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Abstract: Human action recognition has been actively explored over the past two decades to further
advancements in video analytics domain. Numerous research studies have been conducted to
investigate the complex sequential patterns of human actions in video streams. In this paper, we
propose a knowledge distillation framework, which distills spatio-temporal knowledge from a large
teacher model to a lightweight student model using an offline knowledge distillation technique. The
proposed offline knowledge distillation framework takes two models: a large pre-trained 3DCNN
(three-dimensional convolutional neural network) teacher model and a lightweight 3DCNN student
model (i.e., the teacher model is pre-trained on the same dataset on which the student model is to
be trained on). During offline knowledge distillation training, the distillation algorithm trains only
the student model to help enable the student model to achieve the same level of prediction accuracy
as the teacher model. To evaluate the performance of the proposed method, we conduct extensive
experiments on four benchmark human action datasets. The obtained quantitative results verify the
efficiency and robustness of the proposed method over the state-of-the-art human action recognition
methods by obtaining up to 35% improvement in accuracy over existing methods. Furthermore,
we evaluate the inference time of the proposed method and compare the obtained results with the
inference time of the state-of-the-art methods. Experimental results reveal that the proposed method
attains an improvement of up to 50× in terms of frames per seconds (FPS) over the state-of-the-art
methods. The short inference time and high accuracy make our proposed framework suitable for
human activity recognition in real-time applications.

Keywords: deep neural networks; 3DCNN; deep learning; knowledge distillation; human action
recognition

1. Introduction

Deep neural networks (DNNs) have immensely improved over the years and have
shown remarkable success in various fields such as computer vision [1], natural language
processing [2], speech recognition [3], and other scientific research domains. The efficiency
of DNNs generally depends on the design of network architecture (depth and formation of
network layers) for the task under consideration. For the tasks such as object recognition [4]
and video analytics [5], mostly the DNNs are over-parameterized to ensure generalization
and capturing of the complex hidden patterns in the data. Such over-parameterized
and cumbersome models are very deep and computationally complex, which require
substantial amount of computational resources for training and are not applicable for real-
time environments. To achieve computationally efficient yet robust models with reasonable
inference speed, computer vision researchers have been actively working to exploit the
effectiveness of large trained models to acquire computationally efficient light-weight
models, which can be used for real-time applications. Besides the model complexity,
the other key factor which plays an important role in the performance of DNNs is data.
For problems such as video analytics (human action recognition, person identification,
and object tracking), the DNNs models highly require large amount of labeled data for
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training. However, in many cases it is difficult to have enough amount of highly accurate
labeled training data for the task under the consideration.

To alleviate the challenge of a large labeled dataset requirement, computer vision
researchers have introduced several solutions including semi-supervised learning [6],
self-supervised-learning [7], and knowledge-distillation [8] that reduce the burden of
labeling large datasets by training DNNs models on partially labeled datasets. In semi-
supervised learning paradigm, a DNN model is trained on a data having a small portion of
labeled and a large portion of unlabeled data. First, the DNNs model is trained on a small
portion of labeled data, then later the trained model generates the pseduo-labels with a
certain confidence level (prediction of the trained model). The generated pseduo-labels
are then added to the labeled pool of data based on the corresponding confidence scores.
After labeling the entire dataset, the pre-trained model is trained again on the new labeled
dataset to improve performance. On the other hand, in self-supervised learning paradigm,
a DNN model is trained on an artificially constructed labeled data (constructed using
transformations such as rotation, flipping, and color change, etc.) where the model learns
and supervises itself from the knowledge of predefined transformations. The knowledge
distillation approach is a special variant of self-supervised learning which offers both model
compression and knowledge transfer. The paradigm knowledge distillation consists of
two network architectures namely teacher and student, where the student learns from the
teacher during training by minimizing the mutual loss known as the distillation loss.

For the first time, the concept of knowledge distillation was introduced by Hin-
ton et al. [8], where they investigated the characteristics of knowledge distillation in terms
of model compression and knowledge transfer from the source model to the target model.
In knowledge distillation, the source model refers to the teacher model and the target model
refers to the student model, the pair of teacher-student model learns together during training
and improves the task-specific performance by minimizing the mutual loss (distillation
loss). For model compression, the student model is the smaller version of the teacher
model, where the smaller student model tries to improve itself during training by capturing
the same level of patterns from the data and the same level of prediction accuracy as the
teacher model. After the training phase, the distilled student model performs same level of
predictions as the teacher model despite having comparatively less parameters. Generally,
knowledge from the teacher model can be transferred to the student model at different
levels, that include response-based, features-based, and relational-based knowledge dis-
tillation. In response-based knowledge distillation, the student model learns the class
distribution predicted by the teacher model (soft labels or probabilities) by minimizing the
loss between the logits (i.e., vector of raw and unnormalized predictions generated by the
last linear layer of a neural network before it is passed to a softmax or other such normal-
ization) of the student and the teacher model. The features-based knowledge distillation
transfers the features representation level knowledge from the teacher to the student model
by minimizing the features-level difference between the teacher and the student model.
Generally, the teacher model has a deeper architecture and has better representation of
features than the student model. Therefore, the feature-based knowledge distillation tech-
nique uses the intermediate layers of the teacher model to train the student model to extract
the same level of features representation as the teacher model. Lastly, the relation-based
knowledge distillation uses the relationship between the feature maps of teacher model to
enhance the relationship between the feature maps of student model by minimizing the
mutual distillation loss.

This paper mainly focuses on the concept of knowledge distillation for the task of hu-
man action recognition in videos. Considering the time-series nature of video data and the
complexity of recognizing human actions in time series, where the position and movement
of human and other objects vary across the video frames, we propose a 3D convolutional
neural network (3DCNN)-driven knowledge distillation framework that consists of two
3DCNN networks namely 3DCNN teacher and 3DCNN student. For efficient knowledge
transfer, we propose an offline knowledge distillation strategy, where the 3DCNN teacher
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model is pre-trained and the 3DCNN student model is untrained. It is worth mentioning
here that, for knowledge distillation both models must share the same dataset, therefore, we
first train the 3DCNN teacher model on a dataset and then use the knowledge distillation to
transfer the knowledge from the trained 3DCNN teacher model to 3DCNN student model
over the same dataset. To summarize, the main contributions of this work are as follows:

1. We propose two 3DCNN models (i.e., a teacher and a student model) to extract
spatial and temporal features from video sequences. The network architecture of the
proposed teacher model is based on the C3D [9] model having a large parameter space
whereas the proposed student model is a shallow version of the teacher model having
10× less parameters then the teacher model.

2. We propose a response-based offline knowledge distillation framework for human
action recognition, utilizing the knowledge of a large pre-trained teacher model to
efficiently train a student model. During training, the offline knowledge distillation
algorithm helps the lightweight student model to attain the same level of prediction
accuracy as the large pre-trained teacher model by minimizing the distillation loss.

3. By conducting extensive experiments, we obtain a computationally efficient knowl-
edge distillation-driven 3DCNN student model, which has 10× less parameters than
the teacher model. Further, the developed 3DCNN student model has a storage
requirement of 28 MB, which is 11× less than the size of the 3DCNN teacher model
having the model size of 321 MB, yet providing the same level of prediction accuracy
as the teacher model.

4. We evaluate and compare the run time efficiency of the proposed method with the
state-of-the-art human action recognition methods. Experimental results demonstrate
that the proposed method attains an improvement of up to 37× in terms of seconds
per frame (SPF) metric and up to 50× in terms of frames per second (FPS) metric over
the state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 presents a brief overview of
the related works. The proposed framework along with its components is discussed in
detail in Section 3. Section 4 presents an extensive experimental evaluation of the proposed
framework and detailed comparisons with the state-of-the-art human action recognition
methods. Finally, Section 5 concludes this paper with possible future research directions in
human action recognition domain.

2. Related Works

The topic of human activity recognition has been actively studied over the last ten
years, where numerous advanced methods have been presented to efficiently address the
human action recognition problem. The existing literature of vision-based human action
recognition reports several spatial-temporal approaches. Broadly, the existing approaches
can be categorized into two-stream 2DCNN-based methods [10–14], recurrent neural
network (RNN)-based methods [15–19], and 3DCNN-based methods [9,20–24]. The two-
stream 2DCNN-based methods contain two distinct 2DCNN architectures that take same
input (series of RGB (red, green, and blue) frames) and extract different level of features
(such as discriminative spatial and optical flow features, etc.), and then the extracted
features are combined using specific fusion techniques. For instance, Karpathy et al. [10]
proposed a two-stream 2DCNN approach, where they fed different resolution inputs
(low-resolution and high-resolution RGB video frames) to two different CNN networks to
expedite the computation process. Later, they fused the extracted features from the two
different networks using various fusion strategies to model the spatio-temporal dynamics
of videos. Cheron et al. [11] utilized the joints of human body for cropping the RGB and
optical flow frames based on human positions, the cropped RGB and optical flow frames are
then fed to two different CNN networks for feature extraction. The extracted features from
the two distinct CNN networks were then forwarded to a support vector machine classifier
for final human action recognition. Wang et al. [12] proposed a two-stream 2DCNN network
together with video frames segmentation strategy. They first segmented a given video in
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three different segments and then fed each to two-stream 2DCNN network for segment
classification. Later, they combined the classification scores of the three segments using
average pooling to obtain video-level classification.

In the work presented in [13], Girdhar et al. used two different levels of representation
of input video frames that included sampled visual appearance frames and motion-specific
frames. They fed visual appearance and motion frames to a two-stream 2DCNN network.
The extracted features from the two different networks were then aggregated using a
vocabulary (called action words) for video-level representation and classification task.
In another work, Zhang et al. [14] proposed a multi-task framework for human action
recognition in low-resolution videos. For super-resolution task, they proposed two video
super-resolution methods which enhanced the visual quality of the low-resolution videos.
The reconstructed high-resolution videos were then fed to two-stream spatio-temporal
networks for video-level human action classification. In short, the two-stream 2DCNN
methods extract different types of features (i.e., spatial and temporal) using two distinct
network architectures from the same input video data. Generally, the extracted features of
different types are then fused as a combined feature representation for efficient recognition
of human actions in videos. However, these types of methods are still lacking the efficiency
to cope with long-term sequential modeling and action recognition tasks.

On the other hand, RNN-based methods reported in the literature typically use single
2DCNN for spatial features extraction followed by the RNN network for temporal patterns
learning. The literature reports that RNNs perform comparatively better than CNNs
used for temporal features extraction due to their recurrent nature which can efficiently
learn hidden temporal patterns. However, RNNs are shown vulnerable to vanishing
gradient problem while dealing with long-term temporal patterns. To cope with this
challenge, computer vision researchers have introduced gated RNN such as long short-
term memory (LSTM) [25] and gated recurrent unit (GRU) [26] that are able to capture
long-term temporal patterns or relation between the temporal patterns. Several existing
human action recognition methods have adopted LSTM for efficient temporal modeling
of human actions in video sequences. For example, Donahue et al. [15] proposed a long-
term recurrent convolutional network called LRCN, which consisted of CNN and LSTM
networks. The CNN network is used for frame-level spatial features extraction, where the
LSTM network was used to capture temporal patterns in the extracted CNN features for
video level action recognition task. Srivastava et al. [16] presented an unsupervised LSTM
encoder and decoder networks for human action recognition task. The LSTM encoder
network transformed the input video to a fixed length of spatio-temporal representation.
The decoder network was then used for reconstruction of videos from latent spatio-temporal
representation and prediction of human actions in reconstructed videos.

In the work proposed in [17], Sharma et al. used multi-layer LSTM network for
recursive computation of attention maps and prediction of subsequent frames. They fed the
RGB features of video frames to a multi-layer LSTM, which computed weighted attention
maps by performing recursive operations. They claimed that the weighted attention maps
helped the network to focus on salient features and perform better predictions. Li et al. [18]
presented a method called Video-LSTM. Their proposed method incorporated spatial
CNN features and motion-specific attention maps. They utilized the soft-attention of
their proposed LSTM network to efficiently capture spatio-temporal patterns for human
action recognition task. In another work, Sudhakaran et al. [19] presented an LSTM-
based approach for action recognition task. They introduced a special variant of recurrent
unit with built-in spatial attention mechanism to localize the salient information in video
sequences. The salient spatial information was then fed to the LSTM network for the
recognition of human actions in videos.

Generally, the RNN-based methods are coupled with 2DCNN architectures, where
2DCNN transforms the input videos to latent represention and the RNNs operate on the
extracted CNN features. Although, these methods have shown reasonable performance for
human action recognition task, they can be replaced with unified network architectures
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that offers the same level of recognition performance.
Beside the two-stream 2DCNN-based and RNN-based architectures, several studies

have extended the 2DCNNs to 3DCNNs that have the ability to capture both spatial
and temporal features from the input RGB video frames. For instance, Tran et al. [9]
proposed a 3DCNN model known as C3D to capture the spatio-temporal features from
input raw videos in end-to-end fashion. They trained and evaluated their C3D network on
small video clips (each clip has 16 frames) instead of full videos. Using small video clips
instead of full videos, however, can miss the long-term spatio-temporal dependencies in the
video sequences. Therefore, numerous methods are proposed to cope with the long-term
spatio-temporal dependencies in videos. To address the issue of long-term dependency in
videos, Diba et al. [20] presented an extended version of DensNet [27] known as temporal
3DCNN (T3D) by replacing the 2D spatial kernels and 2D pooling kernels with 3D spatial
kernels and 3D pooling kernels. They claimed that their developed T3D model could
effectively capture both spatial appearance and temporal flow both in short-term and
long-term temporal video sequences. Varol et al. [21] introduced a long-term temporal
convolution (LTC) network. They increased the temporal depth of their 3DCNN layers
and reduced the spatial resolution of feature maps to efficiently capture the long-term
temporal patterns in video sequences. In another study, Diba et al. [22] introduced a special
variant of ResNet architecture by replacing the 2DCNN blocks with 3DCNN blocks. They
claimed that their developed architecture could model the channel-wise correlations of
a 3DCNN with respect to the spatio-temporal features. Hussein et al. [23] introduced a
multi-scale temporal-specific 3DCNN network called Timeception. Their proposed method
was developed to deal with the extreme variations in temporal dimension by tolerating
various temporal extents for recognizing long and complex actions. To capture long-term
dependencies in video sequences, Li et al. [24] introduced a 3DCNN network called channel
independent directional convolution (CIDC). Authors claimed that their proposed CIDC
model could be used together with I3D model [28] to efficiently capture long-term temporal
dependencies of full-length videos.

In general, the existing two-stream 2DCNN, RNN-based, and 3DCNN-based methods
are very efficient in terms of modeling discriminative salient features from both spatial and
temporal dimensions features. However, these methods are mostly based on computation-
ally complex architectures (having tens of millions of parameters) which require gigantic
amount of training data, large storage, and high computational power. To alleviate the
computational burden of the aforementioned deep learning methods for human activity
recognition task, numerous knowledge distillation-based methods are presented that com-
press the model size by transferring the knowledge from a large model (teacher) to a small
model (student). For instance, Hao and Zhang [29] proposed spatio-temporal distilled
dense-connectivity network (STDDCN) for human action recognition in video streams.
Their proposed method explored reciprocity between motion streams and appearance
with different hierarchies. Authors claimed that the knowledge distillation and fusion
between the two streams allow both streams to learn resilient features at high level layers.
Liu et al. [30] proposed an attention distillation-based method for learning video represen-
tation. They explored different attention choices and distilled motion-aware knowledge
from the source pre-trained optical flow model to their proposed RGB model. To learn
video representation in extremely low-resolution videos, Purwanto et al. [31] presented
a spatio-temporal two-stream network with a self-attention mechanism. They first used
super-resolution to enhance the visual quality of the low-resolution videos for training their
proposed network. Further, they utilized knowledge distillation mechanism to transfer the
spatio-temporal knowledge from a teacher (trained on high-resolution data) to a student
model (to be trained on low-resolution data). In the work presented in [32], Stroud et al.
first investigated motion representations in spatial stream and demonstrated significant
room for further improvements in the performance. Second, they demonstrated that motion
representations could be improved using knowledge distillation, that is, by distilling the
knowledge from the temporal stream to the spatial stream. They then effectively fused
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both the streams into a single stream.
Continuing research efforts in the same directions, Vu et al. [33] proposed a self-

knowledge distillation method based on siamese representation learning. We note that
a siamese representation learning leverages a siamese neural network, which is sometimes
also referred to as a twin neural network. A siamese neural network is an artificial neural
network that comprises of two or more identical subnetworks, that is, the subnetworks
have the same configuration with the same parameters and weights. Vu et al. [33] method
minimized the difference between the two representation vectors (generated from a siamese
neural network) of video frames captured from different views. Their proposed method
utilized both similarity of representation vectors and soft label distillation for learning
efficient video representation and human action prediction. In another work, Vu et al. [34]
proposed a self-knowledge distillation approach known as Teaching Yourself for action
recognition in video stream. They leveraged self-knowledge distillation mechanism to
train a student model progressively by transferring its own knowledge without using a
pre-trained teacher model. In their proposed training strategy, the network under training
updated itself using the best past model called the preceding model, which was developed
to guide the training process and update the present model. Zhou et al. [35] presented
a novel transfer learning method which combined self-distillation in fine-tuning to pre-
serve the knowledge of a pre-trained teacher model learned from a large-scale video
dataset. Further, they fixed the encoder as a teacher model in the last epoch to guide the
training of the encoder from the current epoch in transfer learning phase. In the work
presented in [36], Vu et al. proposed an unsupervised distillation learning framework called
(2 + 1)D Distilled ShuffleNet to train a lightweight model for human action recognition
task. By leveraging the distillation technique, they developed (2+1)D Distilled ShuffleNet
as an unsupervised approach, which did not require labeled data for training. Further,
they evaluated the performance of their method by distilling the knowledge from two
different teachers that included a 2DCNN teacher and a 3DCNN teacher. Tran et al. [37]
presented a novel framework that incorporated progressive knowledge distillation for early
human action recognition. They used two RNN networks, i.e., a teacher and a student,
where they distilled the knowledge from the teacher model to the student model using
self-distillation approach. Shalmani et al. [38] proposed a knowledge distillation approach
called confidence distillation framework, which guided a student model regarding how to
choose an appropriate video for the teacher to predict.

To overcome the limitations of training a cumbersome 3DCNN model on large video
data, in this work, we propose a knowledge distillation-driven lightweight 3DCNN ar-
chitecture having a total of eight convolution layers. The proposed offline knowledge
distillation algorithm facilitates both knowledge transfer and model compression in a
single unified framework, which allows us to transfer response-based knowledge from a
large pre-trained 3DCNN teacher model to a lightweight 3DCNN student model. Thus,
the proposed 3DCNN architecture (i.e., the student model) provides the same recognition
performance (i.e., prediction accuracy) as the 3DCNN teacher model, while having a far
less network complexity than the 3DCNN teacher model.

3. The Proposed Spatio-Temporal Knowledge Distillation Framework

This section provides the detailed architecture and working of the proposed spatio-
temporal knowledge distillation 3DCNN framework ant its major components. The pro-
posed spatio-temporal knowledge distillation framework is based on three major compo-
nents that include teacher-student 3DCNN architectures, offline knowledge distillation
paradigm, and workflow of spatio-temporal knowledge distillation process. The first core
component of the proposed framework is the pair of teacher-student 3DCNN networks,
which are developed to capture spatio-temporal features from the input videos frames.
The second major component of the proposed framework is the offline knowledge dis-
tillation paradigm, which uses a pre-trained model as a teacher or a source model and
transfer the knowledge to a student or a target model. In this work, we have used offline
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knowledge distillation, where we use a pre-trained 3DCNN as a teacher model and an
untrained 3DCNN with reduced computational complexity as a student model. The third
and last component of the proposed framework is the spatio-temporal knowledge distil-
lation process, which transfers both spatial and temporal knowledge from the 3DCNN
teacher to the 3DCNN student model. Each major component is discussed in detail in
subsequent subsections.

3.1. Proposed Teacher-Student 3DCNN Architectures

In this section, we present the architectural details of the proposed teacher-student
3DCNNs. The architectural design of the proposed teacher-student models is inspired by
the C3D model presented in [9]. Originally, the C3D model [9] is trained on the Sports-1M
dataset, which has around 79.9 million trainable parameters. Considering the depth of the
original network and its feature extraction efficiency, we have used the same architecture for
our teacher network and have used the smaller version (having lesser number of training
parameters) of C3D as a student model by reducing the number of 3D kernels per layer.
The architectural details of the developed teacher and student 3DCNNs are depicted in
Figure 1. As it can be noticed from the given figure that, the teacher network has a large
number of 3D convolution filters per layer as compared to the student model, and therefore
such a layer-wise depth of the teacher model leads to a significantly high computational
complexity in terms of trainable parameters of the network. The convolution layers of
3DCNN model have the ability to learn both spatial and temporal features using a series of
3D kernels. Typically, the convolution filters of 3DCNN have three dimensions (H, W, D),
where the first two dimensions H and W operate on spatial resolution of the input frames
and the third dimension D performs temporal feature extraction from a series of frames
as shown in Figure 2a,b. More precisely, the 3D convolution operation can be consider as
(2D + 1D) convolution, where the 2D convolution operates on the spatial dimensions of the
image by applying (3× 3× 1) kernels for capturing spatial features and the 1D convolution
operates on the temporal dimensions of input frames by applying (1 × 1 × 3) kernels for
learning temporal features as depicted in Figure 2b. Similarly, 3D pooling layer down-
samples the spatial dimension of the input feature maps across each channel and dimension
by shifting pooling kernels with specified stride. For padding, we use zero-padding of 1,
which adds pixels with value zero at boundaries of the feature maps at each convolution
layer with thickness of padding equal to one pixel. Further, the design of our developed
teacher and student 3DCNN models are based on the motivation of model compression,
where the small student model (having 7 millions trainable parameters) learns from the
large teacher model (having 78 million trainable parameters) to perform at the same level of
action prediction accuracy while having approximately 11× less trainable parameters than
that of teacher model. Therefore, the scope of this work includes both model compression
and spatio-temporal knowledge distillation. The outcome of the proposed method will be
a computationally efficient yet robust 3DCNN student model, which inherits the prediction
performance from the teacher model while having significantly lower computational
complexity. Having such a computationally efficient yet robust model, will enable us
to use it for resource-constrained edge devices as well as for real-time applications [39].
More precisely, the detailed insights of the proposed teacher and student 3DCNN network
architectures are presented in Table 1 and Table 2, respectively. As it can be seen in
Tables 1 and 2 that the number of layers in both the teacher and the student network are the
same, however the number of kernels per layer in the student model is less than that of the
teacher model. Further, the padding and the stride per convolution and the pooling layers
are same in both the networks (i.e., the teacher and the student 3DCNNs). Furthermore,
the size of the fully connected layers (having latent representation of frames) of the 3DCNN
student model is smaller than that of the 3DCNN teacher model.
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Figure 1. The visual overview of the proposed 3DCNN Teacher and 3DCNN Student
network architectures.

Figure 2. The visual overview of 3D kernel operation. (a) Combined 3D Convolution kernel operation
on stack of frames, (b) (2D + 1D) kernels separate operations on input frames for spatio-temporal
features extraction.

Table 1. Architectural details of the proposed 3DCNN teacher Model.

Layer Input Channels Number of Kernels Kernel Size Activation Padding Output Channels

Conv 1 3 64 3 × 3 × 3 ReLU 1 64

3D Maxpooling Layer

Conv 2 64 128 3 × 3 × 3 ReLU 1 128

3D Maxpooling Layer

Conv 3a 128 256 3 × 3 × 3 ReLU 1 256
Conv 3b 256 256 3 × 3 × 3 ReLU 1 256

3D Maxpooling Layer

Conv 4a 256 512 3 × 3 × 3 ReLU 1 512
Conv 4b 512 512 3 × 3 × 3 ReLU 1 512

3D Maxpooling Layer

Conv 5a 512 512 3 × 3 × 3 ReLU 1 512
Conv 5b 512 512 3 × 3 × 3 ReLU 1 512

3D Maxpooling Layer

FC1-(4096)

FC2-(4096)

Softmax (Number of classes)
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Table 2. Architectural details of the proposed 3DCNN student Model.

Layer Input Channels Number of Kernels Kernel Size Activation Padding Output Channels

Conv 1 3 16 3 × 3 × 3 ReLU 1 16

3D Maxpooling Layer

Conv 2 16 32 3 × 3 × 3 ReLU 1 32

3D Maxpooling Layer

Conv 3a 32 32 3 × 3 × 3 ReLU 1 32
Conv 3b 32 32 3 × 3 × 3 ReLU 1 32

3D Maxpooling Layer

Conv 4a 32 64 3 × 3 × 3 ReLU 1 64
Conv 4b 64 64 3 × 3 × 3 ReLU 1 64

3D Maxpooling Layer

Conv 5a 64 128 3 × 3 × 3 ReLU 1 128
Conv 5b 128 128 3 × 3 × 3 ReLU 1 128

3D Maxpooling Layer

FC1-(2048)

FC2-(1024)

Softmax (Number of classes)

3.2. Offline Knowledge Distillation Paradigm

Generally, in terms of knowledge transfer, the knowledge distillation paradigm can
be divided into two categories: online knowledge distillation and offline knowledge distillation.
In the online knowledge distillation, the teacher and the student model train and update
simultaneously in the end-to-end training process. Here, both the teacher and the student
model(s) learn collaboratively from each other on the same input data in a peer learning
fashion. In this knowledge distillation paradigm, the teacher and the student(s) learn from
the predictions of each other to improve their prediction accuracy. However, the predictions
of the teacher and the student(s) can vary at any point during the training phase, where the
output of the teacher and the student models can conflict with each other and even with the
ground truth. In cases where the predictions of the teacher and the student vary over the
training phase, the online knowledge distillation can greatly harm the performance of the
distilled student model. On the other hand, in the offline knowledge distillation paradigm,
the student model learns from a single pre-trained teacher model as shown in Figure 3.

Figure 3. The visual overview of the proposed offline knowledge distillation approach, transferring
knowledge from the pre-trained teacher to the student model.
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The motivation behind using the offline knowledge distillation is that the knowledge
from the cumbersome pre-trained teacher model can greatly help the student model to
perform the predictions with a similar accuracy. During the training phase, the teacher
model normally starts converging in the very early epochs due its deep architecture,
whereas the student model takes time to land on the global minima which ensures the
convergence of the model. As a result, the performance of the teacher model (in terms of
predictions) enforce the student model to get better in predictions over the training period.
Typically, at the end of each epoch in the forward pass, the distillation loss (cross-entropy
loss) computes the difference between the teacher’s and the student’s predictions, which
helps the student to adjust its weights in the backward pass and improve its predictions
accuracy performance. Thus, using the offline knowledge distillation approach enables
us to obtain a computationally efficient yet a robust model which offers the same level of
performance as the teacher model.

3.3. Spatio-Temporal Knowledge Distillation from Teacher to Student Model

This section presents the working procedure of the proposed spatio-temporal knowl-
edge distillation framework. As we discussed in the previous section that the proposed
framework is developed to transfer the knowledge from the cumbersome pre-trained
teacher model to the lightweight student model using the offline knowledge distillation
approach. To use a pre-trained model for the offline knowledge distillation, we first train
the 3DCNN teacher model and then use the trained 3DCNN teacher model in an offline
knowledge distillation training module, which supervises the student model in training
based on its predictions and the student’s predictions. In the offline knowledge training,
the teacher model only performs predictions, whereas the student model trains and updates
its weights based on the difference between the predictions of the teacher and the student
model, which helps the student model to improve its prediction accuracy based on the
teacher’s predictions. The workflow diagram of the proposed sptio-temporal knowledge
distillation method is depicted in Figure 4. From Figure 4, it can be perceived that the
proposed method transfers the response-based (i.e., predictions) knowledge from the pre-
trained 3DCNN teacher model to the 3DCNN student model by computing the distillation
loss between the teacher’s predictions (p) and the student’s predictions (q). The computed
distillation loss enforces the student model to adjust its weight to minimize the distillation
loss. It is worth mentioning here that for the distillation loss as given in Equation (1), both
the teacher and student models produce the probabilities (soft labels) using normalized or
soften softmax function as given in Equation (2).

Distillation_Loss = CrossEntropy(p, q), (1)

Normalized_So f tmax =
exp(ki/T)

∑n
j=1 exp(k j/T)

, (2)

Here the terms p and q in Equation (1) represent the probability vectors produced
by the teacher and the student model, respectively. The distillation loss in Equation (1)
computes the difference between the predicted probabilities p and q and provide a scalar
loss value. The term ki in Equation (2) represents a single instance of the logits (the values
of the last fully connected layer) and the variable T denotes a constant temperature value.
Here, the role of temperature T value in the normalized softmax function is to produce
normalized or smooth probability vectors. Normally, the probability vector produced by the
standard softmax function has non-uniform distribution of probability values. Furthermore,
the probability vectors of two different models for the same class can vary to a high extent,
which makes it infeasible to compute the generalized loss value. Therefore, each value of
logits vector in the softmax function is divided by T to provide the uniformly distributed
probability vectors for both teacher and student model as shown in Figure 4. A normalized
softmax function with different temperature T values will result in different probability
vectors (soft labels). Therefore, we have considered different temperature T values in
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our experiments to observe its impact on the knowledge distillation performance. Thus,
in our proposed framework, T is a hyperparameter which can be tuned to provide the
best prediction accuracy. The student loss as given in Equation (3) computes the difference
between the student’s prediction and the ground truth based on which the student model
then generates the output class probabilities using standard softmax function as given in
Equation (4). The reason for using standard softmax function instead of the normalized
softmax function is that the student loss computes the difference between the predictions
made by the student and the ground truth.

Student_Loss = CrossEntropy(h, y), (3)

So f tmax =
exp(ki)

∑n
j=1 exp(k j)

, (4)

Here in Equation (3), the variable h represents the final predictions for a specific class
(derived from the student probability vector) and the variable y denotes the ground truth.
The final loss function is the weighted sum of the distillation loss and the student loss as
given in Equation (5)

Final_Loss = α × Student_Loss + (1 − α)× Distillation_Loss, (5)

where Student_Loss and Distillation_Loss denote the student loss and the mutual distilla-
tion loss of the teacher and the student model, respectively, and the variable α is the weight
factor of the final loss that defines contribution of the student and the distillation loss in the
final loss.

Figure 4. The workflow diagram of the proposed spatio-temporal knowledge distillation method
using offline distillation approach.

4. Experimental Results and Discussion

In this section, we present the comprehensive experimental evaluation of our proposed
framework on different datasets for human action recognition task. First, we briefly describe
the implementation details and tools we have used to conduct our experiments. Next,
the datasets used in this research are briefly discussed, followed by the comparative analysis
of the results we have obtained with different settings of our proposed framework. Finally,
we present the comparative analysis of our proposed framework with the state-of-the-art
human action recognition methods.
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4.1. Implementation Details and Tools

To implement our proposed framework, we have used Python language 3 and Tensor-
Flow 2.0 Framework on a computing system with Intel(R) Xeon(R) CPU E5-2640 having
processor frequency of 2.50 GHz and 32 GB of dedicated main memory (i.e., RAM). The uti-
lized computing system is equipped with two Tesla T4 GPUs having compute capabilities
of 7.5 with Nvidia CUDA library version 11.0. For training and validation, we have divided
the datasets into subsets of 70% and 20% data, where the 70% data is used for training and
20% is used for validation. The remaining 10% data is used for testing the performance of
the trained models. We set the epoch value 100 to train the models for 100 epochs with dif-
ferent different settings (i.e., different teacher and temperature values). To adjust the model
weights, we have used Adam optimizer with a static learning rate of 0.0001 and categorical
cross entropy loss. To learn spatio-temporal features, we set the input sequence length to
16 frames for the proposed 3DCNN framework. The 3DCNN learns the spatio-temporal
features by sliding 3D kernels on the input sequence of 16 frames. Moreover, to analyze
the performance of the proposed framework in a more generalized way, we have used
two different performance evaluation metrics that include accuracy and run time analysis
assessment. The accuracy metric is used to evaluate video-level prediction performance
of the proposed frameworks, where the run time analysis assessment metric is used to
analyze the run time of the proposed framework.

4.2. Datasets

To evaluate the effectiveness of the proposed methods, extensive experiments have
been conducted on different human actions datasets that include UCF11 [40], HMDB51 [41],
UCF50 [42], and UCF101 [43] datasets. Each dataset contains numerous videos having
different actions, viewpoints, and motion variations. For instance, the UCF11 dataset [40]
consists of 1640 video clips categorized into 11 distinct human actions, where each class
contains multiple videos of the same action having different viewpoint, number of humans,
and motion variation. HMDB51 dataset [41] is one of the challenging datasets, containing
6849 video clips of human actions and categorized into 51 distinct human action classes.
The dataset is annotated with a text label for each video clip and meta-label to provide the
properties of video clip such as viewpoint, frames per second, camera motion, and number
of individuals involved in action. The UCF50 dataset [42] is a widely used human actions
benchmark dataset, containing 6676 video clips of human actions categorized into 50
distinct human action classes. Finally, the UCF101 dataset [43] is the extended version
of UCF50 dataset [42], containing 13320 video clips categorized into 101 different actions
classes. Each class has approximately 100 to 200 video clips, where each video has a
duration of 2 to 3 s with a frame rate of 25 FPS.

4.3. Assessment of the Baseline Results

In this research, we have explored the spatio-temporal knowledge distillation from
a pre-trained 3DCNN teacher model to a 3DCNN student model with different settings.
We have also evaluated the performance of a light-weight 3DCNN model (student) with
and without knowledge distillation. To obtain a well-generalized yet an efficient model
across each dataset, we have conducted extensive experiments with different settings in
our knowledge distillation framework. As our proposed method is based on the offline
knowledge distillation approach, which transfers spatio-temporal knowledge from a large
3DCNN teacher model to a lightweight 3DCNN student model. Therefore, first we have
trained the 3DCNN teacher model and later we have used the pre-trained 3DCNN model
in knowledge distillation training. It is worth mentioning here that we have trained the
3DCNN teacher model with two different settings that include training from the scratch,
which we refer to as TFS, and the training using transfer learning from [9] (using its pre-
trained weights), which we refer to as TUTL. In the first setting, we have trained the 3DCNN
teacher model TFS from scratch on each dataset and then used it for knowledge distillation.
In the second setting, we have trained the 3DCNN teacher model TUTL with pre-trained



J. Imaging 2023, 9, 82 13 of 27

weights from [9] using transfer learning technique. We have assessed the performance of
knowledge distillation with the two different pre-trained teacher models. Further, we also
have investigated the effect the impact of temperature values (a hyperparameter in our
knowledge distillation framework as shown in Figure 4) on knowledge distillation, where
we have examined the spatio-temporal knowledge distillation with different temperature
values (i.e., T = 1, 5, 10, 15, 20) for both the pre-trained teacher models. The training histories
for a set of conducted trainings are depicted in Figure 5. For instance, in Figure 5, the left-
most plots represent the average training losses for the 3DCNN teacher TFS, for the 3DCNN
teacher TUTL, students without knowledge distillation, and students with knowledge
distillation with the optimal temperature (T = 10) value over UCF11, HMDB51, UCF50,
and UCF101 datasets, respectively. The middle plots in Figure 5 represent the average
training losses of the student models trained under the pre-trained 3DCNN teacher model
(TFS) using knowledge distillation with different temperature values including 1, 5, 10,
15, and 20. The right-most plots in Figure 5, represent the average training loss of the
student model trained under the pre-trained 3DCNN teacher model TUTL using knowledge
distillation with different temperature values including 1, 5, 10, 15, and 20. Moreover,
the effectiveness of the proposed framework is evaluated with different settings using
receiver operating characteristics (ROC) curve and the area under the curve (AUC) values
as visualized in Figure 6. Generally, the ROC estimates the contrast between the true
positive rate (TPR) and the false positive rate (FPR) for classifier predictions. In Figure 6,
the first column represents the ROC curves for the student models trained with and without
knowledge distillation under the TFS teacher model with different temperature values
over UCF11, HMDB51, UCF50, and UCF101 datasets. The second column in Figure 6
represents the ROC curves for the student models trained with and without knowledge
distillation under the TUTL teacher model with different temperature values over UCF11,
HMDB51, UCF50, and UCF101 datasets. As it can be perceived from Figure 6, the proposed
framework with different settings obtains the best AUC values and ROC curves across
all datasets.

We have also compared the accuracy of the proposed framework with different knowl-
edge distillation settings (such as knowledge distillation with two different teacher models
including the TFS and TUTL, and different temperature values). The obtained quanti-
tative results comparisons for UCF11, HMDB51, UCF50, and UCF101 are presented in
Tables 3–6, respectively. From the quantitative results given in Table 3, it can be noticed
that the proposed framework attains different accuracies with different teachers (i.e., TFS
and TUTL) and temperature values. For instance, the proposed 3DCNN student model
achieves the best and the runner-up accuracies of 98.78% and 98.17%, respectively, when
distilled by the TUTL teacher model having temperature values of T = 10 and T = 15,
respectively. Furthermore, it is worth noticing that the proposed distilled 3DCNN model
obtains approximately 10% improvement in accuracy in comparison with the proposed
3DCNN student model trained without knowledge distillation, which has an accuracy
of 88.71%. Similarly, for the HMDB51 dataset in Table 4, the proposed 3DCNN student
model achieves the best accuracy of 92.89% when distilled by TUTL with T = 10 and obtains
the runner-up accuracy of 91.55% when distilled by TFS with T = 10. Furthermore, it
can be perceived from Table 4 that the proposed TUTL-distilled 3DCNN student model
obtains approximately 4.65% improvement in accuracy in comparison with the proposed
3DCNN student model trained without knowledge distillation. For the UCF50 dataset in
Table 5, the proposed 3DCNN student model attains the best accuracy of 97.71% when
distilled by TUTL with T = 10 and achieves the runner-up accuracy of 97.60% when distilled
by TFS with T = 10. Moreover, the proposed 3DCNN student model when distilled by
TUTL with T = 10 obtains around 2% improvement in accuracy in comparison with the
proposed 3DCNN student model trained without knowledge distillation. Finally, for the
UCF101 dataset in Table 6, the proposed 3DCNN student model achieves the best and
runner-up accuracies of 97.36% and 96.80%, respectively, when distilled by TUTL with
temperature values of T = 10 and T = 15, respectively. Furthermore, the proposed 3DCNN
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student model attains approximately 3.62% improvement in accuracy in comparison with
the proposed 3DCNN student model trained without knowledge distillation. Furthermore,
from the reported results in Tables 3–6, it can be noticed that the proposed 3DCNN student
model performs well when trained with the TUTL teacher model having temperature
value T = 10 as compared to the proposed TFS-distilled 3DCNN student model with other
temperature values. Thus, based on the obtained quantitative results, we determine that
the proposed 3DCNN performs well when trained under TUTL with temperature value
T = 10 as compared to other settings across all datasets we used in our experiments.

Figure 5. The visual overview of training histories for teacher and student models trained with
different settings. The first, second, third, and fourth row represent the average training loss of
teacher and student model with different settings over UCF11, HMDB51, UCF50, and UCF101
datasets, respectively.
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Figure 6. The receiver operating characteristics (ROC) curve graphs of our proposed 3DCNN student
model for UCF11, HMDB51, UCF50, and UCF101 datasets. First column represents the ROC curve
graphs of the proposed 3DCNN student model distilled with the the TFS teacher model, whereas the
second column represents the ROC curve graphs of the proposed 3DCNN student model distilled
with the TUTL teacher model.
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Table 3. Quantitative comparative analysis of the results obtained by our proposed framework with
and without knowledge distillation (KD) with different settings over UCF11 dataset.

Model Dataset Accuracy (%)

Student without KD UCF11 88.71
TFS Teacher UCF11 95.86

TUTL Teacher UCF11 99.70

Student3DCNN-TFS (T = 1) UCF11 95.73
Student3DCNN-TFS (T = 15) UCF11 96.84
Student3DCNN-TFS (T = 10) UCF11 97.56
Student3DCNN-TFS (T = 15) UCF11 96.43
Student3DCNN-TFS (T = 20) UCF11 96.58
Student3DCNN-TUTL (T = 1) UCF11 95.12

Student3DCNN-TUTL (T = 15) UCF11 97.45
Student3DCNN-TUTL (T = 10) UCF11 98.78
Student3DCNN-TUTL (T = 15) UCF11 98.17
Student3DCNN-TUTL (T = 20) UCF11 97.88

The best and runner-up accuracy scores are highlighted in bold and italic text, respectively.

Table 4. Quantitative comparative analysis of the results obtained by our proposed framework with
and without knowledge distillation (KD) with different settings over HMDB51 dataset.

Model Dataset Accuracy (%)

Student without KD HMDB51 88.24
TFS Teacher HMDB51 90.67

TUTL Teacher HMDB51 93.10

Student3DCNN-TFS (T = 1) HMDB51 88.62
Student3DCNN-TFS (T = 15) HMDB51 88.25
Student3DCNN-TFS (T = 10) HMDB51 91.55
Student3DCNN-TFS (T = 15) HMDB51 87.22
Student3DCNN-TFS (T = 20) HMDB51 86.92
Student3DCNN-TUTL (T = 1) HMDB51 89.80

Student3DCNN-TUTL (T = 15) HMDB51 89.14
Student3DCNN-TUTL (T = 10) HMDB51 92.89
Student3DCNN-TUTL (T = 15) HMDB51 89.43
Student3DCNN-TUTL (T = 20) HMDB51 89.66

The best and runner-up accuracy scores are highlighted in bold and italic text, respectively.

Table 5. Quantitative comparative analysis of the results obtained by our proposed framework with
and without knowledge distillation (KD) with different settings over UCF50 dataset.

Model Dataset Accuracy (%)

Student without KD UCF50 95.81
TFS Teacher UCF50 96.40

TUTL Teacher UCF50 98.37

Student3DCNN-TFS (T = 1) UCF50 96.25
Student3DCNN-TFS (T = 15) UCF50 96.70
Student3DCNN-TFS (T = 10) UCF50 97.60
Student3DCNN-TFS (T = 15) UCF50 96.91
Student3DCNN-TFS (T = 20) UCF50 97.21
Student3DCNN-TUTL (T = 1) UCF50 96.65

Student3DCNN-TUTL (T = 15) UCF50 97.15
Student3DCNN-TUTL (T = 10) UCF50 97.71
Student3DCNN-TUTL (T = 15) UCF50 97.53
Student3DCNN-TUTL (T = 20) UCF50 97.64

The best and runner-up accuracy scores are highlighted in bold and italic text, respectively.
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Table 6. Quantitative comparative analysis of the results obtained by our proposed framework with
and without knowledge distillation (KD) with different settings over UCF101 dataset.

Model Dataset Accuracy (%)

Student without KD UCF101 93.74
TFS Teacher UCF101 95.04

TUTL Teacher UCF101 98.83

Student3DCNN-TFS (T = 1) UCF101 95.11
Student3DCNN-TFS (T = 15) UCF101 95.64
Student3DCNN-TFS (T = 10) UCF101 96.73
Student3DCNN-TFS (T = 15) UCF101 96.11
Student3DCNN-TFS (T = 20) UCF101 96.20
Student3DCNN-TUTL (T = 1) UCF101 96.24

Student3DCNN-TUTL (T = 15) UCF101 96.80
Student3DCNN-TUTL (T = 10) UCF101 97.36
Student3DCNN-TUTL (T = 15) UCF101 96.58
Student3DCNN-TUTL (T = 20) UCF101 95.90

The best and runner-up accuracy scores are highlighted in bold and italic text, respectively.

4.4. Comparison with the State-of-the-Art Methods

In this section, we compare our proposed framework with the state-of-the-art hu-
man action recognition methods with and without knowledge distillation. The detailed
quantitative comparative assessment of the proposed framework with non-distillation state-
of-the-art human action recognition methods on UCF11, HMDB51, UCF50, and UCF101
datasets are presented in Tables 7–10, respectively. For instance, for the UCF11 dataset,
the proposed Student3DCNN-TUTL method surpasses the state-of-the-art methods by ob-
taining the best accuracy of 98.7%, whereas the STDAN method [44] attains the second-best
accuracy of 98.2%. Amongst all the compared methods, the local-global features + QSVM
method [45] has the lowest accuracy of 82.6% for UCF11 dataset whereas the rest of the
methods including multi-task hierarchical clustering [46], BT-LSTM [47], deep autoen-
coder [48], two-stream attention-LSTM [49], weighted entropy-variances based feature
selection [50], dilated CNN + BiLSTM-RB [51], and DS-GRU [52] achieve accuracies of
89.7%, 85.3%, 96.2%, 96.9%, 94.5%, 89.0%, and 97.1%, respectively, for the UCF11 dataset.

Table 7. Quantitative comparative analysis of our proposed framework with the state-of-the-art
action recognition methods on UCF11 dataset.

Model Year Accuracy (%)

Multi-task hierarchical clustering [46] 2016 89.7
BT-LSTM [47] 2018 85.3

Deep autoencoder [48] 2019 96.2
STDAN [44] 2020 98.2

Two-stream Attention-LSTM [49] 2020 96.9
Weighted entropy-variances based feature selection [50] 2021 94.5

Dilated CNN + BiLSTM-RB [51] 2021 89.0
DS-GRU [52] 2021 97.1

Local-global features + QSVM [45] 2021 82.6
Student3DCNN-TUTL (Ours) 2023 98.7

The best and runner-up accuracy scores are highlighted in bold and italic text, respectively.
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Table 8. Quantitative comparative analysis of our proposed method with the state-of-the-art action
recognition methods on HMDB51 dataset.

Model Year Accuracy (%)

Multi-task hierarchical clustering [46] 2016 51.4
STPP + LSTM [53] 2017 70.5

Optical-flow + Multi-layer LSTM [54] 2018 72.2
TSN [55] 2018 70.7

IP-LSTM [56] 2019 58.6
Deep autoencoder [48] 2019 70.3

TS-LSTM + Temporal-inception [57] 2019 69.0
HATNet [58] 2019 74.8

Correlational CNN + LSTM [59] 2020 66.2
STDAN [44] 2020 56.5

DB-LSTM + SSPF [60] 2021 75.1
DS-GRU [52] 2021 72.3

TCLC [61] 2021 71.5
Evidential deep learning [62] 2021 77.0

Semi-supervised temporal gradient learning [63] 2022 75.9
Student3DCNN-TUTL (Ours) 2023 92.8

The best and runner-up accuracy scores are highlighted in bold and italic text, respectively.

Table 9. Quantitative comparative analysis of our proposed method with the state-of-the-art action
recognition methods on UCF50 dataset.

Model Year Accuracy (%)

Multi-task hierarchical clustering [46] 2016 93.2
Deep autoencoder [48] 2019 96.4

Ensembled swarm-based optimization [64] 2021 92.2
DS-GRU [52] 2021 95.2

Local-global features + QSVM [45] 2021 69.4
LD-BF + LD-DF [65] 2022 97.5

Student3DCNN-TUTL (Ours) 2023 97.6
The best and runner-up accuracy scores are highlighted in bold and italic text, respectively.

Table 10. Quantitative comparative analysis of our proposed method with the state-of-the-art action
recognition methods on UCF101 dataset.

Model Year Accuracy (%)

Multi-task hierarchical clustering [46] 2016 76.3
Saliency-aware 3DCNN with LSTM [66] 2016 84.0

Spatio-temporal multilayer networks [67] 2017 87.0
Long-term temporal convolutions [21] 2017 82.4

CNN + Bi-LSTM [68] 2017 92.8
OFF [69] 2018 96.0

TVNet [70] 2018 95.4
Attention cluster [71] 2018 94.6

Videolstm [18] 2018 89.2
Two stream convnets [72] 2018 84.9

Mixed 3D-2D convolutional tube [73] 2018 88.9
RTS [74] 2019 96.4

TS-LSTM + Temporal-inception [57] 2019 91.1
TSN + TSM [75] 2019 94.3

STM [76] 2019 96.2
Correlational CNN + LSTM [59] 2020 92.8

Student3DCNN-TUTL (Ours) 2023 97.3
The best and runner-up accuracy scores are highlighted in bold and italic text, respectively.

For the HMDB51 dataset, which is one of the most challenging video dataset, our
proposed Student3DCNN-TUTL method achieves the overwhelming results by obtain-
ing an accuracy of 92.8%, whereas the evidential deep learning method [62] achieves
runner-up results with an accuracy of 77.0%. The multi-task hierarchical clustering
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method [46] attains an accuracy of 51.4%, which is the lowest accuracy amongst all com-
parative methods over the HMDB51 dataset. The other comparative methods, that in-
clude STPP + LSTM [53], optical-flow + multi-layer LSTM [54], TSN [55], IP-LSTM [56],
deep autoencoder [48], TS-LSTM + temporal-inception [57], HATNet [58], correlational
CNN + LSTM [59], STDAN [44], DB-LSTM + SSPF [60], DS-GRU [52], TCLC [61], and semi-
supervised temporal gradient learning [63] achieves 70.5%, 72.2%, 70.7%, 58.6%, 70.3%,
69.0%, 74.8%, 66.2%, 56.5%, 75.1%, 72.3%, 71.5%, and 75.9% accuracies, respectively, for the
HMDB51 dataset.

For the UCF50 dataset, the proposed Student3DCNN-TUTL method outperforms all
the comparative methods by obtaining the best accuracy of 97.6% followed by the runner-
up LD-BF + LD-DF method [65], which achieves an accuracy of 97.5%. The local-global
features + QSVM [45] method attains the lowest accuracy of 69.4% amongst all compar-
ative method on the UCF50 dataset. The rest of the comparative methods including
multi-task hierarchical clustering [46], deep autoencoder [48], ensembled swarm-based
optimization [64], and DS-GRU [52] achieve accuracies of 93.2%, 96.4%, 92.2%, and 96.4%,
respectively, for the UCF50 dataset.

Finally, for the UCF101 dataset, the proposed Student3DCNN-TUTL method sur-
passes all the comparative methods by obtaining the best accuracy of 97.3%, followed
by the RTS method [74], which attains the second best accuracy of 96.4%. The multi-
task hierarchical clustering [46] obtains the lowest accuracy of 76.3% amongst all the
comparative methods for the UCF101 dataset. The rest of comparative methods that in-
clude saliency-aware 3DCNN with LSTM [66], spatio-temporal multilayer networks [67],
long-term temporal convolutions [21], CNN + Bi-LSTM [68], OFF [69], TVNet [70], atten-
tion cluster [71], Videolstm [18], two stream convnets [72], mixed 3D-2D convolutional
tube [73], TS-LSTM + temporal-inception [57], TSN + TSM [75], STM [76], and correlational
CNN + LSTM [59] obtain accuracies of 84.0%, 87.0%, 82.4%, 92.8%, 96.0%, 95.4%, 94.6%,
89.2%, 84.9%, 88.9%, 91.1%, 94.3%, 96.2%, and 92.8%, respectively, for the UCF101 dataset.

To further validate the performance generalization of our method, we compute the
confidence interval as in [77] of our proposed method for each dataset used in this paper
and compare it with the average confidence interval of the state-of-the-art methods. It is
worth mentioning here that we estimate the confidence interval for our method and the
state-of-the-art methods using a confidence level of 95%. The obtained confidence interval
values of the proposed method and the state-of-the-art methods are listed in Table 11.
From the obtained confidence interval values, it can be perceived that the proposed method
has the higher confidence with small interval on UCF11 dataset as compare to the state-of-
the-art methods. For instance, the proposed method has the confidence interval between
97.59 and 99.96 with a small range of 2.37, where as the state-of-the-art methods have the
average confidence interval between 87.81 and 96.52 with a comparatively large range of
8.72. Similarly, for the HMDB51 dataset, the proposed method has the confidence interval
between 91.46 and 94.20 with a small range of 2.74, whereas the state-of-the-art methods
have the average confidence interval between 64.62 and 72.98 with a comparatively large
range of 8.36. For the UCF50 dataset, the proposed method has the confidence interval
between 96.78 and 98.48 with a small range of 1.65, whereas the state-of-the-art methods
have the average confidence interval between 79.53 and 97.48 with a comparatively large
range of 18.98. Finally, for the UCF101 dataset, the proposed methods has the confidence
interval between 96.72 and 97.94 with a small range of 1.22, whereas the state-of-the-art
methods have the average confidence interval between 87.44 and 93.27 with comparatively
large range of 6.27. It is worth noticing that the proposed method has a higher confidence
across each dataset with a small interval as compare to the state-of-the-art methods, which
verfies the effectiveness of the proposed method over the state-of-the-art methods.

Beside comparing the proposed framework with the mainstream human action recog-
nition methods, we also compare our proposed framework with the knowledge distillation-
based human action recognition methods. The comparative analysis of the proposed
method with the state-of-the-art knowledge distillation-based human action recognition
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methods on HMDB51 and UCF101 datasets are presented in Table 12 and 13, respectively.
The results listed in Table 12 demonstrates the overwhelming performance of the pro-
posed method on HMDB51 dataset in comparison with other knowledge distillation-based
methods. For instance, the proposed method achieves the best accuracy of 92.8% amongst
all the comparative methods, followed by the runner-up D3D method D3D [32], which
obtains an accuracy of 78.7%. The SKD-SRL [33] method attains the lowest accuracy of
29.8% amongst all the comparative knowledge distillation-based methods for the HMDB51
dataset. The rest of comparative methods that include STDDCN [29], Prob-Distill [30],
MHSA-KD [31], TY [34], (2+1)D Distilled ShuffleNet [36], and Self-Distillation (PPTK) [35]
achieve accuracies of 66.8%, 72.2%, 57.8%, 32.8%, 59.9%, and 76.5%, respectively, for the
HMDB51 dataset. Similarly, for the UCF101 dataset in Table 13, our proposed framework
outperforms other comparative knowledge distillation-based methods by obtaining the
best accuracies of 97.3% followed by the D3D [32] method which attains the second-best
accuracy of 97.0%. The TY [34] method achieves the lowest accuracy of 71.1% amongst all
the comparative methods for the UCF101 dataset. The rest of comparative methods that
include STDDCN [29], Prob-Distill [30], SKD-SRL [33], Progressive KD [37], (2+1)D Dis-
tilled ShuffleNet [36], Self-Distillation (PPTK) [35], and ConDi-SR [38] achieve accuracies of
93.7%, 95.7%, 71.9%, 88.8%, 86.4%, 94.6%, and 91.2%, respectively, for the UCF101 dataset.

Table 11. Computed confidence interval values (with 95% confidence) for our proposed method and
the state-of-the-art mainstream methods.

Dataset State-of-the-Art Methods Student3DCNN -TUTL (Ours)

UCF11 [87.81–96.52] [97.59–99.96]
HMDB51 [64.62–72.98] [91.46–94.20]

UCF50 [79.53–97.48] [96.78–98.42]
UCF101 [87.44–93.27] [96.72–97.94]

First value in the square brackets represents the lower bound and the second value represents the upper bound.
Together the lower and the upper bound represent the confidence interval.

We also evaluate the performance generalization of our proposed method in com-
parison with the state-of-the-art knowledge-distillation based methods using confidence
interval (with a confidence level of 95%) on HMDB51 and UCF101 datasets. The obtained
confidence interval values of the proposed method and the state-of-the-art methods are
listed in Table 14. It is clear from the obtained confidence interval values that the proposed
method achieves better confidence interval values as compare to the state-of-the-art meth-
ods across both HMDB51 and UCF101 datasets. For instance, the proposed method has the
confidence interval on the HMDB51 dataset in between 91.46 and 94.20 with a small range
of 2.74, whereas the state-of-the-art methods have the average confidence interval between
43.59 and 75.03 with a comparatively very large range of 31.44. Similarly, for the UCF101
dataset, the proposed method has the confidence interval between 96.72 and 97.94 with
a small range of 1.22, whereas the state-of-the-art methods have the average confidence
interval between 80.29 and 95.34 with a comparatively large range of 15.11. The obtained
confidence interval values for both the datasets verify the generalization and effectiveness
of the proposed method over the state-of-the-art knowledge distillation-based methods.

Considering the overall comparative analysis across all datasets, the proposed frame-
work outperforms all the comparative mainstream action recognition methods by obtaining
an improvement in accuracy of 7%, 34.88%, 7.7%, and 8% on UCF11, HMDB51, UCF50,
and UCF101 datasets, respectively. Furthermore, we compare our proposed framework
with knowledge distillation-based human action recognition methods on HMDB51 and
UCF101 datasets. Experimental results reveal that our proposed framework attains an
improvement in accuracy of 56.46% and 6.39%, on average, on HMDB51 and UCF101
datasets, respectively, over the existing knowledge distillation-based human action recogni-
tion methods.
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Table 12. Quantitative comparative analysis of our proposed method with the state-of-the-art
knowledge distillation-based action recognition methods on HMDB51 dataset.

Model Year Accuracy (%)

STDDCN [29] 2019 66.8
Prob-Distill [30] 2019 72.2
MHSA-KD [31] 2019 57.8

D3D [32] 2020 78.7
SKD-SRL [33] 2021 29.8

TY [34] 2021 32.8
(2+1)D Distilled ShuffleNet [36] 2022 59.9

Self-Distillation (PPTK) [35] 2022 76.5
Student3DCNN-TUTL (Ours) 2023 92.8

The best and runner-up accuracy scores are highlighted in bold and italic text, respectively.

Table 13. Quantitative comparative analysis of our proposed method with the state-of-the-art
knowledge distillation-based action recognition methods on UCF101 dataset.

Model Year Accuracy (%)

STDDCN [29] 2019 93.7
Prob-Distill [30] 2019 95.7

D3D [32] 2020 97.0
SKD-SRL [33] 2021 71.9

Progressive KD [37] 2021 88.8
TY [34] 2021 71.1

(2+1)D Distilled ShuffleNet [36] 2022 86.4
Self-Distillation (PPTK) [35] 2022 94.6

ConDi-SR [38] 2022 91.2
Student3DCNN-TUTL (Ours) 2023 97.3

The best and runner-up accuracy scores are highlighted in bold and italic text, respectively.

Table 14. Computed confidence interval values (with 95% confidence) for our proposed method and
the state-of-the-art knowledge distillation-based methods.

Dataset State-of-the-Art Methods Student3DCNN -TUTL (Ours)

HMDB51 [43.59–75.03] [91.46–94.20]
UCF101 [80.29–95.34] [96.72–97.94]

First value in the square brackets represents the lower bound and the second value represents the upper bound.
Together the lower and upper bound represent the confidence interval.

4.5. Run Time Analysis

To validate the effectiveness and suitability of the proposed methods for practical
applications in real-time environment, we have computed the inference time of the pro-
posed method for action recognition task in terms of seconds per frame (SPF) and frames
per second (FPS) with and without GPU computational resources. The obtained run time
results are then compared with the state-of-the-art human actions recognition methods and
presented in Table 15. The run time results listed in Table 15 shows that, while using GPU
resources OFF [69] has the best inference time results with the SPF of 0.0048 and FPS of 206,
followed by STPP + LSTM [53] having the second-best run time results with the SPF of
0.0053 and FPS of 186.6. The proposed framework attains the third best run time results
with the SPF of 0.0091 and FPS of 110. The Videolstm [18] method has the worst run time
results with SPF of 0.0940 and FPS of 10.6 among all comparative methods while using
GPU resources. When using CPU resources, the propose method obtains the best run time
results with the SPF of 0.0106 and FPS of 93. The Optical-flow + multi-layer LSTM [54] has
the second-best run time results with the SPF of 0.18 and FPS of 3.5.

To provide a fair comparison of the inference speed, we scaled [78] the run time results
of the state-of-the-art methods in Table 15 to the hardware specifications (i.e., 2.5 GHz
CPU and 585 MHz GPU) we used in our experiments. The scaled run time results of the
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proposed method and other comparative human action recognition methods are presented
in Table 16. From the scaled results in Table 16, it can be noticed that the STPP + LSTM [53]
method has the best SPF and FPS values of 0.0063 and 154.6, respectively, for the GPU
inference. The OFF [69] method has the second-best SPF and FPS values of 0.0082 and 120.5,
respectively, followed by the proposed method having the third best SPF and FPS values of
0.0091 and 110, respectively, for the GPU inference. On the other hand, for inference on
the CPU, our proposed method attains the best SPF and FPS of 0.0106 and 93, respectively,
followed by Optical-flow + multi-layer LSTM [54], which has the runner-up SPF and FPS
values of 0.23 and 2.6, respectively. It is worth mentioning here that, the proposed method
provides comparatively slower inference speed than STPP + LSTM [53] and OFF [69] on
GPU resources, however, the proposed method is more efficient and robust in terms of
accuracy as compare to STPP + LSTM [53] and OFF [69]. Moreover, for CPU inference,
the proposed method outperforms the comparative methods by obtaining the best SPF
and FPS values for both scaled and unscaled inference speed analysis by obtaining an
improvement of up to 28× and 37× for SPF metric and an improvement of 37× and 50×
for FPS metric, respectively. It is also worth mentioning here that the proposed framework
not only obtains the best accuracy on the UCF11 dataset but also attains an improvement
up to 2× in terms of FPS metric over the runner-up STDAN [44] method. Similarly, on the
UCF50 dataset, the proposed method obtains an improvement of up to 13× in terms of FPS
metric over the runner-up LD-BF + LD-DF [65] method. Thus, the obtained quantitative
and run time assessment results validate the efficiency and robustness of our proposed
framework for real-time human action recognition task.

Table 15. Run time analysis of our proposed framework with the state-of-the-art human action
recognition methods (without scaling).

Method
Seconds per Frame (SPF)

Year
Frames per Second (FPS)

GPU CPU GPU CPU

STPP + LSTM [53] 0.0053 - 2017 186.6 -
CNN + Bi-LSTM [68] 0.0570 - 2017 20 -

OFF [69] 0.0048 - 2018 206 -
Videolstm [18] 0.0940 - 2018 10.6 -

Optical-flow + Multi-layer LSTM [54] 0.0356 0.18 2018 30 3.5
Deep autoencoder [48] 0.0430 0.43 2019 24 1.5

TSN + TSM [75] 0.0167 - 2019 60 -
IP-LSTM [56] 0.0431 - 2019 23.2 -
STDAN [44] 0.0075 - 2020 132 -
DS-GRU [52] 0.0400 - 2021 25 -

LD-BF + LD-DF [65] 0.0670 - 2022 14 -
Student3DCNN-TUTL (Ours) 0.0091 0.0106 2023 110 93

The best and runner-up SPF and FPS scores for GPU and CPU are highlighted in bold and italic text, respectively.

Table 16. Run time analysis of our proposed framework with the state-of-the-art human action
recognition methods (with scaling).

Method
Seconds per Frame (SPF)

Year
Frames per Second (FPS)

GPU CPU GPU CPU

STPP + LSTM [53] 0.0063 - 2017 154.6 -
CNN + Bi-LSTM [68] 0.0974 - 2017 11.7 -

OFF [69] 0.0082 - 2018 120.5 -
Videolstm [18] 0.1606 - 2018 6.2 -

Optical-flow + Multi-layer LSTM [54] 0.0608 0.23 2018 17.5 2.6
Deep autoencoder [48] 0.0735 0.56 2019 14 1.1

TSN + TSM [75] 0.0458 - 2019 21.8 -
IP-LSTM [56] 0.0736 - 2019 13.57 -
STDAN [44] 0.0128 - 2020 77.2 -
DS-GRU [52] 0.0683 - 2021 14.6 -

LD-BF + LD-DF [65] 0.1145 - 2022 8.1 -
Student3DCNN-TUTL (Ours) 0.0091 0.0106 2023 110 93

The best and runner-up SPF and FPS scores for graphics processing unit (GPU) and central processing unit (CPU)
are highlighted in bold and italic text, respectively.
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5. Conclusions

In this work, we have proposed a knowledge distillation-driven 3DCNN framework
for vision-based human action recognition task. The proposed framework uses offline
knowledge distillation approach to transfer the spatio-temporal knowledge from a large
3DCNN teacher model to a lightweight 3DCNN model. During the offline knowledge
distillation training, the 3DCNN student model learns from predictions of the pre-trained
3DCNN teacher model and gradually improves it predictions performance. Using the
offline knowledge distillation approach, we not only transfer the knowledge but also
perform model compression, thereby, transferring the knowledge from a large teacher
model to a small student mode, which offers a similar level of prediction accuracy as the
teacher model for the human action recognition task. To evaluate the performance of the
proposed framework, we have conducted extensive experiments with different settings
on four benchmark human action recognition datasets that include UCF11, HMDB51,
UCF50, and UCF101. We have compared our proposed framework with the mainstream
human activity recognition methods as well as knowledge distillation-based human action
recognition methods. The obtained experimental and comparative analysis validate the
effectiveness of our proposed framework over state-of-the-art human action recognition
methods. Experimental results show that our proposed framework obtains an accuracy
improvement of 7%, 34.88%, 7.7%, and 8%, on average, for UCF11, HMDB51, UCF50,
and UCF101 datasets, respectively, as compared to the state-of-the-art human action recog-
nition methods. To further validate the performance generalization of our method, we
have computed the confidence interval of our proposed method for each dataset used in
this paper and compared it with the average confidence interval of the state-of-the-art
methods. Our obtained confidence interval results indicate that our proposed method
attains a higher confidence with small intervals as compare to the state-of-the-art methods.
Besides, we have analyzed the run time performance of the proposed framework with other
comparative methods in terms of SPF and FPS metrics for both GPU and CPU execution
environments. The comparative results demonstrate that the proposed framework achieves
a comparable inference speed on GPU while obtaining better accuracy whereas the pro-
posed framework obtains a run time improvement of up to 37× in terms of SPF and 50×
in terms of FPS on CPU over existing methods while also attaining better accuracy than
existing methods. These experimental results demonstrate the suitability of our proposed
framework for human action recognition task in real-time environments.

The current version of our proposed framework uses plain 3DCNN teacher and
student models with offline knowledge distillation mechanism. The obtained results
validate the effectiveness of the current version of the proposed framework; however,
in our future work, we plan to analyze residual 3DCNN and self-distillation instead of
offline distillation.
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Abbreviations

DNNs Deep neural networks
CNN Convolutional neural network
3DCNN 3D Convolutional neural network
ROC Receiver operation characteristics
AUC Area under the curve
SPF Seconds per frame
FPS Frames per seocnd
TFS Train from scratch
TUTL Train using transfer learning
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