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Abstract: Ancient numismatics, the study of ancient coins, has in recent years become an attractive
domain for the application of computer vision and machine learning. Though rich in research
problems, the predominant focus in this area to date has been on the task of attributing a coin from an
image, that is of identifying its issue. This may be considered the cardinal problem in the field and it
continues to challenge automatic methods. In the present paper, we address a number of limitations
of previous work. Firstly, the existing methods approach the problem as a classification task. As such,
they are unable to deal with classes with no or few exemplars (which would be most, given over
50,000 issues of Roman Imperial coins alone), and require retraining when exemplars of a new class
become available. Hence, rather than seeking to learn a representation that distinguishes a particular
class from all the others, herein we seek a representation that is overall best at distinguishing classes
from one another, thus relinquishing the demand for exemplars of any specific class. This leads to our
adoption of the paradigm of pairwise coin matching by issue, rather than the usual classification
paradigm, and the specific solution we propose in the form of a Siamese neural network. Furthermore,
while adopting deep learning, motivated by its successes in the field and its unchallenged superiority
over classical computer vision approaches, we also seek to leverage the advantages that transformers
have over the previously employed convolutional neural networks, and in particular their non-local
attention mechanisms, which ought to be particularly useful in ancient coin analysis by associating
semantically but not visually related distal elements of a coin’s design. Evaluated on a large data
corpus of 14,820 images and 7605 issues, using transfer learning and only a small training set of
542 images of 24 issues, our Double Siamese ViT model is shown to surpass the state of the art by a
large margin, achieving an overall accuracy of 81%. Moreover, our further investigation of the results
shows that the majority of the method’s errors are unrelated to the intrinsic aspects of the algorithm
itself, but are rather a consequence of unclean data, which is a problem that can be easily addressed
in practice by simple pre-processing and quality checking.

Keywords: Siamese neural network; matching; deep learning; computer vision; machine learning;
low-shot learning

1. Introduction

Among the many application domains in which the rapidly advancing fields of com-
puter vision and machine learning have found their use is that of numismatics and ancient
numismatics in particular. The term “numismatics” refers both to the academic study of
coins, paper currency and tokens, as well as the hobby of collecting these items. Ancient
numismatics concerns ancient coins in particular, that is, the coins of Ancient Greece, Rome,
Celtic tribes, etc.

Considering the inherently interdisciplinary focus of the present article, for the sake
of clarity it is useful right at the start to introduce and define a few specialist terms from
the vernacular of ancient numismatics, lest there be any confusion over their meaning due
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to their different use in everyday language. When referring to a “coin”, the reference is
made to a specific and unique physical specimen. It is important to distinguish it from
an “issue”, a more abstract notion that engenders all possible coins with the semantically
identical design motifs. For example, two Roman Imperial coins may be said to correspond
to the same issue if the same emperor, clothed in and oriented in a particular way, etc., is
depicted on the obverse, and when the same inscriptions, and, say, deities in the identical
poses and engaged in identical acts, etc., are shown on the reverse. Different issues of coins
are uniquely referred by their identifiers from a variety of standard references, such as the
Roman Imperial Coinage (RIC), as illustrated in Figure 1. A thorough summary of the
relevant terminology for the non-specialist can be found in the recent review of computer
vision challenges and problems in ancient numismatics by Arandjelović and Zachariou [1].

(a) Example 1 (b) Example 2

Figure 1. Examples of two different specimens of the same issue, namely of RIC 439 Aelius denarius.

The determination of the issue that a particular coin corresponds to, that is its iden-
tification, is a task of foremost importance and the focus of the present article. In simple
terms, it seeks to answer the question: “What coin is this?”. In most cases, this is a reason-
ably straightforward task for an expert, though there are exceptions, especially when the
specimen in question is damaged and its issue is a rare one. For amateurs and especially
beginner hobbyists, the challenge can be fiendish. For automatic, computer-based methods,
the task has also proven to be a difficult one, both for reasons inherent in the problem as
well as those that emerge from a variety of practical issues.

Given the aforementioned cardinality of coin identification, it is unsurprising that most
of the work on the use of computer vision for ancient coin analysis has focused on solving
precisely this problem. No more surprising is the overall approach that dominates the
related literature. In particular, the structure of the coin identification problem is naturally
seen through the lens of classification, with each issue seen as a class, thereby recasting
the problem as that of assigning the correct class to an input image showing an unknown
specimen [2–5]. Nevertheless, despite this superficial appeal of a classification-based
approach to tackling the problem, it has become increasingly clear that its practical utility
is highly limited by real world constraints pertaining to data availability. This becomes
readily apparent as soon as the number of different coin issues is considered: there are
over 50,000 for Roman Imperial coinage alone, and the number becomes far greater when
Roman Republican, Roman Provincial, Ancient Greek, Celtic, etc., issues are included. It
is practically impossible to obtain images of more than a small fraction of these, to say
nothing of the need for multiple examples of each issue demanded by the present-day
learning methods. There was some recognition of this major weakness of vision-based
classification approaches already in the early years of work in this field [6], which has only
become increasingly apparent since [7].

In the present paper, we propose a radically different approach whereby we learn to
quantify the degree of belief that two specific specimens, e.g., a query and a gallery one,
correspond to the same issue. Specifically, by learning what features should be extracted
from an image of a coin for the purpose of its comparison with another coin and answering
the question of whether they correspond to the same issue, in a manner independent of
a specific comparison, we learn a fundamental representation of a coin that facilitates
comparisons with new coins, that is coins that are not present in the training data set. By
doing so, we learn a representation that does not rely on any a priori class structure. This
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means that if new images of coins are added to the reference gallery, be they additional
examples of the already known classes or examples of an entirely new class, our model
does not need to be retrained. It also means that our algorithm does not rely on multiple
examples from the same class, as well as that its performance on underrepresented classes,
which is a major issue for previous work, is not disadvantaged. The proposed approach
provides a powerful way of making the most of the available information by facilitating
different kinds of feedback to the user. Most obviously, if the best pairwise match is
sufficiently high, the query coin can be attributed to the same issue as the corresponding
match. On the other hand, if no such match is found, the gallery exemplars could be
ordered by similarity, in a ranked retrieval fashion.

In terms of its technical underpinning, the present work pioneers two novelties. Firstly,
this is the first work to describe the use of a Siamese architecture in this context. Secondly,
as the baseline architectural component of each arm of the proposed Siamese network,
we employ transformers, rather than convolutional neural networks that were featured in
previous work [8–10].

2. Related Work
2.1. Automatic Ancient Coins Analysis Using Computer Vision and Machine Learning

Ancient coin analysis is a relatively new research domain for the application of com-
puter vision and machine learning. The first forays into the territory were made a decade
and a half ago by Zaharieva et al. [5]. The research effort in the field has since increased
rapidly and dramatically [6,7,9,11–16], with an evermore varied range of specific tasks
being targeted [1,6,17,18] and of modeling approaches [4,7,9,11,16,19].

Owing to the novelty of the problem, that is its unfamiliarity and the consequent lack
of data, the earliest work centered its attention to what is arguably the simplest useful
problem in ancient coin analysis which is specimen classification [5,20]. Thereafter, the focus
in the field has quickly shifted towards the more challenging task issue classification. The
reason for this lies in its broader practical interest as well as the greater technical challenge
to automatic methods. Indeed, at present, the attention of nearly all existing computer
vision work on ancient coin analysis is on issue classification [3,9,15,19,21], with a small
number of notable exceptions [7,16,22].

In terms of technical methodology, the research on computer vision-based issue classi-
fication has largely mirrored the developments in computer vision more broadly. Thus, the
initial attempts are addressing the challenge employed classical [2,4,5], that is non-learning,
manually crafted features, e.g., SIFT [11] or wavelet transform [4] based descriptors, com-
pared in a pairwise manner or aggregated using bagging [15]. Unlike in many natural
image understanding applications, lacking in non-local geometric information, such repre-
sentations quickly showed themselves to be insufficiently expressive for the task at hand.
Hence, a number of follow-up methods sought to remedy this, for example by crafting
geometric context aware features [19,21] or by aggregating local features in a spatially
sensitive manner [15,23]. While effecting an improvement, such attempts have still proven
insufficiently effective in producing a viable real-world solution; neither type of approach
achieved sufficient expressive power nor robustness to the common challenges present in
the data [23], with the latter kind of algorithms also suffering from sensitivity to the precise
orientation of the coin, its centering, and variations across dies of the same issue [18].

Reflecting the trends in computer vision more broadly, a major leap in performance
came with the adoption of deep learning [8,24]. Since then, a series of authors have demon-
strated the power of deep learning, convolutional neural networks (CNNs) in particular, to
address the key challenges that were thitherto insurmountable by classical computer vision
approaches, namely intra-class variability caused by damage, the minting process, and
different dies; and illumination and other photometric changes [3]. Complementing the
CNN-based work, Zachariou et al. [16] recently demonstrated how a generative adversarial
network can be used to synthetically reconstruct images of undamaged coins from original
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images of damaged specimens, thereby further directly addressing the major challenge that
wear poses to automatic methods [23].

Notwithstanding the noted methodological improvements in the technical aspects of
the methods proposed as a means of addressing the problem of ancient coin attribution, as
recently pointed out by Cooper and Arandjelović [7], what has remained all but unchal-
lenged in the 15 years of work is the fundamental manner of approach to the problem. In
particular, the published work thus far frames attribution as a classification problem: given
a known set of classes, each with images of exemplars, the correct class of an image of a
novel specimen is sought. This is a reasonable framing if the classification is very coarse,
e.g., by the denomination of a coin [22], when the premises of the setting are easily satisfied.
Arguably, the strategy can also be defended when the classification is semi-coarse, e.g.,
when a class corresponds to the issuing authority on the coins’ obverses [8]; examples of
coin images of only the rarest of issuers, which are few in number, may be problematic.
However, when fine attribution is of interest, which is something that numismatists, be
they hobbyists or professionals, are interested in first before any further analysis is con-
ducted, then it can be readily seen that the classification paradigm is no longer viable.
The reason lies in the very large number of emergent classes and the difficulty—or rather,
impossibility in practice—of obtaining exemplars of but a small fraction of their total
number. As noted by Arandjelović and Zachariou [1], Online Coins of the Roman Empire
(OCRE; see http://numismatics.org/ocre/ accessed on 1 May 2023), a joint project of the
American Numismatic Society and the Institute for the Study of the Ancient World at
New York University, lists 43,000 published issues, and the true count is likely to be even
greater. The only work to date that has tackled this challenge directly is that of Cooper
and Arandjelović [7]. More precisely, what Cooper and Arandjelović propose is the first
step towards overcoming the aforementioned problem, introducing a text mining and
CNN-based method to learn to recognize the semantics of different elements depicted
on coins, thereby transferring the representation from the image domain to the text one,
the latter being far more abundant in data, easier to interpret, and simpler to match or
otherwise analyze. Although their approach has demonstrated promising performance on
a small number of frequently encountered concepts, at present there still remains a large
gap between the method’s currently demonstrated capabilities and those needed to make
the technology practically useful for the task of exact issue identification.

The method we introduce in the present paper emerges from the nexus of the de-
scribed weaknesses of the previous work, while also drawing strength from ideas that
have previous been showed to yield promising results. In particular, in order to overcome
the difficulties associated with an extremely large number of classes (that is, coin issues),
instead of seeking to learn a representation that distinguishes a particular class from all the
others (classification), herein we seek a representation that is overall best at distinguishing
classes one from another, thus relinquishing the demand for exemplars of any specific class.
This leads to our adoption of the paradigm of pairwise coin matching by issue, rather than
the usual classification paradigm, and the specific solution in the form of a Siamese neural
network [25]. Furthermore, while adopting deep learning, motivated by its successes in the
field and its unchallenged superiority over classical computer vision approaches, we also
seek to leverage the advantages which transformers have over the previously employed
convolutional neural networks [26], and in particular their non-local attention mechanisms,
which ought to be particularly useful in ancient coin analysis by associating semantically
but not visually related distal elements of a coin’s design (i.e., in the legend and in the
pictorial motif).

2.2. Siamese Neural Networks

A Siamese neural network (SNN) [25], illustrated in Figure 2, is a kind of a coupling
architecture. Comprising two mutually mirroring processing streams, it is based on two
identical neural networks with shared hyperparameters. When fed two inputs from the
same input space (images of coins in our case), it learns to produce their discriminative

http://numismatics.org/ocre/
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representations in a high-dimensional space. A comparison of these representations is
also learned, ultimately producing a similarity score between them and thereby of the two
original inputs they correspond to as well [25,27].

Figure 2. The architecture of a Siamese neural network comprises two mutually mirroring processing
streams consisting of two identical neural networks with shared hyperparameters [25].

Siamese neural networks were first proposed in the context of signature verification,
which is for the determination of signature forgeries [25]. Subsequently, they have been
adopted and proven successful in a wide variety of other matching-based tasks, such as
gait recognition [28], sporting activity recognition [29], natural language processing [30],
object reconstruction [31] and others. Appropriately applied, Siamese neural-network-
based algorithms have been shown to improve classification accuracy and enhance rejection
quality compared with traditional convolutional neural networks [32]. Moreover, SNNs can
significantly reduce the number of hyperparameters during model training and improve
operational speed while maintaining their superior accuracy performance [33].

2.3. Transformers

The transformer [26] is a deep learning architecture originally proposed for natural
language processing (NLP) applications, which revolutionized the field and led to new
state-of-the-art models while also reducing training times for large data sets. Google’s
Bidirectional Encoder Representations from Transformers (BERT) model [34] has been
used to improve the search functionality for more complex queries. OpenAI’s Generative
Pre-trained Transformer 3 (GPT-3) [35] became the largest neural network ever constructed,
making headlines with its impressive ability to generate text that appeared to have been
written by humans.

The transformer follows a similar encoder–decoder architecture to previous models,
in which one sequence of tokens, representing words in a sentence, is used to generate
another sequence (e.g., a translation of the sentence). What is special about the transformer
architecture is that, unlike its predecessors, it does not use convolutional layers or recurrent
connections, but instead largely relies on self-attention [26], a mechanism for focusing
on information relevant to the current task. An attention unit’s role is to map equal-
length sequences of query, key and value vectors to a sequence of context vectors, each
of which is a weighted mean of the value vectors, weighted towards those that are most
relevant to the corresponding position in the sequence for the given task. Attention
weights are computed using three matrices that are learned during training, Q ∈ Rn×dk ,
K ∈ Rn×dk , and K ∈ Rn×dv [26], with their rows, respectively, being query, key, and
value vectors, where n is the maximum sequence length, dk is the dimensionality of the
query and key vectors, and dv is the dimensionality of the value vectors. In a translation
context, the query vectors correspond to words in the target language, whereas the key
and value vectors would correspond to words in the source language. Let the words of
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the input sentence be represented by the rows of X ∈ Rn×d then the learnable embeddings
WK ∈ Rn×dk and WV ∈ Rn×dv project the input X to the key matrix K = XWK and the
value matrix V = XWV [26]. Let the words of the translated output up to the current token
be represented by Y ∈ Rn×d, then a learnable embedding WQ ∈ Rd×dk projects Y to the
query matrix Q = YWQ [26].

The transformer architecture uses scaled dot-product attention whereby how much
the j-th value vector contributes to the i-th context vector is determined by the dot-product
of the corresponding query and key vectors. The dot-products are scaled by 1/

√
dk [26],

lest they become too large, resulting in problematically small gradients. Softmax is applied
to the dot products to obtain positive weights that sum to one. The attention weights are
then multiplied by the value vectors to obtain the context vectors.

Previous language models that used recurrent neural networks (RNNs) struggled to
learn long-range dependencies between words in long sequences, because it processed
tokens sequentially, meaning that any state passed forward in the network had to encode
the entire sequence up to the current token, which became less effective the longer the
sequence was. In the transformer model, the self-attention mechanism operates over the
entire sequence of input symbols, so it is equally able to handle dependencies over any
range. Another issue with sequential processing is that training could not be parallelized
as effectively. The transformer employs multi-head self-attention (MSA), running multiple
identical, but separately parameterized, self-attention units (“heads”) in parallel. This
allows it to attend to different regions for different representations concurrently, which
would not be possible with a single head, as the weighted mean of many many points of
interest would result in a lack of focus on anything in particular. The output of a MSA unit
is the concatenation of the output vectors from the individual heads, projected by a matrix
back to vectors of dimensionality dmodel , which is constant throughout the transformer.

The encoder in the transformer consists of N identical layers. The input to the decoder
is an embedding of the input sequence and the output feeds into the decoder. Each layer in
the encoder has two sub-layers: the first is an MSA unit; the second is a fully connected feed-
forward network (FFN), consisting of two linear transformations with a ReLU activation
in between. Skip connections around each sub-layer are used. These are a widely used
feature in deep learning that help with vanishing gradients. Furthermore, skip connections
have been shown to improve the ability to learn by flattening the loss landscape [36]. As
well as skip connections, layer normalization is applied to each sub-layer, as this has been
show to improve training times [37].

The decoder also consists of N identical layers with further sub-layers. As for the
encoder, a MSA unit and a FFN are two of the sub-layers, and skip connections and layer
normalization are used. The extra sub-layer is a multi-head attention (not self-attention)
unit, for which the key and value matrices come from the output of the encoder and the
query matrix comes from the output of the preceding MSA unit. This is how information
flows from the encoder into the decoder. The input to the decoder comprises the tokens of
the output sequence.

Unlike the structure of an RNN or a CNN, the transformer architecture does not
implicitly contain any notion of position for the input data. Instead, positional encodings
for each token are added to the input embeddings that are passed into the encoder. Whereas
an RNN or a CNN has a strong inductive bias towards locality, a transformer has few
inductive biases, so it must learn the significance of positional relationships during training.
This lack of a strong inductive bias makes transformers rather generic and able to model
long-range dependencies, at a cost of worse performance for small training sets for which
sensible inductive biases can be beneficial. Since transformers need a large amount of
training data, transfer learning is typically used: a model that has been pre-trained on a
large but more generic data set is fine-tuned with training data for a specific task, enabling
it to make use of previously learned generalizations and thus avoiding the need for task-
specific training from scratch.
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Vision Transformer

The vision transformer (ViT) architecture [38] is a direct descendant of the transformer
architecture. It follows the original transformer architecture closely, enabling existing
efficient transformer implementations to be used with ease. Whereas transformer was
designed for sequence-to-sequence language tasks and therefore had an encoder and a
decoder, ViT is used for image classification tasks and so it only has an encoder, to which
tokens representing an image are provided as input. One of the main design decisions for
ViT was how to embed the image. A naive implementation of self-attention would allow
each pixel to attend to every other pixel, resulting in O(n2) time and space complexity for
images of n pixels. This would be prohibitively expensive, so a simplification has to be
made. In the case of ViT, the simplification is to use image patch embeddings as the input
tokens rather than pixels. Each image of width W and height H is divided into patches of
P × P pixels, resulting in N = WH/P2 patches, which is a small enough number to make
self-attention across patches feasible. The square patches are flattened to vectors, which are
projected by a learnable embedding to vectors of dimensionality dmodel , which is the size of
the vectors used throughout the layers of the encoder.

As ViT is used for classification, an additional learnable class token embedding is
passed in to the encoder as the zeroth “patch embedding”. After the final layer of the
encoder, an additional FFN is added, which maps the context vectors from the zeroth
position in the last layer to the image classes. During training, the network learns to
encode in these output context vectors a representation of the image that is then used for
classification purposes. During fine-tuning, a different FFN is used to project this image
representation to the classes specific to the problem domain. In the FFNs of the encoder,
GELU is used as the activation function, whereas the Transformer uses ReLU, but the
authors offered no explanation for this modification. As for the Transformer, ViT includes
positional information in the data passed to the encoder, otherwise spatial relationships
between patches could not be learned. A 2D-aware positional embedding offered no
significant improvement over a 1D positional embedding, so a 1D positional embedding
is used instead, leaving it to the network to learn how the patch positions were spatially
related to one another.

ViT was compared with CNNs [38], specifically ResNets [39], and hybrids of ViT
and CNNs, for which the input sequence to the ViT was formed from the feature maps
of a trained CNN, rather than image patches. While the hybrids outperformed ViT for
smaller data sets, (presumably because the features already encoded at least local structure
within the data), this performance difference vanished for larger data sets, demonstrating
the ability of ViT to learn complex features without a strong inductive bias towards local
features. As the size of the training dataset was scaled up to 300 million images, the
performance of ViT continued to increase without reaching saturation, showing that more
data are better when it comes to training ViT models.

For CNNs, the size of dependencies that can be represented by a feature at a given
layer is limited by the receptive field for the feature. The size of the receptive field increases
with depth. In contrast, ViTs can model long-range dependencies in their lowest layers. By
visualizing the mean distance in the image space over which information was integrated for
a given layer of ViT, it was found that some heads even in the lowest layers of ViT modeled
long-range dependencies, whereas others were highly localized [15]. For the hybrid models
tested, highly localized attention was less pronounced, suggesting that the role played
by the highly localized attention heads was similar to that played by early convolutional
layers in a CNN.

3. Proposed Methodology

To contextualize the design choices introduced in this section, remember the key
practical problems that the present work seeks to address. The foremost one of these is the
challenge of the input belonging to a class (coin issue) that was not present during training,
which is something that no existing work has recognized fully or attempted to tackle. The
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second challenge is that of dramatic class imbalance, which has been noted in the relevant
literature [7], but which has been left wanting in terms of a practicable and effective solution.
The models we introduce here, all based on a Siamese architecture underlain by visual
transformers, address both of the aforementioned challenges in a principled manner.

3.1. Proposed Network Architectures

In the present work, we propose and compare two different SNN-ViT-based architec-
tures for ancient coin matching. The first one, hereafter referred to as the Single Siamese
ViT, performs matching of obverses and reverses independently. The second architecture,
hereafter referred to as the Double Siamese ViT, compares both the obverses and reverses,
and integrates the obtained side-based scores into a single coin based similarity. In both
cases, we employ a base ViT model pre-trained on imagenet-1k.

3.1.1. Single Siamese ViT

For the architecture of our obverse of reverse matching Single Siamese ViT, we adopted
and adapted a generic Siamese Network as follows. Firstly, the backbone network of the
network was replaced with a pre-trained ViT. Next, the semantic layer outputs of the two
ViT models comprising the network and corresponding to the two streams processing the
two inputs (obverses or reverses being matched) were flattened, and the absolute distance
between them computed. Then, three linear layers and one batch normalization layer were
used to reduce the dimension and produce the provisional output. Lastly, this output was
passed through the sigmoid function to obtain a quasi-probability match measure, i.e., a
number between 0 and 1. The architecture of this network can be seen in Figure 3.

Figure 3. The architecture of Single Siamese ViT.
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3.1.2. Double Siamese ViT

Our Double Siamese ViT, which processes both the obverses and the reverses of two
coins that are matched, is for the most part based on the already described Single Siamese
ViT model, with changes and additions to the final layers of the network. The two Single
Siamese ViT networks remain identical up to and including the computation of the absolute
difference of their semantic layers. Following this stage, their outputs are concatenated
and layer normalization applied to the concatenated result. This is followed by two fully
connected layers. As before, the provisional output of the second layer is passed through
the sigmoid function, thereby obtaining a quasi-probability matching score on the coin
level. The architecture of this network can be seen in Figure 4.

Figure 4. The architecture of Double Siamese ViT.

3.2. Training Methodology and the Organization of Training Data

No less important than the architectures of the learning models to the success of our
overall approach is the manner in which the training of these models is performed, that
is, the methodology employed to make the best use of the available training data. In
the present work, we had a total of 20,000 training images of coins (specimens) available,
spanning 7000 different issues. With the conventional, classification approach pursued by
the previous work, this would lead to 7000 classes. On the one hand, this is an imposing
number of classes. Yet, it is vastly smaller than the number of potential classes, that is,
the different Roman Imperial coin issues. What is more, there would have been a major
challenge posed by high imbalance and few exemplars even for a large proportion of issues
included.

In contrast is the approach we advocate herein, whereby the machine learning model
learns coin characteristics, which allows for the discrimination of same issues vs. different
issues on a pairwise basis. The challenge of class imbalance is inherently avoided (with a
caveat upon we will elaborate shortly), as is that of a large number of classes. However,
a new practical choice emerges, that of designing the training process in a manner that
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is feasible. In particular, the space of possible training inputs (coin pairs) is enormous,
totaling C2

20000 = 199,990,000 combinations. Even if only a single sample of each coin issue
is considered, there are over C2

7000 = 24,496,500 combinations, which is clearly impractical.
However, the inherent non-reliance of our approach on the presence of any specific issue
allowed us a straightforward way of dramatically downsizing the actual training set. In
particular, for training we considered only those issues containing over 20 samples. Out of
these, we randomly chose 14 for training our model, 3 for validating it, and the remaining
3 for its final testing, these being entirely unseen during the training-validation process.
Doing this resulted in a training set containing 542 images representing 24 issues, and the
test data set for the evaluation of the final model consisting of a total of 7605 issues over
196 individuals (emperors, empresses, etc.) depicted on their obverses. Figure 5 shows the
distribution of the training set.

Figure 5. The data distribution of the train set.

The process just described adequately addresses the challenges of a large number
of classes, the consequent need for a vast amount of training data, and, partially, that of
class imbalance. The latter challenge is at this stage overcome only partially because it
is still the case that the number of all same-issue pairs still outnumbers the number of
all different-issue pairs, risking the over-weighting of correct decisions when the input
coins do belong to the same issue relative to the decisions when they do not. However,
considering that the exemplar count of both is large, this remnant imbalance is resolved
rather effortlessly. In particular, all that needs to be done and indeed what we did in this
work, was to perform balanced sampling of same-issue and different-issue pairs. The flow
chart of this process is summarized diagrammatically in Figure 6.
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Figure 6. The flow chart for organizing data set.

4. Results and Evaluation

Having described the technical specifics of our models in the previous section, we now
turn to the empirical evaluation of the same. We start by presenting the results obtained
using our Single Siamese ViT, separately matching coin obverses and reverses, and then
follow up with an assessment of our Double Siamese ViT, which matches coins holistically,
that is, both obverses and reverses jointly, thereby de facto matching the corresponding
issues themselves.

4.1. Data

In this work, we made use of the large data set of ancient coin images provided by the
Ancient Coins Search Engine (https://www.acsearch.info/ accessed on 1 May 2023) for
research purposes, which has been used in a number of previous research efforts [10,16].
This corpus consists of high-quality images obtained in rather controlled environments,
usually with a uniform background, favorable lighting, natural coin alignment, etc. Whilst
including a variety of non-Roman coins (Greek, Celtic, and Byzantine, among others), as
well as Roman non-Imperial ones (namely Provincial and Republican), the Roman Imperial
coins included span the entire time period of the Empire and cover most of the obverse
figures depicted on them and listed in the Appendix A in Table A1.

The acsearch data set in its raw form comprises images with the associated free-form
textual descriptions as provided by auction houses. In other words, there is no semantically
organized meta-information that would allow us to identify the entries that are of interest
herein, namely Roman Imperial coins with the corresponding RIC identifiers. Considering
the large size of the corpus and hence the impracticality of this being done by a human,
we achieved the desired extraction automatically. In the processing of a single candidate
entry, we first searched for the presence of the names listed in Table A3 in the associated
text file. If none were found, or there were multiple different names found, the entry
was not included in our experiments. The absence of a find suggests a coin other than
Roman Imperial, whereas multiple matches meant that the entry was not a single item
but a coin lot, or simply that there was ambiguity, which would have required a much
more semantically nuanced data extraction method than was necessary for the extraction
of a sufficient number of entries for the purposes of the present work. For entries that
contained a single matching name, we next searched the text file for the RIC identifier using
the regular expression “RIC.*?\d”. Any entries without a match were also discarded; this
would happen when another standard reference other than RIC was used (e.g., Roman
Silver Coins (RSC)), or when a non-standard format for RIC was used. Finally, the images of
the qualifying entries were split into two images, the obverse and the reverse, by dividing
the image horizontally half way. No further efforts to register the resulting images were
made, leaving any variation due to translation to be learned by our transformer-based, and
hence patch-ordering-independent, model.

4.2. Single Siamese ViT

Recall that the proposed Single Siamese ViT is designed to match only a single side of
a pair of coins, that is, either their obverses or reverses, and is accordingly trained with the
corresponding sides only. Understanding the performance of this network, considering

https://www.acsearch.info/
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that it forms the basis of our more complex model, the Double Siamese ViT, evaluated
subsequently, is crucial for understanding and contextualizing the performance of the latter.
Further to providing insight into the power of the architecture itself and the manner in
which we approach training, the findings presented here are also key to understanding
how the network deals with the challenges presented by obverse and reverse motifs, which
differ substantially. In particular, while obverses almost without an exception depict the
head or the bust of a person (emperor, empress, heir, etc.) surrounded by a circularly
arranged legend (text), the range of motifs on reverses is far more varied and complex,
showing scenes (e.g., funeral pyres, bridges and building, rivers and forests, deities, etc.).

4.2.1. Obverse Matching

We turn our attention to the task of obverse matching first. As the plot in Figure 7a
shows, save for stochastic oscillations, we observed a decrease in the training loss through-
out the training process, that is, with additional training epochs. Nevertheless, the rate
of loss decrease slows down significantly by epoch 100, which gives reassurance that not
much further benefit would be conferred by longer training. The concurrent and mirroring
behavior of the validation loss indicates successful learning and a well-fitted ultimate
model. Indeed, evaluated on the test set, the model achieves the accuracy of 95.73%, which
matches that of the final validation accuracy and is expectedly somewhat lower than the
final training accuracy (see the accompanying plots in Figure 7b); the impressive corre-
sponding ROC curve is shown in Figure 7c. Our test set accuracy significantly exceeds that
achieved by previous work on the obverse matching task, e.g., that reported by a CNN-
based approach of Schlag and Arandjelović [8]. Still, our result is even more astounding
given that the exact problem addressed by Schlag and Arandjelović is weaker than ours:
whereas they merely seek to match the depicted obverse persons’ identities, we tackle the
more specific matching of the precise obverse issues, which requires not just the matching
of the corresponding persons’ identities, but also of their dress and adornments, as well as
obverse legends.

(a) Loss curves (b) Accuracy curves

(c) Test set ROC curve

Figure 7. Performance characteristics of the proposed Single Siamese ViT on the obverse matching
task.
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4.2.2. Reverse Matching

We next turn our attention to the task of reverse matching. As in the previously
described experiments on coin obverses, in training we observe a declining loss, both on
training and validation data, throughout the training process, with the decline slowing
down considerably by the epoch 100; see Figure 8a. However, the differences between the
two training processes are noteworthy and highlight a few insightful points, which we
expected from the theory as explained previously. Firstly, notice that model improvement
slows down earlier in the case of reverses, suggesting an inherent limitation in the model
to learn further semantic nuance. This is important when one also observes that the final
model loss, both on training and on validation data, ends up being significantly higher
in the case of reverse matching than obverse matching, offering substantiation to our
expectation that the greater complexity of reverse motifs is inherently more difficult to
learn. These interpretations are additionally corroborated by the accuracy plots shown in
Figure 8b. In particular, while the reverse training accuracy is almost insignificantly lower
than the obverse training accuracy, the equivalent discrepancy between the validation
accuracies is somewhat larger (while still small), and the final accuracy on the test data
set even more so. The final accuracy achieved is 91.03% (compare this with 95.73% for
obverses). The corresponding ROC curve is still impressive, though also not quite as close
to the ideal as that achieved on the obverse matching task.

(a) Loss curves (b) Accuracy curves

(c) Test set ROC curve

Figure 8. Performance characteristics of the proposed Single Siamese ViT on the reverse matching
task.

4.3. Double Siamese ViT

Empowered with an understanding of the strengths and weaknesses of our Single
Siamese ViT, we finally evaluate the main model introduced in the present paper, namely
our Double Siamese ViT, which uses Single Siamese ViT networks as its core building
blocks. To overcome the computational challenge of training such a large network from
scratch, and the problems associated with issues such as those of vanishing gradients and
overfitting, we adopt the trained Single Siamese ViT networks of the previous section (one
for the matching of images of obverses and one for the matching of images of reverses),
freeze their weights, and train only the remainder of the architecture. Owing to this training
design choice, we now observed rather different behavior of losses during training, as
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shown in Figure 9a. In particular, unlike during the training of the Single Siamese ViT on
obverses and reverses, respectively, in Figures 7a and 8a, here we note an initial increase in
losses, which start to decline only following a peaking around the epoch 100. Thereafter, the
behavior becomes much more familiar, the losses steadily declining following the peak, and
settling by the epoch 500 (note the five-fold greater number of epochs needed as compared
to the Single Siamese ViT). The greater challenge addressed by the Double Siamese ViT
is also apparent from the accuracy plots in Figure 9b, with the training accuracy steadily
and rather rapidly improving throughout the training process, reaching close to 100%
performance by the epoch 500, contrasting the lack of validation accuracy improvement
from as early as the epoch 100. The accuracy of the final, trained model was found to be
86.36%, which is impressive and far greater than that achieved by previous work on much
simpler tasks, though understandably lower than the accuracy of the Single Siamese ViT
on either of the sub-tasks of obverse or reverse only matching. Similar observations apply
to the obtained ROC curve shown in Figure 9c.

(a) Loss curves (b) Accuracy curves

(c) Test set ROC curve

Figure 9. Training behavior of our Double Siamese ViT.

Further Model Probing

While our Double Siamese ViT model achieved outstanding results, vastly outper-
forming the existing state-of-the-art, it expectedly did not perform perfectly, i.e., it could
not match a human expert on the task of coin issue matching. Hence, we sought to under-
stand the model’s performance with more nuance and gain insight into its strengths and
weaknesses, both being important for future work and any potential improvements to it.
As the first step towards this goal, we performed an additional set of experiments. In these
experiments, we sought to match issues using (i) obverses only and (ii) reverses only, using
our Single Siamese ViT model, and compared the results on an emperor-by-emperor basis
with the joint matching performed by the proposed Double Siamese ViT model. Note that
the single-side-based matching done here was different than that described in the previous
section. In particular, while in the previous section we also used the Single Siamese ViT
model to perform single side matching (obverse or reverse), a match was considered correct
if it matched that side correctly. In contrast, here we take the match to extend to the entire
issue. Clearly, in general, the information from only one side of the coin is insufficient to
fully specify an issue, though in some cases it is (some issues feature obverse or reverse mo-
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tifs or details not found on other issues), which is why a human would always examine the
coin in its entirety when performing attribution. That is precisely the value of the approach
taken in this experiment. Specifically, by making an emperor-by-emperor comparison, our
findings illuminate both the magnitude of the value added of a joint consideration of both
coin sides, as well as give insight into when this is most helpful. For example, we expected
that the greatest gain would be seen when an issuing authority on the obverse is featured
on many different issues, as well as when a particular motif recurs over long stretches of
time (this would be the case, for example, for generic propaganda about prosperity and the
virtues of the Empire, but not with one-of-a-kind events such as military victories).

The full numerical results over matching accuracies averaged across issuing author-
ities are presented in Tables A2–A4; a graphical summary is shown in Figure 10. The
immediately apparent finding is, as hypothesized, that the Double Siamese ViT model, i.e.,
issue matching using both coin sides, significantly outperforms both Single Siamese ViT
models, i.e., issue matching using either side in isolation. The improvement is observed
both on average as well as in the case of nearly every issuing authority; we shall return
to the the unusual exceptions shortly. Observe that even when both single-side-based
predictions perform poorly, their complementary role in the unique determination of an
issue is reflected in the virtually universally highly accurate prediction when a coin is
handled in a holistic manner. Indeed, the advantage of the Dual Siamese ViT model is
particularly apparent when at least one of the two single side predictions is poor, e.g.,
because there are numerous issues under the same issuing authority (demonstrated by the
poor predictive performance of obverses) or when a reverse motif is repeated across many
issuing authorities (demonstrated by the poor predictive performance of reverses).

Figure 10. Summary of matching accuracy shown averaged over each issuing authority shown on
the obverse.
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4.4. Analysis of Problematic Issuing Authorities

We noted previously that while the issuing authority averaged matching performance
of the Dual Siamese ViT model is nearly universally high, there are some exceptions. In
order to gain insight into this finding and discover a potential weakness of the proposed
method, we identified the 15 most problematic issuing authorities, judged by the lowest
average matching scores as per Table A4 and Figure 10, and manually examined the corre-
sponding coin images. We readily identified a number of reasons for the aforementioned
poorer than expected performance, most of which have to do with the quality of the avail-
able data rather than with any inherent, technical aspect of the proposed model itself. This
is further elaborated next.

4.4.1. Physically Incomplete Specimens

Although our data set on the whole generally comprises good quality coin samples,
a number of images show significantly damaged specimens, that is specimens which are
either physically chipped or even cut in half. This is particularly important and noticeable
as such specimens are of interest only in case of rare issues and rare issuing authorities,
which are for this reason also least abundant in samples, their negative effect on the average
performance being amplified by this fact. Examples of such specimens are shown in
Figures 11a and 12a, which feature significant semantic information loss as compared with
well-preserved samples shown in, respectively, Figures 11b and 12b. The obverse of the
coin in Figure 11a is missing the head of Augustus, and the lettering in the top field is
barely present. The reverse of the coin shows only the head of the crocodile, with the tree
behind it entirely missing.

(a) (b)

Figure 11. Examples of RIC 158 of Augustus. (a) An incomplete specimen of RIC 158 of Augustus.
(b) A good condition specimen of RIC 158 of Augustus.

(a) (b)

Figure 12. Examples of defective and complete specimens of Augustus in our data set. (a) An
incomplete specimen of RIC 160 of Augustus. (b) A complete specimen of RIC 160 of Augustus.

4.4.2. Worn and Environmentally Affected Coins

As a kind of currency, coins were continuously circulating in ancient times, resulting
in surface wear and hence the loss of salient semantic detail crucial for their identification.
Exposure to elements, e.g., due to being buried underground, can also effect wear, as well
as surface appearance changes in the form of discoloration or patination. All of these factors
confound the issue-based matching tasks. At the same time, there are statistical differences
in how the coins of different issuers were affected. For example, heavy yet at the time



J. Imaging 2023, 9, 107 17 of 34

lesser value coins such as sestertii, but which were gradually phased out over time, are
more affected by physical wear, see Figure 13b; debased silver coins associated with the
period of economic hardship of the Empire in the 3rd century AD are more easily affected
by corrosion than good quality silver coins of the early empire, see Figure 13a; and so on.

(a) A worn specimen of RIC 9 of Macrianus (b) A worn specimen of RIC 1777 of Lucilla

Figure 13. Examples of worn and discolored coins.

4.4.3. Data Irregularities

Recall from Section 4.1 that a normal entry in our data set comprises an image that
shows a single coin specimen, its obverse on the left hand side and its reverse on the right
hand side, in the natural canonical orientation. However, our examination of problematic
text exemplars revealed that a small but not negligible number of the entries in the corpus
do not conform with the aforementioned assumption and were not filtered out by our data
pre-processing also described in Section 4.1. Examples are shown in Figure 14.

(a) Matched with RIC 4 of Mariniana (b) Matched with RIC 181 of Mariniana

Figure 14. Examples of non-conforming data entries: (a) two specimens of Mariniana, also unusually
shown reverse first then obverse, and (b) four diverse specimens, incorrectly matched as a whole
with the issue corresponding to the specimen on the top left.

4.4.4. High Similarity between Issues

Lastly, a number of erroneous matches made by our method can be attributed to the
inherent difficulty in distinguishing between certain issues that differ in minute detail
only. An example is shown in Figure 15, which shows issues RIC 158 and RIC 160 of
Augustus. These have identical reverses, with the legend COL NEM and the motif showing a
crocodile chained to a palm-shoot with long vertical fronds and tip left, and a wreath with
long ties above on the left. Their obverses are virtually identical too, with the legend IMP
DIVI F and the heads of Agrippa (left) and Augustus (right) back to back (Agrippa wearing
a combined rostral crown and laurel wreath, and Augustus laureate), the sole difference
being the lettering P P in the field of RIC 160. We identified such only subtly different
pairs of issues for Domitia, Saloninus, Macrianus, Fausta, Britannicus, Vabalathus, Julia Paula,
Valentinian III, and Octavia.
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(a) A sample of RIC 158 of Augustus (b) A sample of RIC 160 of Augustus

Figure 15. An example of two different issues which are virtually identical in their semantic content.

5. Conclusions and Future Work

In this work, our attention was on the problem of image-based ancient coin attribution,
which has been at the focus of research on the use of computer vision in ancient numis-
matics since the nascence of the field. We commenced the article by contextualizing and
motivating our key technical contribution, discussing the key limitations of the existing
work in the field, both methodological and practical ones. Among the latter, we highlighted
the hitherto almost entirely overlooked problem that emerges from the dominant type of
approach to ancient coin attribution (namely that in the form of classification), which is the
extremely large number of classes (10 s of thousands) for most of which training exemplars
are unavailable. This makes the existing algorithms unable to deal with coins of unseen
issues, requires a retraining of models when new class exemplars become available, and
presents a major class imbalance challenge. Hence, we argued against the classification
paradigm and in favor of an alternative. In particular, rather than trying to learn a class
specific representation that distinguishes a particular class from all the others, we presented
a case for seeking a representation that is overall best at distinguishing classes one from
another, thus relinquishing the demand for exemplars of all classes or indeed of any specific
class. This led to our adoption of the paradigm of pairwise coin matching by issue, and
the specific technical approach in the form of a purpose-crafted Siamese neural network.
Furthermore, while adopting deep learning, motivated by its successes in the field and
its unchallenged superiority over classical computer vision approaches, we also sought
to leverage the advantages that transformers have over the previously employed convo-
lutional neural networks, and in particular their non-local attention mechanisms which
ought to be particularly useful in ancient coin analysis by associating semantically but not
visually related distal elements of a coin’s design. Finally, we presented a comprehensive
and detailed evaluation of the proposed method using a large data corpus of 14,820 images
and 7605 issues, and an in-depth analysis of its strengths and weaknesses. Using transfer
learning and only a small training set of 542 images of 24 issues, our Double Siamese ViT
model was shown to surpass the state of the art by a large margin, achieving an overall
accuracy of 81%. Our further investigation of the results showed that the majority of the
method’s errors are unrelated to the intrinsic aspects of the algorithm itself, but are rather a
consequence of unclean data, which is a problem that can be easily addressed in practice
by simple pre-processing and quality checking.

The success of the proposed method and the presented experimental results suggest a
number of avenues for further research, which we are currently exploring. Firstly, we expect
that an improvement in performance can be effected by training separate Double Siamese
ViT models for different kinds of coins: e.g., most coarsely for Roman, Greek, Byzantine,
Celtic, etc.; on a finer basis for, e.g., Roman Republican, Roman Imperial preceding the
Crisis of the Third Century (which resulted in major changes in both the material and style
of coinage), and late Roman Imperial coins; or even for different denominations that exhibit
differences both in style and content due to the their different flan sizes and materials used.
Secondly, we aim to explore if further informative inference could be made for unknown
issues, i.e., issues which are not matched to any gallery ones. The idea here would be to
make inferences based on the most similar issues, though not sufficiently similar to produce
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a match, in a manner conceptually similar to that which has demonstrated success in the
context of face recognition, among others [40,41].
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Appendix A

Table A1. List of possible issuing authorities, including non-conformal entries such as City Commemo-
ratives.

Aelia Ariadne Faustina II Nero Claudius Drusus

Aelia Flacilla Flavia Titiana Nerva

Aelia Verina Flavius Victor Nigrinian

Aelius Florian Numerian

Aemilian Gaius and Lucius Octavia

Agrippa Galba Orbiana

Agrippa Postumus Galeria Valeria Otacilia Severa

Agrippina I Galerius Otho

Agrippina II Galerius Antoninus Pacatian

Alexander Galla Placidia Paulina

Allectus Gallienus Pertinax

Annia Faustina Gemellus Pescennius Niger

Annius Verus Germanicus Petronius Maximus

Anonymous Geta Philip I

Anthemius Glycerius Philip II

Antinous Gordian I Plautilla

Antonia Gordian II Plotina

Antoninus Pius Gordian III Poppaea

Aquilia Severa Gratian Postumus

Arcadius Hadrian Priscus Attalus

Asinius Gallus Hanniballianus Probus

Augustus Helena Procopius

Aurelian Herennia Etruscilla Proculus

Aureolus Herennius Etruscus Pulcheria

Avitus Honoria Pupienus

Balbinus Honorius Quietus

Basiliscus Hostilian Quintillus

Bonosus Johannes Regalianus
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Table A1. Cont.

Britannicus Jotapian Romulus

Caesonia Jovian Romulus Augustus

Caius and Lucius Jovinus Sabina

Caligula Julia Salonina

Caracalla Julia Domna Saloninus

Carausius Julia Maesa Sebastianus

Carinus Julia Mamaea Sejanus

Carus Julia Paula Septimius Severus

City Commemoratives Julia Soaemias Severina

Civil Wars Julia Titi Severus II

Claudius Julian I Severus III

Claudius II (Gothicus) Julian II Severus Alexander

Clodius Albinus Julius Marinus Statilia Messalina

Clodius Macer Julius Nepos Tacitus

Commodus Laelianus Tesserae etc.

Constans Leo I Tetricus I

Constantine I Leo II Tetricus II

Constantine II Libo Theodora

Constantine III Licinia Eudoxia Theodosius I

Constantius I Licinius I Theodosius II

Constantius II Licinius II Tiberius

Constantius III Livia Titus

Constantius Gallus Livilla Trajan

Cornelia Supera Lucilla Trajan Decius

Crispina Lucius Verus Tranquillina

Crispus Macrianus Trebonianus Gallus

Decentius Macrinus Uranius Antoninus

Delmatius Magnentius Vabalathus

Diadumenian Magnia Urbica Valens

Didia Clara Magnus Maximus Valentinian I

Didius Julianus Majorian Valentinian II

Diocletian Manlia Scantilla Valentinian III

Domitia Marcian Valeria Messalina

Domitia Lucilla Marciana Valerian I

Domitian Marcus Aurelius Valerian II

Domitianus Mariniana Valerius Valens

Domitilla I Marius Varbanov

Domitilla II Martinian Varus

Domitius Domitianus Matidia Vespasian

Drusus Maxentius Vespasian II

Dryantilla Maximianus Vetranio
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Table A1. Cont.

Elagabalus Maximinus I Victorinus

Eudocia Maximinus II Vindix

Eudoxia Maximus Vitellius

Eugenius Maximus of Spain Volusian

Fabius Maximus Nepotian Zeno

Fausta Nero Zenobia

Faustina I Nero and Drusus Caesars Zenonis

Table A2. Obverse matching performance averaged across each issuing authority.

Issuing Authority Correct Total Rate

Aelius 240 413 58.1%

Aemilian 31 308 10.1%

Agrippa 5 16 31.3%

Agrippina II 5 11 45.5%

Alexander 44 78 56.4%

Allectus 22 82 26.8%

Anthemius 30 45 66.7%

Antoninus Pius 19,832 42,550 46.6%

Aquilia Severa 4 13 30.8%

Arcadius 229 416 55.0%

Augustus 68,606 113,236 60.6%

Aurelian 829 4778 17.4%

Balbinus 24 87 27.6%

Basiliscus 42 57 73.7%

Britannicus 126 215 58.6%

Caligula 585 958 61.1%

Caracalla 6984 17,259 40.5%

Carausius 76 442 17.2%

Carinus 138 565 24.4%

Carus 31 154 20.1%

Claudius 6757 10,063 67.1%

Clodius Albinus 49 159 30.8%

Commodus 4280 9344 45.8%

Constans 1521 4669 32.6%

Constantine I 1340 3327 40.3%

Constantine II 48 106 45.3%

Constantius Gallus 59 156 37.8%

Constantius I 478 1338 35.7%

Constantius II 2360 6581 35.9%

Constantius III 3 15 20.0%
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Table A2. Cont.

Issuing Authority Correct Total Rate

Crispina 87 261 33.3%

Crispus 347 1438 24.1%

Decentius 2 38 5.3%

Delmatius 17 57 29.8%

Diadumenian 23 140 16.4%

Didius Julianus 18 31 58.1%

Diocletian 3226 7163 45.0%

Domitia 6 15 40.0%

Domitia Lucilla 33 106 31.1%

Domitian 7017 12,737 55.1%

Domitianus 3625 6344 57.1%

Domitius Domitianus 19 92 20.7%

Elagabalus 943 3096 30.5%

Eudocia 4 10 40.0%

Eugenius 12 31 38.7%

Fausta 15 48 31.3%

Faustina I 44 233 18.9%

Faustina II 13 45 28.9%

Flavius Victor 6 17 35.3%

Florian 5 79 6.3%

Gaius and Lucius 16 29 55.2%

Galba 1038 2424 42.8%

Galeria Valeria 20 37 54.1%

Galerius 490 1181 41.5%

Gallienus 3239 11,205 28.9%

Germanicus 5448 8804 61.9%

Geta 293 1292 22.7%

Gordian I 2 23 8.7%

Gordian III 565 2095 27.0%

Gratian 32 144 22.2%

Hadrian 25,631 53,702 47.7%

Helena 25 154 16.2%

Herennia Etruscilla 57 111 51.4%

Herennius Etruscus 87 239 36.4%

Honorius 858 1336 64.2%

Hostilian 17 69 24.6%

Johannes 9 16 56.3%

Jovian 11 68 16.2%

Julia 256 501 51.1%
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Table A2. Cont.

Issuing Authority Correct Total Rate

Julia Domna 471 1607 29.3%

Julia Maesa 22 84 26.2%

Julia Mamaea 49 159 30.8%

Julia Paula 11 19 57.9%

Julia Titi 70 123 56.9%

Julian II 128 672 19.0%

Julius Nepos 5 10 50.0%

Leo I 101 155 65.2%

Licinius I 417 1494 27.9%

Licinius II 802 2866 28.0%

Livia 89 126 70.6%

Lucilla 91 261 34.9%

Lucius Verus 1330 2793 47.6%

Macrianus 3 30 10.0%

Macrinus 251 1240 20.2%

Magnentius 216 752 28.7%

Magnia Urbica 30 70 42.9%

Magnus Maximus 106 283 37.5%

Manlia Scantilla 3 11 27.3%

Marcian 107 137 78.1%

Marciana 16 55 29.1%

Marcus Aurelius 57,982 112,714 51.4%

Mariniana 8 25 32.0%

Marius 5 23 21.7%

Maxentius 131 441 29.7%

Maximianus 1209 3677 32.9%

Maximinus I 128 420 30.5%

Maximinus II 52 107 48.6%

Maximus 79 124 63.7%

Nero 7476 14,409 51.9%

Nero Claudius Drusus 57 95 60.0%

Nerva 723 1672 43.2%

Numerian 63 192 32.8%

Octavia 205 502 40.8%

Otacilia Severa 55 264 20.8%

Otho 32 72 44.4%

Pacatian 9 28 32.1%

Pertinax 119 261 45.6%

Pescennius Niger 95 281 33.8%
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Table A2. Cont.

Issuing Authority Correct Total Rate

Philip I 337 1188 28.4%

Philip II 35 143 24.5%

Plautilla 138 307 45.0%

Plotina 6 12 50.0%

Postumus 591 2639 22.4%

Probus 2013 10,033 20.1%

Procopius 34 110 30.9%

Pupienus 42 101 41.6%

Quietus 2 23 8.7%

Quintillus 92 235 39.1%

Romulus 259 570 45.4%

Sabina 75 157 47.8%

Salonina 37 190 19.5%

Saloninus 8 31 25.8%

Septimius Severus 11,676 25,252 46.2%

Severina 17 127 13.4%

Severus Alexander 6477 12,931 50.1%

Severus II 114 213 53.5%

Severus III 6 10 60.0%

Tacitus 131 537 24.4%

Tetricus I 1 21 4.8%

Theodosius I 197 637 30.9%

Theodosius II 865 1442 60.0%

Tiberius 1687 2307 73.1%

Titus 3494 6124 57.1%

Trajan 11,177 25,257 44.3%

Trajan Decius 127 356 35.7%

Tranquillina 22 57 38.6%

Trebonianus Gallus 466 1193 39.1%

Vabalathus 3 22 13.6%

Valens 53 309 17.2%

Valentinian I 28 144 19.4%

Valentinian II 26 139 18.7%

Valentinian III 145 382 38.0%

Valerian I 74 328 22.6%

Vespasian 17,935 31,933 56.2%

Vetranio 65 384 16.9%

Victorinus 68 236 28.8%
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Table A2. Cont.

Issuing Authority Correct Total Rate

Vitellius 3089 5070 60.9%

Volusian 175 675 25.9%

Zeno 107 156 68.6%

30,2974 613,087 49.4%

Table A3. Reverse matching performance averaged across each issuing authority.

Issuing Authority Correct Total Rate

Aelius 293 413 70.9%

Aemilian 133 309 43.0%

Agrippa 12 17 70.6%

Agrippina II 6 10 60.0%

Alexander 39 78 50.0%

Allectus 54 80 67.5%

Anthemius 26 46 56.5%

Antoninus Pius 29,641 42,549 69.7%

Aquilia Severa 10 12 83.3%

Arcadius 310 418 74.2%

Augustus 79,227 113,253 70.0%

Aurelian 2695 4772 56.5%

Balbinus 56 85 65.9%

Basiliscus 32 57 56.1%

Britannicus 75 212 35.4%

Caligula 711 961 74.0%

Caracalla 10,728 17,264 62.1%

Carausius 332 439 75.6%

Carinus 339 565 60.0%

Carus 71 154 46.1%

Claudius 7598 10,066 75.5%

Clodius Albinus 75 160 46.9%

Commodus 6720 9338 72.0%

Constans 2193 4669 47.0%

Constantine I 2271 3328 68.2%

Constantine II 74 105 70.5%

Constantius Gallus 103 153 67.3%

Constantius I 749 1339 55.9%

Constantius II 4472 6577 68.0%

Constantius III 12 15 80.0%

Crispina 168 259 64.9%

Crispus 943 1437 65.6%
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Table A3. Cont.

Issuing Authority Correct Total Rate

Decentius 22 38 57.9%

Delmatius 23 58 39.7%

Diadumenian 89 143 62.2%

Didius Julianus 18 31 58.1%

Diocletian 4950 7168 69.1%

Domitia 10 15 66.7%

Domitia Lucilla 26 107 24.3%

Domitian 8803 12,739 69.1%

Domitianus 4419 6342 69.7%

Domitius Domitianus 52 92 56.5%

Elagabalus 1705 3099 55.0%

Eudocia 4 11 36.4%

Eugenius 16 31 51.6%

Fausta 20 48 41.7%

Faustina I 156 232 67.2%

Faustina II 33 45 73.3%

Flavius Victor 8 17 47.1%

Florian 33 80 41.3%

Gaius and Lucius 19 29 65.5%

Galba 1565 2428 64.5%

Galeria Valeria 12 37 32.4%

Galerius 828 1181 70.1%

Gallienus 7238 11,199 64.6%

Germanicus 4576 8811 51.9%

Geta 688 1289 53.4%

Gordian I 15 22 68.2%

Gordian III 1176 2094 56.2%

Gratian 84 144 58.3%

Hadrian 37,712 53,704 70.2%

Helena 60 156 38.5%

Herennia Etruscilla 82 110 74.5%

Herennius Etruscus 165 236 69.9%

Honorius 942 1337 70.5%

Hostilian 37 68 54.4%

Johannes 8 16 50.0%

Jovian 47 69 68.1%

Julia 370 503 73.6%

Julia Domna 975 1606 60.7%

Julia Maesa 58 84 69.0%

Julia Mamaea 118 159 74.2%
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Table A3. Cont.

Issuing Authority Correct Total Rate

Julia Paula 15 18 83.3%

Julia Titi 102 124 82.3%

Julian II 412 675 61.0%

Julius Nepos 7 10 70.0%

Leo I 102 156 65.4%

Licinius I 916 1494 61.3%

Licinius II 1227 2869 42.8%

Livia 92 126 73.0%

Lucilla 182 263 69.2%

Lucius Verus 2082 2793 74.5%

Macrianus 22 31 71.0%

Macrinus 660 1242 53.1%

Magnentius 539 747 72.2%

Magnia Urbica 36 68 52.9%

Magnus Maximus 176 282 62.4%

Manlia Scantilla 2 11 18.2%

Marcian 105 139 75.5%

Marciana 38 55 69.1%

Marcus Aurelius 79,759 112,717 70.8%

Mariniana 17 25 68.0%

Marius 10 25 40.0%

Maxentius 175 439 39.9%

Maximianus 2509 3675 68.3%

Maximinus I 278 419 66.3%

Maximinus II 62 109 56.9%

Maximus 94 124 75.8%

Nero 10,227 14,412 71.0%

Nero Claudius Drusus 66 94 70.2%

Nerva 1143 1673 68.3%

Numerian 92 192 47.9%

Octavia 280 505 55.4%

Otacilia Severa 185 262 70.6%

Otho 37 73 50.7%

Pacatian 22 28 78.6%

Pertinax 152 260 58.5%

Pescennius Niger 162 278 58.3%

Philip I 785 1186 66.2%

Philip II 97 141 68.8%

Plautilla 163 309 52.8%
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Table A3. Cont.

Issuing Authority Correct Total Rate

Plotina 10 12 83.3%

Postumus 1776 2645 67.1%

Probus 5866 10,030 58.5%

Procopius 60 109 55.0%

Pupienus 68 98 69.4%

Quietus 7 23 30.4%

Quintillus 128 234 54.7%

Romulus 324 567 57.1%

Sabina 94 157 59.9%

Salonina 97 192 50.5%

Saloninus 13 30 43.3%

Septimius Severus 17,822 25,252 70.6%

Severina 80 129 62.0%

Severus Alexander 8472 12,933 65.5%

Severus II 139 211 65.9%

Severus III 7 10 70.0%

Tacitus 325 535 60.7%

Tetricus I 15 22 68.2%

Theodosius I 436 636 68.6%

Theodosius II 731 1444 50.6%

Tiberius 1848 2304 80.2%

Titus 4348 6126 71.0%

Trajan 18,421 25,258 72.9%

Trajan Decius 268 360 74.4%

Tranquillina 46 57 80.7%

Trebonianus Gallus 832 1189 70.0%

Vabalathus 15 22 68.2%

Valens 237 310 76.5%

Valentinian I 99 141 70.2%

Valentinian II 105 139 75.5%

Valentinian III 236 382 61.8%

Valerian I 176 328 53.7%

Vespasian 23,508 31,934 73.6%

Vetranio 199 386 51.6%

Victorinus 165 237 69.6%

Vitellius 3804 5070 75.0%

Volusian 460 677 67.9%

Zeno 89 155 57.4%

421,686 613,111 68.8%



J. Imaging 2023, 9, 107 29 of 34

Table A4. Holistic matching performance averaged across each issuing authority.

Issuing Authority Correct Total Rate

Aelius 350 411 85.2%

Aemilian 245 308 79.5%

Agrippa 10 17 58.8%

Agrippina II 7 11 63.6%

Alexander 71 78 91.0%

Allectus 60 80 75.0%

Anthemius 34 46 73.9%

Antoninus Pius 35,169 42,553 82.6%

Aquilia Severa 12 13 92.3%

Arcadius 376 417 90.2%

Augustus 90,666 113,236 80.1%

Aurelian 3666 4773 76.8%

Balbinus 65 86 75.6%

Basiliscus 39 57 68.4%

Britannicus 139 215 64.7%

Caligula 772 962 80.2%

Caracalla 14,570 17,263 84.4%

Carausius 323 439 73.6%

Carinus 454 566 80.2%

Carus 142 155 91.6%

Claudius 8074 10,067 80.2%

Clodius Albinus 119 160 74.4%

Commodus 7681 9343 82.2%

Constans 3283 4667 70.3%

Constantine I 2827 3328 84.9%

Constantine II 89 106 84.0%

Constantius Gallus 124 157 79.0%

Constantius I 1221 1339 91.2%

Constantius II 5616 6579 85.4%

Constantius III 15 15 100.0%

Crispina 221 262 84.4%

Crispus 1120 1438 77.9%

Decentius 32 39 82.1%

Delmatius 48 57 84.2%

Diadumenian 114 143 79.7%

Didius Julianus 25 32 78.1%

Diocletian 5787 7162 80.8%

Domitia 6 15 40.0%

Domitia Lucilla 89 106 84.0%

Domitian 10,417 12,739 81.8%
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Table A4. Cont.

Issuing Authority Correct Total Rate

Domitianus 5269 6344 83.1%

Domitius Domitianus 78 92 84.8%

Elagabalus 2598 3101 83.8%

Eudocia 9 12 75.0%

Eugenius 27 31 87.1%

Fausta 27 47 57.4%

Faustina I 215 232 92.7%

Faustina II 36 45 80.0%

Flavius Victor 14 17 82.4%

Florian 74 80 92.5%

Gaius and Lucius 21 28 75.0%

Galba 1774 2428 73.1%

Galeria Valeria 36 38 94.7%

Galerius 1037 1183 87.7%

Gallienus 9496 11,200 84.8%

Germanicus 6819 8815 77.4%

Geta 1044 1291 80.9%

Gordian I 17 23 73.9%

Gordian III 1739 2097 82.9%

Gratian 123 144 85.4%

Hadrian 44,306 53,709 82.5%

Helena 132 157 84.1%

Herennia Etruscilla 79 109 72.5%

Herennius Etruscus 171 235 72.8%

Honorius 1154 1335 86.4%

Hostilian 54 69 78.3%

Johannes 15 15 100.0%

Jovian 61 69 88.4%

Julia 420 503 83.5%

Julia Domna 1259 1607 78.3%

Julia Maesa 58 83 69.9%

Julia Mamaea 132 160 82.5%

Julia Paula 12 18 66.7%

Julia Titi 115 122 94.3%

Julian II 512 670 76.4%

Julius Nepos 7 10 70.0%

Leo I 126 156 80.8%

Licinius I 1123 1494 75.2%

Licinius II 2102 2868 73.3%

Livia 110 126 87.3%
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Table A4. Cont.

Issuing Authority Correct Total Rate

Lucilla 164 261 62.8%

Lucius Verus 2252 2792 80.7%

Macrianus 18 32 56.3%

Macrinus 1044 1240 84.2%

Magnentius 600 748 80.2%

Magnia Urbica 47 68 69.1%

Magnus Maximus 222 284 78.2%

Manlia Scantilla 10 12 83.3%

Marcian 123 138 89.1%

Marciana 47 56 83.9%

Marcus Aurelius 91,099 112,704 80.8%

Mariniana 13 23 56.5%

Marius 19 26 73.1%

Maxentius 379 439 86.3%

Maximianus 3111 3669 84.8%

Maximinus I 321 422 76.1%

Maximinus II 90 109 82.6%

Maximus 107 123 87.0%

Nero 11,095 14,408 77.0%

Nero Claudius Drusus 74 94 78.7%

Nerva 1343 1674 80.2%

Numerian 160 193 82.9%

Octavia 348 503 69.2%

Otacilia Severa 210 261 80.5%

Otho 64 71 90.1%

Pacatian 23 29 79.3%

Pertinax 202 262 77.1%

Pescennius Niger 222 279 79.6%

Philip I 1013 1188 85.3%

Philip II 124 142 87.3%

Plautilla 234 311 75.2%

Plotina 9 10 90.0%

Postumus 2022 2641 76.6%

Probus 8366 10,039 83.3%

Procopius 84 109 77.1%

Pupienus 72 99 72.7%

Quietus 17 23 73.9%

Quintillus 185 233 79.4%

Romulus 487 565 86.2%

Sabina 113 156 72.4%
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Table A4. Cont.

Issuing Authority Correct Total Rate

Salonina 158 191 82.7%

Saloninus 13 28 46.4%

Septimius Severus 20,869 25,254 82.6%

Severina 99 129 76.7%

Severus Alexander 10,081 12,929 78.0%

Severus II 187 210 89.0%

Severus III 9 10 90.0%

Tacitus 415 535 77.6%

Tetricus I 21 22 95.5%

Theodosius I 548 639 85.8%

Theodosius II 1048 1446 72.5%

Tiberius 1912 2304 83.0%

Titus 4950 6117 80.9%

Trajan 20,731 25,259 82.1%

Trajan Decius 312 356 87.6%

Tranquillina 45 56 80.4%

Trebonianus Gallus 996 1196 83.3%

Vabalathus 15 23 65.2%

Valens 256 312 82.1%

Valentinian I 120 141 85.1%

Valentinian II 113 139 81.3%

Valentinian III 263 381 69.0%

Valerian I 236 328 72.0%

Vespasian 25,734 31,933 80.6%

Vetranio 302 388 77.8%

Victorinus 181 236 76.7%

Vitellius 3945 5077 77.7%

Volusian 580 676 85.8%

Zeno 131 156 84.0%

496,882 613,110 81.0%
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16. Zachariou, M.; Dimitriou, N.; Arandjelović, O. Visual reconstruction of ancient coins using cycle-consistent generative adversarial
networks. Sci 2020, 2, 52. [CrossRef]

17. Anwar, H.; Zambanini, S.; Kampel, M.; Vondrovec, K. Ancient coin classification using reverse motif recognition: Image-based
classification of roman republican coins. IEEE Signal Process. Mag. 2015, 32, 64–74. [CrossRef]
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40. Arandjelović, O. Reimagining the central challenge of face recognition: Turning a problem into an advantage. Pattern Recognit.

2018, 83, 388–400. [CrossRef]
41. Arandjelovic, O. Learnt quasi-transitive similarity for retrieval from large collections of faces. In Proceedings of the Computer

Vision and Pattern Recognition Conference, Las Vegas, NV, USA, 27–30 June 2016; pp. 4883–4892.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.patrec.2020.01.012
http://dx.doi.org/10.1016/j.patcog.2018.06.006

	Introduction
	Related Work
	Automatic Ancient Coins Analysis Using Computer Vision and Machine Learning
	Siamese Neural Networks
	Transformers

	Proposed Methodology
	Proposed Network Architectures
	Single Siamese ViT
	Double Siamese ViT

	Training Methodology and the Organization of Training Data

	Results and Evaluation
	Data
	Single Siamese ViT
	Obverse Matching
	Reverse Matching

	Double Siamese ViT
	Analysis of Problematic Issuing Authorities
	Physically Incomplete Specimens
	Worn and Environmentally Affected Coins
	Data Irregularities
	High Similarity between Issues


	Conclusions and Future Work
	Appendix A
	References

