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Abstract: (1) The aim of our study is to evaluate the capacity of the Visually AcceSAble Rembrandt
Images (VASARI) scoring system in discerning between the different degrees of glioma and Isocitrate
Dehydrogenase (IDH) status predictions, with a possible application in machine learning. (2) A
retrospective study was conducted on 126 patients with gliomas (M/F = 75/51; mean age: 55.30), from
which we obtained their histological grade and molecular status. Each patient was analyzed with
all 25 features of VASARI, blinded by two residents and three neuroradiologists. The interobserver
agreement was assessed. A statistical analysis was conducted to evaluate the distribution of the
observations using a box plot and a bar plot. We then performed univariate and multivariate logistic
regressions and a Wald test. We also calculated the odds ratios and confidence intervals for each
variable and the evaluation matrices with receiver operating characteristic (ROC) curves in order to
identify cut-off values that are predictive of a diagnosis. Finally, we did the Pearson correlation test to
see if the variables grade and IDH were correlated. (3) An excellent ICC estimate was obtained. For the
grade and IDH status prediction, there were statistically significant results by evaluation of the degree
of post-contrast impregnation (F4) and the percentage of impregnated area (F5), not impregnated area
(F6), and necrotic (F7) tissue. These models showed good performances according to the area under
the curve (AUC) values (>70%). (4) Specific MRI features can be used to predict the grade and IDH
status of gliomas, with important prognostic implications. The standardization and improvement of
these data (aim: AUC > 80%) can be used for programming machine learning software.

Keywords: magnetic resonance; glioma; VASARI; grade prediction; IDH

1. Introduction

The most common primary malignant brain tumor is the cerebral glioma, which is a
huge family of brain tumors with different characteristics [1]. Previously, the tumor’s grade
was determined by the cells’ phenotypic traits [2]. The current World Health Organization
(WHO) classification is based on a combination of histology and molecular classification;
when differentiating tumors, the two main alterations taken into account are changes in
the Isocitrate Dehydrogenase (IDH) gene and the co-deletion of chromosomal arms 1 and
19 (1p/19q) [3]. It might be compared to biomarkers that have an impact on a patient’s

J. Imaging 2023, 9, 75. https://doi.org/10.3390/jimaging9040075 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging9040075
https://doi.org/10.3390/jimaging9040075
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-0045-4673
https://orcid.org/0000-0002-4745-3061
https://orcid.org/0000-0002-8193-3050
https://orcid.org/0000-0002-7904-1563
https://doi.org/10.3390/jimaging9040075
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging9040075?type=check_update&version=2


J. Imaging 2023, 9, 75 2 of 13

prognosis and biological behavior. For instance, regardless of the histological grade, it
has been shown that mutations in the IDH gene family provide longer overall survival in
high-grade gliomas than their IDH wild-type counterparts [4–6].

Moreover, the treatment is influenced by the degree of cellular differentiation and
molecular status. For example, according to grading, low-grade gliomas do not typically
receive adjuvant radiotherapy and/or chemotherapy. Clinicians discovered that even when
patients had the same tumor, their reaction to treatment, degree of side effects, and even
prognosis could vary. This suggests that “precision medicine” or clinical therapy based on
the needs of specific individuals may represent the way of the future [7–9].

Nowadays, immunohistochemical analyses following biopsy or surgical resection rep-
resent the most widely utilized technique for determining glioma mutations [10]. Clinical
therapeutic planning may be suggested by radiological glioma grading in a non-invasive
manner with pertinent prognostic implications [11]. The gold standard for the radiological
analysis of gliomas is magnetic resonance imaging (MRI). However, accurate tumor grade
identification is far from straightforward because there are not any objective measurements
that can be widely replicated and validated [12].

With the aim of standardizing the evaluation of gliomas, the so-called Visually
AcceSAble Rembrandt Images (VASARI), developed by multi-institutional neuroradiolo-
gists with extensive documented experience in neuro-oncology, take into consideration the
fundamental visual characteristics of a standard MRI. The VASARI features are described in
detail at https://wiki.nci.nih.gov/display/CIP/VASARI (accessed on 21 March 2020) [13].

The potential of such a model lies in its ability to make objective assessments of
tumor characteristics. In fact, although VASARI began as a scale for visual assessments, by
calculating the areas of the various tumor components through “regions of interest” (ROIs),
it is possible to have a numerical estimate of the features under consideration.

The aim of this paper was to determine which characteristic could be utilized to
distinguish between low-grade and high-grade gliomas while attempting to estimate any
cut-off values effective for discriminating. Then, we examined the predictive effect of IDH
status on the tumor grade and attempted to predict the IDH gene status based on the same
morphological parameters.

The main objective of our research is to evaluate the accuracy of the VASARI system
in glioma grading and IDH status predictions. This is accomplished by a detailed statistical
analysis, which is discussed below and seeks to determine cut-off values for forecasting the
data. Lastly, we aim to comprehend the true applicability of these measurements and the
VASARI system to machine learning for automated predictions of grade and IDH status
with the advent of radiomics through the examination of ROC curves (AUC).

Finally, radiomics has the potential to provide an accurate diagnosis, predict a prog-
nosis, and assess a tumor’s response to therapy [14]. The potential of radiomic analysis
to non-invasively distinguish between different glioma molecular subtypes would not
only provide additional prognostic information but also help in the selection of targeted
chemotherapy in patients with multiple genetic mutations and potentially high-grade
tumor types [15–17]. It would also help optimize surgeries, on which median survival
depends [18]. Thus, radiomic risk models can be used to better predict treatment responses,
Progression-free survival (PFS), and Overall survival (OS) [19,20]. By obtaining the radio-
genomic profile of a tumor non-invasively, the effect of anti-angiogenic therapies can be
assessed without harm to the patient [21,22].

For this purpose, a trio of morphological, textural, and functional signals obtained
by the high-throughput extraction of quantitative metrics from voxel-level MR images is
used [23,24]. However, because the acquisition parameters have not been standardized
and teams have used different methodologies, multicenter studies with different study
populations are needed [25,26].

https://wiki.nci.nih.gov/display/CIP/VASARI
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2. Materials and Methods
2.1. Ethics Statements

The procedure used in this study is not experimental but is ordinarily performed in
our hospital; thus, it was approved by the Institutional Review Board. Every patient signed
an appropriate, written, informed consent. All data were retrospectively collected. No
conflict of interest was manifested by the authors. No funding was received to support this
study.

2.2. Patients

Our institution’s database was retrospectively examined, and 182 patients who had
undergone MRI for pre-surgical glioma evaluation between 2018 and 2021 were identified.
Additionally, pathology reports were collected to obtain the glioma grades. Several patients
were excluded from the study according to the following criteria: (a) poor acquisition qual-
ity imaging; (b) no intravenous contrast; (c) treatments before MR examination, including
steroid drugs that may affect edema and contrast enhancement; (d) no pathology reports.
Pilocytic astrocytoma (World Health Organization grade 1) was excluded from our study
due to its unique imaging characteristics. Finally, 126 patients diagnosed with gliomas
were enrolled (Figure 1). The study group comprised 75 males and 51 females, ranging in
age from 14 to 84 years (additional data is shown in Table 1).
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Figure 1. Sample size selected strictly by exclusion criteria (We retrospectively reviewed our institu-
tion’s database, identifying 182 patients. We excluded 56 patients due to exclusion criteria. Finally,
126 patients were enrolled in our study. The flowchart shown in the figure also indicates the sex, the
age range and the exclusion criteria.).

2.3. Magnetic Resonance Imaging Technique

The imaging was carried out at 3.0 T MRI (Magnetom Trio; Siemens Medical Systems,
Erlangen, Germany). The MR protocol includes T1-weighted images both before and after
the administration of gadolinium-based contrast media, as well as T2-weighted images
with dark fluid on the axial planes. We also performed T1-w and T2-w sequences on
other planes, as well as DWI and SWI on the axial plane, in addition to these ones. The
specific imaging parameters were as follows: (1) axial T1-weighted MR: repetition time of
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250 milliseconds, echo time of 2.46 milliseconds, slice thickness of 5 mm, matrix dimensions
of 320 × 256, and field of view of 220 × 220 mm2; (2) axial T2-weighted MR: repetition
time of 6000 milliseconds, echo time of 93 milliseconds, slice thickness of 5 mm, matrix
dimensions of 320 × 288, field of view of 198 × 220 mm; (3) axial T2WI dark-fluid MR:
repetition time of 8000 milliseconds, echo time of 97 milliseconds, slice thickness of 5 mm,
matrix dimensions of 320 × 224, field of view of 181 × 220 mm.

Table 1. Additional demographic data on our study population.

Glioma Grade

Other Data 1 (n = 3) 2 (n = 21) 3 (n = 18) 4 (n = 84)

Age (year) <50 3 10 8 18 39
>50 0 11 10 66 87

Sex
Male 2 8 11 54 75

Female 1 13 7 30 51

Location

Frontal 0 12 9 28 49
Temporal 0 7 4 17 28

Insular 2 2 1 6 11
Parietal 0 0 1 22 23

Occipital 0 0 2 2 4
Brain steam 1 0 1 5 7

Other (cerebellum) 0 0 0 4 4

Side
Right 0 11 5 47 63
Left 2 0 2 5 9

Central/Bilateral 1 10 11 32 54

Eloquent
area

No 2 15 13 45 75
Motor speech 1 2 1 7 11

Receptive speech 0 4 2 16 22
Motor area 0 0 1 15 16
Visual area 0 0 1 1 2

IDH status
Positive 2 13 3 4 22

Negative 1 8 15 80 104

2.4. Magnetic Resonance Imaging Assessment and Analysis

According to the VASARI method, we assumed that the entire lesion was composed
of the following components: enhancing area, non-enhancing area, necrotic tissue, and
edema. Additionally, we extracted the morphological characteristics and the scoring system.
Thus, any area of the tumor that exhibits noticeably increased signals on the post-contrast
T1-weighted images compared to the pre-contrast was considered an enhancing area. A
non-enhancing area was considered any region exhibiting T2-weighted hyperintensity
(less than the cerebrospinal fluid intensity) with corresponding T1-weighted hypointensity,
along with a mass effect and architectural distortion, including blurring of the gray-white
interface.

A portion of the tumor that exhibits necrosis is described as having an uneven bound-
ary, a high signal on the T2-weighted and proton density imaging, and either no enhance-
ment at all or a much lower enhancement. A quantitative assessment of the necrosis was
obtained by evaluating the ratio of the area of the total lesion to the area of necrosis (internal
to it), as shown in Figure 2. A hemorrhage was identified on the T2-, T1-, and SWI T2*-
weighted sequences and evaluated in relation to the presence of hemoglobin degradation
products. The diffusion characteristics are defined as predominantly facilitated or restricted
in the enhancing or non-contrast enhanced tumor (nCET) portion of the tumor based on an
apparent diffusion coefficient (ADC) map. They are defined as mixed in the presence of a
relatively equal proportion of facilitated and restricted diffusion.
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Figure 2. An example of tumor segmentation for necrosis depiction. The segmentation of the T2
hyperintensity region designated as tumor invasion is shown in (A,B) on an axial plane (blue); the
axial post-contrast T1WI shows segmentation of the necrotic area (yellow) compared to the enhancing
tumor (orange; in (C)) and lesion/tumor area (blue; in (D)); the necrosis percentage is also calculated
in (D).

Edema should be greater in signal than the no-enhancement tumor and somewhat
lower in signal than the CerebroSpinal Fluid (CSF). Pseudopods are characteristic of edema.
They were scored on the basis of the percentage of total abnormal tissue (0% = 1; <5% = 2;
6–33% = 3; 34–67% = 4; 68–95% = 5; >95% = 6).

The other VASARI features, which were evaluated with dedication and attention, are
as follows: tumor location, side of tumor epicenter, eloquent brain areas, enhancement
lesion quality, enhancing tumor proportion, non-enhancing tumor (nCET) proportion,
necrosis tumor proportion, cysts, multifocal or multicentric aspects, T1/fluid-attenuated
inversion recovery ratio, definition of the non-enhancing margins, hemorrhage, thickness
of the enhancing margins, definition of the enhancing margins, edema tumor proportion,
crossing midline edema, pial invasion, ependymal invasion, cortical involvement, deep
white matter invasion, nCET tumor-crossing midline, enhancing tumor-crossing midline,
satellites, calvarian remodeling, and size of lesion (diameter).

The imaging features plus a single measurement of the lesion size were valued by
2 residents and 3 neuroradiologists, independently.

2.5. Statistical Analysis

The statistical analyses were performed using software (Stata, version 15; StataCorp,
College Station, TX, USA). The inter-reader agreement was assessed using the Cohen κ

coefficient (Statistical Package for the Social Science Statistics, software version 24; IBM
Corp, Armonk, NY, USA). The κ coefficient was interpreted as follows: 0.20 or less, poor
agreement; 0.21 to 0.40, fair agreement; 0.41 to 0.6, moderate agreement; 0.61 to 0.80, good
agreement; 0.81 to 1, very good agreement.

We built a sub-dataset called “columns” that only contained the following parameters
in order to only take into account the relevant columns throughout our evaluations: G
(grade), F4 (enhancing quality), F5 (enhancing portion), F6 (non-enhancing portion), F7
(necrosis), etc. We added a new dataset called “levels” to the dataset. This variable is binary,
with level = 0 denoting a grade of 1 or 2 (low grade) and level = 1 denoting a grade of 3 or
4 (high grade).
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The aim of the statistical analysis was to examine the information to see if we could
establish a cut-off point for each covariate (column in the dataset). The objective is to
determine if we can categorize the tumor as having a high or low amount of the G variable
based on the cut-off. The analyses were performed separately for each variable. We used a
box plot and a bar plot to visualize the distribution of the observations for each covariate.
The “VASARI” variable’s impact on the prediction of the “degree” response variable was
then examined using a univariate logistic regression. In order to find cut-off values that
are indicative of the grade diagnosis, we also conducted a Wald test on the categorical
variables to establish statistical significance. Additionally, we computed the odds ratios and
confidence intervals for each variable and evaluated the matrices with ROC curves. Then,
after establishing a cut-off level for each covariate, we reanalyzed the data to see whether
we could find a significant correlation between the IDH status and the grade. We created
a contingency table with the various grade levels on one side and the IDH status, which
was either positive or negative, on the other, and calculated the findings as percentages to
determine if there was a correlation between them. To determine whether the variables
grade and IDH are connected, we also performed a Pearson correlation test.

3. Results
3.1. Inter-Reader Agreement

The κ value for the VASARI feature detection was 0.86 (very good agreement; p < 0.001).

3.2. Grade Prediction

According to the findings of the statistical analysis, not all of the VASARI features
have statistically significant differences (p < 0.05) between the high- and low-level gliomas.
The results that were statistically significant for discerning the glioma grades included the
following: F4 (enhancing quality), F5 (enhancing portion), F6 (non-enhancing portion),
and F7 (necrosis). The F4 variable has a statistically significant difference between F4 = 2
and F4 = 3 (p value = 0.00072 < 0.05) and is statistically significant for the grade prediction
(p value = 0.00028 < 0.05). In particular, F4 = 3 has a 91% probability of being at the high
level (grades 3 and 4), while the probability of the other two levels is much lower (56% and
58%) (Table 2). The model has an accuracy of 0.776, a sensitivity of 0.804, a specificity of
0.652, and an AUC of 0.73.

Table 2. The corresponding odds ratios and confidence intervals for the F4 parameter are shown in
the table. On the right, the predicted probabilities of being in the high-level grade (level 1) are also
reported.

F4 OR 2.5% 97.5% Level 1 Probability

as.factor(F4)1 1.285714 0.4790464 3.59729 0.5625000

as.factor(F4)2 1.069444 0.2748978 4.15047 0.5789474

as.factor(F4)3 7.972222 2.3284132 27.90801 0.9111111

Additionally, the variable F5 is statistically significant for the grade prediction (p
value = 0.00388 < 0.05) and shows a cut-off level of F5 = 5. This means that an F5 = 5 has
a 91% probability of being at the high level (grades 3 and 4), while the probability of the
other levels (F5 < 5) is much lower (56% and 57%). This model has an accuracy of 0.792, a
sensitivity of 0.873, a specificity of 0.435, and an AUC of 0.677.

At the same time, variable F6 is statistically significant for the grade prediction (p
value = 0.0032 < 0.05). The F6 variable has a statistically significant difference between
F6 = 3 and F6 = 4 (p value = 0.032 < 0.05). In particular, F6 = 3 (or more) has a 92% probability
(or more) of being at the high level, while the probability of the other levels (F6 < 3) is much
lower (0% and 46%). This model has an accuracy of 0.736, a sensitivity of 0.745, a specificity
of 0.696, and an AUC of 0.757 (Figure 3).
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Finally, the variable F7 is statistically significant for the grade prediction (p value = 0.035
< 0.05) and shows a cut-off level of F7 = 2. For the predicted probabilities of being in the
high-level grades, F7 = 3 and F7 = 4 have a probability of 91% and 93%, respectively,
of being at the high level. This model has an accuracy of 0.712, a sensitivity of 0.706, a
specificity of 0.739, and an AUC of 0.738.

3.3. IDH Analysis

A total of 76% of the observations have a negative IDH (non-mutated) and a high
grade (G = 3 or 4). The Pearson test (Table 3) gave a p value of 2.2 e−16 < 0.05; thus, the
coefficient is statistically significant. We obtained a correlation coefficient of −0.6978789,
meaning that these two variables are significantly negatively correlated. The resulting
confidence interval is (−0.7781250, −0.5952169) at 2.5% and 97.5%, respectively.

Table 3. Pearson correlation test showing if the variables grade and IDH are correlated.

IDH Status
GRADE

1 2 3 4

Negative 0.8 3.2 10.4 65.6 80.0

Positive 0.8 13.6 4.0 1.6 20.0

1.6 16.8 14.4 67.2 100

The F4 values are very different depending on the positive or negative IDH. In fact,
a negative IDH corresponds almost 65% of the time to an F4 = 3. On the other hand,
only 20% of the observations have a positive IDH, and the F4 levels among them are
more or less equally distributed. We found that the variable F4 is significant with a p
value = 6.78 e−05 < 0.05 and that there is a significant difference between F4 = 2 and F4 = 3
(p value = 0.0013 < 0.05). An F4 = 3 has a 10% probability of having a positive IDH, while
the probability of the other two levels is higher (50% and 42%). This model has an accuracy
of 0.776, a sensitivity of 0.640, a specificity of 0.810, and an AUC of 0.73 (Figure 4).
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Most of the time, the highest levels of F5 (Figure 5) seem to correspond to a negative
IDH, and this variable is statistically significant with a p value = 0.00034 < 0.05 and a cut-off
level of F5 = 3. Additionally, F5 = 2 and F5 = 3 have a high probability of 50% and 57%,
respectively, of having a positive IDH, while the probability of the other levels is much
lower (around 15%). This model has an accuracy of 0.808, a sensitivity of 0.48, a specificity
of 0.890, and an AUC of 0.73.
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Figure 5. Box plot representing the distribution of IDH status according to the F5 VASARI variable.

The variable F6 is statistically significant with a p value = 0.000124 < 0.05 and a cut-off
level of F6 = 5. Additionally, F6 = 6 and F6 = 7 have the highest probabilities of 100% and
60%, respectively, of having a positive IDH. While the probability of the other levels is
much lower (from 8% to 21.4%). This model has an accuracy of 0.84, a sensitivity of 0.48, a
specificity of 0.93, and an AUC of 0.7648.

The variable F7 is statistically significant with a p value = 0.00339 < 0.05 and a cut-off
level of F7 = 2. This model has an accuracy of 0.744, a sensitivity of 0.800, a specificity of
0.730, and an AUC of 0.789 (Figure 6).
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The variable F24 is statistically significant with a p value = 0.0367 < 0.05. A total of
77.6% of the observations have F24 = 1, and there is only one observation that has F24 = 2
and a positive IDH. Additionally, F24 = 1 has a 24.7% probability of having a positive IDH.
This model has an accuracy of 0.408, a sensitivity of 0.960, a specificity of 0.270, and an
AUC of 0.615.

The other variables are not statistically significant.

4. Discussion

In our study, we demonstrated with statistical evidence that some VASARI features
are indicative of brain glioma grades and IDH statuses. In particular, these features regard
the enhancement quality (F4), tumor-enhancing proportion (F5), tumor non-enhancing
proportion (F6), and necrosis proportion (F7). We established the cut-off values for some of
these specific radiological features. Therefore, we can predict the presence of high-grade
gliomas with a good probability in the diagnostic phase or in high-risk patients during
follow-ups, improving the clinical management of patients with gliomas.

We also demonstrated the prediction capability of some VASARI features in the IDH
gene mutation status with statistical evidence. Finally, according to the recent literature,
we found a positive correlation between the IDH mutations and glioma grades.

According to the recent literature, this process could lead to important clinical impli-
cations, such as decisions on diagnostic and therapeutic continuations and predictions of
overall survival [27,28]. Moreover, this new controlled lexicon (i.e., VASARI) could allow
for greater concordance and faster communication between various interlocutors, such as
radiologists, surgeons, and oncologists, from different medical teams and different centers.

The correct differentiation of grade 2 and grade 3 gliomas is sometimes challenging. In
our study, we found that nCET was a significant factor with the largest AUC (76%). There
was a significant difference between F6 = 3 and F6 = 7 (p value = 0.0049 < 0.05), F6 = 3 and
F6 = 6, F6 = 3 and F6 = 5, and F6 = 3 and F6 = 4 (p value = 0.032 < 0.05). For the predicted
probabilities to be in the high-level grades at each level, an F6 = 3 (or more) has a 92%
probability (or more) of being at the high level, while the probability of the other levels
(F6 < 3) is much lower (0% and 46%). These data remind us that measuring the areas of
non-enhancing tumors is an important radiological feature to evaluate disease progression.

Gliomas are very heterogeneous; they may consist of an enhancing component that
does not always contain anaplastic lesional parts, while the non-enhancing component
frequently contains both anaplastic and low-grade lesional parts. The nCET proportion
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plays an important clinical role in the diagnosis and characterization of an astrocytoma,
which is useful in the surveillance and therapeutic monitoring of astrocytomas. The absence
of a tumor enhancement (nCET tumor) is a predictor of longer progression-free survival
(PFS) and overall survival (OS). In addition, there seems to be a correlation with an IDH1
mutation [28]. However, establishing the nCET proportion of a brain glioma is still very
difficult due to its possible heterogeneous nature and undefined margins. First, this is really
a false dichotomy in infiltrating gliomas that have “infiltrative edema”, consisting of tumor
cells and edema on a brain background. Second, even with advanced methods, including
T2 mapping, diffusion tensor imaging, and perfusion imaging, distinguishing a pure
edema from a non-enhancing tumor is not easy. Although this conclusion is occasionally
disputed, it appears that the rate of necrosis is related to the grade of the glioma and a
worse outcome [29,30].

Zhang et al. [31] accurately predicted the IDH genotype in high-grade gliomas us-
ing clinical and MRI features in a machine learning algorithm in 120 patients. Similar
results were obtained using Visually AcceSAble Rembrandt Images integrated with ra-
diomic features to predict IDH wild-type lower-grade gliomas (II/III) that carry molecular
features such as epidermal growth factor receptor (EGFR) amplification or telomerase
reverse transcriptase (TERT) promoter mutations, which are reported to behave similarly to
glioblastomas [32]. In light of these results, we agree that it could be interesting to propose
combining the results that can derive from multiparametric magnetic resonance imaging
(MRI) radiomics, qualitative features using the VASARI lexicon, and clinical factors to better
understand tumor behavior and tumor classification [33]. Advanced magnetic resonance
techniques have shown excellent potential in identifying pathological characteristics of
brain tumors useful for their classification. For example, values derived from diffusion-
weighted imaging [34] and diffusion kurtosis imaging have allowed for the discrimination
between high-grade and low-grade gliomas in some recent studies. IDH wild-type gliomas
have been demonstrated to show lower ADC values, which also correlated with a worse
prognosis in both IDH mutant and IDH wild-type gliomas, irrespective of their histological
grade [35]. Additionally, it has been demonstrated that the mutational status of isocitrate
dehydrogenase 1 (IDH1) in anaplastic gliomas can be predicted non-invasively using a tex-
ture analysis (TA) of diffusion-weighted imaging (DWI) in combination with conventional
magnetic resonance imaging (MRI) [36].

About 10% of glioblastoma multiforme (GM) and 30% of anaplastic astrocytomas may
not show enhancement, whereas low-grade gliomas sometimes demonstrate enhancement.
Fluid-attenuated inversion recovery (FLAIR) images may depict some features of the tumor
but have low specificity. In this setting, 1 proton magnetic resonance spectroscopy (H-MRS)
adds value to clinical practices by providing information for the in vivo assessment of the
biochemical pathways that contribute to tumor characterization [37,38].

There are still several limitations in our study that should be discussed, which are as
follows:

- The classes (low level/high level) are quite unbalanced (23 observations in the low
level and 102 in the high level); we are planning to apply a balancing method, such as
oversampling or undersampling, to improve the performance of the model.

- The recent study showed that glioblastoma patients with a combination of deep white
matter tracts and ependymal invasions on the imaging had a significant decrease in
their overall survival compared with patients with an absence of such invasive imaging
features. In this study, pial and ependymal invasions had a significantly increased risk
of high-grade gliomas on the univariate analysis but not on the multivariate regression
analysis.

- Correlations between the patients’ outcomes and survival times and the VASARI
scores were not identified in this study.

That could be an interesting starting point for other studies.
In conclusion, with this study, we have shown that some features of the VASARI

are very useful in guiding neuroradiologists toward grade and molecular diagnosis. In
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particular, we have tested the objectivity of these assessments, and we believe that the
results obtained in terms of AUC are satisfactory, although, at the moment, they cannot be
used for machine learning processes. From this complex and elaborate statistical analysis,
our future goal is to streamline the VASARI score and make it applicable to machine
learning processes. For this, we will direct our efforts toward the elimination of features
that have proven to be unhelpful for grade and molecular diagnosis and revise the way we
assign quantitative variables to the VASARI features that are already capable of predicting
grades and IDH statuses with statistical significance. The ultimate goal will be to obtain
models with an AUC > 0.8 in order to be used for machine learning.
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