, in the current literature, it is common practice to train and
test the developed detectors on subsets of data extracted from the same dataset [11]. This
practice can be deceptive since the high performance achieved may not be reflected when
the methods are tested on different datasets. Cross-dataset tests are needed to assess the
actual discrimination capabilities of the detectors.

Moreover, all the currently proposed multimodal detectors have been trained on
multimodal datasets, thus requiring the presence of data of this type during the training
phase. This poses an additional challenge since there is a lack of multimodal deepfake
datasets proposed in the literature, while monomodal ones are widely available. For
instance, the literature reports several deepfake audio datasets not including any visual
content. Deepfake video datasets are available as well, though the audio tracks related to
the synthetic video sequences are often taken from original speech.

In this paper, we present a new multimodal video deepfake detection method that
combines visual and audio information. To determine the authenticity of the input video
sequence, we combine a set of data-driven features extracted from the visual content with a
set of speaker-identity features extracted from the audio content.

The peculiarity of the proposed detector is that its training phase does not take place
on multimodal deepfake data but on monomodal samples. In other words, we never train
our detector over video sequences that contain fully-synthetic data, i.e., where both visual
and audio contents are deepfakes. During the training phase, we combine the features
derived from synthetic audio and synthetic visual data extracted from disjoint monomodal
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datasets, meaning that we do not require any additional material with respect to training
standard monomodal detectors.

We evaluate the performance of our method on several state-of-the-art multimodal
video deepfake datasets by considering various fusion strategies between the two modali-
ties. Our results show that a multimodal approach is equally more functional and robust
than a monomodal one. The results show the effectiveness and robustness of the proposed
approach, indicating high generalization capabilities on unseen data.

The rest of the paper is structured as follows. Section 2 provides the reader with
some knowledge regarding detection methods for audio and video deepfakes. Section 3
explains the details of the tackled problem and the proposed methods to fuse the audio and
visual modalities. Section 4 describes the experimental setup used to validate the presented
system, including details on the considered datasets. Section 5 collects all the achieved
results providing detailed comments. Finally, Section 6 concludes the paper and outlines
possible future works.

2. Deepfake Detection

In this section we introduce the reader to the deepfake detection task, providing a
literature overview for the visual-only, audio-only and audio-visual deepfake detection
scenarios.

2.1. Visual-Only Deepfake Detection

The rising of deepfake generation methods has posed a growing threat, leading to
the development of numerous techniques to detect counterfeit videos and mitigate the
damage they can cause. Generally, detection techniques leveraging visual content can be
grouped into two categories, based on the approach they consider. The first group relies on
manually-crafted features, while the second makes use of deep learning-based features.

Early forgery detection methods primarily depend on handcrafted features such as
facial landmarks [12–14], optical flow [15] and various digital image processing techniques
designed to enhance the visibility of artifacts [16].

With the advancement of video deepfake generation techniques and the higher quality
of produced media, detecting deepfake video frames is becoming increasingly challenging
using standard methods. Consequently, researchers have begun applying Deep Neural
Networks (DNNs) with powerful feature extraction capabilities, aiming for more accurate
and reliable detection processes with implicit feature learning.

As an example, the authors of [17,18] are pioneers in using DNNs to extract deep
features from video frames. In [19] Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) models are combined to detect deepfake videos generated
using face-swapping techniques. The authors of [20] consider an ensemble of CNNs to
detect video face manipulations, while those of [21] introduce the multi-head attention and
fine-grained classification to detect deepfake videos, showing that the approach is robust
to low-quality videos. Liu et al. [22] analyze the frequency domain signal of the deepfake
videos and utilize the phase spectrum to obtain more information. Finally, the authors
of [23] provide a semantic approach to deepfake detection, making use of a biological signal
called Photoplethysmography (PPG), an optical technique that can detect subtle changes
resulting in skin color due to blood in peripheral circulation through the face.

2.2. Audio-Only Deepfake Detection

The rapidly improving quality of synthetic speech generation has garnered increasing
interest in speech deepfake detection. To do so, the scientific community has proposed
numerous speech deepfake detectors that employ different detection approaches and
strategies [24]. These can be broadly categorized into two groups based on the aspect they
use to perform the detection task. The first group focuses on low-level features, looking
for artifacts introduced by the generators at the signal level. The second group focuses on
higher-level features representing more complex aspects as the semantic ones.
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An example of an artifacts-based approach is presented in [25], where channel pattern
noise analysis is used to secure Automatic Speaker Verification (ASV) systems against phys-
ical attacks. The authors of [26,27] exploit bicoherence features based on the assumption
that a genuine recording has more significant non-linearity than a fake one. Alternatively,
the authors of [28] propose an end-to-end network training for extracting deep features
from speech, while those of [29] use Mel-Frequency Cepstral Coefficient (MFCC) features
and an Support Vector Machines (SVM) classifier. Finally, new approaches to improve the
practicality of existing detectors in real-world scenarios are proposed in [30,31].

Detection approaches that rely on semantic features operate under the assumption
that, while deepfake generators can synthesize low-level aspects of the signals, they are
unable to replicate more intricate high-level features. For instance, [32] exploits classic
audio features inherited from the Music Information Retrieval (MIR) community to perform
speech deepfake detection. Similarly, the authors of [33] leverage the lack of emotional
content in synthetic voices generated via Text-to-Speech (TTS) techniques to recognize
them, while [34] combines ASV and prosody features.

Other semantic aspects that can be exploited to perform speech deepfake detection are
those related to the speaker identification problem, which refers to automatically identifying
the identity of the speaker from a set of recognized voices [35]. At present, the most cutting-
edge methods proposed to address this task are based on the use of x-vectors [36]. These
are fixed-length features extracted by a DNN trained to discriminate between different
speakers and can capture subtle speaker’s distinctive attributes, such as pronunciation,
accent, and speaking style.

2.3. Audio-Visual Deepfake Detection

In recent years, there has been an increasing interest in the development of multimodal
deepfake detection methods that can simultaneously analyze multiple modalities to achieve
accurate and robust results. By analyzing multiple modalities at the same time, a detector
can leverage inconsistencies or artifacts across different modalities, enhancing its detection
capabilities. For instance, a deepfake video sequence may have realistic facial expressions
but unnatural background sounds or mismatched lip movements.

For example, Ref. [37] leverages the incongruity between emotional cues portrayed by
audio and visual modalities, while Ref. [11] integrates temporal data from image sequences,
audio and video frames. Moreover, the results of [38] show that an ensemble of audio and
visual baselines outperforms monomodal counterparts. The authors of [39] replace the
standard MFCC features with an embedding of a DNN trained for automatic speech recog-
nition, and then incorporate mouth landmarks. In [40], the authors establish a mapping
between audio and video frames by analyzing the changes in the lip opening degree. In [7],
the authenticity of a speaker is verified by detecting anomalous correspondences between
his facial movements and what he says, while Ref. [41] exploits the inconsistency of lip
shape between the audio and video signals.

Although multimodal detectors have shown great effectiveness, these systems are usu-
ally data-driven and require a large amount of data to be trained effectively. Unfortunately,
in the literature there is a lack of challenging datasets that contain both fake video and
audio, which makes it difficult to train and evaluate the performance of multimodal forensic
detectors. In the recent years, few multimodal datasets have been proposed, containing
both counterfeited video and audio tracks. These are DFDC [42], FakeAVCeleb [43], and
DeepfakeTIMIT [44] with TIMIT-TTS [6]. In the following sections, we provide further
details on these datasets and test our proposed multimodal detector on them.

3. Problem Formulation and Proposed Methodology

In this paper, we consider the problem of multimodal video deepfake detection and
investigate whether this can lead to more robust and reliable predictions with respect to
monomodal analyses. Given a video sequence depicting a front-facing person speaking,
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we aim at determining if the content is authentic or it has been synthetically generated or
modified.

We tackle the task by considering a multimodal approach, meaning that we analyze
both the person’s face and speech to perform the final prediction. In particular, we consider
a video as fake when at least one between the visual and audio components is modified,
while as real when both are authentic. In the following, we formulate the tackled problem
in detail and illustrate the proposed methodology.

3.1. Problem Formulation

The problem we address can be formally defined as follows. Let us consider a video
sequence under analysis xAV. We split it into two components: the time-series xV represent-
ing the temporal evolution of video frames showing the person’s face, and the time-series
xA representing the temporal evolution of the audio track capturing the person’s speech.

Each of the two tracks xV and xA belong to a class yV, yA ∈ {0, 1}, where 0 means the
signal of that modality is authentic while 1 indicates that it has been synthetically generated
or edited. The class yAV of the complete signal xAV is defined as yAV = yV ∨ yA, where ∨ is
the logical “or” operator, meaning that we consider the complete signal as fake when at
least one of its two modalities is fake.

Our goal is to develop a deepfake detector D that estimates the class of the original
signal xAV. Given the video sequence xAV, the detector returns a real score ŷAV ∈ [0, 1]
which indicates the likelihood that xAV is fake.

3.2. Proposed Methodology

Our proposed method is composed of two stages, as shown in Figure 1. In the first
stage, we leverage state-of-the-art models to extract a collection of features from a subject’s
facial and speech characteristics. In the second stage, we fuse these features to perform
multimodal deepfake detection. In particular, we extract a feature set from some time
instants of the input video, obtaining a temporal representation of it. Then, we exploit the
temporal properties of the features using time-aware models to perform deepfake detection
by fusing the two modalities, increasing the final detection accuracy.
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Figure 1. Proposed pipeline for multimodal deepfake detection.

In more details, we feed the signals xV and xA to two feature extractors FV and FA,
tailored to the visual and audio modalities respectively. The outputs of the two extractors
are two sets of feature vectors

fV = FV(xV) and fA = FA(xA), (1)

where each vector is extracted for a few time instants of the input signal.
We develop a deepfake detector D that takes as input the two sets of features fV, fA

and estimates a score ŷAV ∈ [0, 1] related to the signal xAV. We define the estimated score as

ŷAV = D(fV, fA). (2)

We consider different versions of the detector D, depending on the strategy we choose
to perform the fusion between the two modalities.
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3.2.1. Feature Extraction

The feature extractors FV and FA we consider to compute the feature sets fV and fA
are based on two well-established architectures proposed in the literature.

Regarding the visual modality, we exploit the EfficientNetB4 [45] network modified
following the implementation proposed in [20], which investigates the ensembling of
differently trained CNNs making use of attention layers and siamese training. The authors
of the paper use the models’ ensemble to perform video deepfake detection, while we
propose to use it as a feature extractor. To extract features from the video frames, we select
the pixel area associated with the face of the person, then we pass the face-related frames to
the models’ ensemble. We apply the exact implementation proposed in the original paper,
therefore we refer the reader to that for more information. We decided to adopt this model
as it has been shown to have excellent deepfake detection capabilities, which we believe
can lead to adequate performance for the proposed multimodal classifier.

For the audio modality, we consider a Time-Delay Neural Network (TDNN) model
coupled with statistical pooling to extract x-vector features from the input speech track.
To do so, we exploit the pre-trained implementation provided by SpeechBrain [46]. The
original task for which the model was proposed is speaker recognition. Here we use it as
an embedding extractor, computing a feature vector for each time window of the audio
signal under analysis.

It is worth noticing that, contrarily to FV, FA is trained for a different task than the one
at hand, i.e., deepfake detection. We do so because we want to adopt a semantic approach
similar to the one used in [33,34], which has proved very effective against the detection of
synthetic speech tracks. We face the deepfake detection by analyzing a set of high-level
features, specifically related to the speaker’s identity, which we assume contain sufficient
information to tackle also the considered task. Our rationale is that synthetic speech
generators are very good at replicating low-level aspects of speech but fail to reproduce
the most complex ones, such as the speaker’s identity. For this reason, we believe that
high-level information can be exploited to discriminate between real and fake tracks.

The size of the feature sets fV and fA is equal to N ×MV and N ×MA respectively,
where MV and MA are the lengths of the feature vectors extracted for each time instant
while N is the numbers of time instants considered. In particular, since we want to provide
an audio-visual representation of the input video sequence that is time-consistent between
the two modalities, we extract the feature vectors for equally spaced time instants so that
fV and fA are defined over the same number of time frames N.

3.2.2. Deepfake Detection

The second part of the proposed pipeline consists of a binary classifier that takes
as input the two feature sets fV and fA and returns a real score ŷAV associated with the
input signal xAV. Since the features are defined as a function of the time instants, we
implement the classifier using a time-aware model to exploit as much as possible the
temporal correlations between and within the two modalities.

Specifically, we propose three different types of deepfake detectors D which differ
in how the fusion between the feature sets fV and fA is performed. To better investigate
the differences between the considered fusion strategies, we build the detectors D making
use of the same inner network structure as a classifier to process the input feature sets.
Since we work with different data modalities, we call the generic classifier model Cm,
where m ∈ {V, A, AV} depending on the modality of the content analyzed, i.e., visual-only,
audio-only and audio-visual.

The proposed architecture for Cm consists of a Transformer-based model [47] that
leverages the temporal aspect of the features. It comprises an input embedding layer that
maps the input features to a hidden dimension, a positional encoding layer, a transformer
encoder layer that processes the input sequence, and a fully connected layer that performs
the final binary classification. The output layer employs a softmax function to return a
probability estimate of whether the analyzed input feature is extracted from a fake signal.
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The dimensionality of the latent space at the output of the transformer is the same as that of
its input. This is because this approach enables the model to better preserve and analyze the
information contained within the input sequence. Figure 2 shows the generic architecture
of the proposed model Cm. The size Mm of the input feature vector varies according to the
considered modality m.

In the next lines, we list the three fusion strategies we propose in this work. These
offer practical approaches for performing multimodal deepfake detection, focusing on
efficient implementations and usability in real-world scenarios. The proposed setups can be
readily implemented on existing monomodal deepfake detectors or serve as the foundation
for building new models, depending on the needed requirements and preferences. For
clarity’s sake, Figure 3 shows the pipelines of the strategies, called Late Fusion, Mid Fusion
and Early Fusion.
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Figure 2. Architecture of the classifier Cm.
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<latexit sha1_base64="XK0Yh7QO8ZyNG/5FFFjgcIwJyYE=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUlE1GW1G5cV7AOaECbTaTt0MgkzN2INwV9x40IRt/6HO//GSZuFth4YOJxzL/fMCWLOFNj2t1FaWl5ZXSuvVzY2t7Z3zN29tooSSWiLRDyS3QArypmgLWDAaTeWFIcBp51g3Mj9zj2VikXiDiYx9UI8FGzACAYt+eaBG2IYEczTRua7QB8gvcp8s2rX7CmsReIUpIoKNH3zy+1HJAmpAMKxUj3HjsFLsQRGOM0qbqJojMkYD2lPU4FDqrx0mj6zjrXStwaR1E+ANVV/b6Q4VGoSBnoyz6rmvVz8z+slMLj0UibiBKggs0ODhFsQWXkVVp9JSoBPNMFEMp3VIiMsMQFdWEWX4Mx/eZG0T2vOec25PavWr4s6yugQHaET5KALVEc3qIlaiKBH9Ixe0ZvxZLwY78bHbLRkFDv76A+Mzx8WFZWj</latexit>CA

<latexit sha1_base64="Ikiv+rPqKHmWKLw3ZxhsYBbrTVQ=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4KomIuix247KCfUATwmQ6aYdOJmHmRqwh+CtuXCji1v9w5984abPQ1gMDh3Pu5Z45QcKZAtv+NpaWV1bX1isb1c2t7Z1dc2+/o+JUEtomMY9lL8CKciZoGxhw2kskxVHAaTcYNwu/e0+lYrG4g0lCvQgPBQsZwaAl3zx0IwwjgnnWzH0X6ANkndw3a3bdnsJaJE5JaqhEyze/3EFM0ogKIBwr1XfsBLwMS2CE07zqpoommIzxkPY1FTiiysum6XPrRCsDK4ylfgKsqfp7I8ORUpMo0JNFVjXvFeJ/Xj+F8MrLmEhSoILMDoUptyC2iiqsAZOUAJ9ogolkOqtFRlhiArqwqi7Bmf/yIumc1Z2LunN7Xmtcl3VU0BE6RqfIQZeogW5QC7URQY/oGb2iN+PJeDHejY/Z6JJR7hygPzA+fwA1/pW4</latexit>CV

<latexit sha1_base64="iAvM66AlnWqX4t/eypgnoMNos0U=">AAAB/nicdVDLSgMxFM3UV62vqrhyEyyCqyFTR1t3RUVcuKhgH9CWkknTNjTzILkjlqHgr7hxoYhbv8Odf2P6EFT0QOBwzr3ck+NFUmgg5MNKzc0vLC6llzMrq2vrG9nNraoOY8V4hYUyVHWPai5FwCsgQPJ6pDj1Pclr3uBs7NduudIiDG5gGPGWT3uB6ApGwUjt7E7Tp9BnVCbno3YT+B0kVxejdjZHbOLmi0eHmNh54roFxxC3mCfFE+zYZIIcmqHczr43OyGLfR4Ak1TrhkMiaCVUgWCSjzLNWPOIsgHt8YahAfW5biWT+CO8b5QO7obKvADwRP2+kVBf66HvmclxWP3bG4t/eY0YusVWIoIoBh6w6aFuLDGEeNwF7gjFGcihIZQpYbJi1qeKMjCNZUwJXz/F/5Nq3naObefazZVOZ3Wk0S7aQwfIQQVUQpeojCqIoQQ9oCf0bN1bj9aL9TodTVmznW30A9bbJyX6lkY=</latexit>DLF

<latexit sha1_base64="vThnBGc8x5rZqzg2p7tp13nDVlA=">AAACAnicbVDLSgMxFM34rOOr6krcBIvgqsx0oS6LorisYB/QGUomc6cNzWSGJCOUobjxV9y4UMStX+HOvzFtZ6GtBwKHc89Nck6Qcqa043xbS8srq2vrpQ17c2t7Z7e8t99SSSYpNGnCE9kJiALOBDQ10xw6qQQSBxzawfBqMm8/gFQsEfd6lIIfk75gEaNEG6lXPvQoCA2Sib59TSQf4ZtsYva8XrniVJ0p8CJxC1JBBRq98pcXJjSLzX2UE6W6rpNqPydSM8phbHuZgpTQIelD11BBYlB+Po0wxidGCXGUSHOExlP190ZOYqVGcWCcMdEDNT+biP/NupmOLvyciTTTIOjsoSjjWCd40gcOmQSqTe6QESqZ+SumAyIJNaUo25TgzkdeJK1a1T2rune1Sv2yqKOEjtAxOkUuOkd1dIsaqIkoekTP6BW9WU/Wi/VufcysS1axc4D+wPr8Ad+glxc=</latexit>

Early Fusion

<latexit sha1_base64="7WQTGJF8g43gQkM9q6IhifbT6Oo=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KomIeqx68VjBfkATwma7aZduNmF3ooaYn+LFgyJe/SXe/Ddu2xy09cHA470ZZuYFCWcKbPvbWFpeWV1br2xUN7e2d3bN2l5HxakktE1iHstegBXlTNA2MOC0l0iKo4DTbjC+nvjdeyoVi8UdZAn1IjwULGQEg5Z8s+aOMORZ4btAHyG/7BS+Wbcb9hTWInFKUkclWr755Q5ikkZUAOFYqb5jJ+DlWAIjnBZVN1U0wWSMh7SvqcARVV4+Pb2wjrQysMJY6hJgTdXfEzmOlMqiQHdGGEZq3puI/3n9FMILL2ciSYEKMlsUptyC2JrkYA2YpAR4pgkmkulbLTLCEhPQaVV1CM78y4ukc9JwzhrO7Wm9eVXGUUEH6BAdIwedoya6QS3URgQ9oGf0it6MJ+PFeDc+Zq1LRjmzj/7A+PwB9TCUdA==</latexit>

ŷAV

<latexit sha1_base64="fPnNHDJ1hbAEJZFbKnLfH/byk50=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRIRdVl147KCfUATwmQ6aYdOJmHmRiwh/oobF4q49UPc+TdO2iy09cDA4Zx7uWdOkHCmwLa/jcrK6tr6RnWztrW9s7tn7h90VZxKQjsk5rHsB1hRzgTtAANO+4mkOAo47QWTm8LvPVCpWCzuYZpQL8IjwUJGMGjJN+tuhGEchFmY+y7QR8iuct9s2E17BmuZOCVpoBJt3/xyhzFJIyqAcKzUwLET8DIsgRFO85qbKppgMsEjOtBU4IgqL5uFz61jrQytMJb6CbBm6u+NDEdKTaNATxZR1aJXiP95gxTCSy9jIkmBCjI/FKbcgtgqmrCGTFICfKoJJpLprBYZY4kJ6L5qugRn8cvLpHvadM6bzt1Zo3Vd1lFFh+gInSAHXaAWukVt1EEETdEzekVvxpPxYrwbH/PRilHu1NEfGJ8/gf6VVA==</latexit>

fA

<latexit sha1_base64="YJYZZxq0hh0cAkuyclvlH+iBFQA=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAiuSiKiLotuXFawD2hCmEwn7dDJJMzciCHEX3HjQhG3fog7/8ZJm4W2Hhg4nHMv98wJEs4U2Pa3sbK6tr6xWduqb+/s7u2bB4c9FaeS0C6JeSwHAVaUM0G7wIDTQSIpjgJO+8H0pvT7D1QqFot7yBLqRXgsWMgIBi35ZsONMEyCMA8L3wX6CHmv8M2m3bJnsJaJU5EmqtDxzS93FJM0ogIIx0oNHTsBL8cSGOG0qLupogkmUzymQ00Fjqjy8ln4wjrRysgKY6mfAGum/t7IcaRUFgV6soyqFr1S/M8bphBeeTkTSQpUkPmhMOUWxFbZhDVikhLgmSaYSKazWmSCJSag+6rrEpzFLy+T3lnLuWg5d+fN9nVVRw0doWN0ihx0idroFnVQFxGUoWf0it6MJ+PFeDc+5qMrRrXTQH9gfP4AoeeVaQ==</latexit>

fV
<latexit sha1_base64="eHZnxFqg0H1LSWybiNduCePsU9s=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVRIRdVl147KCfUATwmQ6aYdOHszciDUEf8WNC0Xc+h/u/BsnbRbaemDgcM693DPHTwRXYFnfxsLi0vLKamWtur6xubVt7uy2VZxKylo0FrHs+kQxwSPWAg6CdRPJSOgL1vFH14XfuWdS8Ti6g3HC3JAMIh5wSkBLnrnvhASGfpAFuecAe4Dssp17Zs2qWxPgeWKXpIZKND3zy+nHNA1ZBFQQpXq2lYCbEQmcCpZXnVSxhNARGbCephEJmXKzSfocH2mlj4NY6hcBnqi/NzISKjUOfT1ZZFWzXiH+5/VSCC7cjEdJCiyi00NBKjDEuKgC97lkFMRYE0Il11kxHRJJKOjCqroEe/bL86R9UrfP6vbtaa1xVdZRQQfoEB0jG52jBrpBTdRCFD2iZ/SK3own48V4Nz6mowtGubOH/sD4/AExSpW0</latexit>

fAV <latexit sha1_base64="8oGV6sKs9uypup6XJ5Yjs2lRAbM=">AAAB/nicbVDLSsNAFJ34rPUVFVdugkVwVRIRdVntxmUF+4AmhMl00g6dTMLMjVhCwF9x40IRt36HO//GSZuFth4YOJxzL/fMCRLOFNj2t7G0vLK6tl7ZqG5ube/smnv7HRWnktA2iXksewFWlDNB28CA014iKY4CTrvBuFn43QcqFYvFPUwS6kV4KFjICAYt+eahG2EYEcyzZu67QB8hu+7kvlmz6/YU1iJxSlJDJVq++eUOYpJGVADhWKm+YyfgZVgCI5zmVTdVNMFkjIe0r6nAEVVeNo2fWydaGVhhLPUTYE3V3xsZjpSaRIGeLMKqea8Q//P6KYRXXsZEkgIVZHYoTLkFsVV0YQ2YpAT4RBNMJNNZLTLCEhPQjVV1Cc78lxdJ56zuXNSdu/Na46aso4KO0DE6RQ66RA10i1qojQjK0DN6RW/Gk/FivBsfs9Elo9w5QH9gfP4AxZmWAw==</latexit>CAV

<latexit sha1_base64="HA8ZQECmm89L4bFhX5cpj75D5ZE=">AAAB/nicdVDLSgMxFM3UV62vqrhyEyyCqyFTR1t3xRcuK9gHtKVk0rQNzTxI7ohlKPgrblwo4tbvcOffmD4EFT0QOJxzL/fkeJEUGgj5sFJz8wuLS+nlzMrq2vpGdnOrqsNYMV5hoQxV3aOaSxHwCgiQvB4pTn1P8po3OBv7tVuutAiDGxhGvOXTXiC6glEwUju70/Qp9BmVyfmo3QR+B8nF5aidzRGbuPni0SEmdp64bsExxC3mSfEEOzaZIIdmKLez781OyGKfB8Ak1brhkAhaCVUgmOSjTDPWPKJsQHu8YWhAfa5byST+CO8bpYO7oTIvADxRv28k1Nd66HtmchxW//bG4l9eI4ZusZWIIIqBB2x6qBtLDCEed4E7QnEGcmgIZUqYrJj1qaIMTGMZU8LXT/H/pJq3nWPbuXZzpdNZHWm0i/bQAXJQAZXQFSqjCmIoQQ/oCT1b99aj9WK9TkdT1mxnG/2A9fYJG1CWPw==</latexit>DEF

<latexit sha1_base64="6qNRwTRQdFUdblvmlpF9KukITI0=">AAACAHicbVDLSgMxFL1TX3V8jbpw4SZYBFdlpgt1WRTEjVDBPqBTSibNtKGZzJBkhDJ046+4caGIWz/DnX9jpp2Fth4IHM45N8k9QcKZ0q77bZVWVtfWN8qb9tb2zu6es3/QUnEqCW2SmMeyE2BFORO0qZnmtJNIiqOA03Ywvs799iOVisXiQU8S2ovwULCQEayN1HeOfEKFppKJoX3HBugmzaO+33cqbtWdAS0TryAVKNDoO1/+ICZpZG4jHCvV9dxE9zIsNSOcTm0/VTTBZIyHtGuowBFVvWy2wBSdGmWAwliaIzSaqb8nMhwpNYkCk4ywHqlFLxf/87qpDi97GRNJqqkg84fClCMdo7wNNGCSEs0nhmAimfkrIiMsMTGVKNuU4C2uvExatap3XvXua5X6VVFHGY7hBM7Agwuowy00oAkEpvAMr/BmPVkv1rv1MY+WrGLmEP7A+vwBKlyWIA==</latexit>

Mid Fusion

<latexit sha1_base64="7WQTGJF8g43gQkM9q6IhifbT6Oo=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KomIeqx68VjBfkATwma7aZduNmF3ooaYn+LFgyJe/SXe/Ddu2xy09cHA470ZZuYFCWcKbPvbWFpeWV1br2xUN7e2d3bN2l5HxakktE1iHstegBXlTNA2MOC0l0iKo4DTbjC+nvjdeyoVi8UdZAn1IjwULGQEg5Z8s+aOMORZ4btAHyG/7BS+Wbcb9hTWInFKUkclWr755Q5ikkZUAOFYqb5jJ+DlWAIjnBZVN1U0wWSMh7SvqcARVV4+Pb2wjrQysMJY6hJgTdXfEzmOlMqiQHdGGEZq3puI/3n9FMILL2ciSYEKMlsUptyC2JrkYA2YpAR4pgkmkulbLTLCEhPQaVV1CM78y4ukc9JwzhrO7Wm9eVXGUUEH6BAdIwedoya6QS3URgQ9oGf0it6MJ+PFeDc+Zq1LRjmzj/7A+PwB9TCUdA==</latexit>

ŷAV

<latexit sha1_base64="fPnNHDJ1hbAEJZFbKnLfH/byk50=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRIRdVl147KCfUATwmQ6aYdOJmHmRiwh/oobF4q49UPc+TdO2iy09cDA4Zx7uWdOkHCmwLa/jcrK6tr6RnWztrW9s7tn7h90VZxKQjsk5rHsB1hRzgTtAANO+4mkOAo47QWTm8LvPVCpWCzuYZpQL8IjwUJGMGjJN+tuhGEchFmY+y7QR8iuct9s2E17BmuZOCVpoBJt3/xyhzFJIyqAcKzUwLET8DIsgRFO85qbKppgMsEjOtBU4IgqL5uFz61jrQytMJb6CbBm6u+NDEdKTaNATxZR1aJXiP95gxTCSy9jIkmBCjI/FKbcgtgqmrCGTFICfKoJJpLprBYZY4kJ6L5qugRn8cvLpHvadM6bzt1Zo3Vd1lFFh+gInSAHXaAWukVt1EEETdEzekVvxpPxYrwbH/PRilHu1NEfGJ8/gf6VVA==</latexit>

fA

<latexit sha1_base64="YJYZZxq0hh0cAkuyclvlH+iBFQA=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAiuSiKiLotuXFawD2hCmEwn7dDJJMzciCHEX3HjQhG3fog7/8ZJm4W2Hhg4nHMv98wJEs4U2Pa3sbK6tr6xWduqb+/s7u2bB4c9FaeS0C6JeSwHAVaUM0G7wIDTQSIpjgJO+8H0pvT7D1QqFot7yBLqRXgsWMgIBi35ZsONMEyCMA8L3wX6CHmv8M2m3bJnsJaJU5EmqtDxzS93FJM0ogIIx0oNHTsBL8cSGOG0qLupogkmUzymQ00Fjqjy8ln4wjrRysgKY6mfAGum/t7IcaRUFgV6soyqFr1S/M8bphBeeTkTSQpUkPmhMOUWxFbZhDVikhLgmSaYSKazWmSCJSag+6rrEpzFLy+T3lnLuWg5d+fN9nVVRw0doWN0ihx0idroFnVQFxGUoWf0it6MJ+PFeDc+5qMrRrXTQH9gfP4AoeeVaQ==</latexit>

fV

<latexit sha1_base64="XK0Yh7QO8ZyNG/5FFFjgcIwJyYE=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUlE1GW1G5cV7AOaECbTaTt0MgkzN2INwV9x40IRt/6HO//GSZuFth4YOJxzL/fMCWLOFNj2t1FaWl5ZXSuvVzY2t7Z3zN29tooSSWiLRDyS3QArypmgLWDAaTeWFIcBp51g3Mj9zj2VikXiDiYx9UI8FGzACAYt+eaBG2IYEczTRua7QB8gvcp8s2rX7CmsReIUpIoKNH3zy+1HJAmpAMKxUj3HjsFLsQRGOM0qbqJojMkYD2lPU4FDqrx0mj6zjrXStwaR1E+ANVV/b6Q4VGoSBnoyz6rmvVz8z+slMLj0UibiBKggs0ODhFsQWXkVVp9JSoBPNMFEMp3VIiMsMQFdWEWX4Mx/eZG0T2vOec25PavWr4s6yugQHaET5KALVEc3qIlaiKBH9Ixe0ZvxZLwY78bHbLRkFDv76A+Mzx8WFZWj</latexit>CA

<latexit sha1_base64="Ikiv+rPqKHmWKLw3ZxhsYBbrTVQ=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4KomIuix247KCfUATwmQ6aYdOJmHmRqwh+CtuXCji1v9w5984abPQ1gMDh3Pu5Z45QcKZAtv+NpaWV1bX1isb1c2t7Z1dc2+/o+JUEtomMY9lL8CKciZoGxhw2kskxVHAaTcYNwu/e0+lYrG4g0lCvQgPBQsZwaAl3zx0IwwjgnnWzH0X6ANkndw3a3bdnsJaJE5JaqhEyze/3EFM0ogKIBwr1XfsBLwMS2CE07zqpoommIzxkPY1FTiiysum6XPrRCsDK4ylfgKsqfp7I8ORUpMo0JNFVjXvFeJ/Xj+F8MrLmEhSoILMDoUptyC2iiqsAZOUAJ9ogolkOqtFRlhiArqwqi7Bmf/yIumc1Z2LunN7Xmtcl3VU0BE6RqfIQZeogW5QC7URQY/oGb2iN+PJeDHejY/Z6JJR7hygPzA+fwA1/pW4</latexit>CV

<latexit sha1_base64="l8YX91L3HU/79KfdtGsTXKw4bUY=">AAAB/nicdVDLSgMxFM3UV62vqrhyEyyCqyFTR1t3RUXcCBXsA9pSMmnahmYeJHfEMhT8FTcuFHHrd7jzb0wfgooeCBzOuZd7crxICg2EfFipufmFxaX0cmZldW19I7u5VdVhrBivsFCGqu5RzaUIeAUESF6PFKe+J3nNG5yN/dotV1qEwQ0MI97yaS8QXcEoGKmd3Wn6FPqMyuR81G4Cv4Pk6mLUzuaITdx88egQEztPXLfgGOIW86R4gh2bTJBDM5Tb2fdmJ2SxzwNgkmrdcEgErYQqEEzyUaYZax5RNqA93jA0oD7XrWQSf4T3jdLB3VCZFwCeqN83EuprPfQ9MzkOq397Y/EvrxFDt9hKRBDFwAM2PdSNJYYQj7vAHaE4Azk0hDIlTFbM+lRRBqaxjCnh66f4f1LN286x7Vy7udLprI402kV76AA5qIBK6BKVUQUxlKAH9ISerXvr0XqxXqejKWu2s41+wHr7BCeAlkc=</latexit>DMF

<latexit sha1_base64="/mtrsS72ODXpdKm/W7NIIIsQ3IY=">AAACA3icbVC7TsMwFHV4lvAqsMFiUSExVUkHYKxgYehQJPqQmqhy3JvWquNEtoMURZVY+BUWBhBi5SfY+BvcNgO0HMnS0Tn34XuChDOlHefbWlldW9/YLG3Z2zu7e/vlg8O2ilNJoUVjHstuQBRwJqClmebQTSSQKODQCcY3U7/zAFKxWNzrLAE/IkPBQkaJNlK/fOxREBokE0O7YWYQ6Xm4QTKQdr9ccarODHiZuAWpoALNfvnLG8Q0jcxAyolSPddJtJ8TqRnlMLG9VEFC6JgMoWeoIBEoP5/dMMFnRhngMJbmCY1n6u+OnERKZVFgKiOiR2rRm4r/eb1Uh1d+zkSSahB0vihMOdYxngaCB0wC1TwzhFDJzF8xHRFJqElFTUNwF09eJu1a1b2oune1Sv26iKOETtApOkcuukR1dIuaqIUoekTP6BW9WU/Wi/VufcxLV6yi5wj9gfX5A/dTlxI=</latexit>
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Figure 3. Different fusion strategies considered to perform multimodal deepfake detection.

Late Fusion. In the Late Fusion strategy, the deepfake detector considers a dedicated
classifier for each modality, which we call CV and CA. We separately train the two classifiers
only on visual (CV) and audio (CA) data. In testing phase, every classifier takes as input the
feature set associated with the related modality and returns a score such that

ŷV = CV(fV) and ŷA = CA(fA). (3)

The final multimodal score assigned to the video sequence is computed by averaging
the monomodal ones,

ŷAV = (ŷV + ŷA)/2. (4)

We define this detector as DLF, being

ŷAV = DLF(fV, fA) = (CV(fV) + CA(fA))/2. (5)

Mid Fusion. Regarding the Mid Fusion strategy, we consider two classifiers CV and CA that
are still separated for the two modalities, though being merged in their final dense layers.
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In more details, for each classifier, we extract the feature embedding obtained before the
final fully connected layer. We concatenate the embeddings associated with each data
modality, ending up with a multimodal embedding vector with size 1× (MV + MA). Then,
we provide the computed multimodal embedding as input to a fully-connected layer that
returns the final score ŷAV.

Differently from the Late Fusion strategy, we train the Mid Fusion strategy end-to-end.
In this way, the two classifiers update their related parameters considering the contributions
of both modalities. We define the Mid Fusion detector as DMF, being

ŷAV = DMF(fV, fA). (6)

Early Fusion. In the Early Fusion strategy, we consider a unique classifier CAV that takes
as input the concatenation of the two feature sets fAV = [fV, fA] and directly returns the
score ŷAV. The feature vectors of the two modalities are concatenated along the feature-
dimension, so that the final size of fAV is equal to N ×MAV, where MAV = MV + MA.

The idea behind this fusion strategy is that, when we provide the detector with
multimodal information at an early stage, it can exploit the audio-visual correlations better,
which may benefit the final detection capabilities. We define the Early Fusion detector as
DEF, being

ŷAV = DEF(fV, fA) = CAV(fAV). (7)

4. Experimental Setup

In this section we provide the reader with some insights regarding the experimental
setup used to assess the performances of the proposed detectors. First, we describe the
datasets considered for training and testing all the stages of the systems. Then, we give
more details on the processing pipeline, providing the parameters for the extraction of
audio and visual features and those for the deepfake detector. Finally, we present the
procedure used to train the considered models.

4.1. Considered Datasets

As mentioned in Section 2, in the multimedia forensics literature the multimodal
deepfake datasets that have been released are few and are not enough to perform compre-
hensive studies by training models on specific sets and testing them on unseen data. This is
a significant limitation that restricts the development of new multimodal detectors. In this
paper, we try to overcome this problem and show how multimodal analyzes can be more
robust and reliable even when the considered models are trained on monomodal datasets
that are unrelated to each other. Following this approach, we train the proposed detectors
on visual-only (i.e., FaceForensics++) or audio-only (i.e., ASVspoof 2019) monomodal
deepfake datasets and test them on multimodal audio-video corpora. Here we present in
detail all the considered datasets.

4.1.1. Training Datasets

FaceForensics++ [18]. This is a visual-only deepfake dataset containing 5000 videos which
were generated using four different deepfake generation methods using a base set of
1000 real YouTube videos. It includes two partitions corresponding to different compres-
sion pipelines applied to the videos. In particular, the dataset includes two values of
Quantization Parameter (QP), QP = 23 and QP = 40, where higher QP means lower quality.

We use this dataset to train the CV model, considering the train and validation splits
released by the authors. Then, we exploit the test split for a preliminary monomodal
evaluation. As for the two partitions of QP, we merge them to make the training and
evaluation processes more robust.
ASVspoof 2019 [48]. This is a speech audio dataset that contains both real and synthetic
tracks generated based on the VCTK corpus [49]. In particular, we consider the Logical
Access (LA) partition, which relates to the synthetic speech detection problem. This contains
more than 120,000 audio tracks, all at a sampling frequency of fs = 16 kHz. The LA partition
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is split into three sub-partitions, namely train, dev and eval, which contain authentic signals
along with synthetic speech samples generated with various methods. The train and dev
partitions have been created using a set of six synthesis algorithms, while eval includes
samples generated with thirteen techniques, different from those used in train and dev.

We use the train and dev partitions during the training phase of the CA model, while
we exploit the eval split to test the detector in a monomodal scenario.

4.1.2. Evaluation Datasets

We evaluate the proposed audio-video detectors on multiple state-of-the-art multi-
modal deepfake datasets. We do so since we want to test their robustness against various
types of forgeries and anti-forensic attacks, aiming at replicating real-world evaluation
scenarios. In the forensic field, it is crucial for a detector to exhibit reliable and robust
predictions even when tested on data that differs from the ones seen during training. Hence,
the ability of a model to generalize across different types of data becomes an important
aspect to consider and by testing it on diverse datasets we can effectively evaluate their
performance in these terms. Here we introduce the deepfake datasets we considered in the
multimodal evaluation setup.
FakeAVCeleb [43]. This is a multimodal deepfake dataset that contains 500 real videos
extracted from the VoxCeleb2 corpus [50], used as a base set to generate around 20,000 deep-
fake videos through various deepfake generation methods. Deepfake video frames have
been generated with Faceswap [51] and FSGAN [52], while the deepfake audios have been
synthesized using Real-Time Voice Cloning (RTVC) [53]. Then, Wav2Lip [54] has been
applied to synchronize the video frames with the audio.
DFDC [42]. This multimodal deepfake dataset contains nearly 120,000 videos, of which
100,000 are labeled as “Fake” and the rest as “Real”. The videos are divided into 50 folders,
numbered from 0 to 49, where each subset contains a set of real videos, along with all
derivative fake videos. While the videos are largely visual-only fakes, some samples
included in divisions 45 to 49 contain falsified audio in addition to possible falsified video.
Since our goal is to perform multimodal experiments, we consider only the videos within
these folders as test dataset, for a total of 12,547 samples.
VidTIMIT [55]. This is a multimodal dataset that includes only real video recordings of
43 people reciting short sentences, considering 10 videos per subject, for a total of 430 videos.
It has been widely used for research on topics such as automatic lip reading, multi-view
face recognition, multi-modal speech recognition and person identification. The recorded
sentences are extracted from the test section of the TIMIT corpus [56].
DeepfakeTIMIT [44]. This is a video deepfake dataset including only fake video samples,
generated starting from the VidTIMIT corpus presented above. The forgery process regards
only the visual content of the video sequences; specifically, the forged video frames were
generated with a Generative Adversarial Network (GAN)-based approach developed from
Faceswap [51]. The generated deepfakes belong to 32 subjects and are released in two
versions: a low quality (LQ) and a high quality (HQ), with different frame sizes. This set
includes a total of 640 videos with swapped faces (320 for each quality version). In our
experiments, we merge LQ and HQ subsets, considering them as a unique corpus.
TIMIT-TTS [6]. This is a speech dataset including only fake audio samples, generated
starting from the VidTIMIT corpus. This dataset contains four partitions, corresponding to
different post-processing pipelines applied to audio tracks. Here we consider the Dynamic
Time Warping (DTW) subset, which includes almost 20,000 synthetic speech tracks synthe-
sized using twelve different TTS algorithms and then passed through a DTW system to
sync them to the reference videos, increasing their realism. This corpus can be used as a
standalone synthetic audio dataset or combined with VidTIMIT and DeepfakeTIMIT sets
to perform multimodal research.

In the following experiments, we combine the VidTIMIT, DeepfakeTIMIT and TIMIT-
TTS datasets and consider them as a unique multimodal deepfake corpus, which we refer
to as TIMIT.
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4.2. Processing Pipeline
4.2.1. Feature Extraction

The two feature extractors FV and FA work to capture the content of the input
video sequence over time. In particular, to capture fine-grained temporal changes, we
consider an extraction frequency equal to 10 Hz. Concerning visual information, this is
done by selecting 10 evenly spaced frames within a second and extracting a feature from
each of them. Concerning speech information, we divide the signal considering non-
overlapped time windows of 100 ms and extracting a feature from each of them. At the end
of the feature extraction process, visual and spatial features are synchronized and describe
information evolving in time at 10 samples per second. Regarding the temporal dimension,
we analyze the input signals over a time window TW = 3.0 s. We adopt this window length
because, from preliminary experiments, it turned out to be a good compromise between
the shortness of the window and the performance of the detector, which is desired in a
real-world scenario.

For both feature extractors, we exploit the pre-trained models released by the authors
of the respective papers. In particular, FV was trained on FaceForensics++, while FA was
trained on Voxceleb [57] and Voxceleb2 [50] datasets, considering audio data sampled at
16 kHz. Finally, at each considered time instant, the number of features extracted from
the visual content is equal to MV = 1072, while those extracted from the audio content
are MA = 512. Considering 10 samples per second over a time window of 3.0 s, the final
temporal dimension of the features is equal to N = 30. Therefore, the size of the visual
feature fV is equal to 30× 1072, while the size of the audio feature fA is equal to 30× 512.

4.2.2. Deepfake Detector

As reported in Section 3, all the considered deepfake detectors share the same architec-
ture Cm. The input shape of the networks is equal to N ×Mm, where Mm depends on the
feature set we are considering, i.e., m ∈ {V, A, AV}. All the considered models contain a
transformer encoder that presents a single hidden layer with 8 attention heads, 0.1 dropout,
and GELU as activation function.

Each input feature set is normalized to have zero mean and unitary variance, both in
training and test. In the Early Fusion strategy, when the features are concatenated before
feeding them to the model, the normalization is performed independently between the
modalities, prior to the concatenation.

4.3. Training Strategy

All the hyperparameters used to train the considered models have been selected to
maximize the classification accuracy. In particular, we consider a number of epochs equal
to 150 with an early stopping patience at 15 epochs, weighted cross-entropy as loss function
and Adam optimization. We adopt a learning rate equal to 10−3, a weight decay of 10−4,
and we reduce the learning rate on plateau of the validation loss by a factor 0.1.

During training we pay attention to balancing the classes in order to compensate for
the imbalance of the training datasets. In particular, we oversample the tracks of the less
represented class, ensuring that each training batch contains the same number of samples
from the “Real” and “Fake” classes.

5. Results

In this section we analyze and discuss the results achieved by the proposed techniques
for multimodal deepfake detection.

5.1. Evaluation Metrics

We evaluate the performances of the considered detectors using Receiver Operating
Characteristic (ROC) curves and confusion matrices, considering as evaluation metrics the
Area Under the Curve (AUC) and the Balanced Accuracy (BA). In general, we evaluate the
BA as a function of the threshold t applied to the likelihood score returned by the detector
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to estimate the class of the query video sequence (i.e., “Real” or “Fake”). If the likelihood
exceeds the threshold, the sequence is classified as “Fake”, otherwise it is classified as
“Real”. We define the BA at threshold t as

BAt =
TPRt + TNRt

2
, (8)

where TPRt and TNRt are the True Positive Rate (TPR) and True Negative Rate (TNR) of the
tackled binary decision problem at fixed threshold t, respectively. Optimal performances
are achieved when both AUC and BA approach values next to 1. In all the considered
investigations, we apply a standard threshold t = 0.5 to the output likelihood, ending
up with BA0.5 as evaluation metrics. Nonetheless, we show that there are a few scenarios
where better results can be achieved by aptly modifying this value.

5.2. Monomodal Results

As a preliminary experiment, we test the effectiveness of the monomodal detectors
in their respective domains. The reason behind this choice is that good visual and au-
dio classifiers are essential for building an excellent multimodal detector. Our proposal
focuses on fusion strategies designed for merging monomodal deepfake detectors. As a
result, the performances of the fused model are directly influenced by those of the starting
detectors being used. If the monomodal detectors do not work properly, it would be
necessary to act on them before their fusion in the multimodal investigations. Therefore,
we exploit the monomodal scores defined in (3) to evaluate our performances on the test
partitions of monomodal datasets (i.e., FaceForensic++ for visual data and ASVspoof 2019
for audio data).

Figure 4 shows the results of this preliminary analysis. The two classifiers show
excellent detection performances, with an AUC of 0.91 for DV and an AUC of 0.96 for DA,
along with BA0.5 of 0.83 and 0.90, respectively. These results are consistent with those of
many cutting-edge detectors reported in the literature [20,34], indicating that the proposed
monomodal classifiers are suitable for subsequent multimodal experiments.
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Figure 4. Evaluation of the considered detectors on monomodal datasets.

5.3. Multimodal Results

In each of the following multimodal experiments, we evaluate the proposed detectors
only on datasets different from the monomodal datasets used to train the classifiers. Per-
forming cross-dataset tests represents a challenging scenario that resembles “in-the-wild”
conditions, which enables to evaluate the robustness of the proposed strategies against
different forgeries and anti-forensic attacks. Also, we are aware that training on monomodal
datasets could impact the achieved performance on multimodal ones. A notable limitation
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of this approach is that the detectors are unable to leverage all the intra-modality relation-
ships within the content since these relationships are not accessible during training. Due to
this aspect, the proposed system is unable to detect synthetic content that appears realistic
in individual modalities but lacks synchronization between audio and video, even if sim-
pler detectors trained explicitly with this purpose could easily spot such inconsistencies.
Still, we want to investigate whether a modality fusion process can improve the detection
capabilities even though the data seen in training are “partial”.

5.3.1. Best Fusion Strategy Selection

As a first experiment, we examine the fusion strategies introduced in Section 3.2.2
and contrast their respective performances, investigating which one leads to more robust
predictions. For this test we evaluate the detectors only on multimodal deepfakes that share
the same class between video and audio (i.e., both are either real or fake), excluding videos
where only one of the modalities is edited (e.g., fake video and real audio or vice versa).

Figure 5 shows the ROC results of this analysis, broken down by the considered test
dataset. On average, Early Fusion is the most effective fusion strategy, enabling to achieve
AUCs larger or equal 0.90 for two datasets out of three, and being the best performing
strategy on the remaining dataset. As a matter of fact, Early Fusion can exceed the other
fusion strategies by 7% and 10% on FakeAVceleb and DFDC datasets, respectively, while
being competitive on the TIMIT dataset. We believe this technique enables the detector
to deeply analyze both the relationships between and within the modalities, thereby
enhancing the robustness of its predictions. We observe that the scored AUC values display
significant variations depending on the test dataset under analysis, reaching poor values in
the case of the DFDC set. This is likely due to distinct characteristics between training and
test data, which can adversely impact the detector predictions.
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Figure 5. Evaluation of the considered detectors on multimodal datasets considering different fusion
strategies.

One further approach we could consider is the recursive application of a Late Fusion
strategy, fusing the scores obtained from the three proposed methods by averaging them.
The results achieved using this strategy are AUC = 0.88 for FakeAVceleb, AUC = 0.96 for
TIMIT, and AUC = 0.78 for DFDC. While we acknowledge that on certain datasets this ap-
proach improves the results reported before, we believe that it brings limited novelty to the
analysis. First, it considers a fusion strategy that has already been previously explored. Ad-
ditionally, from a computational perspective, this strategy may not be practical as it needs to
use three different models to obtain a score. This can introduce unnecessary computational
overhead without significantly enhancing the overall performance. Consequently, for these
reasons, we decided not to consider this approach in the following analyses.

To further deepen our investigations, we compute the confusion matrices to evaluate
the performance of the detectors DLF, DMF and DEF on the three considered multimodal
deepfake datasets. Results are depicted in Figure 6 (DLF), Figure 7 (DMF) and Figure 8
(DEF). In all cases, we apply a standard fixed threshold t = 0.5 to the estimated likelihood
associated with each video sequence. The BA0.5 values reinforce the results observed with
the ROC curves, with Early Fusion that proves again to be the best fusion strategy. However,
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while on TIMIT and DFDC datasets this strategy reports well balanced TPR and TNR with
similar values, Early Fusion results on FakeAVceleb are strongly unbalanced towards the
“Real” class (i.e., TPR0.5 = 0.954 vs. TNR0.5 = 0.580).
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Figure 6. Confusion matrices obtained by considering the DLF detector (Late Fusion) on the
FakeAVceleb (left), TIMIT (center) and DFDC (right) datasets. The corresponding BA0.5 values
are 0.75, 0.87, and 0.69, respectively.
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Figure 7. Confusion matrices obtained by considering the DMF detector (Mid Fusion) on the
FakeAVceleb (left), TIMIT (center) and DFDC (right) datasets. The corresponding BA0.5 values
are 0.75, 0.87, and 0.70, respectively.
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Figure 8. Confusion matrices obtained by considering the DEF detector (Early Fusion) on the
FakeAVceleb (left), TIMIT (center) and DFDC (right) datasets. The corresponding BA0.5 values
are 0.77, 0.88, and 0.74, respectively.

Motivated by this observation, we extend our investigations, computing the BA by
varying the threshold applied to the scores. Then, for each of the tackled experiments, we
consider the optimal threshold value t determined to maximize the BA value. Notice that
this experiment enables to test the robustness of the proposed detectors when dealing with
unseen data. If the maximum achieved BA (by varying all the possible thresholds) shows
similar to the BA0.5 and reports acceptable values, this means the detector is well calibrated
and it is robust to unknown data.

Table 1 compares the BA values at different thresholds for all the considered cases. For
the sake of clarity, we also include the achieved AUCs. The results show that using a fixed
threshold t = 0.5 does not particularly affect the results obtained, with the BA values not
considerably changing between the two considered scenarios. FakeAVceleb is the dataset
showing the most notable changes, with a 5% accuracy improvement when considering
the best threshold for the detector DEF. However, this compromise is acceptable given the
other accomplished results. In general the scores indicate the robustness of the proposed
detectors, which are capable of handling unseen data.
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Table 1. AUC and BA values obtained testing the proposed detectors considering different fusion
strategies and different thresholds t.

FakeAVceleb TIMIT DFDC
Late Mid Early Late Mid Early Late Mid Early

AUC 0.85 0.83 0.90 0.95 0.95 0.94 0.73 0.71 0.81
BA0.5 0.75 0.75 0.77 0.87 0.87 0.88 0.69 0.60 0.74
BAbest t 0.78 0.76 0.82 0.87 0.90 0.90 0.70 0.67 0.74

Since Early Fusion proves to be the best-performing strategy among the three proposed
ones, we consider this for all the remaining evaluations.

5.3.2. Multimodal vs. Monomodal Detection

We now compare the performances of the developed Early Fusion multimodal detector
with those of the corresponding monomodal models. We do so since we want to test
whether a multimodal analysis is more robust and reliable than a monomodal one. We
recall again that our multimodal models are trained solely on monomodal data, so they do
not require any additional training datasets. In this experiment the monomodal models
serve as a baseline for our study. The purpose is to assess whether the multimodal approach
proposed in our work offers advantages compared to a monomodal one. By comparing the
performance of the proposed detector against the baselines, we can determine the potential
benefits and improvements achieved through a multimodal approach. As done in the
previous experiment, we only analyze deepfakes in which both the video and audio signals
belong to the same class and exclude samples where only one modality is manipulated. This
is done because monomodal detectors, by nature, cannot detect these types of forgeries.

Figure 9 shows the ROC results broken down for each test dataset, while Table 2
compares the AUC, BA and BAbest t values for the three methods. The multimodal approach
consistently outperforms the monomodal detectors, supporting the considerations made in
our investigations.
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Figure 9. Evaluation of the considered detectors on multimodal datasets considering monomodal
(i.e., visual-only or audio-only) against multimodal approaches.

Table 2. AUC and BA values at different thresholds t, obtained testing the proposed detectors on
multimodal datasets considering monomodal (i.e., visual-only or audio-only) against DEF (Early
Fusion) detector.

FakeAVceleb TIMIT DFDC
Visual Audio Fusion Visual Audio Fusion Visual Audio Fusion

AUC 0.88 0.71 0.90 0.83 0.90 0.94 0.64 0.74 0.81
BA0.5 0.80 0.64 0.77 0.83 0.76 0.88 0.60 0.58 0.74
BAbest t 0.80 0.67 0.82 0.83 0.88 0.90 0.61 0.60 0.74

5.3.3. Mixed Class Experiments

As a last experiment, we expand the analysis to include also deepfakes with mixed
class labels (i.e., real video frames and fake audio or vice versa). In doing so, we evaluate
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how much the performances of the detectors are affected when dealing with mixed classes
and we determine if they can effectively address this challenging task.

To fully understand the discrimination capabilities of the detectors, we exclude the
simplest case from the test samples, corresponding to the one in which both audio and
video frames are modified. Indeed, we have already evaluated the detection performance
of the proposed classifiers on this type of data. We now want to investigate their ability in
a more challenging scenario, i.e., identifying samples where only one between audio and
visual modalities is forged.

For this specific experiment, we expand our analysis and include additional training
strategies. Up to this point, all detectors were trained only on data associated with the
same class across modalities, i.e., yV = yA, to ensure consistency with the data used during
the tests. Since here we also consider mixed classes, we train the detectors on mixed
classes as well, i.e., when yV 6= yA, and compare their performances with those of the
detectors trained only on consistent classes. As previously reported in Section 4.3, we
keep the balance between the “Real” and “Fake” classes, but we also ensure that all cases
falling into the “Fake” class, i.e. [yV, yA] = [1, 0], [yV, yA] = [0, 1] and [yV, yA] = [1, 1], are
equally represented.

Figure 10 shows the ROC results, where the original training strategy has been indi-
cated as Same Class while the other as All Class, meaning that it includes both the scenarios
in which yV = yA (same class) and yV 6= yA (mixed class). The DEF model achieves the
best average results when trained following the All Class strategy (average AUC = 0.80 vs.
average AUC = 0.76 of the Same Class). Training the detector following the All Class strategy
enables to learn additional traces within modalities, which can benefit the discrimination
of mixed-classes deepfakes. The use of intra-modal information is noteworthy because it
enhances the detection accuracy of the system, even when it is trained on single-modal data,
as in our case. We are confident that training the model on a multimodal deepfake dataset
would further improve its performance, as it would increase the number of intra-modal
traces. These outcomes prove another time the robustness and effectiveness of the proposed
approach, capable of reaching good performance on unseen data and different test datasets.
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Figure 10. Evaluation of the DEF detector (Early Fusion) on mixed classes (real audio and fake video
and viceversa). The case where both video and audio are fake is excluded.

6. Conclusions and Future Works

In this paper we presented a novel approach for detecting multimodal deepfake videos
by combining visual and audio information. The proposed method was used to determine
the authenticity of an input video sequence, combining data-driven features extracted from
the visual content with speaker-identity features from the audio stream. We evaluated
several training and test methods, and various modality fusion strategies. The results
indicate that robust predictions are achieved when an Early Fusion approach is considered.

The peculiarity of the proposed detector is that its training phase does not take place
on multimodal deepfake data but on monomodal deepfake samples (i.e., that contain either
modified video frames only or modified audio samples only), thus not requiring additional
multimodal training data. Despite this “partial” training strategy, the model is able to
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outperform detectors trained only on monomodal data, underlining the goodness of using
a multimodal approach.

In future studies we want to experiment with new methods of fusion between modal-
ities, such as “informed” fusion methods. This means the contribution of the different
modalities is weighted with respect to the relevance they may have in the accuracy of the
final prediction.
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