
Citation: Liu, Z.; Xu, G.; Xiao, J.;

Yang, J.; Wang, Z.; Cheng, S. A

Real-Time Registration Algorithm of

UAV Aerial Images Based on Feature

Matching. J. Imaging 2023, 9, 67.

https://doi.org/10.3390/

jimaging9030067

Academic Editor: Silvia Liberata Ullo

Received: 2 February 2023

Revised: 5 March 2023

Accepted: 9 March 2023

Published: 11 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

A Real-Time Registration Algorithm of UAV Aerial Images
Based on Feature Matching
Zhiwen Liu 1,2,* , Gen Xu 2, Jiangjian Xiao 2, Jingxiang Yang 2, Ziyang Wang 1,2 and Siyuan Cheng 1,2

1 Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences,

Ningbo 315201, China
* Correspondence: liuzhiwen@nimte.ac.cn

Abstract: This study aimed to achieve the accurate and real-time geographic positioning of UAV
aerial image targets. We verified a method of registering UAV camera images on a map (with the
geographic location) through feature matching. The UAV is usually in rapid motion and involves
changes in the camera head, and the map is high-resolution and has sparse features. These reasons
make it difficult for the current feature-matching algorithm to accurately register the two (camera
image and map) in real time, meaning that there will be a large number of mismatches. To solve this
problem, we used the SuperGlue algorithm, which has a better performance, to match the features.
The layer and block strategy, combined with the prior data of the UAV, was introduced to improve the
accuracy and speed of feature matching, and the matching information obtained between frames was
introduced to solve the problem of uneven registration. Here, we propose the concept of updating
map features with UAV image features to enhance the robustness and applicability of UAV aerial
image and map registration. After numerous experiments, it was proved that the proposed method is
feasible and can adapt to the changes in the camera head, environment, etc. The UAV aerial image is
stably and accurately registered on the map, and the frame rate reaches 12 frames per second, which
provides a basis for the geo-positioning of UAV aerial image targets.

Keywords: SuperGlue; feature matching; drone; real-time image registration; image blocking;
target geolocation

1. Introduction

In light of the rapid development of UAV technology [1–3], the onboard camera of the
UAV is often used to identify and locate the target. The maturity of feature-matching [4–7]
technology means that it is often used for target tracking and positioning. By registering
the UAV camera image containing the target on the geographic map or the satellite plane
projection map, the real-time geolocation of the camera screen target can be determined,
and the effect of augmented reality can be achieved. Therefore, it is of great significance to
study the real-time registration technology of the UAV aerial images and maps.

However, for low-texture and high-resolution maps, the rapid movement of the UAV
and transformation of the camera’s pan and tilt behavior render feature matching between
the map and UAV aerial image difficult. To solve the abovementioned problems, in this
paper, we propose a registration algorithm based on SuperGlue [8] and hierarchical block.
The algorithm can adapt to the changes in scene and camera pan and tilt behavior, reduce
the difference between the map and UAV aerial image, and accurately register the UAV
aerial image on the map with sparse texture in real time.

2. Related Work

Concerning traditional feature detection algorithms, in 1999, Lowe, D G. proposed
the Sift [9] algorithm of local scale invariant features, which is one of the classic, most
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traditional features capable of stable detection in regard to image rotation, blur, different
scales, and brightness. In 2006, the Surf [10] algorithm, proposed by H. Bay, was found to
be equivalent to the accelerated version of the Sift algorithm. With the aim of maintaining
the original performance of the Sift algorithm, it solved the shortcomings of the high
computational complexity and long-term consumption of the Sift algorithm. However,
using the Sift and Surf algorithms, it is still impossible to conduct real-time feature-matching
tasks for UAV camera images. In 2011, Rublee et al. proposed the Orb [11] algorithm as
an effective alternative to Sift and Surf. Orb used the Fast [12] algorithm as the basis for
feature extraction and the BRIEF [13] algorithm as the basis for feature matching. The
computation time of the Orb algorithm was 1% of that of Sift and 10% of that of Surf, but
the feature extraction and matching effect, in the case of low-texture scenes, were poor, and
the accuracy was low.

In work aiming to improve the accuracy and speed of feature extraction and matching
algorithms, due to the tilt and large angle of view, some low-altitude UAV aerial images are
difficult to register accurately. To solve this problem, Wang et al. [14] used the improved
ASIFT(affine scale-invariant feature transform) algorithm to collect the initial feature points,
the Weighted Least Squares Matching (WLSM) method to correct the positioning of the
feature points, and the adaptive normalized cross-correlation algorithm to estimate the local
transformation model. Finally, the UAV aerial images with large changes in perspective
could be registered at the sub-pixel level. Liu et al., stitching high-resolution UAV aerial
farmland images [15], found that the image was down-sampled before the detection of
the features, aiming to reduce the number of feature points, and the feature matching
was realized by a feature descriptor based on gradient normalization. The Progressive
Sample Consistency algorithm was used to eliminate the false matching points, which
improved the speed and accuracy of the algorithm. Wu et al. [16], stitching forest images
taken by a UAV, found that high scene similarity leads to low accuracy in feature matching
and a long stitching time. To solve this problem, the arccosine function ratio of the unit
vector dot product was introduced so as to overcome the long matching time caused by the
excessive number of matching points, and the Fast Sample Consistency (FSC) algorithm
was introduced to eliminate the false matching points, which improved the accuracy of
the algorithm. However, the abovementioned methods may not obtain satisfactory feature-
matching results for high-resolution, low-texture maps and UAV aerial images and are
far from capable of performing real-time tasks. Goh, J. N. et al. [17] introduced matrix
multiplication into the Ransac [18] algorithm for the task of the real-time stitching and
mapping of UAV aerial images, which greatly reduced the processing time for calculating
the homography matrix. Moreover, in the stitching process, several input images were
divided into two halves to reduce the time for feature detection and extraction. Xiong,
P. et al. [19], conducting real-time UAV stitching, used the prediction region to match
the features of the current image, ensuring that the time required for the task was the
same and reducing the stitching error. Zhang, G. et al. [20] introduced the semantic
segmentation [21–23] algorithm to filter the foreground features, which improved the
robustness and limitations of the algorithm, in order to solve the problems of misalignment
and tearing caused by the significant changes in the dynamic foreground during the real-
time splicing of the UAV images. However, the segmentation algorithm may lead to the
degradation of the real-time performance.

In terms of the registration of UAV images and maps, Yuan, Y. et al. [24], aiming
to solve the problem that the UAV aerial images and Google Maps cannot be accurately
registered due to large differences in the viewpoint direction, shooting time, and height
between images, obtained Google Map images from the approximate position of the UAV
aerial images. Using the VGG16 [25] model to extract deep convolutional features, the
algorithm achieved a more robust and effective registration effect. Zhuo, X. et al. [26] stated
that the greatest challenge in matching UAV aerial images with previously captured geo-
referenced images is the significant differences in scale and rotation. They proposed dense
feature detection and one-to-many matching strategies, combined with global geometric
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constraints for outlier detection, to identify thousands of valid matches in cases where Sift
failed. This method can be used to realize the geo-registration of UAV aerial images, and the
registration accuracy reaches the decimeter level. However, the algorithm was only studied
in terms of its accuracy and was not optimized in real time. In order to avoid the error
accumulation and distortion caused by using local methods to stitch continuous images
captured by UAV airborne cameras, Lin Y. et al. [27] proposed using a high-resolution
map as a reference image, to register frames on the map and perform stitching by the
frame-to-frame registration method. Nassar A. et al. [28] realized the positioning of the
UAV by registering the forward- and downward-view images taken by the UAV and the
satellite map. The algorithm only used the airborne camera and did not require GPS.
The semantic shape-matching algorithm was introduced in the registration process to
improve the accuracy, which proved that the utilization of visual information can provide a
promising method of UAV navigation.

Nowadays, feature-matching algorithms have powerful functions and are often used
for image stitching [29–31], positioning, mapping, registration, and other visual tasks.
However, using this technology for scenes with sparse textures and tasks requiring a high
real-time performance and accuracy remains challenging.

The main work reported in this paper is as follows:
1. The SuperGlue matching algorithm was applied for the real-time registration of

UAV aerial images and maps, and a hierarchical blocking strategy combined with prior
UAV data is proposed here to optimize the performance of the algorithm.

2. The inter-frame information was integrated into the matching process to improve
the stability of the algorithm.

3. A method for updating map features in real time is proposed to improve the
robustness and applicability of the algorithm.

3. Materials and Methods
3.1. Overall Design Framework

The functional architecture of the system is shown in Figure 1. It is mainly divided
into four platforms, including the UAV airborne terminal, the map terminal with the
geographical location, the processing platform responsible for registration, and the target
recognition and positioning platform. The map terminal is divided into multiple layers
and blocks and has accurate geographical coordinates. The geographical coordinates adopt
the Earth plane coordinate system (UTM coordinates). The UAV terminal provides the
altitude, heading angle, rotation angle of pan-tilt-zoom camera, GPS, and other data to
the map terminal, and the map terminal selects the corresponding map block based on
this information. After the accurate registration of the UAV aerial image and the map
block, the UAV aerial image also contains information on the geographical position, and
the corresponding transformation relationship is sent to the target positioning platform for
the geo-positioning and remapping of the target and other applications. In this paper, we
mainly study the registration algorithm for the map and the UAV image. In the study, the
abovementioned processes were carried out in real time.

The overall design flow chart of the algorithm is shown in Figure 2, which mainly
includes the stages of the pre-generation of the image features and other data, the automatic
search of the map blocks combined with the prior UAV data, the integration of the inter-
frame information module, and the real-time update module of the map features.

3.2. Hierarchical Blocking Strategy Combined with Prior UAV Data

Through the real-time feature matching of the video picture from the UAV’s airborne
camera with the map, the camera picture can be accurately registered to the map (the map is
an orthographic projection of the satellite perspective generated by CC software, as shown
in Figure 3). The map is manually calibrated, and the transformation relationship between
the pixel and geographic coordinates for the map is as follows:
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g = H × p (1)

where g is the Utm coordinate, p is the pixel coordinate, and H represents the transforma-
tion matrix, which can be obtained by manually calibrating 4 pairs of points. Following
the registration, the geographical position of the target can be obtained using the pixel
coordinates of the target in the UAV aerial image, and the geolocation function can also be
realized. However, it is difficult to accurately register the dynamically changing camera
images through feature matching with a wide range of maps. For this problem, our solution
is to divide the map into blocks to obtain a number of local maps, and to combine the prior
UAV data to flexibly select the local maps to be matched.
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3.2.1. SuperPoint and SuperGlue Feature-Matching Algorithms

The first step of the feature-matching task is the extraction of the feature points. Feature
points refer to the positions of 2D image points that can be stably and repeatedly detected
under different lighting conditions and different viewpoints. SuperPoint [32] is a type of
deep learning feature that designs a self-supervised network framework. Compared with
the patch-based method, it can simultaneously extract the location of feature points and
the descriptors on the original image with pixel-level accuracy. It is suitable for ensemble
computer-vision-matching tasks, such as homography estimation.

SuperGlue is a real-time feature-matching algorithm based on a graph neural net-
work [33], which can filter outliers while performing feature matching. Feature matching
is conducted by solving the differentiable optimal transfer problem. Compared with the
traditional, hand-designed features, it can achieve the best results in indoor and outdoor
environments and achieve real-time feature matching on GPU. Its inputs are the feature
points and descriptors of the two images to be matched, and the output is the matching
relationship between the features of one image and the features of another image. In this
process, two kinds of attention [34] mechanisms are introduced: 1. self-attention, which
serves to enhance the acceptance of local descriptors and 2. cross-attention, where the
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image is matched by approximate back-and-forth observation. The Attentional Graph
neural network, the first component of the SuperGlue network, is shown in Figure 4. The
component is divided into two key technologies. The first serves to embed the key point
position into the high-dimensional vector using multi-layer perception (MLP) [35] and then
fuse the information on its visual appearance. The initial representation of each key point
combines the visual appearance and position and is expressed as follows:

x0
i = di + MLPenc(Pi) (2)

where x0
i is the initial representation of key point i, di is the visual appearance of key point

i, Pi is the location of the key point, and MLPenc means that multi-layer perception is used
to increase the dimension of the feature.
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The second form of technology used is the attention mechanism (cross/self + MLP),
which serves to calculate an increment (delta0 or delta1) of the descriptors encoded by the
key encoder (des0 and des1) in order to update the descriptors. If the mechanism is self-
attention, the (attention + MLP) layer is passed into des0 and des0, and if the mechanism is
cross-attention, the layer is passed into des0 and des1. The formula is as follows:

(l+1)xAorB = (l)xAorB + MLP([ (l)xAorB
∣∣∣∣∣∣mε]) (3)

where (l+1)xAorB represents the des0 or des1 to be updated, (l)xAorB represents the current
des0 or des1, [·||·] represents the concatenation operation, and mε represents the result
of the aggregation of self- and cross-information. SuperGlue is one of the best feature-
matching algorithms based on deep learning.

In this study, the SuperPoint and SuperGlue algorithms were used to perform feature
matching. Although the traditional Sift and Surf have high accuracy, they are not real-time
algorithms. Orb is a real-time and commonly used algorithm in research; however, the
robustness of the Orb algorithm is poor in some scenes, it produces only a single color
or sparse texture. Compared with the Orb algorithm, the SuperPoint and SuperGlue
algorithms produce better robustness and accuracy results for sparse texture scenes, can
extract more feature points, and have a higher matching accuracy.

3.2.2. Hierarchical and Block Strategy

Due to the map’s high resolution and wide geographic coverage, it is not feasible to
directly match the camera footage with the entire map. Moreover, most of the areas in the
map are irrelevant to the UAV aerial images, which leads to an increased time cost and
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lower-accuracy results when feature matching is performed. If one selects an area in the
map that is roughly the same as the camera image for matching, more matching points can
be generated, and the accuracy and speed of the matching can be greatly improved. In this
study, the map was divided into blocks, and a pyramid was constructed in layers so that
the most appropriate block area could be selected each time for matching with the camera
image, thus ensuring high accuracy, real-time matching, and reducing the large number of
mismatches. The specific hierarchical blocks are shown in parts (a) and (b) of Figure 5.
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blocks: (a) plan diagram; (b) map pyramid.

Through clipping and downsampling techniques, we set the resolution of all map
blocks to 1920 × 1080, and the number of map blocks that were positioned closer to the top
level was low. The upper level of the pyramid is not divided, and it contains the largest
field of view. It is suitable for matching when flying at high altitude or when the field angle
of the airborne pan–tilt–zoom camera is large. After dividing the map into blocks, one can
pre-calculate the SuperPoint features of all the blocks and store them in the feature array
and pre-calculate the transformation relationship between the geographical coordinates
and pixel coordinates of all the map blocks. A homography matrix array can be used for
storage. For each camera image to be matched, only the feature of this frame must be
calculated. The sequence number of the map block must be determined during matching,
and the corresponding feature must be selected from the feature database for matching,
which can accelerate the matching process.
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3.2.3. Automatic Map Block Search Strategy Combined with Prior UAV Data

When the UAV operates at a high altitude, the height information of the UAV is used
to select the layer of the map pyramid (20–40 m selected as the third layer, 40–80 m selected
as the second layer, and higher than 80 m selected as the top layer). Through the UAV GPS
and rotation angle information of the camera, the geographic coordinate (Utm coordinate)
of the center of the current camera image can be roughly calculated. Figure 6 shows a
pan–tilt–zoom camera and its mounting position; the camera can be rotated left and right
or up and down. First, the UTM coordinate of the position directly below the UAV can
be obtained via GPS (the UTM coordinate and GPS information can be converted to each
other). Then, the UTM coordinates of the center of the camera image can be estimated
from the camera rotation angle information. Figure 7 shows the geometric diagram of the
camera field-of-view in three cases. The formula is as follows:

L = h× tan α (4)

where h represents the altitude of the UAV, α represents the pitch angle of the camera, and
L represents the displacement of the image center after the camera is rotated up and down.

Putm = (n + L× cosβ, e + L× sinβ) (5)
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Here, (n, e) represents the UTM coordinate of the position directly below the UAV,
which can be converted directly by GPS, β represents the yaw angle of the camera, and
Putm represents the approximate UTM coordinate of the center of the current camera image.
After the Putm is obtained, the map block containing this coordinate is selected, and finally,
the features of the map block in the feature array are selected for feature matching with the
UAV aerial image.

3.2.4. Rotation

Since the matching performance of the SuperGlue algorithm decreases when the angle
between the map and the camera picture is 45 degrees or greater, when the angle between
the two is above a certain threshold (in our study, based on the empirical values, we set
the threshold to 25 degrees), the image of the camera must be rotated beforehand and then
matched with the map. The specific angle of rotation is determined by the yaw angle of the
unmanned aerial vehicle itself. After the rotation correction, the matching effect is greatly
improved. The image rotates around the center point of the image, and the rotation matrix
is R. The formula is as follows:

A =

1 0 −a
0 1 −b
0 0 1

 · B =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 · C =

S 0 0
0 S 0
0 0 1

 · D =

1 0 a
0 1 b
0 0 1


R = D× C ∗ B× A

(6)

The transformation relationship between the pixel and geographical coordinates of
the UAV aerial image is as follows:

g = Hi × H f × R× P (7)

where Hi is the transformation relationship between the pixel and geographical coordinates
of the selected map block (i represents the number of the map block), H f is the result of
the feature matching, R is the rotation matrix, P is the pixel coordinate of the UAV aerial
image, and g is the geographical coordinate.

3.3. Inter-Frame Information Fusion
3.3.1. Inter-Frame and Global Matching Fusion

When each frame is matched with the map block, the global registration of the match-
ing points is diminished, and the accuracy is low so that the registration of each frame
is not coherent and the registered frame appears to be affected by high-frequency jitter.
This process can be made more stable by integrating inter-frame matching, since both
adjacent frames are slightly shifted. The current frame image is matched with the map
and the transformed previous frame simultaneously, two homography transformation
matrices are calculated, respectively, and then the two are weighted and fused to obtain
the final homography transformation matrix, as presented in Figure 8. The integration
of inter-frame matching creates a smoother and more stable registration process, without
producing obvious jitter. The appropriate formula is as follows:

H f = w1× H1 + w2× H2 (8)

where H1 is the homography matrix matched with the transformed previous frame, H2 is
the homography matrix matched with the map, w1 and w2 represent the weights (in our
study, we set w1 to 0.4 and w2 to 0.6), H f is the transformation matrix of the current frame.
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3.3.2. Anomaly Matrix Detection and Removal

When there are not enough matching points, the error of the calculated homography
transformation matrix is too large, and the registration effect is very poor. The threshold
can be set according to the empirical value in order to filter the small set of matching points.
Because the motion of the screen is smooth, the homography transformation of the previous
frame can be used to solve the problem of occasional registration anomalies. The rules are
as follows:

H f =

{
Hpre , i f (mkpt1.size ≤ 25)

f indH(mkpt1, mkpt2) , i f (mkpt1.size > 25)
(9)

where Hpre is the transformation matrix of the previous frame, f indH represents a func-
tion that uses the Ransac [18] algorithm to obtain a transformation matrix, mkpts1 is the
matching point of the map or previous frame, mkpts2 is the matching point of the current
frame, and H f is the transformation matrix of the current frame.

3.4. Map Feature Update

Usually, when the UAV image is in a difficult matching area, the registration effect
is poor. For example, when the center point of the airborne camera image is at the edge
of the matching map block, the area of overlap between the map block and the camera
image is relatively small, and large registration errors can easily be produced due to the
lack of matching points during registration. When the camera image is in a low-texture
scene or the camera image is tilted at a large angle, feature matching with the map block is
more difficult, and it is difficult to achieve a good registration accuracy. Here, to address
the abovementioned problems, a method of updating the map features is proposed, which
uses the features of the UAV screen to update the map features in real time and solves
the problem of the immutable map’s significant limitations, enabling it to adapt to the
changing scene and automatically update its own features following the changes in the
scene. Compared with the immutable map, it has a stronger robustness and adaptability.
(The scene is not always the same, being affected by sunlight and weather. The map
texture information is not especially rich in terms of color, texture, and brightness, and
it is significantly different from the camera image.) The rules for the feature update are
as follows:
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f eam =




desm = des f
scorem = score f

keyPointm = keyPointm

, con f ≥ 0.6

f eam , con f < 0.6

(10)

where f eam represents the SuperPoint feature in the map (SuperPoint features include
key point position, feature descriptor, and feature probability), desm and des f represent
the feature descriptor of the map and UAV aerial image, respectively, scorem and score f
represent the feature probability, keyPointm represents the key point position of the map,
and con f represents the confidence of a pair of matches.

When a frame of the UAV aerial image is matched with the map, the feature points of
the frame image with a matching confidence value higher than 0.6 are selected to cover the
features of the corresponding feature points in the map, including the feature descriptor
and probability, and the position of the feature point remains unchanged.

4. Experimental Results

The experiment was mainly divided into four parts. One compared the performance
of the proposed and Orb methods in two aspects: feature-matching and registration effect.
The other verified the effectiveness of several improvements proposed in this paper; a
vertical comparison experiment was conducted.

The vertical comparison experiment can be divided into three aspects. Firstly, the
feature-matching effect prior to and following map blocking and rotation activity was
compared. Secondly, the stability of the registration prior to and following integrating the
matching information between frames was compared. Finally, the accuracy of registration
prior to and following the real-time updating of map feature points was compared, and the
evaluation was conducted considering subjective and objective perspectives.

The multirotor X-type tethered UAV (with a pan–tilt–zoom camera, as depicted
in Figure 9) was used in the present experiment, the resolution of all map blocks was
1920 × 1080, the resolution of the UAV aerial image was 1920 × 1080, and the confidence
threshold of the SuperGlue algorithm was set to 0.2.
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4.1. The Effect of the Proposed Method and the Orb Algorithm

This experiment mainly compared the traditional Orb-matching algorithm with the
method proposed in this paper, and the Orb algorithm used the BF [36] algorithm to
conduct the matching. Two groups of map blocks and UAV aerial images were selected to
compare the matching effect and accuracy of the matching-point pairs of the two methods
(the Ransac [18] algorithm was used to calculate the matching accuracy in the experiment).
Then, the registration results of the two methods were compared, where the registration
result refers to overlaying the registered UAV aerial images onto the map block.

In Figure 10, we presented the effect of feature matching between the Orb algorithm
and our proposed method. In order to present clearer results, we uniformly selected
20 pairs of matches and drew them. From the figure, it can be observed that the Orb
algorithm has many incorrect matches (we selected five of them to mark). Similarly, we
also uniformly selected 20 matching points for the SuperGlue algorithm to be drawn, and
we can observe that basically no error matching is evident.

Table 1 presents the comparison of the number and accuracy of matching-point pairs
of the two methods. From the two groups of experiments, we can observe that the Orb
algorithm and our method can attain a relatively high number of matching-point pairs;
however, after eliminating the mismatching-point pairs by the Ransac [18] algorithm, the
remaining correct matching-point pairs of the Orb algorithm are very few. The table also
shows that the matching accuracy of the Orb algorithm is very low, indicating that most of
the matching-point pairs obtained by the Orb algorithm are invalid.

Table 1. Comparison of the algorithms’ matching accuracy.

Experimental
Group Algorithm Number of

Matches
Accurate
Number Accuracy Rate

1
Orb 190 10 0.05

SuperGlue 583 274 0.47

2
Orb 397 16 0.04

SuperGlue 1706 1283 0.75

In Figure 11, we present two groups of image registration results for the Orb algorithm
and our method. It can be observed that our method can accurately register the UAV aerial
images and maps; however, the Orb algorithm cannot register the two objects. It can also
be observed from the figure that when the Orb algorithm was used, an abnormal result
was obtained, which was caused by the incorrect matching of the Orb algorithm, because
the homography transformation matrix calculated using the incorrect matching method
was also wrong.

4.2. Blocking and Rotation Experiments

This experiment can be divided into two aspects. The first verified that the map has a
better feature-matching effect with the UAV aerial image after dividing it into blocks. We
selected a recorded aerial video of the UAV, a map block, and a non-block map (with a
greater geographical range), and we matched the features of the video frame images with
the two maps, respectively. The effect of the feature-matching process was evaluated by
the number of matching points, and we also compared their running speed.

The second aspect involved verifying that the UAV aerial image had a stronger feature-
matching effect when it was rotated to face the same direction as the map. Similarly, we
selected 10 frames of the UAV aerial images that were not consistent with the map direction,
and we rotated them by the heading angle of the UAV to obtain a set of images that were
consistent with the map direction. Feature matching between these images and the map
was performed, and the effect of feature matching prior to and following rotation was
evaluated by the number of matching points obtained.
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Figure 10. Comparison of feature matching between the Orb and SuperGlue algorithms: (a) Orb 

feature matching (left: map, right: camera, the numbers in the figure represent incorrect matches); 

(b) SuperGlue feature matching (left: map, right: camera). 

Figure 10. Comparison of feature matching between the Orb and SuperGlue algorithms: (a) Orb
feature matching (left: map, right: camera, the numbers in the figure represent incorrect matches);
(b) SuperGlue feature matching (left: map, right: camera).
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Figure 11. Registration effect: (a) Orb algorithm; (b) our proposed method.

In the blocking experiment, Figure 12 presents the matching results of a frame of a
UAV aerial image with the map block and unblocked map. It can be observed that the map
following blocking presents more matching points with the UAV aerial image, and there
is evidence of some incorrect matches (we marked them with black numbers) when not
blocking. Table 2 shows the frame rate of the video frame registration in the two ways. It
can be observed that the feature-matching process has a higher frame rate after the map is
blocked, which improves the speed of registration. Table 3 shows the number of matching-
point pairs for 10 randomly selected frames. We presented the larger value in bold and can
observe that there were increased numbers of matching points following blocking.

Table 2. Real-time performance of the algorithms.

Strategy Algorithm Frame Rate

Non-blocking SuperGlue 9

Blocking SuperGlue 12

Table 3. Number of the matching points before and after blocking. The better results are highlighted
in bold.

Sampling Frame 1 2 3 4 5 6 7 8 9 10

Non-blocking 7 55 14 26 41 25 4 5 96 64

Blocking 282 314 88 166 95 105 136 87 400 242
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In the rotation experiment, Figure 13 presents the matching effect of the map with 

the UAV aerial images prior to and following rotation. In order to better display the re-

sults, we removed the matches with a matching-confidence result lower than 0.3, and ob-

served that there were more matching points following the image rotation, and the per-

formance of feature matching was greatly improved. Table 4 depicts the comparison re-

sults of the number of matching points in 10 frames of images. The higher values are pre-

sented in bold, and we can observe that when the UAV aerial image and map roughly 

face the same direction, increased matching-point pairs can be obtained. 

Figure 12. Comparison of the matching effects prior to and following blocking: (a) effect of matching
prior to blocking (the map is on the left, the camera image is on the right, and the numbers in the
figure represent incorrect matches); (b) effect of matching following blocking (the map is on the left
and the camera image is on the right).

In the rotation experiment, Figure 13 presents the matching effect of the map with the
UAV aerial images prior to and following rotation. In order to better display the results,
we removed the matches with a matching-confidence result lower than 0.3, and observed
that there were more matching points following the image rotation, and the performance
of feature matching was greatly improved. Table 4 depicts the comparison results of the
number of matching points in 10 frames of images. The higher values are presented in
bold, and we can observe that when the UAV aerial image and map roughly face the same
direction, increased matching-point pairs can be obtained.

Table 4. Number of the matching points before and after rotation. The better results are highlighted
in bold.

Sampling Frame 1 2 3 4 5 6 7 8 9 10

Before Rotation 56 70 71 35 91 113 22 30 60 41

After Rotation 274 332 334 178 452 496 147 198 225 208

4.3. Comparison Conducted Prior to and Following the Addition of
Inter-Frame-Matching Information

This section of the experiment was divided into two parts: one verifies that frame-to-
frame matching works better than map-to-frame matching; the second verifies that the sta-
bility of video frame registration is greatly improved after integrating inter-frame matching.

As shown in Figure 14, the blue dots in the image represent matching points. One can
observe the richer matching points in the right-hand-side image. In Figure 15, 10 frames are
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extracted. By comparing the pairs of matching points obtained through the two methods,
one can observe that when the UAV aerial image is matched with the transformed previous
frame, there are more matching points than when it is matched with the map.
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Figure 14. Registration effect: (a) match with map; (b) match with the transformed previous frame.

This experiment was conducted to verify that the stability of the registration can
be improved by integrating inter-frame-matching behavior. Since the motion between
two frames is very reduced, the homography transformation matrices of two adjacent
frames should be close to each other during the registration process. The stability can be
determined by the difference between the transformation matrices of the two adjacent
frames, and the greater the average value of the difference between the transformation
matrices of the two adjacent frames, the more unstable the registration process. The
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difference of homography transformation matrices between two adjacent frames can be
obtained by using Equation (11):

Herror = ∑m
i=1 ∑n

j=1

(
aij − bij

)2 (11)

where aij is the value at position (i, j) of the transformation matrix in the previous frame,
bij is the value at position (i, j) of the transformation matrix in the current frame, m and
n represent the row and column of the transformation matrix, respectively, and Herror
represents the difference between the two matrices.
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and map.

We recorded a video taken by the tethered UAV, and we registered each frame with
the map using two methods: one matched with the map only, and the other integrating
inter-frame-matching behavior. A total of 100 frames from the video were selected to save
the experimental results, and the Herror values of the 100 frames under the two methods
were compared.

Due to the limited space of the paper, Table 5 only shows the Herror values of 15 sampling
frames and the average value of 100 frames. The lower values are presented in bold,
and it can be observed that the difference between the transformation matrices of the
two adjacent frames is very minor after integrating the inter-frame-matching technique,
while the difference between the transformation matrices of the two adjacent frames is
relatively considerable when the inter-frame-matching technique is not utilized. This shows
that incorporating inter-frame-matching techniques into video frame image registration
can produce a stable registration result. In Figure 16, we visually present the results we
obtained. In the figure, the yellow line represents the result without utilizing inter-frame
matching, while the blue line represents the result with the usage of inter-frame matching.
It can be observed that after the integration of the inter-frame-matching technique, the
transformation matrix between the two adjacent frames presents a minor difference, and
the entire video registration process is more stable.
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Table 5. Comparison of the inter-frame and global Herror values. The better results are highlighted
in bold.

Sampling Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Aver_
Value

Inter-frame 18 12 22 53 19 39 5 4 1 15 14 20 27 34 20 22.7

Global 821 79 199 594 87 352 328 150 249 663 38 39 55 19 42 226
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4.4. Comparison of the Registration Effects Prior to and Following the Real-Time Update of
Map Features

This experiment was designed to verify that a greater registration accuracy can be
achieved after updating map features. The experiments were conducted with and without
updating the map features. Two scenes were selected for the experiment and the experimen-
tal data were collected using the tethered UAV (the video was collected with the camera
tilted in order to increase the difficulty of registration). Two methods were used to register
each frame of the video in real time.

The transformation matrix can be obtained by the feature-matching technique, and
the UAV aerial image can be transformed into the coordinate system of the map through
the transformation matrix. There is an overlapping area between the transformed UAV
aerial image and the map, and the coincidence degree of the two images can be determined
by the difference image of the overlapping area. (The difference image can be obtained by
subtracting the gray image of the transformed UAV aerial image from the gray image of
the map. That is, the gray values of two corresponding pixels are subtracted.) The pixel
value of the difference image represents the difference between the two images at this pixel
point. The smaller the average pixel value of the difference image, the greater the accuracy
of the UAV aerial image and map registration. In other words, the more white parts there
are in the difference image, the worse the accuracy of registration. The average pixel value
in the effective area of the difference image can be calculated using the following equation:

index =
(
∑rows

i=0 ∑cols
j=0 abs(map[i, j]− f rame[i, j])

)
/ f lag (12)

where map represents the grayscale image of the map block, f rame represents the grayscale
image of the frame image following the homography transformation, i, j satisfies
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f rame[i, j]! = 0, f lag is the number of eligible pixels, and index represents the average of
the gray value of the effective region in the difference image.

In terms of the result evaluation criteria, we divided the results into subjective and
objective evaluations, and for the latter, we used the number of matching points and index
value. The experiment was divided into two groups. Due to the limited space of the paper,
13 frames (the 15th, 30th, 45th, 60th, 75th, 90th, 105th, 120th, 135, 150th, 165, 180th, and
195th frames) from the video were selected, and the registration results of these frames
under the two methods were evaluated and compared.

4.4.1. Experiment 1 (Group 1)

In order to better display the results, we selected 9 frames from the 13 sampling frames
to present their graphical results. Figure 17 depicts the difference image of the registration
results without updating the map features, and Figure 18 shows the difference image after
updating the map features (note: one can observe that the pixel value of the difference
image remains high after updating the map features because there are certain differences
evident in the color and brightness between the map and UAV aerial images). It can be
observed that the top-left-corner areas in the first, third, and eighth images without being
updated are whiter than those that have been updated, while the second and seventh
images are more obvious, indicating that their registration accuracy is worse.
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Figure 17. Registration difference image (without updating the map features).

Figures 19 and 20 present the registration results prior to and following the updating of
the map features. It can be observed that the registration results of the second, third, fourth,
fifth, seventh, and eighth images present an obvious misalignment without updating the
map features. In addition, we can also observe that there are basically no matching points
evident when the frame images are matched with the map without updating the features
(the blue points in the figure indicate the matching points). However, after updating the
map features, the matching points of the image significantly increase.
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Figure 19. Registration image (without updating the map features). 
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Figure 20. Registration image (after updating the map features).

Table 6 exhibits the results of the index value and number of matching points of the
13 sampling frames. It can be observed that after updating the map features, the matching
points between the UAV aerial image and map significantly increase, and the index value
is basically lower than that without updating. Figure 21 presents the results exhibited in
Table 6 in a graphical way, and it can be observed that the matching points dramatically
increase after updating the map features. Although the change in the index value is not
obvious, it attains a smaller value for each frame, which also means that the registration
accuracy is higher.

Table 6. Comparison of the number of matching points and index values. The better results are
highlighted in bold.

Frame Number Update 15 30 45 60 75 90 105 120 135 150 165 180 195

Number of matches
Yes 341 351 340 357 354 354 342 345 347 358 383 373 390
No 86 3 9 56 7 6 15 24 1 21 3 13 135

Index
Yes 36.5 36.2 36.6 36.7 36.9 36.6 37.1 37.1 37.3 38.5 43.5 44.0 44.5
No 39.6 51.2 40.7 37.9 38.3 39.8 38.4 111.7 39.2 39.0 47.0 44.4 45.3

4.4.2. Experiment 2 (Group 2)

For the second set of experiments, similarly, we selected 9 from 13 frames for the
graphical display; Figure 22 shows the difference image without updating the map feature
and Figure 23 shows the difference image after updating the map feature. It can be observed
that the lower-left-corner area of the third, fourth, and seventh images without receiving
an update are whiter than those that have been updated, and there are obviously incorrect
transformations in the second and eighth images. Figures 24 and 25 depict the registration
results prior to and following the update of the map feature. It can be observed that when
the feature is not updated, the second and eighth registration results present considerable
deformations. Although the contrast is not obvious in the first, third, fourth, fifth, sixth,
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seventh, and ninth images, it can also be observed that the edge of the overlapping area
is misaligned.
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Table 7 presents the results of the index value and number of matching points of the
13 sampling frames. It can be observed that after updating the map feature, the number of
matching points basically increases; however, the increase is less than that of experiment 1,
which is caused by the richer texture features of this scene. On the other hand, the index
value is basically smaller than that without updating, and the result also is more stable.
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Table 7. Comparison of the number of matching points and index values. The better results are
highlighted in bold.

Frame Number Update 15 30 45 60 75 90 105 120 135 150 165 180 195

Number of matches
Yes 328 323 282 292 294 304 270 293 277 281 285 293 294
No 320 309 283 239 305 173 217 239 262 242 280 258 260

Index
Yes 44.1 43.1 42.7 42.5 42.1 42.0 42.4 42.6 42.3 42.3 42.3 42.5 42.3
No 46.6 43.1 47.5 43.3 43.7 42.2 42.2 42.8 43.5 42.9 44.8 46.5 44.3

Figure 26 shows the results of Table 7 graphically; the yellow line represents the results
after updating the map feature and the blue line represents the results without updating the
map feature. It can be observed that there are a good number of matching-point pairs prior
to and following updating; however, the number of matching points is further improved
and tends to be stable, and the index is basically 2–3 points smaller after updating, and the
results are relatively stable.
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5. Discussion

With the rapid development of computer vision and UAV technologies, UAVs are
often used in the field for certain tasks, such as visual detection and tracking to analyze or
monitor targets; however, this only displays the information of an image and only conveys
the visual feeling. If the correspondence between the real-time frames of the UAV and
geographic map can be determined, the camera image can be endowed with geographic
information. Increased applications can be obtained by transmitting the target geographic
information to other platforms, such as combining this with the model map or 3D platform
to achieve a virtual reality effect.

In the more ancient work, the projection transformation method was used to project
the real-time frame onto the map, and the position of the camera image was calculated by
the position information of the UAV and angle information of the camera. However, this
method requires the information provided by the UAV to be extremely accurate, and the
rotations of the UAV and camera make the calculation process very complex, including
numerous accumulated errors and a lack of flexibility. With the gradual development of
feature-matching algorithms in the field, both their accuracy and speed have improved;
therefore, the improvement of the feature-matching techniques makes it possible to accu-
rately register the UAV aerial images with the map. The UAV aerial images and geographic
map are registered by feature matching, so that the UAV aerial images also have geographic
coordinates, and the real-time geolocation of the target is realized.

The traditional feature-matching algorithms include Sift [9], Surf [10], Brisk [37], etc.
However, they are not real-time methods and can only process a single image; therefore,
their application scope is narrow. Therefore, a lot of research has been conducted on
speeding up these algorithms, such as meshing or eliminating invalid regions; however,
they remain very dissimilar to the real-time method. The emergence of the Orb algorithm
has solved the problem of the real-time method, and the Orb algorithm is widely used in
various studies because of its superior performance. However, although the Orb algorithm
has a good performance, it is difficult to achieve correct matching for scenes with sparse tex-
tures, and it even generated a high error rate. In this study, the SuperPoint and SuperGlue
algorithms, which exhibit real-time performances, were adopted. The SuperGlue algorithm
has a better and more stable performance in relation to sparse texture scenes, and it is
suitable for performing feature matching for maps with sparse textures (Figures 10 and 11).

In addition, the map has a wide range, while the UAV aerial image has a narrow
range. There is a wide gap in the scale between the two methods; therefore, it is difficult to
perform feature matching between them. The easiest way to solve this problem is to cut the
map; however, the UAV aerial image is constantly changing. Thus, how do we attain the
appropriate map following the blocking process? The traditional method used in the field
is to obtain the position directly below the UAV through the GPS information of the UAV
to select the corresponding map block. On this basis, we used the pan–tilt–zoom camera
and introduced the rotation information of the camera, so that our method could register
the UAV aerial images under the tilt angle. In addition, our method could flexibly rotate
the camera image by the heading angle of the UAV, so that the UAV aerial images with
different angles could also be registered in the study (Figures 12 and 13).

The movement of the UAV and rotation of the camera caused the scene to be change-
able; however, the map was immutable, which may cause the performance of the feature-
matching algorithm to be unstable and may achieve poor results for some complex scenes.
Inspired by the idea of real-time mapping, we proposed a method to update the map
feature in real time, so that the map could change according to the change in the external
environment. The experiments (Figures 17–26) showed that, in some scenes where the
feature-matching performance was difficult, the proposed method effectively improved
the accuracy of the feature matching and presented greater robustness and flexibility. In
addition, the proposed method combined global and inter-frame matching techniques to
create a more stable registration process, the inter-frame matching technique reduced the
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fluctuation of the global-matching technique, and the global matching technique restricted
the cumulative error produced by the inter-frame matching method, as shown in Figure 16.

Indeed, the proposed method also had some limitations. When the camera tilt angle
was very large, it produced poor results, and the frames and prior UAV data were required
to be collected synchronously and have a low-delay frequency. In future research, we hope
to optimize the existing problems in this regard.

6. Conclusions

Due to the sparse texture and wide coverage of the map, as well as the large difference
between the dynamic UAV aerial image and the static map, it is difficult to accurately
register the UAV aerial image and the map using the traditional feature-matching algorithm.
To solve this problem, in this study, the SuperPoint and SuperGlue algorithms, which are
based on deep learning, were used for feature matching. The hierarchical blocking strategy,
combined with prior UAV data, was introduced to improve the matching performance, and
matching information obtained between frames was introduced to render the registration
process smoother and more stable. The concept of updating the map features with UAV
aerial image features was proposed with the aim of updating the map features in real
time, rendering the method more adaptable to the changing environment and improving
the registration accuracy and the robustness and applicability of the algorithm. Finally,
the UAV aerial image can be accurately registered on the map in real time, adapting to
the changes in the environment and the camera head. A large number of experiments
showed that the proposed algorithm is feasible, practical, and scientific and has specific
application value in the fields of UAV aerial image registration and UAV aerial image target
geo-positioning.
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