
Citation: Papadaki, A.; Pateraki, M.

6D Object Localization in

Car-Assembly Industrial

Environment. J. Imaging 2023, 9, 72.

https://doi.org/10.3390/

jimaging9030072

Academic Editors: Paolo Rota,

Miguel Angel Guevara Lopez and

Francesco Setti

Received: 5 January 2023

Revised: 1 March 2023

Accepted: 15 March 2023

Published: 20 March 2023

Copyright: c© 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

6D Object Localization in Car-Assembly Industrial Environment
Alexandra Papadaki 1,2 and Maria Pateraki 1,2,3,*

1 School of Rural Surveying and Geoinformatics Engineering, National Technical University of Athens,
GR-15780 Athens, Greece; apapadaki@mail.ntua.gr

2 Institute of Communication and Computer Systems (ICCS), National Technical University of Athens,
GR-15773 Athens, Greece

3 Institute of Computer Science, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece
* Correspondence: mpateraki@mail.ntua.gr

Abstract: In this work, a visual object detection and localization workflow integrated into a robotic
platform is presented for the 6D pose estimation of objects with challenging characteristics in terms of
weak texture, surface properties and symmetries. The workflow is used as part of a module for object
pose estimation deployed to a mobile robotic platform that exploits the Robot Operating System (ROS)
as middleware. The objects of interest aim to support robot grasping in the context of human–robot
collaboration during car door assembly in industrial manufacturing environments. In addition to the
special object properties, these environments are inherently characterised by cluttered background
and unfavorable illumination conditions. For the purpose of this specific application, two different
datasets were collected and annotated for training a learning-based method that extracts the object
pose from a single frame. The first dataset was acquired in controlled laboratory conditions and
the second in the actual indoor industrial environment. Different models were trained based on the
individual datasets and a combination of them were further evaluated in a number of test sequences
from the actual industrial environment. The qualitative and quantitative results demonstrate the
potential of the presented method in relevant industrial applications.

Keywords: object 6D pose estimation; object localization; industrial robotic applications; challenging
object characteristics; complex scenes; machine learning

1. Introduction

Object localization in robotic applications aims to support the identification of specific
objects and the estimation of their 6D pose (rotation and translation in the camera coordinate
system) for object-grasping and manipulation by the robot, extending to applications
for human–robot collaboration. Commonly, objects with known 3D object models with
annotated grasping points are used.

The main challenges in the aforementioned applications regard the nature of the
industrial objects, the complexity and uncontrollability of the environment conditions and
the requirements for accuracy and real-time processing. In industrial environments, as also
in the case of the car assembly line, the objects of interest are usually tools or manufacturing
components with challenging geometric and surface characteristics, such as symmetries,
reflective surfaces and with weak or no texture, featuring also similarities to other objects in
the scene (e.g., different types of screwdrivers). Furthermore, in these environments usually
unfavorable illumination conditions are met, while different static, moving, overlapping
objects and assembly line components contribute to significant amounts of background
clutter and occlusions. One has also to consider the deployment on robotic platforms with
hardware constraints in terms of size, memory and battery, enabling in parallel successful,
accurate and real-time object localization.

The developed workflow aims to support robot grasping, as part of human–robot
collaboration during car-door assembly tasks. In this scenario the robot has to detect
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specific objects, to grasp and hand over them to the worker, ensuring fluent human–robot
interaction and unobstructed assembly flow. In fact, the case of a specific car assembly line
workflow is examined that considers all the aforementioned challenges regarding both the
characteristics of the industrial objects and the manufacturing context.

The main contribution of the presented work is the application of 6D object localization
in a real industrial environment, exploiting objects commonly used in car-assembly tasks,
combining deep learning methods for pose estimation, data augmentation for training
models, based on different datasets relevant to the application domain captured in a
systematic manner, and validating results on test sequences from the actual manufacturing
environment. Results indicate that object and scene challenges are successfully handled
with the trained models, achieving average recall scores that exceed 94% based on different
evaluation metrics and time performance of less than 0.4 s per image.

The developed methodology uses as input a single RGB image, captured by a camera
mounted on the robot arm and queries specific objects. The EPOS method [1] is used as
the baseline deep learning method to predict the object pose based on different collected
and annotated training datasets. Initially, training data were captured for the objects of
interest in laboratory conditions in a systematic manner. The objects were placed on a flat
surface and the training images were covering a full view sphere, allowing the model to
be trained on a large number of possible object placements and camera viewpoints. On
the contrary, in the case of real industrial environments, as the one of the examined car
assembly line (see example scene in Figure 1), certain objects are placed in specific positions,
such as hangers, boxes, and trolleys. This setup restricts the number of alternative locations
and orientation of objects in the shop floor, therefore reducing the viewpoints and object
poses to be handled by the method. On the other hand, the assembly line environment
is very complex, with unfavorable illumination conditions and different objects, that is,
car components, moving objects, and so forth, that are depicted as cluttered background
in the input images. To further address these challenging scene conditions, additional
data were captured in the actual industrial manufacturing environment and were used for
model training. For the purpose of this study two objects used in the car assembly line
were considered, namely the screwdriver and the black window control panel, as shown in
Figure 2.

Figure 1. View of the assembly line depicting the screwdriver placement.
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Figure 2. Objects investigated in the examined application, a screwdriver (row 1) and a black window
control panel (row 2). The first column presents sample images of the objects in the industrial
environment, while the second column presents the respective 3D object models.

2. Related Work

6D object localization or else object pose estimation deals with the problem of estimat-
ing the location of known objects present in a scene, based on computer vision methods.
It calculates the transformation from the coordinate system of the object in the scene to
the coordinate system of the camera. This transformation is defined as a translation and a
rotation matrix.

6D pose estimation methods are extensively reviewed in several works, for exam-
ple, [2–8]. These usually categorize object localization according to the prior information,
the number of views and the type of computer vision methods being used. Object de-
tection and localization methods differ based on whether they use 2D or 3D information
derived by different sensors [1,5,9], single or multiple views [10], classic or deep learning
methods [1,3,5] and correspondence, template or voting based approaches [3]. More recent
works exploit deep learning methods, the development of which has given the 6D object
pose estimation a great boost [11]. In parallel, source code implementations of relevant
research developments for 6D object pose estimation are publicly available [12], as well as
a number of annotated datasets [13].

One of the most important open issues in the literature regarding the 6D object lo-
calization is handling objects with weak texture, symmetries, and reflective surfaces as
well as challenging scenes with occlusions and clutter. These cases are considered in the
current work. Three methods that featured in the 2020 BOP challenge [13], CosyPose [10],
EPOS [1] and Pix2Pose [14] aim to address the above challenges and are therefore relevant
to the application domain of this work. CosyPose [10] is a single-RGB 6D pose estima-
tion method, that handles symmetric and occluded objects, using a render-and-compare
DNN method inspired by DeepIM [15] (using EfficientNet-B3 [16] instead of FlowNet [17]
commonly used in DeepIM). Initially, it detects all known objects in the image and then
for each object it assumes a canonical pose creating a corresponding rendered image. By
comparing the rendered image to the input, it estimates a coarse pose, which is then re-
fined using a similar iterative refiner DNN network. The pose hypothesis can be further
optimized by matching pose hypotheses across the different views and applying global
scene refinement. EPOS [1] is a single-RGB, correspondence-based method that defines
object–surface fragments to handle both global and partial symmetries. It predicts pixel-
fragment correspondences, using an encoder–decoder network. Finally, EPOS overcomes
the many-to-many correspondences issue and recovers all the object instances using a PnP
algorithm [18] within a RANSAC framework [19]. Pix2Pose [14] also handles occlusions,
using only RGB images and models without texture. However, it uses one DNN model
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for each object. It performs pixel-wise prediction of the 2D–3D correspondences without
having to define specific keypoints and also relies on segmentation instead of detection. It
predicts the corresponding 3D coordinates for each densely sampled image pixel, using
an auto-encoder architecture, and then uses the PnP algorithm [18] with RANSAC [19]
iterations to directly calculate the object poses. Pix2Pose also manages to handle global
object symmetries using a novel transformer loss function, failing to successfully handle all
cases of partial object symmetries though.

Further to these three methods, DOPE++ [20] used RGBD images and applied a
random mask local processing method and a multiscale fusion pose estimation module to
cope with occlusions and scale differences for weakly textured objects. Depth information
was also taken into account in other recent works. PVN3D [21] used an RGBD input
image and performs direct regression using a deep Hough voting network followed by a
least-squares fitting and FFB6D [22] used a Full Flow Bidirectional fusion network that are
both fed with a single RGBD image, combining the appearance information from the RGB
image and the geometric information from the depth image. On the contrary, FS6D [23] also
uses a single RGBD input image to combine both appearance and geometric information,
but tackles the problem of multiple object instances in the scene and also the restriction of
the known object 3D model, using a few-shot 6D pose estimation method. DGECN [24]
takes advantage of the geometric features in 3D space and proposes a depth-guided edge
convolutional network. In the current work, depth information was also available since
an active stereoscopic RGBD camera was used. However, the camera has a minimum
depth distance of around 52 cm, thus for operating distances smaller than 52 cm the depth
information would be of degraded accuracy. Though as shorter operating distances may
encounter in our application paradigm we decided to rely only on RGB data.

Most of the recent works [21,22] manage to achieve very high scores in recall accuracy
on benchmark datasets. However, the majority of benchmark datasets used for object de-
tection and localization, analysed also in Section 3.1, introduce some restrictions, avoiding
to handle objects with symmetries, and reflective surfaces and obtaining both training and
testing data from the same object space. These assumptions, though, limit the applicability
and robustness of object detection and localization, especially in real-time robotic applica-
tions in industrial environments, where objects with the aforementioned characteristics are
commonly met.

The latest works try to tackle those issues using different approaches. To lift the
restriction of using training and testing data from the same object space, a category-level
pose estimation task that generalizes to new objects but still keeps the restriction of the
predefined object categories has been recently proposed [25]. Regarding the required
training data, data augmentation has been widely used for increasing the model accuracy,
while requiring a smaller amount of training data. However, in most cases, simpler
methods of data augmentation such as geometric and intensity transformations (rotation,
translation, guttering, blurring, and so forth) [1,23] are used. In most cases the augmented
images are prepared offline since generating object textures, materials and photorealistic
rendering require considerable human effort, processing time, and computational cost.
This offline process, however, adds a time-consuming step before the training of the model,
and the requirement for extra storage space. To overcome the time-consuming and non-
scalable annotation of real data and the lack of realism of the synthetic data, recent works
exploit NeRFs and the first-reconstruct-then-regress idea [26] to produce annotated data.
The aforementioned methods and frameworks achieve very accurate results primarily in
offline applications and on benchmark datasets, that usually depict household or simpler
industrial objects on simple backgrounds. To the best of the author’s knowledge, none of
them has been applied to real world industrial robotic applications.

3. Methodology

As mentioned above, the main goal of the developed methodology is to detect and
estimate the 6D pose (rotation and translation) in the camera coordinate system of specific
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known industrial tools and objects in real time. The subsections below analyse the objects
and environmental conditions that are handled, the pose estimation method and the
evaluation metrics that are used, the processing applied on the 3D object models and the
deployment of the methodology on the robotic platform.

3.1. Challenging Objects and Environmental Conditions

The industrial objects and tools of interest feature challenging properties such as
symmetries and surfaces that are reflective, absorbing (black) or textureless.

A large number of available benchmark datasets are widely used for object detection
and localization. These datasets, as shown in Figure 3, depict objects of varying sizes and
characteristics, either isolated or as part of complex scenes with multiple object instances.
LM [27], LM-O [28], HB [29], RU-APC [30], IC-MI [31] and YCB-V [32] contain objects
of everyday life, depicted in complex scenes. T-LESS [33] depicts industrial objects with
symmetries, occlusions, and weak texture, while ITODD [34] and IC-Bin the Ref. [35] depict
multiple instances of identical objects, simulating the bin-picking problem. ITODD [34]
represents one of the most hard-to-solve cases of identical overlapping, reflective metallic
objects under imperfect illumination conditions. Most of the developed methods in the
literature have been tested on such benchmark datasets, while some of them have also
created and introduced new synthetic photorealistic datasets [20,23,36,37].

Figure 3. Benchmark datasets widely used for object detection and 6D pose estimation: LM [27], LM-
O [28], T-LESS [33], ITODD [34], HB [29], YCB-V [32], RU-APC [30], IC-Bin the Ref. [35], IC-MI [31],
TUD-L and TYO-L [38] and ShapeNet [36].

However, the current application scenario contains car components and tools of a
car assembly line, namely the screwdriver and the black window control panel, shown
in Figure 2, and none of the available benchmark datasets was representative enough to
serve the needs of our application. For that reason, new training data with the objects
of interest were acquired for the model training. Starting with the two aforementioned
objects and establishing the developed methodology, additional industrial objects could be
incorporated.

Apart from the characteristics of the specific objects, additional context-related chal-
lenges are encountered, thus occlusions, complex backgrounds and clutter, variable illu-
mination and objects placed in several different locations (boxes, dollies, trolleys, and so
forth) (Figure 1).
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3.2. Object Pose Estimation

To establish a proper object detection and localization pipeline, a thorough investi-
gation and testing of the most relevant state-of-the-art methods mentioned in Section 2,
based on Deep Learning was performed on benchmark data. Cosypose [10], EPOS [1] and
Pix2Pose [14] were tested initially on LM-O [28] and T-LESS [33] datasets, as these were
considered most relevant, due to the variety of challenging objects with occlusions and
clutter. The aforementioned methods were able to handle objects with special geometric
and textural characteristics and complex scene conditions, it was decided to further exploit
the EPOS method [1], due to its time efficiency during inference and its agility to handle
multiple objects with a single Deep Neural Network (DNN) [13].

The EPOS algorithm [1] accepts as input the RGB information from the images, that
are in the context of this application captured by the camera in real-time. The additional
depth information, can be also exploited to improve the accuracy of the required rendering
of the object models that are already available. It should be highlighted though that such
additional depth information was not used in the current work, since accurate depth
information would not be obtained for small distances between the object and the camera,
that is, less than 50 cm. For representing an object, a set of compact surface fragments
are used, enabling EPOS to deal with symmetries. During inference, for each image pixel
the 3D locations of possibly multiple fragments are predicted, allowing to capture object
symmetries. Additionally, many-to-many 2D to 3D correspondences are established by
linking pixels with the predicted 3D locations, and a robust and efficient variant of the
PnP-RANSAC algorithm [18,19] is used to estimate the 6D poses [1].

Initially, a regressor associates each of the surface fragments of the object to predict the
corresponding 3D location expressed in 3D fragment coordinates. Consequently, a single
deep convolutional neural network (DNN) with a DeepLabv3+ [39] encoder–decoder is
adopted to densely predict (1) the probability of each object’s presence, (2) the probability of
the fragments given the object’s presence, and (3) the precise 3D location on each fragment
in 3D fragment coordinates. For training the network, a per-pixel annotation in the form of
an object label, a fragment label, and 3D fragment coordinates is provided. Additionally,
the average softmax cross entropy loss and Huber loss [40] over all pixels are calculated,
while the necessary vectors for calculating losses are obtained by rendering the 3D object
models in the ground truth pose with a custom OpenGL shader.

To estimate the 6D poses of multiple instances of an object from the 2D–3D corre-
spondences, a robust and efficient variant of the PnP-RANSAC algorithm [18,19] is used,
integrated into the Progressive-X scheme [41], an efficient multi-model fitting algorithm.
The 6D pose hypotheses are then proposed by GC-RANSAC [42], a locally optimized
RANSAC and the pose is estimated by the P3P solver [43]. Then, the pose is refined from
all inliers by the EPnP solver [18] followed by Levenberg–Marquardt optimization [44].
Finally, for the verification of the 6D pose, its quality is calculated, considering only the
most accurate correspondence as only up to one correspondence may be compatible with
the hypothesis [1]. Pixels outside the visibility masks of the objects are considered to
be the background. While the masks in the original approach are calculated as in the
Refs. [1,45], an improvement in that direction was implemented in the context of this work,
by exploiting a U-Net [46] based approach for the laboratory data, for which the initial
mask precision was not adequate (see Section 4.1.1).

3.3. Evaluation Metrics

The accuracy and precision of the 6D object pose estimation is evaluated through
the comparison between the predicted and the known ground truth pose of the depicted
object. A well-established strategy from literature [13] is exploited to evaluate the 6D object
pose estimation based on several metrics. The most widely used metrics are: (i) Average
Distance for distinguishable (ADD or ADD(-S)), symmetric distinguishable (ADD-S) and
indistinguishable (ADI) objects, which calculates the average distance between the vertices
in the 3D space. However, this metric depends highly on the object model geometry and
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the surface sampling density, because it takes into account the average distance; (ii) Visible
Surface Discrepancy (VSD), which defines the object location using distance maps between
the input and rendered image, while being invariant to symmetries and encountering only
the visible object parts; and (iii) Maximum Symmetry-Aware Surface Distance (MSSD)
that computes the maximum distance and is independent of the object geometry. This
metric is critical for applications such as the examined one, since it indicates the chance of
a successful object grasp [13]; (iv) Maximum Symmetry-Aware Projection Distance (MSPD)
that is similar to MSSD but for the 2D space, leaving out the Z misalignment. These
metrics reflect each a different perspective of object pose estimation and are usually used
in a combination to extract the final estimation accuracy [13]. This evaluation strategy
was also followed in the presented methodology. The recall rates for the several metrics
were calculated for different correctness threshold settings according to the object model
diameter or the image width. In fact, thresholds were ranging from 10% to 50% of the
object diameter with a step of 5% for the VSD, from 5% to 50% of the object diameter with
a step of 5% for the MSSD, from 5r to 50r with a step of 5r, where r = w/640 and w being
the image width in pixels for the MSPD and less than 10% of the object diameter for the
ADD metric.

3.4. Object Models

A collection of 3D mesh models of the known objects was created to be used as prior
knowledge, complying with the BOP dataset format [13]. The initial CAD object models
were provided by experts in jt format. The models were transformed into ply format and
processed to include surface normals at the model vertices, calculated using MeshLab [47]
as the angle-weighted sum of face normals incident to a vertex [1,14]. Views of the 3D
models of the examined objects are shown in the second column of Figure 2.

3.5. On-Robot Application/Integration

The developed methodology requires that it is fully integrated to a robotic platform,
supporting real-time performance. For this purpose, the on-robot hardware was selected
and the implementations were developed so that they comply with the memory and
computational restrictions of a moving robot.

The mobile robotic platform carries an on-robot camera (Intel RealSense D455 active
stereoscopic camera [48]), featuring compact size and global shutter, that captures the
input data on demand and in real time. The camera projects infrared light and manages
to provide high-quality depth information even under unfavorable lighting conditions,
while it is less affected by interference signals by other cameras, such as in the case of the
time-of-flight active cameras. The only limitation is the minimum depth distance of around
52 cm.

The camera was mounted on the robot wrist, as shown in the left image in Figure 4,
and placed on an adjustable holder that provided the optimal camera positioning for the
object localization. The exact position and orientation of the camera were decided according
to the field of view of the camera, its minimum depth distance for representative depth
information, as well as the requirements for safe object handling and grasping, given that
the used image resolution was decided to be the one that provides the wider possible field-
of-view, namely, 1280 × 720 pixels. The right image in Figure 4 presents the investigated
alternatives for the optimal camera viewpoint and placement aiming to maximize the
imaged area with minimal occlusions from the robot wrist and ensure safe object-grasping
without risking to damage the camera. For that reason, it was decided to place the Intel
Realsense D455 camera on an adjustable base that slightly raises the camera above the arm
(75 mm from the center of the arm shown as distance A in the right image in Figure 4) and
allows it to move 90–136 mm from the beginning of the robot fingers (depicted as distance
B in the right image in Figure 4). For these calculations, a minimum camera-to-object
distance of around 52 cm was assumed to also comply with the minimum depth range of
the Realsense D455. The on-robot camera was calibrated in order to calculate its intrinsic
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parameters, using the Intel R© RealSenseTM D400 Series Dynamic Calibration Tool. Sample
RGB and depth images captured by the Intel RealSense D455 camera are shown in Figure 5.

Figure 4. On-robot camera. The (left) image depicts the Intel RealSense D455 camera mounted on
the robot arm. The (right) image illustrates the investigation of the optimal placement of the Intel
Realsense D455 camera on the robot arm. All the dimensions shown are in mm. The dashed red line
on the right represents an object to be localized.

Figure 5. RGB (left) and depth (right) images from a Intel RealSense D455 camera, from the created
laboratory dataset.

ROS was used as the middleware for communication of the object detection and
localization module with the on-robot camera and other robot modules.

• ROS integration of RealSense2: The integration of the used RealSense camera was
achieved through the wrapper provided by Intel. A ROS node was created to receive
aligned images and camera calibration parameters from the RealSense camera, that
would be further used as inputs for the object pose estimation.

• Detection and Localization node: The functionality of the object localization was
integrated into ROS using a ROS package. This package contains a node that receives
the input data from the RealSense camera and runs the object detection and localization
as an on-demand ROS service, requested to localize an object, and the results are further
communicated through a ROS message.

4. Experiments and Results

The EPOS framework was initially tested using available models on benchmark
data, though these were considered inadequate to represent the actual objects and the
environment conditions. Therefore, new datasets with the objects of interest were created
for training and validation. A laboratory dataset was acquired under controlled conditions,
as well as an additional dataset from the indoor environment of a real car assembly line
and with the objects placed in realistic positions and poses in the production workstations.

The trained models based on these newly collected datasets were tested on a number
of test sequences from the actual industrial environment. Figure 6 presents the experimen-
tation procedure that was followed in the current work, including the training, validation
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and testing steps for the different types of datasets. All trained models are thoroughly
analyzed in the respective sections below.

Figure 6. Workflow of the performed experiments, including the training, validation, and testing
steps for the three models trained in the laboratory (blue), in the real environment (yellow) and in a
combination of the laboratory and real environment (green) data. In the parentheses the respective
sections and figures are cited.

4.1. Model Trained on Laboratory Data
4.1.1. Datasets

The laboratory dataset is unique as it depicts the objects of interest under controlled
conditions and in a systematic manner, using the Realsense D455 sensor. The calculated
ground truth poses and the 3D models of the objects are also included.

In order to capture the training and validation RGBD images for this dataset, a dedi-
cated setup as shown in Figure 7 was prepared. In this setup, the objects were placed on a
turnable surface and the camera was placed on an adjustable arm that allows us to capture
images from different angles and tilts. A whiteboard with markers around the border area
(specifically AruCo [49]) was placed on the turnable table, to later facilitate the estimation
of the ground truth poses. The objects were placed approximately at the center of this
board, to ensure a uniform background for all viewpoints. The images were captured from
a depth range of 0.53–0.80 cm, adhering to the minimum depth range of the Intel RealSense
D455 camera, in order to create a generic benchmark dataset with meaningful RGB as well
as depth information.

Figure 7. Setup prepared for capturing training and validation images in the laboratory. Objects are
placed on a turnable table and the camera is mounted on an adjustable arm.

The images were acquired in a systematic manner, following a dense spherical net of
viewpoints that ensured a dense sampling of all the possible poses of the depicted object,
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similarly to the T-LESS dataset [33]. The acquisition covered all viewpoints with elevation
from −85 degrees to 85 degrees with a 10 degrees step and also 360 degrees azimuth range
with a step of 5 degrees. To cover the full elevation range, the object had to be flipped.
Following this process, 1296 images were captured for each object, 75% of which were used
as training and 25% as validation data. Figure 8 depicts sample training images from the
laboratory dataset.

Figure 8. Sample images from the dataset created in the laboratory for the window control panel
(rows 1 and 2) and the screwdriver (rows 3 and 4).

To remove background clutter, the images were masked, following the standard EPOS
process [45], though it was noticed that the derived masks were not always accurate enough.
For that purpose, several state-of-the-art Fully Convolutional Networks (FCNs) for image
semantic segmentation, such as FCN-ResNet50, FCN-ResNet101 [50], DeepLab + ResNet50,
DeepLab + ResNet101 [51], SegNet [52], and U-Net [46] were trained and tested on the
dataset. The resulting masks were compared to the ones derived from the EPOS standard
masking method. The U-Net method was finally decided upon to replace the standard
masking approach used by EPOS, since it provided the most precise and complete masks.

Figure 9 below depicts indicative closeups of the captured images with background
clutter (left column), the masks computed by the standard EPOS masking method (middle
column) and the masks computed by U-Net (right column). It can be noticed that in the
example of the first row, certain details are missing from the mask created using EPOS, with
apparent holes in the created mask, while U-Net has managed to mask only the background.
On the contrary, in the example of the second row , the mask created by the standard EPOS
method is more generalized and less accurate than the one created by U-Net. Examples
of the finally masked images to be used for the model training are presented in the last
column of Figure 10.
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Figure 9. Closeups of examples of masks calculated by the standard EPOS masking method [45]
(middle column) and U-Net (right column) along with the original image (left column).

Figure 10. Examples of initially captured (left column) and final training (right column) images,
masked using the U-Net masks (middle column).

The created masked images were used as training and validation data, while the
initially captured non-masked images were only used for validation.

To obtain the ground truth object poses that were required for training, the pose of
the depicted object with respect to the camera coordinate system had to be calculated
for each image. For that purpose, the transformation of the object pose from the 3D
model system to the world (AruCo) coordinate system was calculated, encountering the
world to camera transformation that was computed for each image using the AruCo
markers and the average model to camera transformation, computed for a small and
representative number of images. The calculated object pose in the world coordinate
system was finally transformed back to the camera coordinate system for each image, based
on the transformation defined by the AruCo board. The aforementioned transformations
were calculated by solving the 2D–3D correspondences of the depicted object with respect
to its 3D model or the world coordinate system (AruCo marker system), respectively, using
the Posest library [53,54].

The required 3D coordinates of the AruCo markers were manually measured, while
the corresponding 2D image points were automatically detected on all images, as shown
on the left image of Figure 11. The 3D points on the objects were measured on the 3D object
models in Meshlab, while the corresponding 2D image points were manually selected on a
small but representative number of images, as shown on the right image of Figure 11.
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Figure 11. Automatically detected AruCo markers (left) and manually selected object points (right)
on the training images, used to calculate the ground truth object pose.

4.1.2. Training, Validation and Testing Results

For optimizing the object detection and localization network for the laboratory training
dataset, a DeepLabv3+ encoder–decoder network [39] with an Xception-65 [55] network as
the backbone was used. The backbone network was pre-trained on the ImageNet [56] and
COCO datasets [57]. Consequently, the object detection and localization model was trained
on 972 images per object, for both objects shown in Figure 2.

After a thorough investigation of the model architecture, the model was finally trained
for 90,000 steps, starting from a low learning rate of 0.00005 with a learning power of 0.7, to
avoid overfitting. Each object was fragmented into 64 surface fragments. Both objects were
trained in a single model and training was completed, achieving 0.88 loss. The training
progress is visualized in Figure 12, indicating that the loss is minimized and stabilized. To
prevent overfitting, the images were augmented during training by randomly adjusting
brightness, contrast, hue, and saturation, and by applying random Gaussian noise and
blur, similarly to the Ref. [58]. The model was then validated on 324 masked and 324
non-masked unseen images per object. The rest of the section presents the quantitative and
qualitative results.

Figure 12. Progress of the training loss for the created laboratory dataset.

Figure 13 presents indicative results for the masked images. The first two rows show
examples of very high-precision predictions, while the last two rows present rare cases of
incorrect object pose prediction that are mainly caused by the very low elevation imaging
angle that depicts the objects in a very hard-to-interpret pose. Figure 14 depicts sample
results for the case of the non-masked validation images. The first row presents an example
where the object is accurately detected and localized, regardless of the cluttered back-
ground. However, in some cases, the non-uniform background led to incorrect predictions,
especially at unfavorable low-elevation imaging angles, such as in the case presented in the
second row of Figure 14.
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Except for the visual qualitative evaluation, the object detection and localization results
were also evaluated quantitatively based on the state-of-the-art evaluation measures that
were presented in Section 3.3.

Table 1 presents the average recalls for the MSSD, MSPD, ADD, and VSD metrics,
as well as the average of the average recalls that is more commonly met in the literature.
The first row shows the results for the masked validation images, whereas the second one
shows the results for the initially captured non-masked images. The recall scores for the
case of the masked images are very high with an average of MSSD, MSPD and VSD metrics
of up to 97.8%. On the other hand, the average results for the non-masked images are up to
50.9%, close to the results on benchmark datasets, but still much lower than the masked
images. This reduced average recall reveals the need for further training of the model on
more realistic data in more complex scenes, which will be achieved by training on real data
captured in the industrial environment (see Section 4.2) and maybe also augmented data
derived from them.

Figure 13. Examples of precise predictions (first and second rows) and of incorrect predictions (third
and fourth rows) on masked images. The first column presents the input validation image, the second
column the ground truth and the third one the estimated object pose.
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Figure 14. Examples of correct (row 1) and incorrect (row 2) predictions on non-masked validation
images. The first column presents the input validation image, the second column the ground truth
and the third one the estimated object pose.

Table 1. Quantitative results for the evaluation of the object detection and localization model trained
on laboratory data.

Recall (%) MSSD MSPD ADD VSD Average
(MSSD, MSPD, VSD)

Masked Images 98.3 99.1 97.1 96.0 97.8

NON Masked Images 50.3 54.0 44.4 48.3 50.9

The model trained on laboratory data was also tested on unseen real environment
data of homogeneous and complex backgrounds. No ground truth poses were available
for this dataset, however, the results were visually evaluated. Figure 15 presents such
examples, where it can be observed that the model predicts with a pretty high accuracy the
pose of the objects on a quite homogeneous background. However, as shown in the second
row, it fails to deal with complex scenes. To improve the method robustness and enable it
to handle cases of more complex scenes with cluttered backgrounds and occlusions, like
the actual industrial environments, the model was also trained with data from the actual
manufacturing assembly line environment (see Sections 4.2 and 4.3).

The laboratory data could be used in the future to produce augmented data in a
more intelligent way, in order to increase the amount of training data without requiring
additional annotation effort, while at the same time enabling the application to be robust
enough to perform well for a variety of complex environments.

Figure 15. Test results for the model trained on laboratory data. The first row illustrates correct
predictions in cases of homogeneous background, while the second row illustrates cases of incorrect
predictions due to complex background.
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4.2. Model Trained on Real Industrial Environment Data
4.2.1. Datasets

In the previous section it was proven that the model trained on masked laboratory data
delivers high accuracy in localizing the investigated objects in uniform and homogeneous
backgrounds. However, the accuracy decreases dramatically when the background clutter
and the complexity of the scene increases. To address this issue, the model was re-trained
with real data from the assembly line environment, captured using the Realsense D455
sensor and calculating the ground truth poses.

The training and validation RGBD images for this dataset did not require a special
setup such as in the case of the laboratory dataset. In this case, the objects were placed
in realistic positions in the car assembly line environment. The images were manually
captured from a depth range of around 0.30–0.80 cm to comply with the safety regulations
of the robot mobility with respect to possible collisions with the surrounding environment.
The captured images covered a quarter-sphere net of viewpoints from many different
angles and tilts, to ensure a dense sampling of all the possible viewpoints of the robot
camera to the objects in their positions in the real environment. Furthermore, the dataset
was captured in real conditions, depicting the real clutter and background noise in the car
assembly line environment. Finally, 600 images were captured for each object, with 75% of
them used as training and 25% as validation data. Sample training RGB images from the
real environment dataset are presented in Figure 16.

Figure 16. Sample training images from the real industrial environment dataset for the screwdriver
(top row) and the window control panel (bottom row).

In this case, the input training and validation images were not masked before feeding
them to the network. Additionally, on the contrary to the laboratory data, no markers were
needed since the ground truth object poses in the images were calculated using the 6D-PAT
pose annotation tool [59].

4.2.2. Training, Validation and Testing Results

Similarly to the model trained on the laboratory data, the optimization for training on
the real environment data was achieved using a DeepLabv3+ encoder–decoder network [51]
with an Xception-65 [55] network, pretrained on ImageNet [56] and the COCO dataset [57],
as a backbone. The object detection and localization model for the case of the real data was
trained on 450 images per object, for both the examined objects presented in Figure 2.

The most well-performing model architecture was found to be that of the 90,000 train-
ing steps, with an initial learning rate of 0.0001, a learning power of 0.9 and 64 fragments for
each of the two examined objects. A final trained model for both objects was created, achiev-
ing a 0.77 training loss. Figure 17 depicts the training progress for this model, showing
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that at the end the loss is minimized and stable. During training, the training images were
augmented similarly to the images for the model of the laboratory data (see Section 4.1.2),
to avoid overfitting. The model validation was then performed on 150 unseen images for
each object.

Figure 17. Progress of the training loss for the created dataset in the real industrial environment.

Figure 18 provides some visualization of the ground truth and the estimated object
pose for the validation data from the real environment. The first two rows present results
for the screwdriver, while the next two present results for the window control panel. The
method indicates superior performance even in cases of occluded and partially depicted
objects, very complex and noisy backgrounds, and unfavourable conditions that even make
the features of the objects very hard to distinguish with the naked eye, especially in the
example in the last row of the black window control panel.

Figure 19 illustrates the results of some of the very few cases of incorrect pose estimates
on the validation data. These rare cases of failure or not accurate enough estimates are
caused by unfavourable conditions, a low elevation imaging angle, and very short object-
to-camera distance.

Figure 18. Cont.
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Figure 18. Examples of precise predictions on validation images from the real industrial environment.
The first column presents the input validation image, the second column the ground truth, and the
third one the estimated object pose.

Figure 19. Examples of incorrect predictions on validation images from the real industrial environ-
ment. The first column presents the input validation image, the second column the ground truth, and
the third one the estimated object pose.

The performance of the trained model on real data was also evaluated quantitatively,
using the state-of-the-art evaluation measures presented in Section 3.3, similarly to the
evaluation of the laboratory model. Table 2 presents the average recall for the MSSD, MSPD,
ADD and VSD metrics and the average of the average recalls for the MSSD, MSPD and VSD.
All individual as well as the average recall scores exceed 94%, proving the high accuracy
and precision that was achieved on unseen realistic validation data.

Table 2. Quantitative results for the evaluation of the object detection and localization model trained
on real environmental data.

Recall (%) MSSD MSPD ADD VSD Average
(MSSD, MSPD, VSD)

Real Environment
Images 94.5 95.2 96.7 94.3 94.7

The developed methodology was finally tested on a set of unseen test sequences
captured in real time from the on-robot camera in the actual industrial environment. As
an integrated robotic application, it managed to successfully localize the objects of interest
in real conditions and in less than 0.4 s per image. Sample results on the test data are
illustrated in Figure 20. The first two rows depict successful cases, while the last two,
some cases of failure. As it can be observed, the method is successful in unfavourable
illumination conditions, complex backgrounds with significant clutter, and even in cases
of only partially occluded objects. The performance on both validation and testing data
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proves that, using the proper training parameters and applying online data augmentation,
we avoid overfitting and achieve good generalization. However, the rare cases of failure
(sampled in the last two rows) are mainly caused by extremely unfavourable conditions
of clutter and occlusions or when the camera is either very close or very far from the
object.In addition, training the model only on data with a complex background decreased
its robustness and repeatability on less cluttered and homogeneous backgrounds, which
was the advantage of the model trained on laboratory data. To overcome this and take
advantage of the dynamics of both types of training data (great performance on homoge-
neous backgrounds for laboratory data and on complex scenes for the actual environment
data), the method was also trained on a combination of laboratory and actual environment
data (see Section 4.3).

Figure 20. Examples of predictions on real test images. The first rows present correct object pose
predictions, while the last two show incorrect ones.

4.3. Model Trained on Both the Laboratory and the Real Industrial Environment Data
4.3.1. Datasets

To combine the advantages of the two aforementioned models in order to boost the
robustness of the developed object localization method for both homogeneous, complex and
unfavorable illumination scenes, it was decided to train the model also on a combination of
laboratory and actual environment training data.

4.3.2. Training, Validation and Testing Results

The model in this case was trained similarly to the two models above using 774 images
per object (450 from the industrial environment and 324 from the laboratory masked data).
The parameters used for the final training were 120,000 steps, a 0.0001 initial learning rate,
0.9 learning power and 64 fragments per object, reaching a training loss of 0.51 (Figure 21).
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Figure 21. Progress of the training loss for the combined dataset (laboratory and real industrial
environment).

As expected, the model behaved very well on all validation data. In fact, it adopted the
behaviour of the first model for the validation data with the homogeneous background and
the behaviour of the second model for the data with a cluttered background. This proves
that overfitting was also avoided in this case, obtaining a model that is able to generalize
well and cope with a create variety of scenes. The quantitative results of the validation are
presented below in Table 3 such as in the previous sections.

Table 3. Quantitative results for the evaluation of the object detection and localization model trained
on both laboratory and real environment data.

Recall (%) MSSD MSPD ADD VSD Average
(MSSD, MSPD, VSD)

Laboratory and Real
Environment Images 94.6 95.0 96.0 94.6 94.7

Similarly to the training with only the real environment data, both the individual and
the average recall scores exceed 94%. This demonstrates that the model is stable and able to
simultaneously serve robotic applications with illumination changes and scenes that range
from simpler and homogeneous to very complex and cluttered.

The performance of this model was also tested on unseen test images captured from
the on-robot camera in the actual industrial environment. A comparison of the results of all
the three trained models for a variety of testing data is presented in Figure 22. As seen in the
second column, the model trained only on laboratory data performs quite accurately in ho-
mogeneous backgrounds (rows 1 and 2) but not in complex ones (rows 3 and 4). The model
trained only on real environment data (column three) shows superior performance for
complex scenes, but not always for homogeneous ones. Finally, the model trained on both
laboratory and real environment data delivers correct pose estimation for all cases, verifying
the potential of the method to support object-grasping in different realistic scenarios.
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Figure 22. Comparison of the results of the three trained models. The first column shows the
input RGB image. The rest show the results for the models trained on only laboratory, only real
environment, and both laboratory and real environment data, respectively.

5. Conclusions

The current work presented a visual object 6D pose estimation workflow engineered
to support industrial objects with challenging characteristics used in car-assembly tasks in
manufacturing environments. Exploiting recent advances in 6D pose estimation based on
deep learning methods, two different datasets were collected, annotated and used for model
training. The first dataset consisted of images and ground truth data acquired in laboratory
conditions, whereas the second dataset consisted of data collected from a real industrial
environment. The pose estimation model was trained on three different combinations of
data from the two datasets and was evaluated in a number of test sequences from the
real car door assembly line environment. The evaluation results revealed that the model
trained only on the laboratory data performs quite accurately in homogeneous backgrounds
but not in complex ones. Vice versa, the model trained only on real environment data
performs well for complex scenes compared to simpler scenes. Finally, the model trained
with both laboratory and real environment data managed to estimate accurate object 6D
poses for all cases of both simpler and complex scenes, occluded objects and illumination
changes. This verifies the potential of the method to support object-grasping for car-door
assembly tasks in real industrial manufacturing environments. Although the results have
been proven satisfactory for the examined objects and scenes, the performance could be
further improved by considering more advanced data augmentation techniques, scaling
and accelerating the generation of training data based on NeRFs, while also including
additional objects relevant to the application domain and that support the applicability
to other manufacturing environments. Furthermore, arising from the initial assumptions
of handling objects with challenging geometric and surface characteristics, that is, weak
texture, symmetries, black and unfavorable environment conditions, the workflow is
suitable for a number of indoor and outdoor scenarios beyond robot grasping, also for
visual monitoring/tracking purposes.
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