
Citation: Ferrão, J.; Dias, P.; Santos,

B.S.; Oliveira, M. Environment-

Aware Rendering and Interaction in

Web-Based Augmented Reality. J.

Imaging 2023, 9, 63. https://doi.org/

10.3390/jimaging9030063

Academic Editors: Christos Mousas,

Nicola Capece, Ugo Erra, Lucio

Tommaso De Paolis and Giuseppe

Caggianese

Received: 27 January 2023

Revised: 14 February 2023

Accepted: 2 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Environment-Aware Rendering and Interaction in Web-Based
Augmented Reality
José Ferrão 1 , Paulo Dias 1,2,* , Beatriz Sousa Santos 1,2 and Miguel Oliveira 2,3

1 Department of Electronics, Telecommunications, and Informatics (DETI), University of Aveiro,
3810-193 Aveiro, Portugal

2 Intelligent System Associate Laboratory (LASI), Institute of Electronics and Informatics Engineering of Aveiro
(IEETA), University of Aveiro, 3810-193 Aveiro, Portugal

3 Department of Mechanical Engineering (DEM), University of Aveiro, 3810-193 Aveiro, Portugal
* Correspondence: paulo.dias@ua.pt; Tel.: +351-234-370-531

Abstract: This work presents a novel framework for web-based environment-aware rendering and
interaction in augmented reality based on WebXR and three.js. It aims at accelerating the development
of device-agnostic Augmented Reality (AR) applications. The solution allows for a realistic rendering
of 3D elements, handles geometry occlusion, casts shadows of virtual objects onto real surfaces, and
provides physics interaction with real-world objects. Unlike most existing state-of-the-art systems
that are built to run on a specific hardware configuration, the proposed solution targets the web
environment and is designed to work on a vast range of devices and configurations. Our solution
can use monocular camera setups with depth data estimated by deep neural networks or, when
available, use higher-quality depth sensors (e.g., LIDAR, structured light) that provide a more
accurate perception of the environment. To ensure consistency in the rendering of the virtual scene
a physically based rendering pipeline is used, in which physically correct attributes are associated
with each 3D object, which, combined with lighting information captured by the device, enables the
rendering of AR content matching the environment illumination. All these concepts are integrated
and optimized into a pipeline capable of providing a fluid user experience even on middle-range
devices. The solution is distributed as an open-source library that can be integrated into existing
and new web-based AR projects. The proposed framework was evaluated and compared in terms of
performance and visual features with two state-of-the-art alternatives.

Keywords: augmented reality; immersive web; occlusion mapping; depth sensing

1. Introduction

Augmented reality (AR) consists in augmenting the real world with virtual layers of
information [1]. Since its introduction, AR has grown substantially and is now used in
several well-known applications such as Facebook, Snapchat, Google Maps, and Pokémon
Go. Common applications include AR-powered photography filters, visual map navigation
assistance in vehicles, or even more complex tasks such as remote technical assistance [2]
and medical surgery training [3].

While all AR systems need pose tracking to align virtual content with the environment,
most systems still do not possess the capability of dynamically adjusting content to their
surroundings, limiting the immersion of the AR application, an essential factor for the
effectiveness of these systems as discussed by [4].

Environment awareness in AR systems is an important step not only from an inter-
active and immersive perspective but also to improve usability, for example by adjusting
fonts or content colour to improve readability based on the environment, as studied by [5].

The computing power of mobile devices has improved significantly over the last
decade and these devices have become the most common scenario for AR applications.
Currently, mobile devices have powerful systems on a chip (SoC) that contain motion
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sensors capable of good position and orientation tracking, which, paired with modern
visual camera systems composed of multiple image sensors, make smartphones a natural
fit for AR experiences.

Although smartphones are the most common type of devices used for AR, advanced
features and more precise tracking are available on dedicated wearable devices, such as
Microsoft HoloLens 2 [6], Magic Leap, or the Real Wear HMT-1. These devices provide a
hands-free experience essential for the adoption of AR in many scenarios such as industrial
environments. Head-mounted displays (HMD) can also be equipped with hardware for
eye tracking [7] and hand tracking [8], enabling natural interaction with the virtual world.
HMD allow for a foveated rendering [9,10], a technique to improve computing efficiency
by reducing rendering detail in the peripheral vision of the user.

To accelerate the development of AR applications, vendors have introduced dedicated
APIs (e.g., Google ARCore, Apple ARKit) that simplify the integration of advanced hard-
ware features that provide details about the environment in which the user is located (e.g.,
geometrical information, lighting conditions, device tracking, environment landmarks).

Web-powered AR offers the capability of a setupless experience, without the need to
download and install applications while offering developers the possibility of developing
cross-platform AR experiences. Using modern application programming interfaces (API)
(e.g., WebGL, web workers, WebGPU), web-based AR experiences can achieve performance
close to native applications, while being faster to develop due to the simplified nature of
the web ecosystem.

WebXR [11] is a web-based API that works as middleware between the web layer
and the dedicated system APIs available across multiple devices, providing a base for
both AR and virtual reality (VR) development using web technology. It allows for the
development of AR applications that are device agnostic and that can work on smartphones
and dedicated extended reality (XR) devices. It allows developers to target multiple devices
(as exemplified in Figure 1) and provide fallback code for users that access the application
without an AR-capable device, important for example to provide access to users with
disabilities [12].

Figure 1. Web ecosystem for the development of cross-platform AR applications; web APIs get
translated into vendor-specific APIs by the web browser.

With the rise in real-time collaborative AR experiences, the usage of web technologies
has become more relevant as they allow for cross-platform communication and collabora-
tion from a single application. Works such as the ones proposed by [13] or [14], where the
authors present a solution for remote conference with support for AR and VR, explore the
versatility of the web ecosystem.

In this document, a novel framework for environment-aware AR applications based
on WebXR is presented. The novelty of this work stems from the integration of many
state-of-the-art concepts in AR such as occlusion rendering, environment lighting, shadows,
and physics interaction between virtual and real objects into a single performant pipeline.
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The solution uses physically based shading, combined with environment information
that results in the rendering of 3D objects that are consistent with the real-word surround-
ings as demonstrated in Figure 2. The performed tests confirm that the proposed approach
can achieve 30 fps on a middle-range device while running directly from the web browser.

This work was motivated by the lack of cross-device AR solutions that provide
environment-aware rendering and physics for AR. Current solutions for cross-device
AR (e.g., Vuforia, ARToolKit+, Playcanvas) are limited to basic AR functionalities such as
tracking and scene alignment [15].

The rest of the paper is structured as follows: Section 2 introduces and discusses the
related work regarding environment-aware AR systems; Section 3 presents the technical
approach for web-based environment-aware AR; in Section 4, the performance of the frame-
work implemented is analysed; in Section 5, the performance evaluation of the framework
is presented and compared with other state-of-the-art solutions; and Section 6 concludes
the work and proposes some ideas for future developments on the topic presented.

Figure 2. Environment-aware augmented reality rendering with geometry occlusion, shadow casting,
lighting matching, and physics interaction between virtual and real world objects.

2. Related Work
2.1. System-Level API

Traditional AR applications require previous knowledge of the environment or the
usage of discrete markers to align the virtual information with real-world images and
provide adequate tracking between the virtual and real worlds.

The search for solutions capable of mapping and recognizing the environment for AR
applications has been a topic of research for as long as the AR term has existed; an early
solution for environment interaction in AR with depth estimation from a stereo camera
was presented in [16].

In 2014, Google introduced the Tango SDK, used to build AR devices equipped
with depth sensors and motion tracking, capable of obtaining a detailed 3D mapping
of the environment using simultaneous location and mapping (SLAM) algorithms. This
innovative platform kickstarted the growth in mobile environment-aware AR and opened
new possibilities regarding environment tracking and geometry occlusion between real
and virtual worlds [17,18].

In 2017, Apple introduced a concurrent to Google Tango, the ARKit, which used the
already existing hardware of iPhone and iPad devices for environment tracking, depth
sensing, and lighting information.

In 2018, an efficient algorithm for the densification of depth points obtained from
monocular visual feature tracking integrated into a SLAM process using deep neural
networks (DNN) capable of running in real time was proposed by [19]. It produced depth
data consistent with the edges in the colour images used as reference for the densification,
specifically targeting a usage in AR applications paving the way for massification of cost-
effective AR solutions without the requirement of expensive depth systems by leveraging
the AI capabilities already embedded into modern mobile SoC.
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In the same year, Google introduced a new API for AR applications named ARCore.
As its counterpart (Apple ARKit), ARCore could run on already available smartphones by
using DNN to densify depth data obtained from a single camera alongside with phone
position and orientation provided by the inertial measurement unit (IMU). It was also
compatible with dedicated depth hardware such as time-of-flight (ToF) cameras that can
provide more precise depth information. Alongside with device tracking and environment
geometry information, ARCore also introduced the possibility of obtaining lighting informa-
tion, image tracking, human face recognition, and mechanisms for real-time collaborative
AR among devices by sharing environment features across devices [20].

Although ARCore and ARKit proposed similar functionality, there were differences in
their technical approach that were investigated by [21,22], where the authors explored the
performance and quality of these APIs for tracking in indoor and outdoor scenarios.

In 2020, a solution for environment-aware AR named DepthLab [23] was introduced. It
leveraged depth and lighting information provided by ARCore to build environment-aware
AR experiences with geometry occlusion, real environment relighting, and physics interaction.

Also in 2020, Apple introduced solid-state Light Detection and Ranging (LIDAR)
technology in smartphones. LIDAR provides high-accuracy dense depth data without
the need for additional processing from DNN, improving both performance and quality
of the depth information. Two examples of applications using this solution are Snapchat,
which provides accurate geometry occlusion and relighting of a real world image, and Poly-
cam, which uses the geometry provided from the LIDAR to perform a 3D reconstruction
using SLAM.

2.2. Web-Based AR

The web environment offers one of the most complete toolsets for Graphical User
Interface (GUI) development with the possibility of developing complex 3D systems us-
ing WebGL.

AR.js was the first framework widely adopted for web AR targeting smartphone
devices with marker-based tracking. This approach requires the usage of markers such as
QRCode, Aruco, or pretrained images to track the environment using the device camera.

The usage of markers with data storage also provides context for the AR system
(e.g., markers can be used to dynamically reference 3D models from a server). Without
markers, AR systems must rely on object detection and classification techniques that can be
computationally expensive for mobile devices.

With the introduction of the first versions of WebXR, markerless web-based AR so-
lutions have started to appear in scientific works and commercial applications. However,
while WebXR provides the required technology to implement AR experiences, the inherent
limitation of the web environment regarding data bandwidth and the complexity of leverag-
ing the high-performance functionality still impose a barrier for fully featured experiences
leading to badly implemented solutions, as studied in [24].

In 2020, a solution for AR interaction with point cloud data using three.js and WebXR
for environment tracking and interaction was proposed, providing a limited but performant
example of a web application [25].

2.3. Realistic Rendering

The real-time realistic rendering of virtual images has been a research topic widely
explored over the years from simulation applications, gaming systems, and even industrial
applications. In the last few years, we observed an exponential increase in the processing
capabilities of graphics hardware. Ray tracing is now a viable solution for hybrid rasterized
systems in desktop computers and gaming consoles allowing the simulation of paths of
light. Low-power mobile devices are now also capable of realistically rendering images
using techniques that were previously not feasible such as physically based rendering (PBR)
or the usage of advanced screen-space effects [26].
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AR realistic rendering techniques have been constrained by the lack of environment
information (e.g., lighting conditions, geometry) and limitations in performance. In 2003,
image-based lighting (IBL) [27] was introduced. IBL is a technique for photorealistic
rendering using environment maps for object shading and reflections in AR. Later in 2004, a
solution [28] for shadow rendering in AR was proposed using shadow volumes, a prebuilt
model of the environment geometry, and manually tweaked lighting. Both these solutions
required previous knowledge of the environment and markers for environment tracking
but provided credible results despite some limitations.

In 2019, DeepLight [29], a DNN-based solution capable of estimating scene illumina-
tion from a single photograph with a low dynamic range (LDR) and a limited field of view,
was proposed. The technique used a DNN trained with pictures of the environment and
high-dynamic-range (HDR) maps obtained for three different physical material samples.
Based on a single picture, the DNN generated an HDR map. This map could be mapped to
the objects’ surface using IBL rendering.

3. Proposed Solution
3.1. Framework Development

For the implementation of the solution, the three.js graphics library and the JavaScript
programming language were selected. The three.js library was chosen based on its ren-
dering capabilities with PBR and WebGL 2.0 support and on its popularity to increase the
reach of the solution proposed to researchers and developers. Three.js has a much larger
community of users when compared to the closest competitors Babylon.js and Play Canvas.

For GUI elements, the “dom-overlay” functionality, which allows the integration
of document object model (DOM) elements in the AR scene, was used to implement an
abstraction layer that projected and aligned these elements into the 3D scene using CSS
transforms extracted from the camera projection model. These elements could also be used
in 2D for on-screen user inputs and information.

For the development and tests, a Xiaomi Mi 10 Lite 5G (M2002J9G) smartphone
(manufactured by Xiaomi Inc in China and sourced from Porto, Portugal) was selected as a
representation of a middle-range device that supports ARCore depth functionality. The
device was equipped with a Qualcomm 765G SOC and 6 GB of RAM using the operating
system Android 10. The code was tested using Chrome 88.0.4324.68. Models used for
testing were obtained from the Khronos Group glTF 2.0 sample repository.

3.2. Object Picking

In this section, the object-picking module of the solution used for interaction with
the 3D virtual environment from a 2D screen points using the “hit-test” functionality of
WebXR is presented. The hit-test system assumed that all interactions were performed over
plane surfaces; it was capable of handling multiple planes simultaneously and provided the
normal of the plane surface. The API received a ray described by its origin and direction
vector and responded with the estimated distance to a real-world surface, if any. Points
obtained from the hit-test were stored internally by the API as environment anchors used
to realign the scene when the tracking was lost, ensuring the objects placed in the scene
were always correctly realigned after tracking problems.

The object placement mechanism was used to introduce virtual 3D objects using a
position calculated from the hit-test result. The solution allowed the user to select screen-
space points for which the origin and direction of the ray were calculated based on the
device position (obtained from tracking) and the camera projection characteristics.

Object picking could be combined with dedicated controllers using the Gamepad API
and motion-sensing-enabled controllers (e.g., Wii Remote) to further improve immersion.
Using the object placement module, we also implemented sample measurement tools to
evaluate distances, angles, and areas using the GUI toolkit.

The accuracy of the tracking solution provided by the API was analysed in depth
by [30], where the authors observed a standard deviation of up to 0.73 cm but also observed
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a high dependency on the environment’s visual features and lighting conditions. Although
a consistent test environment was not used, it was possible to observe measurements of
objects with a known size as exemplified in Figure 3 (right) by measuring a 20 cm ruler
with an accuracy of 1 cm, with the device positioned 40 cm away from the object. The
maximum observed depth captured by the system was 8 m.

Figure 3. Object placement and measurement functionalities.

3.3. Geometry Occlusion

In this section, a Graphics Processing Unit (GPU) based solution for object occlusion is
presented. The quality of the depth data available depends on the system configuration
and sensors existing on the device. The approach used allowed for high-precision depth
data when available, by integrating the raw depth data into the rendering pipeline. The
test device used a monocular depth estimation provided by the AR Core obtained using a
DNN-based algorithm [23] with a resolution of 160× 190 pixels and up to 8 m in distance
exemplified in Figure 4.

Figure 4. Depth data estimated from monocular views (closer surfaces in red and surfaces further
away in blue).

The rendering pipeline for the geometry occlusion is presented in Figure 5. Tracking
information was used to align the virtual scene with the real-world environment. Before
starting the rasterization process, frustum culling [31] was used to remove any objects
outside of the viewport. After rasterization, the normalized depth information was tested
with each fragment, and portions of the scene that would appear over the real-world
environment were discarded.

The depth data were provided as an array of 16-bit depth values, efficiently stored in
a WebGL texture using the luminance alpha mode, which allowed for two 16-bit unsigned
byte colour channels, exactly matching the size of the input data. The depth data provided
were not normalized by default so the depth buffer coordinates may not correspond to
screen-space coordinates. To convert from depth buffer coordinates, a normalization matrix
was provided by the API that had to be applied to correct the screen coordinates.
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Figure 5. Rendering pipeline for geometry occlusion: the vertex shader calculates the projected vertex
depth and passes it to the fragment shader where the depth of each fragment is evaluated against the
depth data. Only visible fragments are rendered; all geometries are frustum culled to prevent any
computation on geometries that are completely outside of the camera viewport.

The resolution of the depth data could be different from the screen resolution depend-
ing on the system. In the used test scenario, the depth resolution of 160× 190 pixels was
much smaller than the image resolution. A linear interpolation was used to filter and
upscale the depth data to match the rendering resolution. Figure 6 presents the results ob-
tained with the linear interpolation compared to a nearest-neighbour rescaling, which leads
to a cleaner depth in the image on the right. Upscaling of the depth data was performed in
the shader by improving the depth occlusion without any noticeable performance impact.

Figure 6. Comparison between nearest neighbour (a) and linear filtering (b) for depth data resampling.

To reuse the existing materials from the three.js library, we analysed how the materials
shaders were built from the material description. The shaders were built from a set of
OpenGL Shading Language (GLSL) shader chunks, and each material had its own shader
program, which, after being compiled, was managed by the internal renderer of the library.

The shader code generated could be accessed from the “onBeforeCompile” call-back
executed before the GLSL code was compiled, where the code for the depth occlusion was
injected into the existing shader code. In that phase, uniform variables could be registered,
specifically, the depth texture shared between all shaders, the normalization matrix, and
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the screen size. These uniforms were mapped from their JavaScript attribute name to the
shader code exactly and had to be managed manually to prevent memory leaks.

To blend the result between virtual environments and real-work images, a preprocess-
ing step was applied to prevent the overdraw of fragments that would be latter discarded.
To ensure no loss in precision, we compare the depth data encoded in data texture against
the projected vertices z passed to the fragment shader. This approach avoided the truncation
of the precision of the depth data to match the depth buffer accuracy.

The screen-space depth coordinates were obtained through the rectification matrix to
reconstruct the 16-bit depth value from the two 8-bit components, obtaining the original
depth value in millimetres. Any fragments that had a lower depth value, meaning that they
were further away from the projection origin than the real-world surface, were discarded
from the result before any additional processing was performed.

Combining real and virtual objects using the method proposed provided visually
accurate results, where it was possible to distinguish the separation between real and
virtual objects across their borders as shown in Figure 7 for indoor and outdoor scenarios.

Figure 7. Depth occlusion between real-world and virtual objects.

For some scenarios, it was possible to observe some inconsistencies due to errors in
the depth data observed with virtual objects placed behind objects with holes, translucid
objects, or with the presence of highlights and reflective surfaces and moving objects.
Figure 8 shows three examples of these inconsistencies: (a) shows a depth failure in a
perforated object; (b) the movement of the user hand is perceived as a solid object; and
(c) the depth confusion is caused by the reflective TV surface, allowing the user to place
objects inside the TV reflection.

Figure 8. Inconsistency in depth data and poor occlusion results.

3.4. Lighting

This section describes how the solution uses lighting information and PBR render-
ing to provide a consistent shading appearance with the environment. PBR rendering
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consists in using physical models to calculate lighting in 3D-rendered scenes, instead of
using a visually obtained approximation to model light interaction with surfaces. The
idea is that instead of tweaking materials to “look good” under specific lighting, a ma-
terial can be created that will react correctly according to calibrated lighting scenarios.
In practice, this gives a more accurate and realistic-looking result than the Lambert or
Blinn–Phong [32] models.

Bidirectional reflectance distribution functions (BRDF) [33] define how light is reflected
at any point of a surface based on its physical properties (e.g., metalness, roughness,
emissivity), and are used to describe the PBR shading model.

The “lighting-estimation” module of WebXR provides light intensity, the direction of
the main light source, and a cube-map texture of the environment surroundings. These
data are obtained from a device’s light sensor and camera.

To access lighting data, a light probe was used to query the direction of the main light
source as well as environment light information provided as a set of spherical harmonics
(SH) [34] at each frame.

SH encode lighting conditions in spherical functions that are then projected into fre-
quency space and represented by 9 coefficients. It is an alternative representation to a full
cube map that uses less memory and is effective for scenarios where high-frequency details
are not required. The API provides a set of SH coefficients for each RGB colour channel.

The three.js library has a PBR rendering implementation based on the model described
in [35]. The SH information retrieved was mapped to the three.js light probe model, and
light intensity and direction were represented as a directional light.

The 3D models used in the framework must contain all the required physical attributes
of their surfaces encoded into textures. Figure 9 presents the results, showing flowers
reacting to the varying lighting conditions in the room matching the direction, intensity,
and tonality of the light.

Figure 9. Virtual object reacting to different environment lighting conditions.

3.5. Shadows

Using the lighting information, the framework provided a solution for casting AR
shadow between 3D objects and the ground planes. The technique described in Section 3.2
was used to sample the environment at every frame to scan for planes visible in the
screen space.

Planes found were used to render shadows using shadow maps [36] cast from the
light sources to the planes detected in the environment. This technique allowed objects
placed on different surfaces to cast shadows onto any planar surface (e.g., ground, tables,
walls). To prevent shadows from being incorrectly projected over real-world objects, depth
was considered to clip the shadow maps based on the surface distance to the camera.

The usage of shadow maps presents some limitations: it is not possible to have partial
light occlusion from translucid objects, shadows are projected for a finite area, and the
number of lights casting shadows must be limited, since computational cost and memory
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increase exponentially with the number of lights in the scene. Numeric precision limitation
may also cause a shimmering effect commonly known as “shadow acne”, that was studied
and addressed in [37].

Figure 10 presents the shadow-casting results, where it is possible to observe that the
shadow was cast based on the direction of the main light source. In the example presented,
the main light source could either be the ceiling light (present in a and b) or the desk lamp
(visible in c and d).

Figure 10. Shadow casting from virtual objects onto the floor plane.

To ensure good performance, shadow maps are typically rendered with a resolution
considerably lower than the expected shadow pixel density in the screen space and to
improve their perceived quality, a filtering method can be used. We tested 3 different
algorithms for shadow map filtering: percentage-closer shadows (PCS) [38], variance
shadow maps (VSM) [39] and percentage-closer soft shadows (PCSS) [40].

To evaluate the performance and quality of the shadow-mapping mechanism based
on its resolution and filtering algorithm, we tested multiple configurations and measured
the performance for each one, and we selected a shadow area of 5× 5 m, equals 25 square
meters. The performance results are presented in Table 1. Examples for each filtering
method are presented in Figure 11. Based on these results, we selected a resolution of
1024× 1024 pixels for the shadow map of the directional light using PCSS filtering as the
best compromise between quality and performance.

Table 1. Shadow map rendering performance with different resolutions and filtering methods.

Resolution 2562 pxs 10242 pxs 40962 pxs 81922 pxs

Basic 1.10 ms 1.32 ms 1.37 ms 1.51 ms

PCF 1.12 ms 1.42 ms 1.97 ms 2.75 ms

PCF Soft 1.18 ms 1.53 ms 2.08 ms 3.42 ms

VSM 1.15 ms 1.67 ms 3.18 ms 5.42 ms

Figure 11. Shadow map filtering methods tested with resolution of 1024× 1024 pixels.

3.6. Physics Interaction

To provide an interaction between virtual and real world objects, depth information
was used to create a simplified model of the real environment that was combined with the
virtual scene object for the physics simulation.
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For the physics simulation, the cannon.js rigid body physics engine was used. It was
selected based on its performance through the usage of the SPOOK stepper [41] combined
with a spatial indexation of physics elements. The physics simulation ran from a separate
thread using a web worker. To share information with the main thread, data were packed
into a shared buffer to prevent duplicated data entries between different workers.

The process for the physics simulation is represented in Figure 12; the process starts
with a reconstruction of the real-world environment by projecting the depth data into a
probabilistic voxel occupancy grid using a technique based on the work presented in [42].

Figure 12. Physics pipeline for interaction with the environment: 3D geometries are used to generate
convex hulls that result in better performance for the physics simulation. The environment is mapped
using a probabilistic voxel grid model that is updated every frame; the simulation is performed on
a separate web worker that communicates with the main thread using shared buffers to prevent
duplicated data in memory.

The voxel occupancy grid consisted of a dense voxel volume that could be expanded
dynamically as required. Voxel size should be adapted to the precision required. For the
implementation, we selected empirically a voxel size of 5 cm. Voxels stored a weight value,
which was compared against a threshold value to decide if the voxel was occupied by a
real-work object or not.

Equation (1) represents how the system updates voxels contained in the camera
volume, where Vw is the voxel weight, Us is the update speed, from 0 to 1, and Ht is the
depth hit result with values 0 or 1.

V′p = (Vw ∗ (1−Us)) + Us ∗ Ht (1)

The depth was projected into a 3D space; each point had to hit a voxel in the grid; if
not, the voxel grid needed to be expanded. For each point, all voxels close to the camera
had a reduction in occupancy weight and the voxel hit by the point had its weight increased.
Voxels outside of the view were not updated. To handle virtual objects and maintain a
good computational performance of the physics simulation, simplified convex hulls were
generated for each object geometry using the quick-hull algorithm [43].

Information from the probabilistic voxel model and convex hulls were provided to
the physics engine, which updated the simulation state and the position of virtual objects
before rendering each frame.

Figure 13 exemplifies the collisions between real and virtual objects. A gap between
real and virtual objects due to the low resolution of the voxel grid was observed. Depending
on the scenario, it might be necessary to adjust the model to prioritize noise removal or
update the speed to accommodate dynamic objects. This would be mostly dependent
on data quality. In the described case, given the considerable amount of noise, the noise
removal was prioritized using a lower Us value.
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Figure 13. Example of physics objects (balls) collision with real objects modelled by a voxel
volume model.

3.7. Usage

The solution presented is distributed openly as a library and focuses on providing
an abstraction layer for web AR with fallbacks available for non-AR devices. The code is
available on GitHub at www.github.com/tentone/enva-xr (accessed on 12 February 2023).

The solution takes care of all initialization code required, so that developers can focus
on the application development. Figure 14 presents the code required to add an object in a
3D scene with all features described in this document enabled by default.

Figure 14. Code required for basic AR app with spinning cube.

The “ARApp” object provides access to all the features presented in the document.
It checks for the existence of all WebXR features required in the device and manages the
rendering of 3D objects and the physics simulation.

The features of the system can be toggled trough flags and developers can provide 3D
objects to the “scene” attribute of the application instance. A state update of 3D objects can
be performed in the “onFrame” method called before rendering each frame.

4. Performance Evaluation

To evaluate the performance of the framework, a simple implementation using only the
environment-tracking functionality without any lighting or geometry effect was considered
as a baseline, similarly to the solution proposed by [25].

A 3D model of an antique camera available under MIT’s permissive license was used;
this model is shown in Figure 15 and is composed of 20,162 triangles, split across eight
entities, and a total of six textures with a resolution of 2048× 2048 pixels each, to encode
surface properties: colour, normals, roughness, and metalness.

www.github.com/tentone/enva-xr
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Figure 15. Antique camera model from Khronos glTF 2.0 sample repository.

No optimizations were used during the tests and each group of entities used its own
textures and geometries that were replicated in memory. All objects were placed under
direct visibility, otherwise the framework would remove them from rendering. The device
was placed on a fixed stand during the tests to ensure that the tracking process was under
similar conditions.

Incremental tests were performed for each of the features proposed with different
number of objects; for each scenario, the average, minimum, and maximum values were
measured. We tested a baseline approach only with environment tracking (Figure 16), a
geometry occlusion feature (Figure 17), PBR rendering (Figure 18), and finally, the system
was tested with all the features (Figure 19).

Figure 16. Frame time for base solution with environment tracking.

Figure 17. Frame time for tracking and geometry occlusion.



J. Imaging 2023, 9, 63 14 of 20

Figure 18. Frame time for tracking, geometry occlusion, and environment lighting.

Figure 19. Frame time for the complete solution with tracking, geometry occlusion, lighting, and
shadow casting.

Figure 20 compares the average frame time for each feature and shows that the
complete system was able to work at reasonable frame rates, at an average of 30 fps up to
40 entities and getting as low as 10 fps in the worst-case scenario.

Figure 20. Average frame time for multiple test scenarios considering the total time between frames.

A significant variation between minimum and maximum frame times could be ob-
served. In the complete system test (Figure 19), we observed more than 100 ms in difference
between these values.

For the most complex scenario, the device ran out of memory for more than 112 entities,
caused by the quantity of texture data required for the textures and geometries. In a real
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scenario, this situation could be easily avoided by compressing and sharing the resources
across the multiple entities that can be implemented in the solution.

All tests were repeated by measuring only the rendering time of the solution proposed
without accounting for the WebXR overhead, considering only the time required to update
the data structures and render an image to the screen. The results are presented in Figure 21
showing a maximum difference of up to 4.2 ms of additional processing time introduced
by the proposed solution.

Figure 21. Average rendering time for the multiple test scenarios, not including the WebXR overhead.

In a device using a dedicated depth solution this value is expected to be the major
penalty introduced by the platform, easily allowing high-end devices to sustain higher
frame rates.

To understand better how the WebXR API impacted performance, a new test, indepen-
dent from the framework, was prepared, evaluating the times for each one of the WebXR
API modules necessary to access information used by the framework. Each feature was
tested separately, and the results are presented in Figure 22.

Figure 22. Performance values for each individual WebXR feature, without accounting for our
framework processing overhead.

The results suggested that no specific feature of the API imposed a higher performance
limitation as the performance was similar independently of the features in use. A big gap
between minimum and maximum values was observed, confirming again the substantial
variation in processing time of the API.

5. Comparison

For comparison of the approach presented, we selected two solutions: DepthLab and
MyWebAR. DepthLab uses the AR Core API and can be considered a representative of
the state-of-art in mobile augmented reality [23]. MyWebAR is a commercially available
solution for portable AR experiences, with minimal setup required and compatibility with
the WebXR API.
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5.1. DepthLab

DepthLab version 1.0.5 and the device presented in Section 3 were used for the
results presented. Analysing the rendering capabilities of both solutions suggested that
they offered similar results regarding occlusion and lighting capabilities as displayed in
Figure 23. It was also possible to observe the same depth limitations, which was expected,
as the same underlying techniques were used.

Figure 23. Rendering geometry occlusion and environment lighting using DepthLab.

Although surface lighting used a similar technique with PBR materials, the proposed
solution lacked environment maps, relying instead on a simplified spherical harmonics
(SH) model, which, although not as detailed, provided a better consistency, as observed
when comparing the results from Figure 23c, where the virtual object presented an orange
tint and looked incoherent compared to the blue light of the environment and in Figure 9c,
where the environment lighting colour was matched correctly.

Shadows were also obtained using different techniques; the proposed approach used
shadow maps projected over planar surfaces with soft filtering, whereas the solution
by [23] used hard shadows projected over a closed mesh (that was also used for the physics
interaction).

The results obtained with the DepthLab solution also presented some issues as seen in
Figure 24: the shadows were not always correctly projected and often occluded real-world
objects. The shadow direction and style also did not match the surrounding objects, and
there was sometimes a complete lack of shadows.

Figure 24. Shadow projection limitations using DepthLab: shadows are only partially displayed and
cross surfaces.

For the physics interaction, the solution presented combined a voxel occupancy grid
approach, which was built and updated as a simplified but dynamic model of the environ-
ment with a simplified hull for the virtual objects and which allowed the physics simulation
to run even for elements outside of the viewport.
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The approach presented in DepthLab used a closed triangulated mesh updated in real
time from the depth data available in the viewport, which did not cope well with physics
elements leaving the screen space or interacting with the surface. Figure 25b shows that the
simulation stopped once we placed a virtual object over a cardboard box. Once the objects
hit the box, they became static and no longer reflected changes in the environment.

Figure 25. Physics simulation with floating objects after removing a cardboard box in DepthLab and
objects falling in our solution.

In contrast, the proposed solution (Figure 25a) updated the simulation for all objects,
updating our voxel-based model according to environment changes. After removing the
cardboard box, the object fell to the ground. A current limitation was the delay introduced
since our system required some time to update the model (several frames were necessary
to update the occupancy value).

5.2. MyWebAR

MyWebAR is a web-based commercial solution for AR experiences. It supports differ-
ent types of AR projects based on image tracking, QR codes, and SLAM. For comparison,
we created a SLAM project. In SLAM projects, MyWebAR can use WebXR to track the
environment similarly to the solution presented.

In Figure 26, we observe that MyWebAR lacked many of the rendering features
introduced by our solution. For instance, occlusion was not handled correctly with objects
rendered on top, and no shading was applied to the objects. We also observed a drift in
the position of objects placed in the environment which might indicate that no anchoring
mechanism was implemented in that solution.

Figure 26. MyWebAR platform-rendering capabilities.
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6. Conclusions and Future Work

This paper presented a framework for environment-aware AR application based on
the WebXR API providing a consistent and performant package paving the way for the
creation of complex AR applications that can better reflect changes in the environment.

The novelty and a most significant advantage of the proposed approach resulted from
the integration of multiple state-of-the-art AR features into a single performant package
(as exemplified in Video S1) that could run on devices with vastly different hardware
configurations.

At the time of this work, the specification for the WebXR API and the modules used
(“depth”, “lighting-estimation”, “hit-test”, “anchors”, and “geo-alignment”) were in a
proposal state, and their implementation was subject to changes in future releases of the
Chrome web browser.

The framework presented is intended to be used by other developers and researchers.
It allows users to quickly create a web AR application capable of environment interaction
with minimal code required for setup.

While the WebXR API specification is still under development, it already offers a
significant toolset for environment-aware mixed reality. The performance instability of the
WebXR API probably caused by the unpredictability of the SLAM process used to build the
environment model, poses some challenges for consistent performance in more complex
AR applications, which was also observed in [21] .

To further enhance the results of the work presented, real-time reflections could be
introduced using environment cube-map information. It was not possible to integrate this
feature because the API provided it as a preallocated WebGL texture that we were not able
to integrate into the three.js rendering pipeline. An alternative algorithm for occlusion
could be used to improve the visual fidelity of the solution; for instance, in Figure 1, the
occlusion was not perfectly represented and one of the antique camera’s feet should have
been hidden behind the white table leg.

Throughout the development of the proposed framework, it was noticed that memory
limitations arose quickly, which was expected considering the complexity of the SLAM process
used internally by ARCore to keep track of the device position and environment anchors.

To reduce the memory used for textures, which represent the largest chunk of memory,
GPU-compressed formats should be used whenever possible and are supported by the
proposed framework. To ensure compatibility with vendor-specific formats, the approach
proposed by [44] provides a middleware format that can be transcoded to vendor-specific
technologies and has a reduction of up to 96% in GPU memory usage when compared to
uncompressed data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jimaging9030063/s1. Video S1: Functional demonstration of the
features proposed by the framework.
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