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Abstract: Given the reference (distortion-free) image, full-reference image quality assessment (FR-
IQA) algorithms seek to assess the perceptual quality of the test image. Over the years, many effective,
hand-crafted FR-IQA metrics have been proposed in the literature. In this work, we present a novel
framework for FR-IQA that combines multiple metrics and tries to leverage the strength of each by
formulating FR-IQA as an optimization problem. Following the idea of other fusion-based metrics,
the perceptual quality of a test image is defined as the weighted product of several already existing,
hand-crafted FR-IQA metrics. Unlike other methods, the weights are determined in an optimization-
based framework and the objective function is defined to maximize the correlation and minimize
the root mean square error between the predicted and ground-truth quality scores. The obtained
metrics are evaluated on four popular benchmark IQA databases and compared to the state of the art.
This comparison has revealed that the compiled fusion-based metrics are able to outperform other
competing algorithms, including deep learning-based ones.

Keywords: full-reference image quality assessment; optimization; quality-aware features

1. Introduction

With social media and streaming applications booming, it is required from systems,
that are able to quickly transmit a large number of images, to provide the best available user
experience [1]. However, various distortions are added to digital images during storage,
compression, and transmission. Therefore, the continuous evaluation and monitoring of
image quality is of great importance to content providers [2]. As a consequence, objective
image quality assessment (IQA) has become a very hot research topic [3], because it tries to
devise mathematical models that are able to give perceptual quality estimation consistent
with human judgment. The literature usually divides objective IQA into three branches [4,5]
based on the availability or unavailability of the reference (distortion-free) images in the
quality evaluation process. As the terminology suggests, full-reference (FR) IQA evaluates
the quality of distorted images with full access to their reference counterparts, while
no-reference (NR) IQA has no access and reduced-reference (RR) IQA has partial access
to them.

Because the underlying model of the human visual system (HVS) is extremely complex
and its many elements are not fully understood [6], researchers have proposed many FR-
IQA algorithms, which take into consideration different aspects of the HVS, over the years.
Recently, there have been numerous attempts to increase the performance of FR-IQA by
combining several already existing FR-IQA metrics to compile a “super” evaluator. First,
Okarma [7] introduced such a fusion-based metric by applying the product and power of
MS-SSIM [8], VIF [9], and R-SVD [10]. Later, this idea was developed further into several
directions. A line of works utilized optimization or regression techniques to determine
optimal weights or exponents in summations or products of already existing FR-IQA
metrics. For instance, Oszust [11] determined the optimal weights using a genetic algorithm
with a root mean square error (RMSE) objective function which was calculated between
predicted and ground-truth scores. Bakurov et al. [12] chose a similar solution, but the

J. Imaging 2023, 9, 116. https://doi.org/10.3390/jimaging9060116 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging9060116
https://doi.org/10.3390/jimaging9060116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0003-3265-5047
https://doi.org/10.3390/jimaging9060116
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging9060116?type=check_update&version=1


J. Imaging 2023, 9, 116 2 of 19

authors revisited the SSIM [13] and MS-SSIM [8] metrics to find optimal parameters in their
formulas, using evolutionary and swarm intelligence methods instead of the originally
proposed grid search. On the other hand, Okarma [14] used the MATLAB fminsearch
function to determine the optimal exponents in a weighted product of traditional FR-IQA
metrics. Another line of works utilize machine learning techniques to create fusion-based
methods. The illustrative example is the paper of Lukin et al. [15] where the results of
traditional FR-IQA metrics were used as a feature vector to train a shallow neural network.
Amirshahi et al. [16] compiled a fusion-based metric by comparing the activation maps
produced through reference and distorted images of an AlexNet [17] convolutional neural
network using traditional image quality metrics.

1.1. Contributions

In this paper, we make the following contributions. We propose a novel framework
for FR-IQA that combines multiple metrics and tries to leverage the strength of each by
formulating FR-IQA as an optimization problem. Following the idea of other fusion-based
metrics, the perceptual quality of a test image is defined as the weighted product of several
already existing, hand-crafted FR-IQA metrics. Unlike other methods [7,18,19], the weights
in the product are determined in a novel optimization-based framework and the objective
function is defined to maximize the correlation strength and minimize the root mean square
error between the predicted and ground-truth quality scores.

1.2. Structure of the Paper

To provide a clear and organized presentation of our work, this paper is structured as
follows. In Section 2, we discuss the main approaches of FR-IQA and summarize significant
methods of the field. Section 3 outlines our proposed method. In Section 4, we present
the experimental results and analyze the performance of our method by comparing it to
other state-of-the-art methods. We conclude this paper in Section 5 and discuss potential
applications and future research directions.

2. Related Work

Taking the mean square error between reference and distorted images is a simple and
straightforward FR-IQA metric. However, the provided quality scores do not correlate well
with human judgment [20]. Similarly, PSNR [21] is also simple and straightforward but fails
to give satisfactory results [22]. Other metrics take the sensitivity of the HVS to structural
degradation into consideration, such as the structural similarity index (SSIM) [13]. On the
basis of SSIM [13], a large number of FR-IQA metrics has been proposed over the years,
such as MS-SSIM [8], CW-SSIM [23], ESSIM [24], GSSIM [25], IW-SSIM [26], and 3-SSIM [27].
In SSIM [13], a comparison between the distorted and reference (distortion-free) images
is performed on the basis of three features, i.e., luminance, contrast, and structure. To be
more specific, the SSIM between two images (denoted here by A and B) in an image patch
around (x, y) coordinates is given as

SSIM(x, y) = (l(x, y))α × (c(x, y))β × (s(x, y))γ, (1)

where the luminance component is defined as

l(x, y) =
2µA(x, y)µB(x, y) + C1

(µA(x, y))2 + (µB(x, y))2 + C1
, (2)

the contrast component is given as

c(x, y) =
2σA(x, y)σB(x, y) + C2

(σA(x, y))2 + (σB(x, y))2 + C2
, (3)
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and the structure component is determined as

s(x, y) =
σAB(x, y) + C3

σA(x, y)σB(x, y) + C3
. (4)

In Equations (1)–(4), µA(x, y) and µB(x, y) denote the average of the pixel values in the
image patch around (x, y) in images A and B, respectively. Similarly, (σA(x, y))2 and
(σB(x, y))2 stand for the variances. Further, σAB(x, y) is the covariance calculated between
the two images from A and B. The constants are calculated as C1 = (K1L)2, C2 = (K2L)2,
and C3 = C2/2. Further, L stands for the dynamic range of the pixel values, and for images
with 8-bit depth, L = 255 is the recommended value. By default, K1 = 0.01 and K2 = 0.03
are also constants whose exact values were chosen by Wang et al. [13] after an ablation study.
To give the perceptual quality of the distorted image in possession of the reference image,
the arithmetic average of SSIM(x, y) is taken. As already mentioned, a huge number of FR-
IQA metrics has been inspired by the original SSIM. For comprehensive overviews on SSIM-
motivated methods, the following papers can be recommended [12,28–31]. Here, several
representative methods are mentioned in the following. The authors of multi-scale SSIM [8]
extended the idea of SSIM into multiple scales. Sampat et al. [23] replaced the components
of SSIM by complex wavelet coefficients [32]. In contrast, Zhang et al. [24] defined an
edge strength-based image quality metric where the strength of edges was defined in
horizontal and diagonal directions using directional derivatives. Chen et al. [25] took a
similar approach, but the edge information was characterized by gradient magnitudes.
In [26], the authors used the information content measure as a weighting factor in the
pooling process of SSIM [13] to obtain improved prediction results. This idea was further
improved by Larson et al. [33] where low-level distortions, which are nearly imperceptible,
were modeled by local luminance and contrast masking, while high-level distortions were
modeled using spatial-frequency components. Kolaman and Yadid-Pecht [34] extended
the SSIM metric to colorful images by modeling colors with quaternions. In [35], the
authors analyzed different strategies aiming at the usage of visual saliency maps [36] in
improving IQA algorithms. A proposal was the weighting of local estimates by local
saliency values. In [37], first- and second-order Riesz-transform [38] coefficients were used
to create feature maps for the reference and the distorted images which were compared to
give an estimation of the perceptual image quality. Similarly, Zhang et al. [39] compared
feature maps to quantify image quality, but the authors used phase congruency [40] and
gradient magnitude maps.

Recently, the scientific community has paid more and more attention to the deployment
of machine and deep learning models in almost all computer vision tasks [41]. The field of
image quality assessment has accommodated this trend [3,42]. For instance, Tang et al. [43]
extracted spatial and frequency domain features from reference–distorted image pairs and
trained a random forest regressor for image quality prediction. In contrast, Bosse et al. [44]
devised a convolutional neural network (CNN) architecture which can be trained end-
to-end on single images or on image pairs. Similarly, Zhang et al. [45] trained an end-
to-end CNN in a patch-wise fashion for FR-IQA and compared the effectiveness of deep
features extracted from different pretrained CNNs. As a consequence, it can be used
for both NR- and FR-IQA. In [46], the authors proposed a pairwise-learning framework
for FR-IQA. Several works extracted deep features via pretrained CNNs from reference–
distorted image pairs and compared them to assess the perceptual image quality. For
instance, Amirshahi et al. [47] compared the histograms of deep features using a histogram
intersection kernel (HIK) [48] at multiple levels. The perceptual quality was obtained by
aggregating the similarity scores provided by the HIKs. Later, this approach was further
developed in [16] by replacing the HIK in comparing convolutional feature maps with
a traditional image similarity metric. In [49], the authors used the error map calculated
between the reference and distorted images and the subjective saliencies of the distorted
images to train a CNN for perceptual image quality estimation.
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Recently, several researchers devised fusion-based FR-IQA methods where the goal is
creating a “super-evaluator” using already known FR-IQA metrics to achieve advanced
performance. A large number of fusion-based algorithms determine weights for each FR-
IQA metric in a summation or in a product of sequence [1]. An illustrative example is the
method proposed by Okarma [7]. Namely, the properties of three different FR-IQA metrics
were examined thoroughly, and a combined metric was devised based on the metrics’ arith-
metical product and power. By using mathematical optimization techniques, the parameter
values of this fusion-based metric were refined in [14]. Oszust [50] and Yuan et al. [51] also
developed this approach further by applying lasso regression and kernel ridge regression,
respectively. Oszust [11] determined the weights in a linear combination of traditional FR-
IQA metrics by applying a genetic algorithm. In [52], this approach was further developed
by using multi-gene genetic programming [53]. The effectiveness of this approach was
also demonstrated on screen content images [54]. Simulated annealing was also applied in
this framework [55]. Machine learning techniques were also used in creating fusion-based
algorithms. An illustrative example is Lukin et al.’s [15] work. Namely, the authors used
the outcomes of several FR-IQA metrics as features and trained a neural network on top
of them to predict perceptual quality. A similar approach using a neural network was
proposed for the quality assessment of remote sensing images [56].

In summary, this section has highlighted the various approaches that have been
proposed in the literature for FR-IQA. Although the reviewed studies have contributed
significantly to the field, a detailed overview about IQA or FR-IQA is out of the scope
of this study. For a general overview about the field of IQA, the PhD dissertations of Je-
nadeleh [57] and Men [58] can be recommended while Min-juan et al. [59], Phadikar et al. [60],
George et al. [61], and Pedersen et al. [30] provide state-of-the-art studies on FR-IQA.

3. Proposed Method

In [7], Okarma took into account the different properties of three different FR-IQA
metrics (MS-SSIM [8], VIF [62], and R-SVD [10]) and defined a combined quality metric
(CQM):

CQM = (MSSSIM)a × (VIF)b × (RSVD)c, (5)

where a = 7, b = 0.3, and c = −0.15 values were used because they lead to a near-optimal
solution on an IQA benchmark database. Following this basic idea of Okarma [7], a
fusion-based metric is defined as the weighted product of n different traditional FR-IQA
methods’ results:

Qp =
n

∏
i=1

qαi
i , (6)

where qis are the results of the applied FR-IQA metrics and αis are the associated weights.
Specifically, we chose n = 18 and the following metrics were utilized: FSIM [39], FSIMc [39],
GSM [63], IFC [9], IW-SSIM [26], MAD [33], MS-SSIM [8], NQM [64], PSNR [21], RFSIM [37],
SFF [65], SSIM [13], SR-SIM [66], UQI [67], VIF [62], VSI [68], and VSNR [69]. A summary
of the acronyms of the used FR-IQA metrics can be found in Table 1. In the literature, the
parameters of an FR-IQA metric are tuned on a smaller subset of images. In the case of a
traditional metric, such as SSIM [13] given by Equations (1)–(4), the number of tunable pa-
rameters is one or two. As a consequence, appropriate values can be easily found applying
for cycles over a search space. In contrast, our fusion-based metric given by Equation (6)
contains n = 18 parameters and an optimization task is defined to find their exact values.
To determine the optimal weights (parameters) in Equation (6), the following optimization
problem is defined:

max
α

SROCC(Qp, S) + KROCC(Qp, S)
RMSE(F(Qp, β), S)

,

subject to αi ∈ R, n ∈ N, β ≥ 0,

(7)
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where Qp and S are vectors containing the predicted and ground-truth quality scores,
respectively. SROCC(·, ·) and KROCC(·, ·) denote the Spearman’s rank-order correlation
coefficient and Kendall’s rank-order correlation coefficient calculated between two vectors,
respectively. Further, RMSE(·, ·) is the root mean square error determined between two
vectors. Prior to the calculation of the RMSE, a non-linear mapping is applied to the
predicted scores following the recommendations of [4]. In this paper, the following non-
linear function was applied

F(Qp, β) = β1

(
1
2
− 1

1 + eβ2(Qp−β3)

)
+ β4Qp + β5, (8)

with the following β parameters, β1 = 10, β2 = 0, β3 = mean(Qp), β4 = 1, and β4 = 0.1,
which were also used in the MATLAB implementation of the VSI [68] method.

Because an FR-IQA metric is supposed to provide objective scores which have a high
correlation and low RMSE with respect to subjective quality scores collected from human
observers, the objective function’s—given by Equation (7)—numerator consists of the sum
of SROCC and KROCC while the denominator corresponds to the RMSE. Our preliminary
investigations revealed that considering only SROCC or KROCC may result in a higher
RMSE than those of the state of the art. That is why we decided to divide the sum of
SROCC and KROCC by the RMSE.

Table 1. Acronyms of the used FR-IQA metrics applied in our fusion-based method.

Method’s Acronym Full Name

FSIM [39] feature similarity index
FSIMc [39] feature similarity index extension
GSM [63] gradient similarity measure
IFC [9] information fidelity criterion
IW-SSIM [26] information content weighted SSIM
MAD [33] most apparent distortion
MS-SSIM [8] multi-scale SSIM
NQM [64] noise quality measure
PSNR [21] peak signal-to-noise ratio
RFSIM [37] Riesz-transform-based feature similarity metric
SFF [65] sparse feature fidelity
SSIM [13] structural similarity index measure
SR-SIM [66] spectral residual-based similarity
UQI [67] universal image quality index
VIF [62] visual information fidelity
VSI [68] visual saliency-induced index
VSNR [69] visual signal-to-noise ratio

Two nature-inspired optimization methods, such as the genetic algorithm [70] (GA)
and pattern search [71] (PS), were applied to the problem defined by Equation (7) to
determine the optimal weights. Further, the simplex method of Lagarias et al. [72],
which is implemented in the fminsearch function of MATLAB’s Optimization Toolbox,
was also used. To improve the efficiency of the fusion, each method was able to execute
model selection (which FR-IQA metric to aggregate or not). The main motivation be-
hind the choice of optimization methods was to collect algorithms that are able to give
at least approximate solutions for NP (non-deterministic polynomial-time) hard prob-
lems. Figures 1 and 2 depict the compilation of the proposed fusion-based FR-IQA metric.
Specifically, the fusion was carried out on 20% of the reference images and their correspond-
ing distorted counterparts in our method. In the literature, 20% is a common choice for
parameter setting in a derived formula [73,74], but there are also researchers who used
30% [39] or 80% [75]. In total, four fusion strategies were realized with the help of one



J. Imaging 2023, 9, 116 6 of 19

optimization method and benchmark database. Further, the fusion strategies were also
cross-database tested. Each optimization method was carried out 100 times and the best
solution was finally selected. We codenamed our method OFIQA to refer to the fact that
the decision fusion was carried out via optimization.

Figure 1. Twenty percent of the reference images with their corresponding distorted counterparts
are selected to determine the parameters of the proposed fusion-based metric in the optimization
process. The resulting metric is codenamed as OFIQA.

Figure 2. The weighted product of the selected FR-IQA metrics is used to estimate the perceptual
quality of a distorted image in the evaluation stage.

In the GA, the population size and the number of generations were set to 100. The
best solutions on the four benchmark databases were provided by the following equations:

OFIQAGA
LIVE = FSIM−3.6888 × GSM12.5693 × IWSSIM0.9556 × IFS−1.8159, (9)

OFIQAGA
TID2013 = VSI13.9336 × FSIMc2.2946 × GSM−10.864 × NQM−0.1713×

×SRSIM2.4651 × IFS0.5139,
(10)

OFIQAGA
TID2008 = VSI7.0221 × FSIM0.259 × FSIMc1.0055 × GSM−19.8267×

×PSNR0.1471 ×VIF0.1452 × SFF2.4029,
(11)

OFIQAGA
CSIQ = FSIMc−2.7532 ×MAD0.9692 ×MSSSIM1.1892 × SSIM1.6561 ×VIF−0.75×

×IFS−3.4013 × SFF2.2901.
(12)

In the case of the PS after 100 runs, the following fusion-based metrics can be obtained:

OFIQAPS
LIVE = FSIM0.6964 × FSIMc−2.6056 ×MAD1.0817 ×MSSSIM−0.4711×

×SSIM0.7302 ×UQI0.9946,
(13)

OFIQAPS
TID2013 = VSI24.1037 × FSIM0.9292 × GSM−19.5555 × IWSSIM2.1053×

×MSSSIM−6.1562 × PSNR0.4649 ×VIF0.5463 × SFF4.3998,
(14)



J. Imaging 2023, 9, 116 7 of 19

OFIQAPS
TID2008 = VSI23.5097 × FSIM1.2155 × FSIMc0.2494 × GSM−21.8595×
×IWSSIM1.2984 ×MSSSIM−1.9792 × PSNR0.5571 × SSIM−1.8374×

×VIF0.5491,

(15)

OFIQAPS
CSIQ = FSIM0.3471 × FSIMc0.7575 × GSM−60.4948 ×MAD1.8509×

×NQM0.8049 × PSNR0.8181 ×UQI0.5142 ×VIF−0.1294.
(16)

Using the method of Lagarias et al. [72], the following fusion metrics can be obtained:

OFIQA f min
LIVE = VSI0.442 × FSIMc1.1986 × GSM1.0479 × IFC−0.1531×

×IWSSIM1.8895 ×MAD1.6539 ×MSSSIM−0.8459 × NQM0.4463×
×PSNR−0.2781 × RFSIM−0.1719 × SRSIM−1.1448 × SSIM0.0811×

×UQI0.0955 ×VIF−0.6669 ×VSNR0.0765 × SFF−0.1433.

(17)

OFIQA f min
TID2013 = VSI0.6577 × FSIM0.1742 × FSIMc0.7197 × GSM0.6092×
×IFC0.3768 × IWSSIM0.8904 ×MAD0.4482 ×MSSSIM0.9852×
×NQM0.6304 × PSNR0.8077 × RFSIM0.3861 × SSIM0.7985×

×UQI0.3612 ×VIF0.0149 ×VSNR0.3338 × IFS0.8979×
×SFF0.9113,

(18)

OFIQA f min
TID2008 = VSI2.0607 × FSIM0.4211 × FSIMc0.8323 × GSM0.1672×

×IFC0.0322 ×MAD0.0753 × NQM0.098 × PSNR0.3727×
×RFSIM0.5523 × SRSIM0.5783 × SSIM−0.2377 ×UQI−0.3083×

×VIF0.5273 ×VSNR−0.0292 × IFS1.9221 × SFF0.0902,

(19)

OFIQA f min
CSIQ = VSI−0.4328 × FSIM0.4287 × GSM0.0521 × IFC0.0569×

×IWSSIM−1.4847 ×MAD0.982 ×MSSSIM0.3763 × NQM0.3919×
×PSNR0.2141 × RFSIM−0.1544 × SRSIM0.7473 ×UQI0.2373×

×VIF−0.2373 ×VIF−0.2243 ×VSNR0.1147 × IFS−1.3102 × SFF1.7745.

(20)

4. Results

In this section, the experimental numerical results are presented. First, the used
benchmark IQA databases are introduced in Section 4.1. Next, Section 4.2 defines the
applied evaluation metrics. A parameter study with respect to the applied optimization
methods is presented in Section 4.3. Finally, the results of a comparison to the state of the
art is given in Section 4.4.

4.1. Databases

For evaluation, four IQA benchmark databases are used, i.e., LIVE (Laboratory for
Image and Video Engineering) [4], TID2013 (Tampere Image Database) [76], TID2008 [77],
and CSIQ (Categorical Image Quality) [33], which contain a small set of reference images
(whose perceptual qualities are considered perfect) and a large set of quality annotated
distorted images generated from the reference images using different distortion types at
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different distortion levels. The main characteristics of the applied databases are given in
Table 2.

Table 2. Applied benchmark IQA databases.

LIVE [4] TID2013 [76] TID2008 [77] CSIQ [33]

Image resolution ∼ 768× 512 512× 384 512× 384 500× 500
No. of reference

images 29 25 25 30

No. of distorted
images 779 3000 1700 866

No. of
distortions 5 24 17 6

No. of levels 5 5 4 4–5
No. of observers 161 917 838 35

4.2. Evaluation Metrics

In this study, four different performance indices, i.e., root mean square error (RMSE),
Pearson’s linear correlation coefficient (PLCC), Spearman’s rank-order correlation coeffi-
cient (SROCC), and Kendall’s rank-order correlation coefficient (KROCC), are applied to
characterize the performance of the proposed fusion-based metric and other considered
state-of-the-art methods in an ablation study and a comparison to the state of the art. The
RMSE and PLCC are calculated after a non-linear mapping of the vector of predicted scores.
This mapping has already been given by Equation (8). The RMSE is given as

RMSE(Qp, S) =

√
(Qp − S)T(Qp − S)

m
(21)

where Qp is the vector of predicted scores after the non-linear mapping, S is the vector of
ground-truth scores, and m denotes the number of samples (in this case images). PLCC is
given as

PLCC(Qp, S) =
Q̄T

p S̄√
Q̄T

p Q̄pS̄TS̄
(22)

where Q̄p and S̄ are mean-removed vectors. SROCC is defined as

SROCC(Q, S) = 1−
6×∑m

i=1 d2
i

m(m2 − 1)
, (23)

where di stands for the difference between Q and S at the ith entry. KROCC is defined as

KROCC(Q, S) =
mc −md

1
2 m(m− 1)

, (24)

where mc and md are the number of concordant and discordant pairs in the database,
respectively.

In Table 3, the details of the computer configuration applied in our experiments
are given.

Table 3. Computer configuration applied in our experiments.

Computer model STRIX Z270H Gaming
Operating system Windows 10

Memory 15 GB
CPU Intel(R) Core(TM) i7-7700K CPU 4.20 GHz (8 cores)
GPU Nvidia GeForce GTX 1080
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4.3. Ablation Study

In this subsection, an ablation study is carried out with respect to the applied opti-
mization method. As already mentioned, a GA [70], a PS [71], and the simplex method of
Lagarias et al. [72] (implemented in MATLAB’s fminsearch) were considered. Further, the
obtained metrics have already been given by Equations (9)–(20). The results in terms of the
RMSE and SROCC are summarized in Tables 4 and 5. From these numerical results, it can
be clearly seen that the weights obtained by the GA are significantly better than those of
the other two methods. Namely, they provide a consistently good performance in terms
of the RMSE and SROCC on all the databases, while the other weights fail to provide a
good performance in several cases and sometimes give an unacceptably high RMSE or a
low SROCC (the underlined values in Table 4).

Table 4. RMSE performance comparison with respect to the applied optimization method applied in
the proposed fusion-based FR-IQA metrics. Results are given for LIVE [4], TID2013 [76], TID2008 [77],
and CSIQ [33]. The best results for each database are typed in red, the second best results are in green,
the third best results are in blue, and the worst results are underlined.

FR-IQA Metric LIVE [4] TID2013 [76] TID2008 [77] CSIQ [33]

OFIQAGA
LIVE 7.895 0.593 0.641 0.109

OFIQAGA
TID2013 8.062 0.526 0.606 0.091

OFIQAGA
TID2008 7.078 0.570 0.557 0.068

OFIQAGA
CSIQ 6.918 0.665 0.645 0.067

OFIQAPS
LIVE 6.860 0.675 1.116 0.165

OFIQAPS
TID2013 7.503 1.150 0.537 0.069

OFIQAPS
TID2008 7.662 0.766 0.544 0.081

OFIQAPS
CSIQ 7.882 0.658 0.672 0.124

OFIQA f min
LIVE 6.612 0.642 0.648 0.060

OFIQA f min
TID2013 16.195 0.856 0.834 0.833

OFIQA f min
TID2008 14.456 0.833 0.631 0.630

OFIQA f min
CSIQ 7.167 0.812 0.680 0.104

Table 5. SROCC performance comparison with respect to the applied optimization method applied in
the proposed fusion-based FR-IQA metrics. Results are given for LIVE [4], TID2013 [76], TID2008 [77],
and CSIQ [33]. The best results for each database are typed in red, the second best results are in green,
the third best results are in blue, and the worst results are underlined.

FR-IQA Metric LIVE [4] TID2013 [76] TID2008 [77] CSIQ [33]

OFIQAGA
LIVE 0.961 0.863 0.888 0.938

OFIQAGA
TID2013 0.957 0.890 0.904 0.923

OFIQAGA
TID2008 0.967 0.825 0.911 0.964

OFIQAGA
CSIQ 0.972 0.808 0.882 0.965

OFIQAPS
LIVE 0.968 0.790 0.585 0.807

OFIQAPS
TID2013 0.965 0.826 0.914 0.962

OFIQAPS
TID2008 0.963 0.822 0.915 0.944

OFIQAPS
CSIQ 0.965 0.794 0.861 0.964

OFIQA f min
LIVE 0.972 0.864 0.867 0.969

OFIQA f min
TID2013 0.781 0.845 0.769 0.496

OFIQA f min
TID2008 0.834 0.717 0.888 0.586

OFIQA f min
CSIQ 0.974 0.823 0.846 0.955
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4.4. Comparison to the State of the Art

In this subsection, the proposed FR-IQA metrics are compared to a set of state-of-
the-art methods (2stepQA [78], CSV [79], DISTS [80], ESSIM [24], FSIM [39], FSIMc [39],
GSM [63], IFC [9], IFS [81], IW-SSIM [26], MAD [33], MS-SSIM [8], NQM [64], PSNR [21], Re-
SIFT [82], RFSIM [37], RVSIM [83], SFF [65], SR-SIM [66], SSIM [13], SUMMER [84], VIF [62],
and VSI [68]), whose MATLAB source codes were made available by researchers. Further,
we reimplemented the SSIM-CNN method proposed by Amirshahi et al. [16] and made
it available for the research community (https://github.com/Skythianos/SSIM-CNN,
accessed on 1 January 2023). In addition to this, the results of the recently published GP-
SSIM [85] and the results of deep learning-based DeepSIM [86], DeepIQA [44], PieAPP [46],
and LPIPS [45] are also included in our comparison based on Bakurov et al.’s [85] study. Our
proposed fusion-based FR-IQA metrics have also been exactly given by Equations (9)–(20)
and are used in this comparison.

The numerical results measured on different databases are summarized in Tables 6–8.
From these results, it can be seen that OFIQAGA

TID2013 is able to provide the lowest error
on TID2013 [76] and the second lowest on TID2008 [77], respectively. On the other hand,
OFIQAGA

TID2008 gives the lowest, second lowest, and third lowest error on TID2008 [77],
CSIQ [33], and TID2013 [76], respectively. The RMSE values for each database are sum-
marized in Figures 3–6. If we take a look at the correlation strengths, we can observe the
following. On LIVE [4], the deep learning-based DeepSIM provides the highest correla-
tion performance. However, the proposed OFIQAGA

CSIQ’s results closely follow those of
DeepSIM. Namely, the differences between the two methods are 0.01 and 0.02 in terms of
PLCC and SROCC, respectively. Further, OFIQAGA

TID2008 provides the third highest results
in terms of PLCC and SROCC on CLIVE [4]. On TID2013 [76], OFIQAGA

TID2013 gives the
highest results in terms of PLCC and KROCC, while OFIQAGA

TID2008 provides the third
highest PLCC. On TID2008 [77], OFIQAGA

TID2008 has the highest SROCC and KROCC values
and it is outperformed by PLCC in the deep learning-based DeepIQA. Table 9 illustrates a
summary of the direct and weighted averages of the correlation performance indices on the
considered databases. It can be seen that OFIQAGA

TID2008 has the highest performance in
terms of PLCC and KROCC, if we consider the direct averages of the correlation strengths.
OFIQAGA

TID2008 preserves it first in terms of PLCC and gives the second highest performance
of KROCC, if we consider the weighted averages. OFIQAGA

TID2013 is the second best in
terms of PLCC/SROCC and the third best in terms of KROCC. In the weighted averages,
the VSI [68] is the best in terms of SROCC and the third best in terms of PLCC/KROCC.
However, it gives a higher RMSE on the considered IQA databases than OFIQAGA

TID2013
which is the second best weighted SROCC.

Figure 3. RMSE measured on LIVE [4].

https://github.com/Skythianos/SSIM-CNN
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Figure 4. RMSE measured on TID2013 [76].

Figure 5. RMSE measured on TID2008 [77].

Figure 6. RMSE measured on CSIQ [33].
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Table 6. RMSE performance comparison of the proposed fusion-based FR-IQA metrics with the state
of the art on LIVE [4], TID2013 [76], TID2008 [77], and CSIQ [33]. The best results are typed in red,
the second best results are in green, and the third best results are in blue.

FR-IQA Metric LIVE [4] TID2013 [76] TID2008 [77] CSIQ [33]

2stepQA [78] 7.856 0.776 0.861 0.139
CSV [79] 5.945 0.624 0.677 0.091
DISTS [80] 6.005 0.541 0.558 0.091
ESSIM [24] 7.689 0.630 0.638 0.101
FSIM [39] 7.678 0.635 0.653 0.108
FSIMc [39] 7.530 0.596 0.647 0.103
GSM [63] 8.433 0.723 0.847 0.115
IFC [9] 8.001 0.756 0.783 0.115
IFS [81] 7.776 0.591 0.635 0.076
IW-SSIM [26] 8.347 0.688 0.690 0.115
MAD [33] 6.907 0.698 0.747 0.082
MS-SSIM [8] 8.619 0.686 0.717 0.115
NQM [64] 11.347 1.123 1.382 0.153
PSNR [21] 13.596 1.240 1.099 0.158
ReSIFT [82] 6.145 0.640 0.779 0.153
RFSIM [37] 6.989 0.657 0.778 0.148
RVSIM [83] 7.927 0.772 0.813 0.101
SFF [65] 7.346 0.610 0.633 0.070
SR-SIM [66] 8.081 0.635 0.621 0.100
SSIM [13] 9.831 0.968 1.160 0.161
SSIM-CNN [16] 6.967 0.856 0.705 0.146
SUMMER [84] 6.002 0.638 0.777 0.151
VIF [62] 9.240 0.786 0.790 0.098
VSI [68] 8.681 0.580 0.647 0.098

GP-SSIM [85] - - - -
DeepSIM [86] - - - -
DeepIQA [44] - - - -
PieAPP [46] - - - -
LPIPS [45] - - - -

OFIQAGA
LIVE 7.895 0.593 0.641 0.109

OFIQAGA
TID2013 8.062 0.526 0.606 0.091

OFIQAGA
TID2008 7.078 0.570 0.557 0.068

OFIQAGA
CSIQ 6.918 0.665 0.645 0.067

Table 7. PLCC, SROCC, and KROCC performance comparison of the proposed fusion-based FR-IQA
metrics with the state of the art on LIVE [4] and TID2013 [76]. The best results are typed in red, the
second best results are in green, and the third best results are in blue.

LIVE [4] TID2013 [76]

FR-IQA Metric PLCC SROCC KROCC PLCC SROCC KROCC

2stepQA [78] 0.937 0.932 0.828 0.736 0.733 0.550
CSV [79] 0.967 0.959 0.834 0.852 0.848 0.657

DISTS [80] 0.954 0.954 0.811 0.759 0.711 0.524
ESSIM [24] 0.963 0.962 0.840 0.740 0.797 0.627
FSIM [39] 0.960 0.963 0.833 0.859 0.802 0.629
FSIMc [39] 0.961 0.965 0.836 0.877 0.851 0.667
GSM [63] 0.944 0.955 0.831 0.789 0.787 0.593
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Table 7. Cont.

LIVE [4] TID2013 [76]

FR-IQA Metric PLCC SROCC KROCC PLCC SROCC KROCC

IFC [9] 0.927 0.926 0.758 0.554 0.539 0.394
IFS [81] 0.959 0.960 0.825 0.879 0.870 0.679

IW-SSIM [26] 0.952 0.956 0.817 0.832 0.778 0.598
MAD [33] 0.967 0.967 0.842 0.827 0.778 0.600

MS-SSIM [8] 0.941 0.951 0.804 0.794 0.785 0.604
NQM [64] 0.912 0.909 0.741 0.690 0.643 0.474
PSNR [21] 0.872 0.876 0.687 0.616 0.646 0.467

ReSIFT [82] 0.961 0.962 0.838 0.630 0.623 0.471
RFSIM [37] 0.935 0.940 0.782 0.833 0.774 0.595
RVSIM [83] 0.641 0.630 0.495 0.763 0.683 0.520

SFF [65] 0.963 0.965 0.836 0.871 0.851 0.658
SR-SIM [66] 0.955 0.962 0.829 0.859 0.800 0.631

SSIM [13] 0.941 0.951 0.804 0.618 0.616 0.437
SSIM-CNN [16] 0.965 0.963 0.838 0.759 0.752 0.566
SUMMER [84] 0.967 0.959 0.833 0.623 0.622 0.472

VIF [62] 0.941 0.964 0.828 0.774 0.677 0.515
VSI [68] 0.948 0.952 0.805 0.900 0.894 0.677

GP-SSIM [85] 0.908 0.918 - 0.846 0.808 -
DeepSIM [86] 0.968 0.974 - 0.872 0.846 -
DeepIQA [44] 0.940 0.947 - 0.834 0.831 -
PieAPP [46] 0.908 0.919 - 0.859 0.876 -
LPIPS [45] 0.932 0.934 - 0.749 0.670 -

OFIQAGA
LIVE 0.957 0.961 0.828 0.878 0.863 0.672

OFIQAGA
TID2013 0.956 0.957 0.814 0.906 0.890 0.713

OFIQAGA
TID2008 0.966 0.967 0.839 0.888 0.825 0.651

OFIQAGA
CSIQ 0.967 0.972 0.854 0.844 0.808 0.634

Table 8. PLCC, SROCC, and KROCC performance comparison of the proposed fusion-based FR-IQA
metrics with the state of the art on TID2008 [77] and CSIQ [33]. The best results are typed in red, the
second best results are in green, and the third best results are in blue.

TID2008 [77] CSIQ [33]

FR-IQA Metric PLCC SROCC KROCC PLCC SROCC KROCC

2stepQA [78] 0.757 0.769 0.574 0.841 0.849 0.655
CSV [79] 0.852 0.848 0.657 0.933 0.933 0.766

DISTS [80] 0.705 0.668 0.488 0.930 0.930 0.764
ESSIM [24] 0.658 0.876 0.696 0.814 0.933 0.768
FSIM [39] 0.874 0.881 0.695 0.912 0.924 0.757
FSIMc [39] 0.876 0.884 0.699 0.919 0.931 0.769
GSM [63] 0.782 0.781 0.578 0.896 0.911 0.737

IFC [9] 0.575 0.568 0.424 0.837 0.767 0.590
IFS [81] 0.879 0.869 0.678 0.958 0.958 0.817

IW-SSIM [26] 0.842 0.856 0.664 0.804 0.921 0.753
MAD [33] 0.831 0.829 0.639 0.950 0.947 0.797

MS-SSIM [8] 0.838 0.846 0.648 0.899 0.913 0.739
NQM [64] 0.608 0.624 0.461 0.743 0.740 0.564
PSNR [21] 0.447 0.489 0.346 0.853 0.809 0.599

ReSIFT [82] 0.627 0.632 0.484 0.884 0.868 0.695
RFSIM [37] 0.865 0.868 0.678 0.912 0.930 0.765
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Table 8. Cont.

TID2008 [77] CSIQ [33]

FR-IQA Metric PLCC SROCC KROCC PLCC SROCC KROCC

RVSIM [83] 0.789 0.743 0.566 0.923 0.903 0.728
SFF [65] 0.871 0.851 0.658 0.964 0.960 0.826

SR-SIM [66] 0.859 0.799 0.631 0.925 0.932 0.773
SSIM [13] 0.669 0.675 0.485 0.812 0.812 0.606

SSIM-CNN [16] 0.770 0.737 0.551 0.952 0.946 0.794
SUMMER [84] 0.817 0.823 0.623 0.826 0.830 0.658

VIF [62] 0.808 0.749 0.586 0.928 0.920 0.754
VSI [68] 0.898 0.896 0.709 0.928 0.942 0.785

GP-SSIM [85] 0.859 0.892 - 0.928 0.953 -
DeepSIM [86] 0.876 0.887 - 0.919 0.919 -
DeepIQA [44] 0.917 0.908 - 0.901 0.909 -
PieAPP [46] 0.610 0.788 - 0.877 0.892 -
LPIPS [45] 0.772 0.731 - 0.896 0.876 -

OFIQAGA
LIVE 0.879 0.888 0.700 0.910 0.938 0.786

OFIQAGA
TID2013 0.892 0.904 0.722 0.938 0.923 0.754

OFIQAGA
TID2008 0.910 0.911 0.738 0.966 0.964 0.833

OFIQAGA
CSIQ 0.877 0.882 0.693 0.967 0.965 0.835

Table 9. PLCC, SROCC, and KROCC performance comparison of the proposed fusion-based FR-IQA
metrics with the state of the art. The best results are typed in red, the second best results are in green,
and the third best results are in blue.

Direct Average Weighted Average

FR-IQA Metric PLCC SROCC KROCC PLCC SROCC KROCC

2stepQA [78] 0.818 0.821 0.652 0.781 0.783 0.605
CSV [79] 0.901 0.897 0.729 0.877 0.873 0.694

DISTS [80] 0.837 0.816 0.647 0.792 0.759 0.582
ESSIM [24] 0.794 0.892 0.733 0.756 0.857 0.691
FSIM [39] 0.901 0.893 0.729 0.883 0.860 0.689
FSIMc [39] 0.908 0.908 0.743 0.893 0.885 0.710
GSM [63] 0.853 0.859 0.685 0.821 0.823 0.638

IFC [9] 0.723 0.700 0.542 0.644 0.625 0.473
IFS [81] 0.919 0.914 0.750 0.900 0.893 0.715

IW-SSIM [26] 0.857 0.878 0.708 0.846 0.840 0.664
MAD [33] 0.894 0.880 0.720 0.862 0.838 0.667

MS-SSIM [8] 0.868 0.874 0.699 0.838 0.839 0.659
NQM [64] 0.738 0.729 0.560 0.703 0.684 0.516
PSNR [21] 0.697 0.705 0.525 0.634 0.654 0.480

ReSIFT [82] 0.776 0.771 0.622 0.705 0.700 0.550
RFSIM [37] 0.886 0.878 0.705 0.865 0.841 0.663
RVSIM [83] 0.779 0.740 0.577 0.777 0.723 0.558

SFF [65] 0.917 0.908 0.745 0.895 0.880 0.703
SR-SIM [66] 0.900 0.873 0.716 0.880 0.838 0.675

SSIM [13] 0.760 0.764 0.583 0.698 0.700 0.518
SSIM-CNN [16] 0.861 0.849 0.687 0.814 0.800 0.626
SUMMER [84] 0.808 0.809 0.647 0.745 0.746 0.582

VIF [62] 0.863 0.828 0.671 0.825 0.765 0.605
VSI [68] 0.919 0.921 0.744 0.909 0.908 0.716

GP-SSIM [85] 0.885 0.893 - 0.868 0.864 -
DeepSIM [86] 0.909 0.907 - 0.891 0.883 -
DeepIQA [44] 0.898 0.899 - 0.878 0.877 -
PieAPP [46] 0.814 0.869 - 0.801 0.860 -
LPIPS [45] 0.837 0.803 - 0.798 0.747 -

OFIQAGA
LIVE 0.906 0.913 0.747 0.892 0.892 0.714

OFIQAGA
TID2013 0.923 0.919 0.751 0.913 0.906 0.733

OFIQAGA
TID2008 0.933 0.917 0.765 0.914 0.884 0.722

OFIQAGA
CSIQ 0.914 0.907 0.754 0.885 0.869 0.704
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5. Conclusions

This paper proposed a novel decision-fusion framework based on optimization for
FR-IQA. First, the fusion-based metric was defined as a weighted product of n different
traditional FR-IQA measures following Okarma’s [7] ideas. Next, an optimization problem
was specified using SROCC, KROCC, and the RMSE between the predicted and the ground-
truth quality scores in the objective function to maximize the correlation strength and
minimize the error. Then, several optimization techniques were applied to determine the
weights in the weighted product of quality measures. To obtain a fusion-based metric with
its parameters, 20% of the reference images and their distorted counterparts were used. Our
analysis revealed that a GA is a suitable choice to solve the defined optimization problem.
The experimental results and a comparison to the state of the art on four large, widely
accepted benchmark databases, LIVE [4], TID2013 [76], TID2008 [77], and CSIQ [33], un-
covered that the FR-IQA metrics coming from our optimization-based framework are able
to outperform other traditional and deep learning-based state-of-the-art algorithms. Future
research may involve the usage of other objective functions or multi-objective optimization.
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